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Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many
qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the
application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate
a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of
polarisation-encoded qubits. To demonstrate the flexibility of our system, we implement various instances
of the quantum algorithm for solving of systems of linear equations.

Q
uantum computers have attracted tremendous interest because they promise to outperform classical
computers at a number of tasks1. The long-term goal is to build a universal quantum processor, which
can be programmed to solve arbitrary problems2. Doing so will require decomposing quantum compu-

tations into sequences of quantum gates acting on only a few qubits1. In particular, any computation can be
decomposed using single-qubit gates and a particular two-qubit entangling gate such as controlled-NOT
(CNOT). In linear-optical quantum computing, two-qubit gates are difficult to implement because photons
do not interact directly, meaning that the difficulty of a computation can be described by the number of
entangling gates it requires.

Entangling gates can be implemented optically by introducing an effective nonlinearity via measurements3, but
this implies, in the simplest case, that output photons of a two-qubit gate need to be measured to ensure correct
gate operation, making another application of gates to the same pair of qubits impossible4–11. Here, we dem-
onstrate two CNOT gates acting on the same pair of qubits. We implement the two CNOTs differently: the success
of the first gate is heralded by the successful detection of two ancillary photons12,13, while the second gate is
probabilistic5–7. In distinction to previous work11, our scheme does not involve qubit recycling which, in principle,
can be performed deterministically.

We then use our setup to determine the solution of several two-dimensional systems of linear equations.
Whereas for a classical computer the number of computational steps needed to solve a linear system is at least
proportional to the number of variables, a recently developed quantum algorithm could, in some circumstances,
make the computational time proportional to only the logarithm of the number of variables14. An important
difference is that the quantum algorithm calculates the expectation value of an operator associated with the
solution rather than the solution itself. We note that this algorithm has been implemented previously in photonic
systems15, and also using NMR techniques16,17. We use the algorithm as an example of the correct operation of two
consecutive CNOTs, a flexible approach that differs from previous implementations. As we note below, our
method is as powerful as that in15. Our implementation thus presents a general quantum circuit with two
consecutive CNOT gates which can be flexibly adapted to solve other problems. This is a step towards a two-
qubit universal quantum processor, which would require three consecutive CNOT gates.

Results
In our experiment, we use polarisation-encoded photonic qubits (Fig. 1, Fig. 2, and 3b), where j0æ and j1æ denote
horizontal and vertical polarisation, respectively18,19. We produce entangled photon pairs using non-collinear
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type-II spontaneous parametric down-conversion (SPDC)20. A
pulsed UV laser beam (394.5 nm, 76 MHz, t 5 200 fs) passes
through a 2 mm-thick b-barium borate crystal, gets reflected, and
passes through the crystal a second time (see Fig. 1).

The photons created during the first pass of the laser beam enter
the first CNOT as the input (control and target) qubits. The state of

these input qubits can be modified using additional local gates and
polarisers, which in principle allows for the creation of arbitrary
input states. The first CNOT uses an entangled ancillary photon pair
and a successful measurement of two ancilla modes heralds that the
gate has worked correctly on the input qubits12,13. The photons cre-
ated during the second pass act as the entangled ancillary photon

pairs, in the state Wzj i~ 00j iz 11j ið Þ
. ffiffiffi

2
p

. The photons interfere at

the polarising beam splitters (PBS) as shown in Fig. 1. The PBS
on the control (target) side is aligned to act in the basis

0j i, 1j if g +j i~ 0j i+ 1j ið Þ
. ffiffiffi

2
pn o� �

. The photons are filtered

spectrally and spatially using narrow-band filters (Dl 5 3 nm)
and by coupling them into single-mode fibers. A coincidence detec-
tion of the ancilla qubits in detectors 3 and 4 in the state j–æ3j1æ4

signals a successful gate operation5–7.
The output photons of the first CNOT (modes I and II in Fig. 1) are

then guided to the second CNOT. This gate is implemented in a
destructive way, where a coincident measurement of the output
photons signals the correct gate operation. The basic element of this
destructive CNOT is a polarisation-dependent beam splitter (PDBS)
which has a different transmission coefficient T for horizontally and
vertically polarised light (TH 5 1, TV 5 1/3)5–7. If two vertically-
polarised photons are reflected at this PDBS, they acquire a phase
shift of p. Subsequent PDBSs with opposite splitting ratios equalise
the output amplitudes. This setup, in combination with two half-
wave plates (HWPs) (Fig. 3b) implements a destructive CNOT. The
success of this second CNOT is determined by postselection on a
coincidence detection in outputs 1 and 2.

