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Abstract. For a locally compact group G we consider the algebra CD(G)
of convolution dominated operators on L2(G): An operator A : L2(G) →
L2(G) is called convolution dominated if there exists a ∈ L1(G) such that
for all f ∈ L2(G)

|Af(x)| ≤ a � |f | (x) for almost all x ∈ G.

In the case of discrete groups those operators can be dealt with quite
sufficiently if the group in question is rigidly symmetric. For non-discrete
groups we investigate the subalgebra of regular convolution dominated
operators CDreg(G). For amenable G which is rigidly symmetric as a
discrete group we show that any element of CDreg(G) is invertible in
CDreg(G) if it is invertible as a bounded operator on L2(G). We give an
example of a symmetric group E for which the convolution dominated
operators are not inverse-closed in the bounded operators on L2(E).
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1. Introduction

When one considers a convolution operator on the abelian group Z, then its
matrix with respect to the canonical basis of l2(Z) is a Toeplitz matrix, i.e., it
is constant along side diagonals. Conversely, a doubly infinite matrix, which
is constant along its side diagonals and satisfies certain off-diagonal decay
conditions, defines a convolution operator, when it is considered as acting
with respect to the above basis. For the class of operators with decay in the
sense of l1-summability Wiener [44] proved the Fourier transformed version
of the following theorem

Theorem 1.1. (Wiener’s Lemma) If a two-sided infinite absolutely summable
sequence a = (a(n))n∈Z

is invertible as a convolution operator on l2(Z), then
the inverse is given by convolution with some b ∈ l1(Z).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00020-016-2319-9&domain=pdf
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Based on work of de Leeuw [9] and of Bochner and Phillips [8] on
operator-valued Fourier transforms, several authors extended and applied
Wiener’s lemma to the case of matrices of operators, for which each side diag-
onal is uniformly bounded and these bounds are summable. The index set al-
ways had to be a discrete abelian group or a countable set [1,16,17,21,42,43].

If G is a locally compact abelian group, for simplicity assumed to be
compactly generated, then it admits a discrete co-compact subgroup H, and
Lp(G) = lp(H,Lp(D)), where D is some fundamental domain. So vector
valued Wiener Lemmata become applicable to classes of integral operators.
Baskakov in [2–5] derives results for some of these. Shin and Sun in [41] give
an account of those techniques.

If B is a Banach algebra and A a subalgebra then A is called spectral
in B when every element of A has the same spectrum in A as it has in B. In
[26,27] Kurbatov shows among other results that for a locally compact abelian
group the algebra of convolution dominated operators (see 2.1) is spectral in
the bounded operators on Lp(G). Farrell and Strohmer [12] extend this result
to generalised Heisenberg groups (with compact center).

Plenty of work has been done with regularity assumptions on the kernel
of an integral operator. Let us just mention interesting studies by Gröchenig
and Klotz [18–20,24,25] on norm controlled inverse closedness of smoothness
algebras in symmetric algebras. A comprehensive discussion of this important
theme would go beyond the scope of this note.

In [13], together with Gröchenig we addressed the discrete nonabelian
case using tools from abstract harmonic analysis to circumvent the restric-
tions of abelian Fourier transformation:

Theorem 1.2. Let G be a discrete finitely generated group of polynomial
growth. If a matrix A indexed by G satisfies the off-diagonal decay condition

|A(x, y)| ≤ a(xy−1), x, y ∈ G (1)

for some a ∈ �1(G) and A is invertible on �2(G), then there exists b ∈ �1(G)
such that

|A−1(x, y)| ≤ b(xy−1), x, y ∈ G,

i. e. the algebra of matrices satisfying (1) is inverse-closed in B(L2(G)), the
bounded operators on L2(G).

Throughout this paper it is assumed that the involution of a Banach
∗-algebra is isometric. We recall the main line of the proof of this theorem,
since this will be a guideline for us.

1. The matrices satisfying (1) form a Banach ∗-algebra. We denote it by
CD(G).

2. Identify CD(G) with l1(G, l∞(G), T ), a twisted l1-algebra in the sense
of Leptin [28,29].

3. Based essentially on work of Leptin and Poguntke, in particular [35], we
proved that CD(G) is symmetric Banach ∗-algebra.
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4. In a final step one relates the symmetry of a Banach ∗-algebra to the
invertibility of certain of its elements. This is done with the help of
Hulanicki’s Lemma [22].

Definition 1.3. 1. A Banach ∗-algebra A is called symmetric if for all a ∈ A

σA(a∗a) ⊂ [0,∞),

where σA(a∗a) denotes the spectrum of a∗a in A.
2. Accordingly, a locally compact group G is called symmetric, if L1(G) is

a symmetric Banach ∗-algebra.
3. A locally compact (l.c.) group G is called rigidly symmetric if for any C∗-

algebra A the Banach ∗-algebra L1(G)⊗̂A is symmetric, where the pro-
jective tensor product L1(G)⊗̂A is endowed with its natural ∗-algebra
structure.

In these notes we derive variants of Theorem 1.2 for integral operators
on non-discrete locally compact groups. This extension follows the ideas of
the discrete case in [13], but requires non-trivial modifications. The special
problem to be addressed is the measurability and integrability of certain
kernels. We extend the results presented in the exposition [14] and provide
proofs for them. Meanwhile some of our results have been reproved by Beltiţă
and Beltiţă [6,7] and by Măntoiu [36] in the discrete case. After archiving
(on arxiv) this paper A. R. Schep kindly informed us that our Proposition
2.3 is a special case of a theorem in his dissertation [40].

It is not known yet if a symmetric group is already rigidly symmetric.
An interesting example is the real ax + b group E, which is known to be
a symmetric group but not symmetric as a discrete group [23]. We shall
discuss a specific example of a non-symmetric algebra related to E showing
non-symmetry of CDreg(E). So, in particular, CDreg(E) is not inverse-closed
in B(L2(E)).

2. Convolution Dominated Operators

Let G be a locally compact group.

Definition 2.1. A bounded operator A : L2(G) → L2(G) is called a convolu-
tion dominated operator if there exists a ∈ L1(G) such that for all f ∈ L2(G)

|Af(x)| ≤ a � |f | (x) for almost all x ∈ G. (2)

We define a norm on the space of convolution dominated operators by

‖ A ‖CD = inf{ ‖ a ‖1 : (2) holds true }
and denote by CD the normed linear space of convolution dominated
operators.

