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ABSTRACT

With the increasing availability of various ‘omics
data, high-quality orthology assignment is crucial
for evolutionary and functional genomics studies.
We here present the fourth version of the eggNOG
database (available at http://eggnog.embl.de) that
derives nonsupervised orthologous groups (NOGs)
from complete genomes, and then applies a com-
prehensive characterization and analysis pipeline to
the resulting gene families. Compared with the
previous version, we have more than tripled the
underlying species set to cover 3686 organisms,
keeping track with genome project completions
while prioritizing the inclusion of high-quality
genomes to minimize error propagation from in-
complete proteome sets. Major technological
advances include (i) a robust and scalable proced-
ure for the identification and inclusion of high-
quality genomes, (ii) provision of orthologous
groups for 107 different taxonomic levels
compared with 41 in eggNOGv3, (iii) identification
and annotation of particularly closely related
orthologous groups, facilitating analysis of related
gene families, (iv) improvements of the clustering

and functional annotation approach, (v) adoption of
a revised tree building procedure based on the
multiple alignments generated during the process
and (vi) implementation of quality control proced-
ures throughout the entire pipeline. As in previous
versions, eggNOGv4 provides multiple sequence
alignments and maximum-likelihood trees, as well
as broad functional annotation. Users can access
the complete database of orthologous groups via a
web interface, as well as through bulk download.

INTRODUCTION

Orthology refers to a homologous relationship resulting
from a speciation event, as opposed to paralogy, which is
the result of a gene duplication event (1). However, to
delineate orthologs and paralogs is a challenging task,
especially for multispecies comparisons, where multiple
evolutionary processes (e.g. gene loss, lineage-specific
duplication, horizontal gene transfer) have shaped the
modern genomes. Therefore, new terms have been
introduced, such as the concept of orthologous groups
(2). Owing to both the central role of orthologous genes
in reconstructing species histories and in transferring func-
tional information across species—the latter is based on
the observation that orthologous genes seem more likely
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to retain ancestral gene function (3)—substantial effort
has gone into orthology inference and multiple tools
have been developed for this purpose.
Orthology, while central to evolutionary biology and

genetics, remains difficult to define where mosaic biolo-
gical evolution is involved (4). Domain-level rearrange-
ments between genes break up the concept of single gene
histories and create gene fission or fusion products where
orthology may hold only for single domains (5).
Furthermore, horizontal gene transfer often hampers
proper orthology assignments (6). Yet, all these issues,
while technologically challenging, are in principle address-
able, with measures previously implemented in
eggNOG (7,8).
Recent publications using manually curated bench-

marking tests or phylogentic analyses (9) suggest that a
central source of errors lies in poor genome annotation
and accuracy. Therefore, addressing this issue by estab-
lishing quality control measurements is essential for every
inference method. Hence, efforts have been made to
benchmark different methods (10–15) and to evaluate
paradigms for testing the accuracy of such methods
under a fair comparison. These benchmarks have
provided insight into the problems of genome selection
and its effects on the quality and precision of orthologous
group inference. Thus, it has become clear that correct and
accurate genome annotation is vital to unravel the biolo-
gical complexity of orthologs (9). However, other error
sources can have an even greater impact on orthology in-
ference, for example, incomplete genomes or those with
apparent duplicate genes as a result of assembly or gene
prediction artifacts. Second, an uneven sampling of
species diversity risks introducing other types of artifacts
either stemming from large clusters of closely related
genomes, such as when multiple strains or subspecies
have been sequenced to study intraspecies or generic di-
versity, or from single species at the end of long evolution-
ary branches, making accurate inference more difficult in
many cases. Here we describe eggNOGv4, which tries to
address some of these issues and highlight some of the
advances over previous versions. Like previous editions
of the resource, eggNOGv4 attempts to achieve compre-
hensive multispecies coverage relative to different taxo-
nomic levels, while at the same time providing relevant
functional annotations for the resulting groups. This
effort essentially extends that of the manually curated
COGs/KOGs/arCOGs (2,16,17) databases, and is
matched in scope by only a few other resources, most
notably KEGG-OC (18).