Combining these photonic CNOT gates with local unitary opera-
tions allows us to implement a two-qubit quantum processor. In our
setup, we implement these local unitary operations using quarter-

Figure 1 | Experimental setup. Shown is the experimental implementation of two concatenated CNOT gates. The input is set by a polariser, which

can be followed by a local unitary operation (LU). The two gates are connected by fibers. Different matrices A can be implemented by adapting the LUs,

and different states | bæ by adapting the input state. The figure shows the most general case of two concatenated CNOT gates, combined with general LUs.

For the implementation of the algorithm, we chose some LUs to be the identity and obtained the case shown in Fig. 3a.

Figure 2 | Example of a result of a computation on our two-qubit
quantum processor. (a) The input to the circuit is chosen to be the state

| 1æ | 0æ. Then we apply a CNOT gate, followed by a Hadamard gate on the

control qubit. Finally, we implement the second CNOT gate and

characterise the output state via two-qubit state tomography. (b) the ideal

output state and (c) the reconstructed density matrix (real parts), which

has a fidelity of 0.717 6 0.030 with the ideal state. The imaginary part is

below 0.1 and hence not shown.
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and half-wave plates (QWP and HWP), which can be easily adjusted
to program the quantum computer (Fig. 1 and 3b). Fig. 2 shows a
sample run of our experiment; details about experimental para-
meters can be found in Methods and in the Supplementary
Information (SI).

We use our two-qubit quantum processor to solve systems of
linear equations, which, given a matrix A and a vector b, means
finding the vector x such that Ax 5 b. If we rescale the vectors to
jjbjj5 jjxjj5 1 and represent them as quantum states jbæ and jxæ, the
task becomes finding jxæ such that

A xj i~ bj i: ð1Þ

The solution is jxæ 5 A21 jbæ/jjA21 jbæjj.
The quantum algorithm14 consists of three steps, described in

Methods. There, we also discuss the simplest possible realisation of
the algorithm, for a 2 3 2 matrix A, and its reduction to the simplified
circuit shown in Fig. 3a. This circuit depends on the eigenvalues, l1

and l2, of the matrix A, the unitary R that diagonalises it,

A~R{ l1 0

0 l2

� �
R, ð2Þ

and the input state jbæ.
We have implemented various instances of the algorithm, varying

all the parameters in A, R, and jbæ. The control and target qubits are
prepared in the states Rjbæ and j1æ, respectively, absorbing the local
operation R into the preparation of the input state. The matrix A can
be modified by tuning the local operation R (in which case the eigen-
values stay the same) or by adapting the eigenvalues of the matrix, l1

and l2, which is done by adapting the local unitary operations before
and after the second CNOT gate (see Fig. 3). Finally, the detection of
the ancilla qubit in the state j1æ announces a successful run of the
algorithm and the preparation of the output qubit in the state jxæ. The

success probability is (l1/l2)2. Because we are able to distinguish two
eigenvalues, our method, although different and using logical fewer
qubits, is as powerful as that of Cai et al15.

The output state is analysed using HWPs, QWPs and polarising
beam splitters, and a full state tomography is performed. Error esti-
mates are obtained from a Monte Carlo routine assuming Poissonian
counting statistics. These indicate a lower bound for the actual error
that takes all the experimental imperfections into account.

Detailed results of a sample run of the algorithm are shown in
Fig. 3. Additional results are presented in Fig. 4, where the input
states and the eigenvalues of A are varied. It can be seen there that
the performance of the algorithm depends on the input state Rjbæ. To
analyse this behaviour, we chose two different input states, jb1æ 5 j1æ
and jb2æ 5 j1æ for each A, while keeping R equal to the identity
matrix. We achieve fidelities of up to 0.981 6 0.009 for jb1æ, and
0.832 6 0.031 for jb2æ. The difference in fidelities arises due to the
influence of higher-order emissions, as discussed in the SI. Data for
additional choices of A, R, and jbæ are shown in the SI. The reported
density matrices contain the raw measured data and have not been
modified in the post processing.