It is clear that in this definition necessarily a ≥ 0 locally almost every-
where and that the CD-norm dominates the operator norm, in fact for
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1 ≤ p ≤ ∞ and a ∈ L1(G) satisfying (2)

‖Af ‖p =
(∫

G

|Af |p (x)dx

)1/p

≤
(∫

G

(a � |f |
)p

dx)1/p

≤ ‖λ(a) ‖ ‖ f ‖p ≤ ‖ a ‖1 ‖ f ‖p .

It follows that A ∈ CD extends to a bounded operator on Lp(G), 1 ≤ p < ∞
by continuity, and by duality to a bounded operator on L∞(G) too.

Proposition 2.2. With the involution of operators on L2(G) and composition
of operators as product the space of convolution dominated operators is a
Banach ∗-algebra.
Proof. Let A,B be convolution dominated operators and choose a, resp. b ∈
L1(G) according to (2). Then for f ∈ L2(G):

|A ◦ Bf | (x) ≤ a � |Bf | (x) ≤ a � b � |f | (x).

From this and because L1(G) is an normed algebra under convolution it is
clear that

‖ A ◦ B ‖CD ≤ ‖A ‖CD ‖ B ‖CD .

To see that the involution preserves the space CD take a ∈ L1(G) according
to (2) and f, h ∈ L2(G):∣∣∣∣

∫
G

A∗h(x) f(x) dx

∣∣∣∣ = |(A∗h, f)|
= |(h,Af)|
=

∣∣∣∣
∫

G

h(x)Af(x) dx

∣∣∣∣
≤

∫
G

|h(x)| |Af(x)| dx

≤
∫

G

|h(x)| a � |f | (x) dx

=
∫

G

a∗ � |h| (x) |f | (x) dx,

where a∗(x) = a(x−1)Δ(x−1) is the involution on L1(G), and here a∗(x) =
a(x−1)Δ(x−1), since a ≥ 0. Hence, |A∗h(x)| ≤ a∗ � |h| (x) locally almost
everywhere for all h ∈ L2(G), and it follows that A∗ ∈ CD with ‖ A∗ ‖CD ≤
inf{‖ a ‖1 : (2) holds true } = ‖ A ‖CD.

To show that CD is a complete space we let (Ai)i∈N be a sequence
in CD with

∑
i∈N

‖ Ai ‖CD convergent. Then we find ai ∈ L1(G) such that
|Aif(x)| ≤ ai � |f | (x) for almost all x ∈ G and ‖ ai ‖1 ≤ ‖Ai ‖CD +2−i. For
A =

∑
i∈N

Ai this sum is convergent in the space of bounded operators, hence
for f ∈ L2(G) and for a subsequence of the partial sums we have Af(x) =
limk

∑jk
i=1Aif(x) almost everywhere. So |Af | (x) ≤ ∑

i∈N
|Aif | (x) ≤ ∑

i∈N

ai � |f | (x) = a � |f | (x). This shows A ∈ CD with ‖ A ‖CD ≤ ‖ a ‖1. �
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Proposition 2.3. For a given convolution dominated operator A there exists
a locally integrable function FA : G × G → C such that for all f ∈ Ccp(G)

Af(x) =
∫

G

FA(x, y)f(y)dy almost everywhere.

Proof. let K,K ′ ⊂ G be compact sets and consider on C(K) × C(K ′) the
form

〈Af, h〉 :=
∫

G

Af(x)h(x)dx,

where f and h are extended as L2-functions vanishing outside K respectively
K ′. Take ϕ ∈ Ccp(G), ϕ ≥ 0, then for f1, . . . , fn ∈ C(K) and h1, . . . , hn ∈
C(K ′)
∣∣∣∣∣

n∑
i=1

〈λ(ϕ) ◦ Afi, hi〉
∣∣∣∣∣ =

∣∣∣∣∣
∫

G

n∑
i=1

Afi(x)(ϕ∗ � hi)(x) dx

∣∣∣∣∣
=

∣∣∣∣∣
∫

G

∫
G

A(
n∑

i=1

fihi(z−1))(x)ϕ∗(xz) dzdx

∣∣∣∣∣
≤

∫
G

∫
G

(a �

∣∣∣∣∣
n∑

i=1

fihi(z−1)

∣∣∣∣∣)(x)ϕ∗(xz) dzdx

=
∫

G

∫
G

∫
G

a(xy)

∣∣∣∣∣
n∑

i=1

fi(y−1)hi(z−1)

∣∣∣∣∣ ϕ∗(xz) dydzdx

=
∫

G

∫
G

∫
G

a(xy−1)Δ(y−1)

·
∣∣∣∣∣

n∑
i=1

fi(y)hi(z)

∣∣∣∣∣ ϕ∗(xz−1)Δ(z−1) dydzdx

≤
∫

G

sup
(y,z)∈K×K′

∣∣∣∣∣
n∑

i=1

fi(y)hi(z)

∣∣∣∣∣
·
∫

K′

∫
K

a(xy−1)Δ(y−1)ϕ∗(xz−1)Δ(z−1) dydzdx

≤ ‖ a ‖1 sup
(y,z)∈K×K′

∣∣∣∣∣
n∑

i=1

fi(y)hi(z)

∣∣∣∣∣
·
∫

G

∫
K′

ϕ∗(xz−1)Δ(z−1) dzdx

= ‖ a ‖1 sup
(y,z)∈K×K′

∣∣∣∣∣
n∑

i=1

fi(y)hi(z)

∣∣∣∣∣ |K ′|
∫

G

ϕ(x) dx

where Δ denotes the modular function of G, ϕ∗(z) = ϕ(z−1)Δ(z−1) and we
write |K ′| for the left Haar measure of the set K ′. We take an approximate
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unit of L1(G) consisting of functions ϕ as above. Then we see that∣∣∣∣∣
n∑

i=1

〈Afi, hi〉
∣∣∣∣∣ ≤ |K ′| ‖ a ‖1 sup

(y,z)∈K×K′

∣∣∣∣∣
n∑

i=1

fi(y)hi(z)

∣∣∣∣∣ .