EUKARYOTIC AND PROKARYOTIC GENOME
SELECTION

With the rise of next-generation sequencing and the
prompt expansion of available genomes, maintaining
quality requires an escalated effort (19). Many methods
for orthology analysis scale quadratically with an
increasing number of genomes such that a naı̈ve expansion
to include all available genomes is no longer feasible.
eggNOG, and affiliated databases such as STRING (20),

tentatively have addressed this issue by dividing species
space into ‘core’ species, which are central for defining
orthologous groups using the strict triangular criterion,
and ‘periphery’ species, which are subsequently linked
into the core by bidirectional best hits. Although this dis-
tinction has been applied since the conception of eggNOG
to minimize computational demands, it has proven a
crucial quality control step for the latest releases.
Currently, the core/periphery division allows taking into
account known differences between genome data sets with
regard to quality (e.g. completeness, coverage, annotation
quality) so that more accredited genomes form the core
set, whereas more recently sequenced, less validated
genomes still become available for detailed orthology
analysis through their inclusion in the periphery (21).

In the update, eggNOGv4 takes this approach one step
further by introducing an easily expandable level outside
the periphery, the set of ‘adherent’ species. After defining
the orthologous groups with the core/periphery organisms
as has been described by Jensen et al. (8), we complete the
mapping of the adherent species proteomes using looser
criteria (see below). Through this tripartite approach, the
present version of eggNOG is able to retain previously
high levels of reliability in the construction of groups,
while at the same time keeping track of new genomes
becoming available, particularly for bacteria, where
more and more clades are sampled deeply (22).

Owing to the availability of a more limited number of
high-quality eukaryotic genomes, the inclusion of most
publicly provided genomes is imperative. For these
genomes the decision between core and peripheral
species remains critical to ensure that only high-quality
genomes are included as core genomes. For eggNOGv4,
selection of these genomes was carried out by first down-
loading the latest genomes from major sources, which
included Ensembl (23), UniProt (24), GiardiaDB (25),
JGI (http://genome.jgi-psf.org) and TAIR (26), as in the
previous version of eggNOG. Then, genome selection, as
well as core versus periphery assignment, was based on 40
phylogenetic marker genes (27–30) to ensure quality
genomes were selected with a high level of sequencing
coverage and genomic completeness. The use of such
metrics as a guide for excluding genomes likely to cause
errors in orthology construction, then, is the first step of
quality assurance introduced into the pipeline in this
update. As species selection with sufficient evolutionary
coverage improves orthology prediction (11), a broad
taxonomic sampling of the eukaryotic clade was
ensured. However, representative model system species
as well as genomes featured in previous versions of
eggNOG were additionally included so as to maintain
backwards compatibility, support ‘legacy’ applications
and maintain utility relied on by the model organism com-
munity (31–33). In total, as many as, 238 eukaryotic
species were selected, almost a 2-fold increase over
eggNOGv3.

The prokaryotic genomes were selected (29) from the
RefSeq (34) repository. The repository of >3496 prokary-
otic genomes has been used for several large-scale pro-
karyotic genome and metagenome analyses (35), and is
intended to accommodate new prokaryotic genomes as
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their annotations mature. Similarly to the eukaryotic
genome selection, the prokaryotic genome selection evalu-
ates coverage of genomes by using the set of 40 phylogen-
etic marker genes as a proxy, ensuring potentially
incomplete genomes are excluded (28,29,36). Genomes
were clustered based on 96.5% average sequence identity
of these marker genes (this cutoff was chosen to maximize
consistency with previously defined species from the litera-
ture), forming clusters of closely related genomes (29). For
each such species cluster, at least one representative
genome was chosen, based on assembly quality (N50),
utility as model organism or other considerations.
All other genomes were included in the mapped data set,
referred to here as the adherent genomes. In total,
eggNOGv4 has 2031 base genomes (i.e. core and periph-
ery) as well as an additional 1655 adherent genomes, for a
total of 3686 eukaryotic and prokaryotic organisms.

ORTHOLOGOUS GROUPS CONSTRUCTION AND
MAPPING OF ADHERENT GENOMES

The initial step in the eggNOG pipeline is the clustering of
the 9.6 million proteins from the 2031 core and periphery
genomes. As in eggNOGv3, all homology comparisons
were executed by the SIMAP initiative (37). It uses the
FASTA algorithm (38), which is more sensitive than
BLAST (39,40), used in earlier versions. For version 4 of
eggNOG an additional quality step of low complexity fil-
tering (41) has been added. Low complexity regions within
protein sequences could distort homology searches
between such proteins, causing false positive homology
assignments (42). While a vast majority of the homology
assignments will not be affected by such low complexity
region filtering, this step is nevertheless useful for ensuring
high-quality orthologous groups, in particular because
false-positive hits can link distant protein families and
thereby have effects beyond the protein pair involved.
The alignments and scores between all homologous
protein pairs are, therefore, recalculated using low-com-
plexity masking and with compositional adjustment of the
amino acid substitution matrix (43) to account for com-
positional biases and low-complexity regions. This is yet
another way in which the revised pipeline seeks to counter
risks with increased species coverage through improved
quality controls.

