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The viscosity and electrical conductivity as structure-sensitive transport properties of the liquid metals and
alloys are important for modeling of the melting and solidification processes. The viscosity and electrical
conductivity data provide additional information about the influence of impurities on the structure and
physicochemical properties of the liquid metal matrix, which is useful for understanding of structural
transformations in the liquid state. In the present work, an impact of minor Co admixtures on the viscosity
and electrical conductivity of liquid Sn-3.8Ag-0.7Cu alloy was studied. An increase in viscosity with minor
Co admixtures is in a satisfactory agreement with model predicted data obtained from thermodynamic
approaches and suggests a significant impact of interatomic interactions. Cobalt admixtures significantly
affect the electrical conductivity, which gradually decreases with increasing the amount of Co. Additionally,
the sample microstructure has been examined using x-ray diffraction and scanning electron microscopy
analyses. The formation of Sn-based Co-Sn intermetallic compounds was detected in the alloys with more
than 1 wt.% Co.

Keywords Co admixtures, electrical conductivity, electron, inter-
metallic, joining, microscopy, viscosity

1. Introduction

The Sn-Ag-Cu alloys (SAC) are widely used as lead-free
solders in the electronics industry, and a number of studies
intended for enhancement of their characteristics were carried
out. Addition of minor amounts of the fourth elements, such as
metals in bulk and nanosized forms, ceramic or carbon
nanoparticles, is a widespread method to improve mechanical
properties of the solder joints (Ref 1-3).

It was recently shown that alloying and impurity metal
elements can have several major effects on the reactions
between the Sn-based solder and the conductor metal: They can
increase or decrease the reaction/growth rate; additives can
change the physical properties of the phases formed; finally,
they can form additional reaction layers at the interface, or they
can displace the binary phases that would normally appear and
form other reaction products instead (Ref 4).

A number of investigations were devoted to the effect of
different alloying elements as well as impurities on the growth
of the intermetallic compound (IMC) layers in Sn-Cu system
(Ref 5-10). It was found that addition of appropriate amounts of
certain alloying elements to the Sn-based solder can improve
the properties of the interfacial compounds, e.g., better drop test
reliability, but if excess amounts of the same alloying elements
are used, this may cause faster growth of IMCs formed at the

interface between solder and substrate, and thus, drastic
decrease in reliability can occur (Ref 5).

As an addition to Sn-based solder, cobalt has been attracting
a great deal of attention because of its potential benefit. The
addition of Co as an alloying element resulted in a better shear
ductility of SAC solders, and a reduction in the frequency of the
occurrence of brittle failure in ball grid array solder joint
improved thermal fatigue and creep resistance and suppression
of spalling of interfacial IMC during reflow (see Ref 11 and
references therein).

Co belongs to the elements which show marked solubility in
IMC layer and has the pronounced effect on IMC formation. It
was revealed that small amounts of Co (0.03–0.1 wt.%) change
the scallop-type morphology of the Cu6Sn5 to a more planar
one (Ref 12). Co also refines the grain structure of the Cu6Sn5
layer after reflow and hinders the grain growth of Cu6Sn5 if
subsequent reflows are done. Co dissolves to the Cu sublattice
of Cu6Sn5 [(Cu,Co)6Sn5] and exhibits negligible solubility to
Cu3Sn; due to the small grain size and the increased driving
force of Sn diffusion through the (Cu,Co)6Sn5 layer, its growth
rate is increased during solid-state annealing. According to Ref
12-15, even very small additions of Co induce beneficial
changes in the IMC growth, and thus in the drop test
performance, too large amounts of Co tend to decrease the
performance of the solder interconnection, owing to an
increased growth rate of IMC layers in solid state and because
of the pronounced two-phase layer formation during reflow.
Anyway, some of these results and their interpretations are
ambiguous.

Much less studies are devoted to the influence of minor
metal additions on thermophysical properties of liquid Sn-
based alloys, in particular, of SAC alloys (Ref 16, 17).
Experimental data of structure-sensitive thermophysical prop-
erties, such as viscosity and electrical conductivity, are required
for mathematical models and simulations describing solidifica-
tion and soldering processes.

In this work, the influence of minor Co additions on
viscosity and electrical conductivity of liquid Sn-3.8Ag-0.7Cu
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(wt.%) reference alloy (SAC387) has been studied. The
experimental viscosity results were compared with data,
received from the semi-empirical approaches, namely the
Budai–Benko–Kaptay (Ref 18) and Kozlov–Romanov–Petrov
(Ref 19) thermodynamic models. The Mott theory (Ref 20) was
used for the electrical conductivity analysis. The microstructure
of the investigated alloys was analyzed using the x-ray
diffraction (XRD) and scanning electron microscopy (SEM).