Hence f ⊗ h �→ 〈Af, h〉 extends to a linear form on the injective tensor
product C(k) ⊗ε C(K ′) = C(K × K ′), so there is a Borel measure μ such
that for f1, . . . , fn ∈ C(K) and h1, . . . , hn ∈ C(K ′)∫

G

n∑
i=1

Afi(z)hi(z) dz =
∫

K

∫
K′

n∑
i=1

fi(y)hi(z)dμ(y, z),

and by a computation much similar to the first part of the above one∣∣∣∣∣
∫

K

∫
K′

n∑
i=1

fi(y)hi(z)dμ(y, z)

∣∣∣∣∣ ≤
∫

G

∫
G

a(zy−1)Δ(y−1)

∣∣∣∣∣
n∑

i=1

fi(y)hi(z)

∣∣∣∣∣ dydz.

This last inequality extends to bounded measurable functions, and if H ⊂
K × K ′ is the characteristic function of a set of Haar measure 0 in G × G,
then by Fubini’s theorem, for almost all z ∈ G the function H(. , z) vanishes
off a set of measure zero. The above estimate implies

0 ≤
∫

H dμ ≤
∫

G

∫
G

a(zy−1)Δ(y−1)H(y, z) dydz = 0.

That is, μ is absolutely continuous with respect to the Haar measure on
G × G, and by the Radon Nikodym theorem there exists a kernel F

(K′,K)
A ∈

L1(K × K ′) such that∫
G

Af(x)h(x) dx =
∫

K′

∫
K

F
(K′,K)
A (x, y)f(y)h(x) dydx,

whenever f, h are continuous with support in K resp. K ′. It is now a stan-
dard procedure to check the consistency of these kernels for different pairs
of compact sets so that they define a locally integrable kernel FA on G × G,
which represents A as claimed in the proposition. �
Remark 2.4. In the above proof we have seen that in terms of the kernel FA

of a convolution dominated operator A the inequality (2) may be rewritten as

FA(x, y) ≤ a(xy−1)Δ(y−1) locally almost everywhere (l.a.e.) (3)

Remark 2.5. Conversely, if F : G × G → C is a locally integrable function,
such that for some a ∈ L1(G):

|F (x, y)| ≤ a(xy−1)Δ(y−1),

then by

Af(x) =
∫

G

F (x, y)f(y) dy

a bounded operator on L2(G) can be defined, which clearly is dominated by
λ(a). For this it suffices to check the Schur conditions

ess supx

∫
|F (x, y)| dy < ∞ and ess supy

∫
|F (x, y)| dx < ∞.
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Remark 2.6. The kernel of a convolution dominated operator satisfies the
Schur conditions and hence represents the operator in the sense that for all
f ∈ L2(G) the following integral converges l.a.e. and

Af(x) =
∫

G

FA(x, y)f(y) dy l.a.e.

Now let ai, i ∈ N be a sequence such that (3) holds true for each i and
such that ‖ ai ‖1 ≤ ‖A ‖cd +2−i. Then, for n ∈ N, let bn = a1∧· · ·∧an, where
∧ denotes the operation of taking the pointwise minimum of integrable func-
tions. The functions bn are bounded below, and form a decreasing sequence
in L1(G). Thus they converge to b, say. It is easily seen from (3) that this
limit satisfies (2), furthermore ‖ b ‖1 = ‖ A ‖CD. We conclude:

Remark 2.7. The infimum in Definition 2.1 is attained.

If G is a discrete group then an element A ∈ CD may be represented
uniquely by its matrix with respect to the basis given by the unit masses
placed at the group elements

A(x, y) = (Aδy|δx).

Denote mz as the z-th side-diagonal of the matrix. Then the matrix is the
direct sum of its side diagonals and therefore

A =
∑
z∈G

λ(z) ◦ Dmz ,

where Dm ∈ B(l2(G)) is the multiplication operator with m ∈ l∞(G). In [13]
this was used to show that

R : �1(G, �∞(G), T ) → B(�2(G)) (4)

defined by

R :
∑
z∈G

δz ⊗ mz �→
∑
z∈G

λ(z) ◦ Dmz . (5)

is surjective from a certain twisted L1-algebra onto CD. In fact this map is an
isometric ∗-algebra isomorphism. We shall next define the twisted L1-algebra
and the map R, which unfortunately is no longer surjective.

Let Ruc(G) denote the space of bounded right uniformly continuous
functions, i. e. those F ∈ L∞(G) such that ess supx∈G

∣∣f(y−1x) − f(x)
∣∣ →

0 as y → 0. (This definition of right uniform continuity follows [39, Ch. 3,
1.8(vi)]) This space is just the subspace of L∞ of those elements on which left
translation acts norm continuously. It is a closed subspace containing only
continuous functions.

For y ∈ G denote Ty left translation on Ruc(G), that is Tyn(z) =
n(y−1z), n ∈ Ruc(G). We consider the map T : y �→ Ty as a homomorphism
of G into the group of isometric automorphisms of the C∗-algebra Ruc(G),
which is continuous when the latter group is endowed with the strong operator
topology. With this homomorphism we form the twisted L1-algebra L =
L1(G,Ruc(G), T ) in the sense of Leptin [28–30]. The underlying Banach space
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of L is the space of Ruc(G)-valued Bochner integrable functions on G, but
we will often interpret it as the projective tensor product

L1(G,Ruc(G)) = L1(G) ⊗̂ Ruc(G).

Thus for an element f ∈ L1(G,Ruc(G)) we denote its value in Ruc(G) by
f(x), x ∈ G, and we write f(x)(z) or f(x, z) for the value of this Ruc-function
at z ∈ G.

The twisted convolution of h, f ∈ L is defined by

h � f(x) =
∫

G

Tyh(xy)f(y−1) dy, for x ∈ G ,

and the involution of h ∈ L by

h∗(x) = Δ(x−1)Tx−1(h(x−1)), for x ∈ G.

The properties of the projective tensor product ensure that R : a ⊗ m �→
λ(a) ◦ Dm extends to a norm-nonincreasing linear map from L1(G,Ruc(G))
to B(L2(G)).

Proposition 2.8. The map R : L1(G,Ruc(G), T ) → B(L2(G)) is an ∗-algebra
homomorphism with range in CD. It is isometric from L1(G,Ruc(G), T ) into
CD.