In addition to the 2031 genomes that were clustered by
the orthology pipeline, 1655 lower quality adherent
genomes were mapped to the orthologous groups of the
base genomes. Of the >5 million proteins within the 1655
genomes, 4.1 million proteins (78%) were mapped to at
least one orthologous group. These genomes were not part
of the initial clustering step owing to concerns of the
affects of low-quality genomes on orthology inference
(11). However, the annotational information now
provided for those low-quality genomes can be a
valuable asset for microbiological and metagenomic
studies.

The clustering and adherent mapping after the
homology searches of almost 15 million proteins in 3686
organisms resulted in >11 million proteins (75%) being

associated with at least one orthologous groups at one
or more taxonomic levels. At the eukaryotic level, the
original 4850 KOGs (16) were extended by an additional
55 314 euNOGs, bringing the total of orthologous groups
in the eukaryotic clade to 60 164 clusters. This was likewise
done for the 7538 arCOGs (44), extending them by 3085
arNOGs. In total, 107 levels of various taxonomic ranks
of orthologous groups (Figure 1) were calculated to
provide a variety of distinctive orthology assignments
with alternative last common ancestors (LCA) providing
successively higher resolution of orthologous groups. This
includes 38 bacterial-specific levels, which have been
expanded to include orthologous assignments at the taxo-
nomic rank of class, for example, 174 organisms within the
Clostridia clade (cloNOG) and 9 Cytophagia (cytNOG), a
class within the Bacteroidetes phylum. The 57 eukaryotic
specific levels include all taxonomic ranks between the
superkingdom and family ranks, which, in the current
version, include 23 green plants, i.e Viridiplantae
(virNOG) and three birds, i.e. Aves (aveNOG).

AUTOMATIC ANNOTATION

To provide functional characterization for the inferred
orthologous groups, eggNOG uses two parallel
approaches, though both fundamentally similar,
summarizing known attributes of the group members
and then determining which annotations can be robustly
propagated to the group as a whole. Functional descrip-
tions are provided based on a heuristic procedure, seeking
the most informative description that characterizes the
annotated members of the group. This assignment builds
primarily on associated free text descriptions from
publicly available databases, but in the absence of infer-
ences from this source will use Gene Ontology assign-
ments or build descriptions based on protein domains
characteristic of each group. These unstructured text
descriptions provide an initial overview on inspection of
what the known annotations for members of an
orthologous group generally have in common. It should,
however, be borne in mind that such summaries cannot fix
errors in the underlying annotations, if such errors have
been sufficiently propagated through annotation transfer
of homologous proteins. Furthermore, the functional
categories introduced in COG (2), KOG (16) and
arCOG (44) are employed. This is a controlled vocabulary
of 20 functional categories to which the orthologous
groups of those databases are assigned, and similarly,
nonsupervised orthologous groups (NOGs) are assigned
to these categories using support vector machine classifi-
cation applying available annotation [i.e. free text data,
KEGG (45) pathway or module membership, SMART
(46) or Pfam (47) domain content and Gene Ontology
(48) annotations] as a feature space, with parameter
settings optimized under cross-validation of the training
set. Based on inspection of the annotations provided in
eggNOG v3, filter settings, cutoffs and other parameters
for these pipelines were further improved, providing
additional quality filtering for eggNOG v4. As a result,
74% of the OGs are provided with nontrivial free text

Nucleic Acids Research, 2014, Vol. 42, Database issue D233

 at Institute for T
heoretical C

hem
istry and Structural B

iology on O
ctober 13, 2016

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

,
since 
-
more than 
due 
over 
employs 
tilize
up
(
)
-
http://nar.oxfordjournals.org/


descriptions, whereas 54% of the OGs are assigned to in-
formative functional categories. For levels present in the
previous version, text description coverage is on average
78%, as opposed to 72% in eggNOGv3, whereas func-
tional category coverage is 56%, as opposed to 61% in
eggNOGv3. Supplementary Table S1 shows more detailed
statistics of these assignments.