2. Experimental

SAC387 reference alloy and (SAC387)100�xCox alloys with
x = 0.5–3 wt.% were synthesized from silver casting grains
(99.9% metallic purity, Alfa Aesar, Karlsruhe, Germany), tin
ingot (99.998% metallic purity, Alfa Aesar, Karlsruhe, Ger-
many), copper rods (99.9% metallic purity, Alfa Aesar,
Karlsruhe, Germany) and cobalt chucks (99.9% metallic purity,
Alfa Aesar, Karlsruhe, Germany). Samples were prepared by
aging of accurately weighed amounts of the pure components
(within ±0.1 mg) for 2 weeks in evacuated and sealed quartz
ampoules at 1173 K.

The viscosity measurements of liquid SAC387 reference
alloy and (SAC387)100�xCox alloys were taken using a high-
temperature oscillating-cup viscometer (Ref 21). According to
this method, a cylindrical graphite crucible containing the
sample with a mass of about 15 g is placed in a stainless steel
container attached to the torsion wire inside the high-temper-
ature furnace. The experiments were performed in an argon
atmosphere. The viscometer was three times evacuated with a
pump before the measurements. The temperature was deter-
mined by WRe-5/20 thermocouples. Each sample was heated
up to 1073 K and kept at this temperature at least 1 h for
homogenization. The viscosity was measured during cooling
from the highest temperature with a constant cooling rate of
about 4 K/min.

The viscosity was calculated from the logarithmic decre-
ment and the period of oscillations using the modified Roscoe
equation (Ref 22). After each measurement, the weight of the
sample was checked. In all cases, the loss of material by
vaporization was lower than 0.2% of the ingot. The resultant
error of the viscosity measurements did not exceed 3%.

The electrical conductivity measurements were taken by the
4-point method in an argon atmosphere. Graphite electrodes for
current and potential measurements were placed in the wall of
the vertical cylindrical boron nitride ceramic measuring cell
along its vertical axis. The potential electrodes were provided
with thermocouples for temperature measurements. Single
thermoelectrodes of these thermocouples were used for elec-
trical conductivity determination. The melt temperature was
determined by WRe-5/20 thermocouples located in close
contact with the liquid. For further details of this method and
its experimental realization, we refer to Ref 23. Each sample
was inserted into the cell directly inside a high-pressure vessel.
Thus, the actual sample composition was accurate within a
tolerance of 0.02 wt.%. The resultant error of the electrical
conductivity measurements is about 2%.

After viscosity measurements, the alloy samples were
analyzed by scanning electron microscopy (SEM) and x-ray
diffraction. Metallographic investigations were performed

using the electron microscope Zeiss Supra 55 VP. The
excitation energy of the electron beam was 20 kV; the surfaces
of the samples were visualized by the detection of backscat-
tered electrons. The chemical analyses of the sample phases
were performed using the energy-dispersive x-ray (EDX)
technique with four characteristic spectral lines of Co, Cu (K-
line) and Ag, Sn (L-line). Pure Co was also used for energy
calibration of EDX detector signal. Standard deviations for the
chemical compositions obtained from EDX were about
±1 at.%.

The powder XRD measurements were taken on a Bruker D8
diffractometer at ambient temperature using Ni-filtered CuKa

radiation (accelerating voltage 40 kV, electron current 40 mA).
The diffractometer operates in the h/2h mode. The powder was
fixed with petroleum jelly on a single-crystal silicon sample
carrier which was rotated during the measurement. The
detection unit was a Lynxeye strip detector. Indexing of the
phases was supported by the Inorganic Crystal Structural
Database (ICSD). Rietveld refinement of the XRD patterns was
done with the Topas3� software provided by Bruker AXS.

3. Theoretical Predictions

A number of thermodynamic approaches are widespread
used for viscosity calculations of liquid metal alloys. Two of the
most common thermodynamic models for viscosity predictions
were chosen in the presented work, namely the Kozlov–
Romanov–Petrov model and the Budai–Benkö–Kaptay model.

3.1 Kozlov–Romanov–Petrov Model

Kozlov et al. proposed a simple equation for the calculation
of the viscosity of liquid alloys including the integral enthalpy
of mixing of the alloy, DmixH, and viscosities of the components
(Ref 19):

ln g ¼
Xn

i¼1

xi ln gi �
DmixH

3RT
; ðEq 1Þ

where xi and gi are the concentration and viscosity of the
component i, respectively; T is the absolute temperature; and
R is the ideal gas constant.