Proof. Since λ is a continuous unitary representation of G on L2(G) and
D : m �→ Dm is a ∗-representation of Ruc in B(L2(G)), with λ(x)∗ ◦ Dm ◦
λ(x) = DT −1m

x ,∀x ∈ G, m ∈ Ruc, [30, Satz 3] shows that R defines a non-
degenerate ∗-representation of L.

For a ⊗ m ∈ L1(G) ⊗̂ Ruc(G) and h ∈ L2(G) we have

|Rf(x)| = |λ(a)(mh)(x)| ≤ ‖m ‖∞ |a| � |f | (x).

This shows that R maps into CD and does not increase the norm as a map
from L to CD.

Now assume that for f ∈ L1(G,Ruc(G), T ) we have a ∈ L1(G) such
that for all h ∈ L2(G): |Rf(h)| (x) ≤ a � |h| (x). Then∫

G

a(xy−1)Δ(y−1) |h(y)| dy = a � |h| (x)

≥ |Rf(h)| (x)

=
∣∣∣∣
∫

G

λ(y)(f(y)(.)h(.))(x)dy

∣∣∣∣
=

∣∣∣∣
∫

G

f(y)(y−1x)h(y−1x)dy

∣∣∣∣
=

∣∣∣∣
∫

G

f(xy−1)(y)Δ(y−1)h(y) dy

∣∣∣∣ .

Then
∣∣f(xy−1)(y)

∣∣ ≤ a(xy−1)Δ(y−1) for almost all (x, y) ∈ G × G, or
|f(x)(y)| ≤ a(x) for almost all (x, y) ∈ G×G. It follows that ‖ f(x) ‖∞ ≤ a(x)
for almost all x ∈ G. Hence

‖ f ‖L1(G,Ruc(G),T ) =
∫

G

‖ f(x) ‖∞ dx ≤ ‖ a ‖1 .
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As a consequence: R : L1(G,Ruc(G), T ) → CD is isometric. �
Definition 2.9. Elements in the image of R we call regular convolution dom-
inated operators, and denote the whole image by CDreg.

The continuous functions vanishing at infinity C0(G) are a closed two-
sided ideal in Ruc(G) and as is easily seen this implies that L1(G,C0(G), T )
is a closed two-sided ideal in L1(G,Ruc(G), T ).

Remark 2.10. It follows from [35, Theorem 4] that L1(G,C0(G), T ) is simple
and symmetric. The representation ρ in the beginning of their proof, we
denoted it by R, maps L1(G,C0(G), T ) into an ideal (in CDreg) of compact
operators. Moreover the operator norm closure of R(L1(G,C0(G), T )) equals
the compact operators [34].

3. Symmetry of the Twisted L1-Algebra

In this section we shall show that the twisted L1-algebra L1(G,Ruc(G), T )
is a symmetric Banach ∗-algebra. To this end we shall first recall a criterion
for the symmetry of a Banach ∗-algebra.

Definition 3.1. Let E be a normed linear space and A be a Banach ∗-algebra.
A representation ρ : A → End(E) is called preunitary if there exists a Hilbert
space H and a bounded ∗-representation π : A → B(H) together with an
injective and bounded operator U : E → H intertwining ρ and π.

U ◦ ρ(a) = π(a) ◦ U, ∀a ∈ A.

Remark 3.2. If ρ is a contractive representation of A on a Banach space E
then we are given a Banach A module in the sense of Leptin. The represen-
tation is preunitary in the above sense if the Banach A module is preunitary
in the sense of Leptin [33].

It is clear that the image, under U , of a ρ(A)-invariant subspace is in-
variant under π(A). We may and do assume that U(E) is dense in H.

The following question appears naturally. If ρ is an algebraically irre-
ducible, preunitary representation, can the representation π in the definition
be chosen topologically irreducible? The answer is positive:

Proposition 3.3. Let A be a Banach ∗-algebra with approximate identity. If
ρ : A → B(E) is an algebraically irreducible, preunitary representation of A
then there is a topologically irreducible ∗ representation π extending ρ.

Proof. The representation ρ is preunitary, hence its kernel is a ∗-ideal, and
possibly replacing A by A/kern(ρ) we may assume that ρ is faithful. Since
ρ : A → B(E) is algebraically irreducible there is a maximal modular left ideal
M ⊂ A, with modular right unit u, such that E and A/M are algebraically
isomorphic, and ρ appears as left multiplication on A/M . For b ∈ A denote
b its class in A/M and let

( | ) : A/M × A/M → C
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be the positive sesquilinear form given by

(b|c) = (U(b)|U(c))H .

The functional

φ(a) = (au|u) = (π(a)U(u)|U(u))H , a ∈ A

is non-trivial, positive and continuous with respect to the maximal C∗-norm
of A.

Let C denote the C∗-hull of A and M the closure of M in C. For a ∈ M
we have φ(a) = 0 hence M ⊂ kern(φ), so M �= C. Let N ⊃ M be a proper
maximal modular left ideal in C containing M .

First we claim that N ∩ A = M . By definition of N we only have to
show N ∩ A ⊂ M . Clearly N ∩ A is a left ideal in A, and u a right modular
unit. Note that N ∩ A is a proper ideal in A since N is a proper ideal in C.
By the maximality of M it follows that N ∩ A ⊂ M .

Now by [11, 2.9.5] there is a pure state ψ on C such that N = { b ∈
C : ψ(b∗b) = 0 }. Hence M = N ∩ A = { a ∈ A : ψ(a∗a) = 0 }. So the GNS
representation of A constructed from the (pure state) ψ|A is a topologically
irreducible extension of ρ containing E as a dense invariant subspace. �

Since an algebraically irreducible representation of a Banach ∗-algebra
is equivalent to a contractive one, we may use from [32]:

Theorem 3.4. A Banach ∗-algebra is symmetric if and only if all its non-
trivial algebraically irreducible representations are preunitary.

Following the concept used in the discrete case [13] one would like to
define a map

Q : L1(G,Ruc(G), T ) → L1(G)⊗̂B(L2(G))

by

Q(f) = {x �→ λ(x) ◦ Df(x)}.

But this does not work since Q(f) is not Bochner measurable because λ :
G → B(L2(G)), is strongly continuous, but not norm continuous.