INPARALOG RECOGNITION

As in former versions, eggNOG places closely related
species into clades to identify recently duplicated genes,
i.e. inparalogs (49), within the context of each clade. To
form inparalogous groups, highly related genomes are
grouped into clades, usually encompassing all sequenced

Figure 1. Taxonomic levels for which orthologous groups are provided, with functional annotation coverage displayed. This tree shows the levels of
the Tree of Life for which eggNOG v4 provides orthologous groups. For internal nodes, the size of the orange circle increases with the number of
species in the core/periphery set, which falls under this taxonomic level, respectively. Blue dot markers or circles denote the 67 of 107 taxonomic
levels that are new to eggNOG v4 over eggNOG v3. The bar charts displayed at the edge show what fraction of orthologous groups have meaningful
free-text descriptions or COG/KOG/arCOG functional categories assigned, respectively.
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strains of a particular species into a single clade, but also
other close pairs such as human and chimpanzee. Within
these clades we join into inparalogous groups all proteins
that are more similar to each other (within the clade), than
to any other protein outside the clade. Determining which
organisms should be grouped into clades in this regard is
nontrivial and in previous versions was carried out
manually. In eggNOGv4, these clades are automatically
defined based on a curated set of marker genes previously
reported to occur nearly universally in single copy (28,36);
such marker genes have been shown to be highly applic-
able for the purpose of high-resolution phylogenetic
analysis (27). Members of these gene families were
identified using Hidden Markov Models (50–52) built
for each family. For each pair of genomes, a similarity
metric between them was defined, based on the average
sequence identity of the marker genes. For each of the 107
taxonomic levels at which eggNOGv4 provides
orthologous groups, clades of species were delineated on
the criterion that they should be the deepest sub-dendro-
grams of the NCBI species taxonomy (53,54). In addition,
all pairs of included species must exceed a level-specific
threshold based on this marker gene-based species similar-
ity metric. This threshold was chosen for each taxonomic
level represented in eggNOGv4 from the range of 70–99%
on the criterion of maximal consistency with the manually
curated clade assignments for the equivalent level in
eggNOGv3, when considering only overlapping species.
In order to set a suitable level-specific sequence identity
threshold for the new taxonomic levels in eggNOGv4, the
closest clade definition from previous eggNOG releases,
based on the topology of the NCBI taxonomy tree, was
used as a reference. Following the initial benchmark
analysis (described below), the results of the analysis
were used to guide some small-scale final adjustment of
the clade assignments for a small number of species. Full
details on these thresholds as well as agreement of the
resulting clades (and thereby of inparalog recognition
settings) with eggNOGv3 are found in Supplementary
Table S3.

BENCHMARK RESULTS

Validating the accuracy of the automatic orthology infer-
ence of eggNOGv4 is challenging owing to the enormous
amount of species. However, to verify that introducing
such a large number of new species and several changes
in the pipeline does not affect the accuracy of our
database, we compared the predicted orthologous
groups of bilaterian animals (biNOGs) to a manually
curated set of reference orthologous groups (RefOGs)
(11). This benchmarking set exemplifies several caveats
of orthology prediction, such as alignment quality,
domain shuffling or the presence of low complexity
sequence regions. We used the 70 manually curated
RefOGs spanning 12 animal species (1519 proteins in
total) to quantify the errors in eggNOGv4 and eggNOG
v3 (Figure 2A). Despite the 2-fold increase in the animal
species set, eggNOGv4 detects larger number of reference
orthologs compared with the previous version (Figure 2B).

Tracing the missing and false orthology assignments, we
observed that eggNOG v4 has been improved signifi-
cantly, scoring 30% fewer errors compared with corres-
ponding groups in eggNOG v3 (Figure 2C). Finally, we
counted the number of fusion (i.e. orthologous groups
with more than three false assignments, with three as the
cutoff because it is the smallest possible COG size) and
fission (i.e. a single RefOG splits into several orthologous
groups) events. We concluded that the new version defines
orthologous groups more accurately than eggNOGv3
based on two observations: (i) there are 27 and 16 pre-
dicted orthologous groups that show no fissions or
fusions, respectively (Supplementary Table S1) and (ii)
there are only half the fusion events in eggNOGv4
compared with eggNOGv3 (Figure 2D). Although the
benchmarking test evaluates a small number of species
and families, we presume that similar phylogeny-based
data sets for other taxonomic levels will support our
findings. By using the animal clade as an example, we
supposed that this important improvement of perform-
ance has probably multiple contributors: (i) our new
policy for an extensive quality control of the core/periph-
ery genomes, (ii) the tripartite species classification scheme
(core, periphery, adherent) and new clade definition and
(iii) the new species repertoire (important phylogenetic
nodes as insects and nonmammalian vertebrates now
have better species coverage enhancing the phylogenetic
signal). Given that all these components have been
applied carefully to every taxonomical level, we consider
that eggNOGv4 exemplifies how orthology inference can
be scaled up to cover a large species repertoire without
great sacrifices in quality, to enable applications such as
functional annotation of (meta-) genomic data sets and
other research questions.