3.2 Budai–Benkö–Kaptay Model

The equation for the viscosity of liquid multi-component
alloys according to the Budai–Benkö–Kaptay model is
expressed as (Ref 24):

g ¼ A

P
i
xiMi

� �1=2

V 2=3
T 1=2 exp

B

T

X

i

xiT
�
m;i �

DmixH

qR

 !" #
;

ðEq 2Þ

where Mi is the molar mass of the component i; q is a semi-
empirical parameter equal to q@ 25.4± 2 (Ref 25); V is the
molar volume of the alloy; DH is the enthalpy of mixing; A
and B are fitting parameters equal to (1.80± 0.39)9 10�8 (J/
(K mol1/3))1/2 and (2.34± 0.20), respectively; and Tm,i

* is the
effective melting temperature of the component i:
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; ðEq 3Þ

where Vi is the molar volume of the component i.
In our calculations, the excess volume of the alloys

investigated is assumed to be equal to zero. The enthalpy of
mixing was taken from Ref 26; the density, viscosity and
atomic volume of the components were taken from Ref 27-29.

4. Results

Figure 1 shows a temperature dependence of the experi-
mental viscosity for the liquid SAC387 (Ag3.8Cu0.7Sn95.5) alloy
together with the literature data (Ref 30, 31). The viscosity
values from Ref 31 were digitized.

Our experimental data are in agreement with Ref 30 and the
heating curve g(T) below 1073 K given by Rozhitsina et al.
(Ref 31). In contrast to viscosity behavior of Sn, and eutectic
Ag-Sn, Cu-Sn and Ag-Cu-Sn alloys described in Ref 31, we did
not reveal any hysteresis and points of branching of the heating
and cooling viscosity curves.

The viscosity of liquid (SAC387)100�xCox alloys increases
upon cooling according to the Arrhenius-type equation (Fig. 2):

g ¼ g0 exp
Eg

RT

� �
; ðEq 4Þ

where g0 is a constant; Eg is the activation energy of the vis-
cous flow; T is the absolute temperature; and R is the ideal
gas constant. The values of Eg and g0, determined by the
least square regression fits of the experimental data according
to Eq 4, are presented in Table 1.

Temperature dependence of the electrical conductivity r(T)
of liquid alloys SAC387, (SAC387)99.5Co0.5, (SAC387)99.0
Co1.0, (SAC387)98.5Co1.5 and (SAC387)97.0Co3.0 was mea-
sured during heating and cooling in the temperature range
between 500 and 1100 K. A gradual conductivity decrease
upon heating was observed for all the alloy compositions
(Fig. 3), and for each concentration, the experimental data have
been fitted by second-order polynomials, namely:

r ¼ Aþ B1T þ B2T
2: ðEq 5Þ

The coefficients of the polynomials are listed in Table 2.
A slope of the r(T) curve of SAC387 differs from that

determined in Ref 30. A deviation between the absolute
conductivity values from this study and data of Ref 30, which is
noticeable just after melting, vanishes at higher temperatures.

As illustrated in Fig. 3, the addition of Co significantly
affects the electrical conductivity, which gradually decreases

Fig. 1 Temperature dependence of the viscosity of liquid SAC387
reference alloy

Fig. 2 Temperature dependence of the viscosity of liquid
(SAC387)100�xCox alloys

Table 1 Fitting numerical parameters of the
Arrhenius-type Eq 4

Alloy composition, wt.% g0, mPa s Eg, 10
3 J/mol

SAC387 0.448 6.28
(SAC387)99.5Co0.5 0.444 6.85
(SAC387)99.0Co1.0 0.357 9.27
(SAC387)98.5Co1.5 0.356 10.31
(SAC387)97.0Co3.0 0.342 13.14

Fig. 3 Temperature dependence of the electrical conductivity of liq-
uid (SAC387)100�xCox alloys
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with increasing the amount of Co addition. It can be seen
(Fig. 3) that (SAC387)97.0Co3.0 alloy with the highest cobalt
content exhibits the lowest conductivity.

5. Discussion

The temperature dependencies of the viscosity for liquid
SAC387 alloy calculated according to the Kozlov–Romanov–
Petrov and Budai–Benkö–Kaptay approaches are in a good
agreement with experimental data (Fig. 4). The maximal
difference between the experimental and calculated data from
Eq 1 did not exceed 6%.

In order to examine a possibility to apply for quaternary
alloys the chosen thermodynamic predictions and the calculated
and experimental viscosity were compared at 1073 K. As given
in Table 3, the experimental values exceed the data calculated
from thermodynamic approaches, and this difference increases
with an increase in the cobalt content. Based on the presented
data, a satisfactory agreement between calculated viscosity
values and experimental data is obtained.