The problem can be worked around by showing, completely analogously
to [37], that algebraically irreducible representations of certain twisted L1-
algebras of G remain irreducible when ”restricted“ to the discretised group.

So, as before let G be a locally compact group, A a Banach ∗-algebra,
with isometric involution and a left approximate identity. Further we assume
that T : G → Aut(A) is a continuous homomorphism from G into the group
of ∗-automorphisms of A, where Aut(A) is endowed with the strong operator
topology, i.e. y �→ Tya is continuous from G to A, for all a ∈ A. With these
data we form the twisted L1-algebra (as above) L = L1(G,A, T ).

Let E be a nontrivial linear space and let ρ : L → B(E) be a non-trivial
algebraically irreducible representation on it. Given ξ0 ∈ E, ξ0 �= 0, one has
a norm on E:

‖ ξ ‖E = inf{‖ f ‖L : f ∈ L, ρ(f)ξ0 = ξ}, (6)
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with respect to which E is a complete space. In fact it is the quotient of
L with respect to the maximal modular left ideal {f ∈ L : ρ(f)ξ0 = 0}.
Different ξ0 ∈ E define different but equivalent norms.

As in the proof of [30, Satz 3], ρ : G → B(E) and ρ : A → B(E)
are representations of the group respectively of the Banach algebra A. The
operators ρ(x), x ∈ G, are isometries and ρ does not increase norms. Here
the operators ρ(x), x ∈ G and ρ(a), a ∈ A do not necessarily commute, but
we have the relation

ρ(y−1)ρ(a)ρ(y) = ρ(Ty−1a),

and furthermore for all f ∈ L1(G,A, T ), ξ ∈ E

ρ(f)ξ =
∫

G

ρ(x)ρ(f(x))ξ dx.

Unfortunately the proof in [30] is done with the hypothesis of dealing with
a ∗-representation. Apart from some algebraic identities the main ingredient
is [30, Satz 2] in its consequence (1.2) loc.cit..

Now we take the group G with the discrete topology, denote it Gd. We
form the twisted L1-algebra Ld := l1(G,A, T ), and define a representation of
it on E by

ρd(h)ξ =
∑
x∈G

ρ(x)ρ(h)ξ, ξ ∈ E, h ∈ Ld.

Lemma 3.5. Let ρ be an algebraically irreducible representation of L1(G,A, T )
and assume the above settings. Then the representation ρd : l1(G,A, T ) →
B(E) is algebraically irreducible.

Proof. We follow the proof of [37, Theorem 2]. Assume that E′ ⊂ E is a
non-trivial ρd(Ld) invariant subspace; we have to show that E′ = E. To this
end we take a fixed nonzero ξ0 ∈ E′, and the corresponding norm, see (6),
on E.

Claim 1. We claim that for ξ ∈ E and ε > 0 there is h ∈ l1(G,A, T ) such
that

‖ ρd(h)ξ0 − ξ ‖E ≤ ε and ‖h ‖Ld
≤ ‖ ξ ‖E + ε. (7)

The claim implies the assertion of the lemma. For, if η ∈ E is given we
have to find h ∈ Ld such that ρd(h)ξ0 = η, and this is done inductively as
follows: First we find h1 ∈ Ld such that

‖ ρd(h1)ξ0 − η ‖E ≤ 2−1 and ‖ h1 ‖Ld
≤ ‖ η ‖E + 2−1.

If h1, . . . , hn are already defined with∥∥∥∥∥
n∑

i=1

ρd(hi)ξ0 − η

∥∥∥∥∥
E

≤ 2−n

and

‖ hi ‖Ld
≤

∥∥∥∥∥∥
i−1∑
j=1

ρd(hj)ξ0 − η

∥∥∥∥∥∥
E

+ 2−i, i = 1, . . . , n,
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then we choose hn+1 ∈ Ld such that
∥∥∥∥∥ ρd(hn+1)ξ0 −

(
η −

n∑
i=1

ρd(hi)ξ0

)∥∥∥∥∥
E

≤ 2−(n+1)

and

‖ hn+1 ‖Ld
≤

∥∥∥∥∥
(

n∑
i=1

ρd(hi)ξ0 − η

)∥∥∥∥∥
E

+ 2−(n+1).

Since

‖ hi ‖Ld
≤

∥∥∥∥∥∥
i−1∑
j=1

ρd(hj)ξ0 − η

∥∥∥∥∥∥
E

+ 2−i ≤ 2−(i−1) + 2−i for i ≥ 2,

the sum
∑∞

1 hi, call it h, exists in Ld, and

‖ ρd(h)ξ0 − η ‖E = lim
n→∞

∥∥∥∥∥
n∑

i=1

ρd(hi)ξ0 − η

∥∥∥∥∥
E

= 0.

It remains to establish the claim. So let δ > 0 be a positive real number to
be determined later. By definition of the norm on E we find f ∈ L1(G,A, T ),
with

ρ(f)ξ0 = ξ and ‖ f ‖L < ‖ ξ ‖E + δ.

Since the space of continuous, compactly supported, A valued functions
Ccp(G,A) is dense in L1(G,A, T ) we find, in turn, a function f1 ∈ Ccp(G,A)
such that

‖ ρ(f1)ξ0 − ξ ‖E < δ and ‖ f1 ‖L < ‖ ξ ‖E + δ.

Denote S the support of f1 and |S| its Haar measure. Since ρ is a strongly
continuous representation of G and since f is uniformly continuous, there is
a neighbourhood U of the identity such that

‖ ρ(u)ξ0 − ξ0 ‖E < δ, ∀u ∈ U and

‖ f1(xu) − f1(x) ‖A < δ |S|−1
, ∀x ∈ G, u ∈ U.

As S is compact it can be covered by finitely many translates x1U, . . . , xmU
of U . We make this covering disjoint V1 := x1U ∩ S and inductively Vk :=
(xkU ∩ S) \ ∪j<kVj . The Vj are measurable pairwise disjoint subsets of S,
hence

∑m
1 |Vj | ≤ |S|.