SINGLE-COPY ORTHOLOGS IN EUKARYOTES

For many applications, it is important to be able to
describe the relationships in gene families from multiple
organisms and to classify them into groups according to
their homologous relationships (55). In particular, the
correct identification of orthologs from paralogs within
a orthologous group is critical for many applications
(56), such as quantification of species from short-read
metagenomic sequencing of microbial communities, for
genome-scale phylogenetic reconstructions (28,57) and as-
sessments of completeness of sequenced genomes (58).
Certain orthology resources are, as a result, specialized
in identifying and reconstructing such families of single-
copy orthologs (59,60). Methods for identifying single-
copy orthologous gene families are generally based on a
combination of reciprocal best sequence alignments
between pairs of sequenced genomes and counting the
number of representatives of each species in the family
in question (8,12). However, this does not take the phylo-
genetic signal of the gene family into account, which may
present evidence for hidden paralogy such as gene dupli-
cations and subsequent losses. Also, orthologs defined at a
given taxonomic level may miss gene families that consist
of single-copy orthologs at more fine-grained taxonomic
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levels (60), resulting in the exclusion of a potentially large
proportion of phylogenetically useful genes. In an attempt
to address these inadequacies, we previously developed a
phylogenetic approach to identifying single-copy
orthologs from large multigene families, and
demonstrated its application in identifying phylogenetic-
ally useful single-gene orthologs across the Metazoa (60).
This approach simultaneously identifies at every taxo-
nomic level (as defined by a provided guide tree) all
single-gene orthologs, through the application of a gene-
tree reconciliation method. This approach has the advan-
tage of identifying single-copy orthologs with consider-
ation for their phylogenetic history, and providing
single-copy ortholog definitions specifically for whatever
taxonomic level is required. Moreover, the single-copy
orthologs defined using this approach are nested
(orthologs at lower taxonomic levels are naturally con-
tained within higher-level orthologous groups), something
which is difficult to achieve reliably when orthologs are
defined separately without consideration for their interre-
lationships. Sets of single-copy orthologs for all taxo-
nomic levels in eukaryotic sub-clades are now provided
as part of eggNOGv4, thereby enabling a novel set of
applications over previous versions, such as identification
of clade-specific marker genes.

ROBUST PHYLOGENIES OF ORTHOLOG GROUPS

Phylogenetic trees were reconstructed using the
phylomeDB pipeline described in (61). In brief, for
clusters containing up to 500 orthologs, sequences were
aligned using Mafft (62) and Muscle (63) in forward and
reverse direction, producing four equivalent alignments.
M-Coffee (64) was used to generate a consensus version
of the four alignments. Trimal v1.3 (65) was used to
remove inconsistent columns from the consensus align-
ment by keeping only columns compatible with at least
one of the original alignments and containing <95%
gaps. Evolutionary model selection was performed based
on the estimated likelihood of Neighbor-Joining trees
produced by Phyml-BioNJ (61) under five different
models (JTT, WAG, MtREV, LG and VT). The best

Figure 2. Benchmarking and comparing eggNOGv4 and eggNOGv3.
(A) The performance of eggNOG database was evaluated at two
levels: gene (identifying false and missing assignments) and group (iden-
tifying fusions and fissions) level using the Reference Orthologous
Groups (RefOGs). Initially, we mapped the reference orthologs to the
bilaterian-specific orthologous groups (biNOGs). We score eggNOG
performance using (i) all orthologous groups (‘All OGs’) to identify