Discussion
We present a two-qubit quantum circuit with two concatenated
entangling gates acting on the same pair of photonic qubits and
employ our system to implement the simplest case of the quantum
algorithm for solving systems of linear equations. With dem-
onstrating the consecutive application of two CNOT gates on
the same pair of qubits, we have addressed a technological chal-
lenge in photonic quantum computation. This development is a
step towards universal multi-qubit quantum processors using
single photons as a versatile platform for computation and
simulation.

Figure 3 | (a) Simplified circuit for the algorithm for solving specific systems of linear equations. Given a Hermitian matrix A and input | bæ, outputs

| xæ 5 A21 | bæ/ | | A21 | bæ | | if the ancilla qubit is measured to be 1. The local unitary R diagonalises A, A~R{ l1 0
0 l2

� �
R, and h 5 22 arccos(l1/l2),

where l1,2 are the eigenvalues of A. (b) Experimental implementation of the circuit in a. The local unitary operations are implemented with the help of a

combination of half-wave plates and quarter-wave plates. (c) The figure shows a system of linear equations, described by the matrix A1 as well as the

state vector | b1æ. (d) The reconstructed density matrix of the experimentally obtained output state | xæ is shown. This density matrix is obtained by

choosing the local operation R1~Rx
11
15

p

� �
:Ry

3
8
p

� �
. We choose the eigenvalues to be l1~

1
2

and l2~
3
4

by implementing Ry(h) correspondingly. The

fidelity of the reconstructed density matrix is 0.953 6 0.026. The wire frame shows the theoretical prediction. (e) The quantum algorithm is based on

determining the expectation value Æx | M | xæ of some operator M with respect to the output state | xæ. Therefore, we also show the experimentally

determined (blue) and theoretical (black) expectation values of several operators M. We choose the operator M to be the projection on the states | 0æ, | 1æ,
and | 1iæ, respectively, with zj i~ 0j iz 1j ið Þ

. ffiffiffi
2
p

, and zij i~ 0j izi 1j ið Þ
. ffiffiffi

2
p

. Another example is shown in the SI (Fig. S3).
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We anticipate that increasing technological capabilities, includ-
ing the implementation of more than two consecutive CNOTs,
will allow the extension of the algorithm both to larger systems
and to more precise phase estimation. Eventually, this will allow
not only solving larger systems of linear equations, but also
equally important algorithms that use it as a subroutine, including
quantum algorithms for solving nonlinear differential equations21

and quantum data fitting22.

Methods
Theory. We assume, without loss of generality14, that A is an N 3 N
Hermitian matrix with eigenbasis {jujæ} and eigenvalues {lj}, rescaled so that

0 , lj , 1. If jbæ is expanded as bj i~
XN

j~1
bj uj

�� �, we aim to prepare, up to

normalization,

xj i~
PN
j~1

bjl
{1
j uj

�� �: ð3Þ

The quantum algorithm14 consists of three steps. The most general circuit
involves phase estimation, a controlled Ry rotation, and a reverse phase
estimation. Our work differs from the original proposal14 in several modifications
that are needed to implement the algorithm with a limited number of qubits.
Here, we briefly outline the algorithm while noting our modifications.

The first step, phase estimation, is a general procedure for decomposing quantum
states into a particular basis1,23. It requires an additional ‘‘eigenvalue’’ register of m
qubits, each initialised to j0æ. Phase estimation transforms jbæj0æflm into

Figure 4 | The figure shows the solution of the system of linear equation for matrices with different eigenvalues. Experimentally, these are obtained by

implementing different values of h. For all matrices we run the algorithm for two input states | b1æ 5 | 1æ 5 (0,1) and b2j i~ zj i~ 1,1ð Þ
. ffiffiffi

2
p

. We

achieve fidelities of 0.957 6 0.010, 0.961 6 0.013, 0.981 6 0.009 for the input state | b1æ (upper row from left to right) and 0.778 6 0.031, 0.773 6 0.027,

0.832 6 0.031 for the input state | b2æ (lower row, left to right).