Now let aj = f1(xj) ∈ A, j = 1, . . . ,m, and f2 ∈ L1(G,A, T ) be given
by

f2 =
m∑

j=1

ajχVj
.
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Then

‖ f2 ‖L1(G,A,T ) ≤ ‖ f2 − f1 ‖L1(G,A,T ) + ‖ f1 ‖L1(G,A,T )

≤
m∑

j=1

∫
Vj

‖ f1(x) − f1(xj) ‖A dx + ‖ ξ ‖E + δ

≤
m∑

j=1

|Vj | δ |S|−1 + ‖ ξ ‖E + δ

≤ ‖ ξ ‖E + 2δ.

The desired h ∈ l1(G,A, T ) is defined by

h =
m∑

j=1

aj |Vj | δxj
.

Then

‖ h ‖l1(G,A,T ) =
m∑

j=1

‖ aj ‖A |Vj | =

∥∥∥∥∥∥
m∑

j=1

ajχVj

∥∥∥∥∥∥
L1(G,A,T )

≤ ‖ ξ ‖E + 2δ.

Moreover,

‖ ρd(h)ξ0 − ξ ‖E ≤ ‖ ρd(h)ξ0 − ρ(f2)ξ0 ‖E + ‖ ρ(f2)ξ0 − ξ ‖E

The second term can be estimated by

‖ ρ(f2)ξ0 − ρ(f1)ξ0 ‖E + ‖ ρ(f1)ξ0 − ξ ‖E ≤ ‖ f1 − f2 ‖L1(G,A,T ) ‖ ξ0 ‖E + δ

≤ δ ‖ ξ0 ‖E + δ.

For the first term we use that ρ : A → B(E) is bounded by one and that
s ∈ Vj can be written s = xju with u ∈ U :

‖ ρd(h)ξ0 − ρ(f2)ξ0 ‖E ≤
m∑

j=1

∥∥∥∥∥ ρ(aj) |Vj | ρ(xj)ξ0 −
∫

Vj

ρ(aj)ρ(s)ξ0 ds

∥∥∥∥∥
E

≤
m∑

j=1

‖ aj ‖A

∥∥∥∥∥
∫

Vj

ρ(xj)ξ0 − ρ(s)ξ0 ds

∥∥∥∥∥
E

≤
m∑

j=1

‖ aj ‖A

∫
Vj

‖ ρ(xj)ξ0 − ρ(s)ξ0 ‖E ds

≤
m∑

j=1

‖ aj ‖A

∫
Vj

δ ds

= δ||f2||L ≤ δ(‖ ξ ‖E + 2δ)

Altogether we found h ∈ l1(G,A, T ) such that

‖ h ‖l1(G,A,T ) ≤ ‖ ξ ‖E + 2δ and ‖ ρd(h)ξ0 − ξ ‖E ≤ δ(‖ ξ ‖E + 2δ);

taking δ small enough now proves the claim. �
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From here onward we assume that A is a C∗-algebra and that the op-
erators Ty are isometries. We recall that we assumed that they preserve the
involution: Ty(a∗) = (Tya)∗, a ∈ A, y ∈ G. Before discussing the symmetry
of L1(G,A, T ) we shall first look at the discretised version.

So let D : A → B(H) be a faithful ∗-representation of A on some Hilbert
space H. We define a map

Q : �1(Gd,A, T ) → �1(Gd)⊗̂B(H) (8)

by

f =
∑

v

δv ⊗ mv �→
∑

v

δv ⊗ Tv ◦ D(mv). (9)

Proposition 3.6. The map Q is an isometric ∗-isomorphism of �1(Gd,A, T )
onto a closed ∗-subalgebra of l1(Gd)⊗̂B(H).

Proof. The proof rests on the isometric identification l1(G,E) = l1(G) ⊗̂ E,
which holds for any Banach space E [10, Ch. VIII.1.10]. It follows that for
f =

∑
v δv ⊗ mv ∈ l1(G,A, T )

‖ f ‖1 =
∑

v

‖ mv ‖A =
∑

v

‖ Tv ◦ D(mv) ‖B(H)

=

∥∥∥∥∥
∑

v

δv ⊗ Tv ◦ D(mv)

∥∥∥∥∥
�1(G)⊗̂B(H)

.

Thus Q is an isometry. Let h =
∑

v δv ⊗ nv, then

h � f =
∑

v

δv ⊗ lv,

where lv =
∑

y∈G(Tynvy)my−1 . Hence

Q(h � f) =
∑

v

δv ⊗ TvD(lv)

=
∑

v

δv ⊗
∑

{z,w:zw=v}
TzD(nz)TwD(mw)

=
∑
z,w

δzδw ⊗ TzD(nz)TwD(mw)

=

(∑
z∈G

δz ⊗ TzD(nz)

) (∑
w

δw ⊗ TwD(mw)

)
= Q(h)Q(f).

Similarly one computes that Q intertwines the involutions. In fact

Q(f)∗ =
∑

v

δ∗
v ⊗ (Tv ◦ D(mv))∗

=
∑

v

δv−1 ⊗ Tv−1D(Tvmv
∗)

=
∑
v−1

δv ⊗ TvD(Tv−1mv−1
∗) = Q(f∗).
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Thus Q is a ∗-homomorphism. Since Q is an isometry, the image of Q is a
closed subalgebra of l1(Gd) ⊗̂ B(H). �

Because symmetry is inherited by closed subalgebras, we obtain the
following consequence.

Corollary 3.7. Let G be a discrete rigidly symmetric group, A a C∗-algebra.
Then l1(Gd,A, T ) is a symmetric Banach ∗-algebra. In particular any of its
algebraically irreducible representations is preunitary.

Theorem 3.8. If G is rigidly symmetric as a discrete group, and if A is a
C∗-algebra, then L1(G,A, T ) is symmetric.

Proof. We shall verify that a non-trivial algebraically irreducible representa-
tion ρ : L1(G,A, T ) → End(E) is preunitary. We know that its discretised
version ρd : l1(Gd,A, T ) → End(E) is preunitary too. So let H be the Hilbert
space, πd the ∗- representation of l1(Gd,A, T ) on it, and U the intertwining
operator according to the Definition 3.1. Now E is a complete space with
respect to the norm

‖ ξ ‖d = inf
{

‖ h ‖l1(Gd,A,T ) : h ∈ l1(Gd,A, T ), ρ(h)ξ0 = ξ
}

,

as well as with respect to || ||E . A slight modification of the argument given
after Claim 1 shows that || ||E ≤ 2|| ||d, hence these norms are equivalent.
Furthermore, h �→ πd(h)Uξ0 = Uρd(h)ξ0 is bounded from l1(Gd,A, T ) to H.
These two facts show that U : E → H is bounded.