Figure 2. Continued
the number of fissions and fusions for every RefOG and (ii) the
orthologous group with the larger overlap with RefOG (‘Single OG’,
i.e. OG1). Then, we calculated how many genes were predicted accur-
ately (true assignments, TA, black box), how many genes were not
predicted as orthologs (missing assignments, MA, striped white box)
and how many genes were erroneous orthology predictions (false as-
signments, FA, white box). Depending on whether the user wants to
evaluate the database on a ‘Single OG’ or ‘All OGs’ manner, it will
change the numbers of true, missing and false assignments.
(B) Comparison of the two most recent eggNOG versions (v3 and
v4) in terms of %RefOG coverage (number of true assignments per
total number of reference orthologs). Venn diagram shows the species
number between the two database releases; there are 47 overlapping
species that included the 12 animals that are used in the benchmarking
data set. (C) Comparison of eggNOGv3 and eggNOGv4 at the gene
level (false and missing assignments). The larger bars indicate a larger
number of errors. (D) Comparison of eggNOGv3 and eggNOGv4 at
the group level (fusion and fission events). The larger bars indicate a
larger number of errors.
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fitting model was chosen for maximum likelihood recon-
struction using Phyml 3, four rate categories and
estimated gamma distribution shape parameter. Note
that, for computational reasons, the evolutionary model
selection step was not applied to clusters >500 orthologs.
In addition, we switched to Clustal Omega (66) for align-
ments in clusters >1000 sequences. The multiple sequence
alignments can be either viewed using the Jalview (67)
applet or downloaded aligned or as raw unaligned fasta
files. Visualization of the precomputed phylogenetic trees
is also provided via iTOL (68) and can be viewed with the
assigned PFAM (47) and SMART (46) domains.

ACCESS OPTIONS

The features of the previous version of eggNOG, both with
regard to interactive Web site and bulk download
capacities, were retained in version 4 (Figure 3). These
include a web interface for querying the eggNOG
orthologous groups via group name, protein and gene
name, as well as via protein sequence. In addition to this,
all data are available via the Download page in a flat file
format as well as in the standard OrthoXML format (69).
This includes all protein sequences and orthologous groups
of all taxonomic ranks, most multiple sequence alignments
and phylogenetic trees as well as the functional annotation
of 74% of the orthologous groups. All data are available
under the Creative Commons Attribution 3.0 License at
http://eggnog.embl.de.

CONCLUSION AND PERSPECTIVES

Providing quality orthologous groups is an arduous but
necessary task essential for gene annotation and evolu-
tionary analysis. With eggNOGv4 we provide an update
to one of the most extensive resources of orthologous
groups, now available with 2031 genomes, as well as an

additional 1655 adherent genomes. Building on previous
versions we have continued to expand the taxonomic
spectrum, especially in the prokaryotic branch where we
can expect coverage of novel or underpopulated phyla of
unculturable bacteria to surge within the coming years
(70). We also had an increase in the manually identified
taxonomic ranges of interest. One hundred seven different
taxonomic levels with orthologous groups are available,
representing families derived from single genes in the LCA
of each of the taxonomic groups. Providing additional
insight into the relationship between orthologous groups
and the addition of marker genes for phylogenetic
analyses, we have extended the functionality of eggNOG
to assist novel types of biological assessment (for example,
in screens for horizontal evolution or for characterization
of microbiome composition from short reads). In the
future we endeavor to continue to refine and improve
the quality of the eggNOG orthologous groups and func-
tional annotation introducing complementary features to
appeal to a broader community, while retaining the
current capacities, namely comprehensive coverage of
species, functional characterization of orthologous
groups and robust reliable orthology inference.
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Morgulis,A., Schäffer,A.A. and Yu,Y.K. (2005) Protein database
searches using compositionally adjusted substitution matrices.
FEBS J., 272, 5101–5109.

44. Wolf,Y.I., Makarova,K.S., Yutin,N. and Koonin,E.V. (2012)
Updated clusters of orthologous genes for Archaea: a complex
ancestor of the Archaea and the byways of horizontal gene
transfer. Biol. Direct, 7, 46.

45. Tanabe,M. and Kanehisa,M. (2012) Using the KEGG database
resource. Curr. Protoc. Bioinformatics, Chapter 1, Unit1.12.

46. Letunic,I., Doerks,T. and Bork,P. (2012) SMART 7: recent
updates to the protein domain annotation resource. Nucleic Acids
Res., 40, D302–D305.