Figure 5 | The simplest case of the quantum algorithm for solving systems of linear equations. (a) The complete circuit, as described in Methods,

with U 5 exp (2pi 2n21 A) and h 5 22 arccos(l1/l2), where l1,2 are the eigenvalues of A and the integer n depends on the eigenvalues. (b) For

the algorithm to work perfectly with one eigenvalue qubit, l1,2 must be distinguishable by reference to a single binary digit. In that case,

U~R{ 1 0
0 {1

� �
R~R{ZR, a simplification reflected in this circuit. The middle qubit can now be completely removed. Although controlled

single-qubit rotations have been implemented in linear optics24–26, we follow a different approach, decomposing the controlled rotation to give the

final circuit shown in Fig. 3a.

www.nature.com/scientificreports
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XN

j~1
bj uj

�� � lj

�� �, where the eigenvalues jljæ are stored in the eigenvalue register to a

precision of m bits (binary digits).
We restrict ourselves to the simplest case, which involves one state qubit and one

eigenvalue qubit. The single state qubit implies that jbæ is a two-vector and A a 2 3 2
matrix, while the single eigenvalue qubit means that only a single bit of the eigen-
values is computed by the phase estimation. This means that for the algorithm to work
perfectly, it must be possible to distinguish the two eigenvalues with reference to a
single bit. Consequently, we choose the two eigenvalues to be of the form 0:�a0 and
0:�a1, where �a is a sequence of bits. The position of the differing bit is what governs the
choice of the phase estimation unitary U. In particular, if we wish to read out the nth
bit, we must choose U 5 exp (2pi 2n21 A). We note that choosing eigenvalues that
could not be distinguished using a single bit would lead to additional rounding errors,
which would, in principle, be avoidable with a larger quantum computer.

The two-qubit phase estimation transforms the state and eigenvalue qubits, initi-

alised to jbæSj0æE to
X2

j~1
bj uj

�� � �xj,n

�� �
, where �xj,n is the nth bit of lj. Each eigenstate in

the state register is now entangled to the nth bit of its eigenvalue.
The second step is the nonunitary map �xj,n

�� �
?l{1

j �xj,n

�� �
. For this, we introduce an

additional ‘‘ancilla’’ qubit initialised to j1æ, and controlled on the value �xj,n

�� �
in the

eigenvalue register, we implement a controlled-Ry(hj) 5 exp(2ihjsy/2) rotation on

the ancilla qubit, where sy is the Pauli matrix. With hj~{2arccos Cl{1
j

� �
(where C

# minj jljj), the overall state becomes

X2

j~1

bj uj

�� � �xj,n

�� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{C2l{2

j

q
0j izCl{1

j 1j i
� �

: ð4Þ

The third step is to run phase estimation in reverse to uncompute �xj,n

�� �
, giving

X2

j~1

bj uj

�� � 0j i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{C2l{2

j

q
0j izCl{1

j 1j i
� �

: ð5Þ

We measure the ancilla, and if we observe a 1 we will have prepared jxæ in the state
register. If we know the eigenvalues, we can maximise the success probability by
choosing the largest possible C, C 5 minj jljj.

The procedure described above involves three qubits, one each for the state,
eigenvalue, and ancilla registers. The corresponding circuit is shown in Fig. 5, which
also describes how it can be simplified to the final circuit shown in Fig. 3a.

Experiment. For the creation of entangled photon pairs, a mode-locked Coherent
Mira HP Ti:Sa oscillator is pumped by a Coherent Inc. Verdi V-10 laser. The pulsed-
laser output (t 5 200 fs, l 5 789 nm, 76 MHz) is frequency-doubled using a 2 mm-
thick lithium triborate (LBO) crystal, resulting in UV pulses of 0.75 W cw average. We
achieve a stable source of UV pulses by translating the LBO to avoid optical damage to
the anti-reflection coating of the crystal. Our detectors have quantum efficiencies of
0.4 and dark count rates between 500 and 3500 counts per second. In our experiment,
typical visibilities (fidelities) of the emitted Bell pairs of about 0.9 (0.8) and higher-
order emissions degrade the quality of our gate operations. The back-reflecting
mirror is continuously moved back-and-forth to avoid any phase correlations
between of the signal and the noise originating from higher-order photon emissions.
Additionally, imperfect visibilities on the order of 0.85 to 0.9 of the quantum
interference (caused by partial distinguishability of the photons) at the PBSs in the
first gate and the PDBS in the second gate contribute to errors. The measured
production rate of two-fold coincidences is 18000 s21 in the forward direction and
10000 s21 in the backward direction (measured after the first gate). The total fourfold-
coincidence rate is 1700 h21 (55 h21) after the first gate (both gates).
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