From [30, Satz 3] we know that there is a unitary representation π :
Gd → B(H) and a ∗-representation (again denoted by the same letter) π :
A → B(H) such that

π(x−1)π(a)π(x) = π(Tx−1a), ∀x ∈ G, a ∈ A
and

πd(h) =
∑
x∈G

π(x)π(h(x)), ∀h ∈ l1(Gd,A, T ).

Since ρ : G → B(E) is a continuous representation and U a continuous
intertwining operator it follows that by means of π the group G acts contin-
uously on the image U(E) in H. As this subspace is dense in H and π is a
bounded representation we infer that this action is continuous on the whole
space H. This allows to define a representation π of L = L1(G,A, T ) on H
by

π(f)η =
∫

G

π(x)π(f(x))η dx η ∈ H, f ∈ L.

It is easily checked that this formula defines a ∗-representation of L on
H, and that U intertwines π and ρ. �
Corollary 3.9. If G is rigidly symmetric as a discrete group then the twisted
algebra L1(G,Ruc(G), T ) is a symmetric Banach ∗-algebra.
Remark 3.10. (i) Locally compact nilpotent groups are rigidly symmetric,

even as discrete groups [37, Corollary 6].
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(ii) If for the settings of [35, Theorem 5] we choose G = H = R with the
action ω : (s, x) �→ xs := esx of the additive group R on itself and
D = C0(R), then we see that L1(R,D), with the trivial action of R on
D is symmetric, whereas L1(R, L1(R,D), T̃ ), with action

T̃ (s)f(x)(·) = e−sf(ω(−s, x))(ω(s, ·)) ∈ D, f ∈ L1(R,D), s, x ∈ R

is not symmetric. Hence in the above theorem it is necessary to assume
that A is a C∗-algebra and not only a symmetric Banach-∗-algebra. See
the example in Sect. 5.

(iii) A special role in the theory of symmetry of group algebras is played by
the group of affine mappings of the real line, the “ax+b”-group, denoted
E. This group has a symmetric L1-algebra [31], but its discretised ver-
sion is not symmetric [23]. We do not know about the rigid symmetry
of the continuous group.

4. Spectral Invariance of CDreg

We shall show that the spectrum of an element of CDreg is the same no matter
whether it is considered as a bounded operator on L2(G) or as an element
of CDreg. To this end we define two representations of L1(G,Ruc(G), T )
and first show that they are weakly equivalent. The first representation is
R : L1(G,Ruc(G), T ) → CDreg ⊂ B(L2(G), which we call the canon-
ical representation. The second one is the D-regular representation λD :
L1(G,Ruc(G), T ) → B(L2(G,L2(G)), acting on L2(G,L2(G)).

Proposition 4.1. The representations λD and R of L1(G,Ruc(G), T ) are
weakly equivalent, i.e.

∥∥λD(f)
∥∥

B(L2(G,L2(G))
= ‖ R(f) ‖B(L2(G).

Proof. We identify L2(G,L2(G)) with L2(G × G). Let Rω be the extension
of R from L2(G) to L2(G × G) by letting the operators R(f), f ∈ L, act in
the first coordinate only, i.e., for ξ ∈ L2(G × G)

Rω(f)ξ(x, z) =
∫

G

f(y)(y−1x)ξ(y−1x, z) dy. (10)

Next we define a candidate for an intertwining operator between the D-
regular representation and the card(G)-multiple Rω of the canonical repre-
sentation by

Sξ(x, z) = ξ(xz, z), where ξ ∈ L2(G × G).

Then on the one hand we have

S[Rω(f)ξ](x, z) =
∫

G

f(y)(y−1xz)ξ(y−1xz, z) dy.

On the other hand

λD(f)(Sξ)(x, z) =
∫

G

(Tyf(xy))(z)(Sξ)(y−1, z) dy

=
∫

G

(Tx−1yf(y))(z)(Sξ)(y−1x, z) dy
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=
∫

G

f(y)(y−1xz)(Sξ)(y−1x, z) dy

=
∫

G

f(y)(y−1xz)ξ(y−1xz, z) dy.

Consequently,
λD(f)(Sξ) = SRω(f)ξ (11)

for all f ∈ L and ξ ∈ L2(G × G). Since S is unitary on L2(G × G), λD and
Rω are equivalent, whence ‖ Rω(f) ‖ =

∥∥ λD(f)
∥∥ for all f ∈ L.

Now for ξ ∈ L2(G × G) write ξz(x) = ξ(x, z):

‖ Rω(f)ξ ‖2 =
∫

G

∫
G

∣∣∣∣
∫

G

f(y)(y−1x)ξ(y−1x, z) dy

∣∣∣∣
2

dxdz

=
∫

G

∫
G

∣∣∣∣
∫

G

f(y)(y−1x)ξz(y−1x) dy

∣∣∣∣
2

dxdz

=
∫

G

∫
G

|R(f)ξz(x)|2 dxdz

≤
∫

G

{‖ R(f) ‖ ‖ ξz ‖}2 dz

= ‖ R(f) ‖2 ‖ ξ ‖2 .

it follows that ‖ Rω(f) ‖ ≤ ‖ R(f) ‖.
For the converse inequality let ϕ ∈ L2(G) be an element of norm one.

Embed L2(G) in L2(G × G by ξ �→ ξ′ where ξ′(x, z) = ξ(x)ϕ(z) then

‖ R(f)ξ ‖2 =
∫

G

|R(f)ξ(x)|2 dx

=
∫

G

∫
G

|R(f)ξ(x)|2 |ϕ(z)|2 dxdz

=
∫

G

∫
G

|Rω(f)ξ′(x, z)|2 dxdz

≤ ‖Rω(f) ‖2
∫

G

∫
G

|ξ′(x, z)|2 dxdz

= ‖ Rω(f) ‖2 ‖ ξ ‖2 . �

Corollary 4.2. Let G be an amenable group, which is rigidly symmetric as a
discrete group. Then for f ∈ L

rL(f∗f) = ‖ R(f) ‖2B(L2(G)) .