The analysis of the electrical conductivity is based on the
assumption that an addition of admixtures decreases the
electrical conductivity, and this conductivity decrement can
be described by the following equation:

Dr�1
i ¼ Ni

mvF
e2 i

; ðEq 6Þ

where Ri is the scattering cross section of the conducting
electrons at the admixture particles; Ni is the atomic fraction

of these impurities; m is the electron mass; and vF is the elec-
tron velocity at the Fermi level (Ref 20). It was revealed for
different systems that in a simplest case, when the impurity
scattering does not depend on other scattering mechanisms,
Dri is temperature independent (Ref 32, 33).

We believe that the scattering process in the (SAC387)100�x

Cox alloys is the same. At the same time, some anomalies in the
conductivity behavior were revealed in the temperature range
close to solidification. As shown in Fig. 3, the cooling of the
samples is accompanied by a gradual nonlinear conductivity
increase.

Approaching the solidification temperature, a change in the
r(T) curves has been observed. It is suggested that the cobalt
admixtures dissolved in the basic matrix at high temperatures.
Thus, the eutectic composition has been shifted, and during the
solidification, a hypereutectic alloy was formed. The latter is
characterized by two temperatures, TL and TS, which corre-
spond to the beginning and the end of solidification, respec-
tively.

In order to examine the microstructure of investigated alloys
after viscosity and electrical conductivity measurements, a few
selected samples were analyzed by SEM-EDX and x-ray
diffraction. The results of the phase analysis along with BSE
images of three selected alloys are given in Table 4. According
to the obtained results, no residual pure Co was found in the
samples. The XRD phase analysis fully confirmed no pure Co
in samples after viscosity measurements that had been found by
SEM-EDX. Meanwhile, the Co atoms substitute the atoms of
Cu in Cu6Sn5 compound. Similar substitution was observed by
Gao et al. (Ref 34) studying the morphology and grain growth
pattern of intermetallic compounds formed at the interface
between Sn-3.5Ag-0.1Co (wt.%) solder and the Cu substrate. In
Ref 35, it was found that the composition of Cu6Sn5
intermetallic in the (Ag3.5Co0.1Sn96.4)/Cu diffusion couple is
(Cu90Co10)6Sn5 and (Cu99Co1)6Sn5, which is in agreement with
our results presented in Table 3. Furthermore, Cu substitutes
Co atoms in CoSn3 IMCs, what is in an agreement with the
literature data in Ref 36. Moreover, in the investigated alloys
with more than 1 wt.% Co, the CoSn2 and CoSn phases were
found.

Table 2 Coefficients of the polynomials adjusted on the experimental conductivity for different alloy compositions (from
500 to 1100 K)

Alloy composition, wt.% A, 102/X m B1, 10
2/X m K B2, 10

2/X m K2

SAC387 21,749 �7.4882 0.0013
(SAC387)99.5Co0.5 22,855 �10.5778 0.0021
(SAC387)99.0Co1.0 24,710 �15.5590 0.0048
(SAC387)98.5Co1.5 25,532 �18.3549 0.0063
(SAC387)97.0Co3.0 25,448 �18.3011 0.0057

Fig. 4 Comparison of the calculated and experimental viscosity
data for liquid SAC387 alloy

Table 3 Predicted viscosity values using Eq 1 and 2
for (SAC387)1002xCox alloys by the comparison with
experimental data (gexp) at 1073 K

Alloy composition, wt.% gexp, mPa s g(1), mPa s g(2), mPa s

SAC387 0.90 0.91 0.90
(SAC387)99.5Co0.5 0.96 0.93 0.92
(SAC387)99.0Co1.0 1.01 0.95 0.94
(SAC387)98.5Co1.5 1.13 0.98 0.95
(SAC387)97.0Co3.0 1.49 1.05 1.00
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6. Conclusions

The minor cobalt admixtures to the SAC387 alloy gradually
increase the viscosity and decrease the electrical conductivity.
These effects might be caused by changes in the interatomic
interactions, which lead to formation of the new phases during
solidification. Such suggestions are confirmed by the
microstructure analysis of the samples performed after viscosity
measurements. It was shown that Co atoms replace the atoms of
Cu in Cu6Sn5 compounds when small additions of Co (up to 1
wt.%) are added to the SAC387 reference alloy. Further
increase in the Co content results in formation of the Sn-based
Co-Sn compounds in the alloy. Formation of the new Co-Sn
phases in the SAC387 alloy with Co additions should reinforce
the microstructure in the solid state, and enhanced mechanical
properties of SAC387 similar to Sn-based Sn-Cu and Sn-Ag-Cu
solders reinforced with In, Ni or Zn, respectively (Ref 37, 38).
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