47. Punta,M., Coggill,P.C., Eberhardt,R.Y., Mistry,J., Tate,J.,
Boursnell,C., Pang,N., Forslund,K., Ceric,G., Clements,J. et al.
(2012) The Pfam protein families database. Nucleic Acids Res.,
40, D290–D301.

48. Ashburner,M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H.,
Cherry,J.M., Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T.
et al. (2000) Gene ontology: tool for the unification of biology.
The Gene Ontology Consortium. Nat. Genet., 25, 25–9.

49. Koonin,E.V. (2005) Orthologs, paralogs, and evolutionary
genomics. Annu. Rev. Genet., 39, 309–338.

50. Eddy,S.R., Mitchison,G. and Durbin,R. (1995) Maximum
discrimination hidden Markov models of sequence consensus.
J. Comput. Biol., 2, 9–23.

51. Eddy,S.R. (2009) A new generation of homology search tools
based on probabilistic inference. Genome Inform., 23, 205–211.

52. Eddy,S.R. (2011) Accelerated Profile HMM Searches. PLoS
Comput. Biol., 7, e1002195.

53. Benson,D.A., Karsch-Mizrachi,I., Lipman,D.J., Ostell,J. and
Sayers,E.W. (2009) GenBank. Nucleic Acids Res., 37, D26–D31.

54. Sayers,E.W., Barrett,T., Benson,D.A., Bryant,S.H., Canese,K.,
Chetvernin,V., Church,D.M., DiCuccio,M., Edgar,R., Federhen,S.
et al. (2009) Database resources of the National Center for
Biotechnology Information. Nucleic Acids Res., 37, D5–D15.

55. Gogarten,J.P. and Olendzenski,L. (1999) Orthologs, paralogs and
genome comparisons. Curr. Opin. Dev., 9, 630–636.

56. Delsuc,F., Brinkmann,H. and Philippe,H. (2005) Phylogenomics
and the reconstruction of the tree of life. Nat. Rev. Genet., 6,
361–375.

57. Creevey,C.J., Fitzpatrick,D.A., Philip,G.K., Kinsella,R.J.,
O’Connell,M.J., Pentony,M.M., Travers,S.A., Wilkinson,M. and
McInerney,J.O. (2004) Does a tree-like phylogeny only
exist at the tips in the prokaryotes? Proc. Biol. Sci., 271,
2551–2558.

58. Parra,G., Bradnam,K. and Korf,I. (2007) CEGMA: a pipeline to
accurately annotate core genes in eukaryotic genomes.
Bioinformatics, 23, 1061–1067.

59. Altenhoff,A.M., Schneider,A., Gonnet,G.H. and Dessimoz,C.
(2011) OMA 2011: orthology inference among 1000 complete
genomes. Nucleic Acids Res., 39, D289–D294.

60. Creevey,C.J., Muller,J., Doerks,T., Thompson,J.D., Arendt,D.
and Bork,P. (2011) Identifying single copy orthologs in Metazoa.
PLoS Comput. Biol., 7, e1002269.

61. Huerta-Cepas,J., Capella-Gutierrez,S., Pryszcz,L.P., Denisov,I.,
Kormes,D., Marcet-Houben,M. and Gabaldón,T. (2011)
PhylomeDB v3.0: an expanding repository of genome-wide
collections of trees, alignments and phylogeny-based
orthology and paralogy predictions. Nucleic Acids Res., 39,
D556–D560.

62. Katoh,K. and Standley,D.M. (2013) MAFFT multiple sequence
alignment software version 7: improvements in performance and
usability. Mol. Biol. Evol., 30, 772–780.

63. Edgar,R.C. (2004) MUSCLE: a multiple sequence alignment
method with reduced time and space complexity. BMC
Bioinformatics, 5, 113.

64. Wallace,I.M., O’Sullivan,O., Higgins,D.G. and Notredame,C.
(2006) M-Coffee: combining multiple sequence alignment methods
with T-Coffee. Nucleic Acids Res., 34, 1692–1699.

65. Capella-Gutiérrez,S., Silla-Martı́nez,J.M. and Gabaldón,T. (2009)
trimAl: a tool for automated alignment trimming in large-scale
phylogenetic analyses. Bioinformatics, 25, 1972–1973.

66. Sievers,F., Wilm,A., Dineen,D., Gibson,T.J., Karplus,K., Li,W.,
Lopez,R., McWilliam,H., Remmert,M., Söding,J. et al. (2011)
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