Proof. We imposed the amenability on G to have that the largest C∗-norm,
denoted ‖ . ‖∗, on L is just given by the D-regular representation, since the
representation D of Ruc is a maximal representation [30, Satz 6]. Therefore

‖ f ‖∗ =
∥∥λD(f)

∥∥ = ‖ R(f) ‖B(L2(G)) ∀f ∈ L.

Since L is symmetric Ptaks theorem [38] asserts

rL(f∗f) = ‖ f∗f ‖∗ = ‖ f ‖2∗ . �
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Theorem 4.3. Let G be an amenable group, which is rigidly symmetric as a
discrete group. Then for an operator A ∈ CDreg

spCD(A) = spB(L2(G))(A).

Proof. Since A = R(f) for some f ∈ L, this follows from the above corollary
by an application of Hulanicki’s Lemma [15]. �

5. An Example of Non Symmetry

A special role in the theory of symmetry of group algebras is played by the
group of affine mappings of the real line, the “ax + b”-group. This group has
a symmetric L1-algebra [33], but its discretised version is not symmetric [23].
We do not know about the rigid symmetry of the continuous group. We shall
consider the connected component of the identity.

E =
{(

a b
0 1

)
, a > 0, b ∈ R

}
.

The multiplication is (a, b) · (a′, b′) = (aa′, ab′ + b) and the action on R:
(a, b) : x �→ ax + b. The left Haar measure is da

a2 db.

Theorem 5.1. For this group L1(E,Ruc(E), T ) is not symmetric, where T is
left translation on the right uniformly continuous functions Ruc(E).

Proof. We identify the normal subgroup N of translations with R, and by
means of the exponential map identify R with the subgroup of dilations.

Explicitly Let ω : (s, x) �→ esx from R × R → R. The action of R

on C0(R) is given by u �→ us := u(ω(s, ·)). The additive group R acts on
L1(R, C0(R)) by

T̃ (s)f(x)(·) = e−sf(ω(−s, x))(ω(s, ·)) ∈ C0(R), f ∈ L1(R, C0(R)), s, x ∈ R.

Here es is the modulus of the action ω(s, ·) on R, with respect to translation
invariant Lebesgue measure dx. From [35, Theorem 5] we know that the
twisted algebra L1(R, L1(R, C0(R)), T̃ ) is not symmetric. So the theorem will
be proved if we show that this Banach-∗ algebra is isomorphic to a closed
∗-subalgebra of L1(E,Ruc(E), T ).

We let E act on C0(R) by T ′((a, b)) : u �→ u ◦ ω(log(a), ·). Then
L1(E,C0(R), T ′) and L1(R, L1(R, C0(R)), T̃ ) are isometrically isomorphic Ba-
nach *-algebras: For f ∈ L1(R, L1(R, C0(R)), T̃ ) let Sf ∈ L1(E,C0(R), T ′)
be defined by Sf(a, b) = f(log(a))(− b

a ) ∈ C0(R), (a, b) ∈ E. Indeed

‖ Sf ‖ =
∫
R

∫
R>0

‖ Sf(a, b) ‖∞
da

a2
db =

∫
R

∫
R

‖ f(s)(b) ‖∞ ds db = ‖ f ‖ .
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With the notation a′ = et and a = es:

S(f
T̃∗ h)(a, b) = (f

T̃∗ h)(s)
(

− b

a

)
=

∫
R

(T̃ (t)f(s + t)) ∗ h(−t)
(

− b

a

)
dt

=
∫
R

∫
R

(T̃ (t)f(s + t))
(−b

a
+ v

)
· h(−t))(−v) dv dt

=
∫
R

∫
R

e−tf(s + t)
(

ω

(
−t,− b

a
+ v

))
◦ ω(t, ·)) ·

h(−t))(−v) dv dt

=
∫
R

∫
R

e−tf(s + t)
(

ω

(
−t,− b

a
− v

))
◦ ω(t, ·)) ·

h(−t))(v) dv dt

=
∫
R

∫
R

e−tf(s + t)
(

−e−t

(
b

a
+ v)

))
◦ ω(t, ·)) ·

h(−t))(v) dv dt

=
∫
R

∫
R

e−tSf

(
es+t, es

(
b

a
+ v

))
◦ ω(t, ·) ·

Sh(e−t,−e−tv) dv dt

=
∫
R

∫
R>0

Sf

(
aa′, a

(
b

a
+ v

))
◦ ω(log(a′), ·)

·Sh

(
1
a′ ,−

v

a′

)
da′

a′2 dv

=
∫
R

∫
R>0

Sf((a, b)(a′, v)) ◦ ω(log(a′), ·)Sh((a′, v)−1)
da′

a′2 dv

=
∫
R

∫
R>0

T ′((a′, v)Sf((a, b)(a′, v))Sh((a′, v)−1)
da′

a′2 dv

= (Sf
T ′
∗ Sh)(a, b),

For the ∗ operation on the respective algebras we have

(Sf)∗((a, b)) = ΔE((a, b)−1)T ′((a, b)−1)Sf((a, b)−1),

and

f∗(s)(b) = T̃ (−s)f(−s)(−b)

So that

f∗(s)(b) = T̃ (−s)(f(−s)(−b)

= esf(−s)(−b) ◦ ω(−s, ·)

= aSf

(
1
a
,− b

a

)
◦ ω(log

(
1
a
, ·

)

= ΔE

((
a−1,− b

a

))
T ′

((
a−1,− b

a

))
Sf

((
a−1,− b

a

))
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= ΔE((a, b)−1)T ′((a, b)−1)Sf((a, b)−1)
= (Sf)∗((a, b)).

Now we can embed C0(R) → Ruc(E) by extending a function, already
defined on the dilations to a function on E which is independent of the
translation coordinate of a group element. Restricting the left translation to
this subspace is just the action we denoted T ′. So we obtain an embedding
of L1(E,C0(R), T ′) into L1(E,Ruc(E), T ). �
Corollary 5.2. CDreg(E) is not inverse-closed in B(L2(E)).

Proof. By the above theorem there is a selfadjoint operator in CDreg(E),
with a non-real spectrum. So some operator in CDreg(E) + Cid is invertible
in B(L2(E)) but not in CDreg(E) + Cid. �
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[17] Gröchenig, K.: Time-frequency analysis of Sjöstrand’s class. Rev. Mat.
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