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1 Introduction

Operator splitting techniques for the efficient numerical integration of evolution equa-
tions

∂t u(t) = F(u(t)), t ≥ 0, u(0) given, (1.1)

have become increasingly popular in recent years. Splitting the right-hand side F(u)

into two or more components in an appropriate way enables efficient and accurate
approximations. In particular, a number of higher-order schemes with real or com-
plex coefficients have been constructed and analyzed. Relevant contributions to this
fields can, e.g., be found in [7,8,10,12,13,15,19–21,23]. Furthermore, application to
particular problem classes have been studied in the literature where the vector field F
has special properties, such that splitting methods can be tuned for such cases. In [9]
and [18], for instance, perturbations of integrable systems have been considered, say
F(u) = A(u) + ε B(u) where ε is s small perturbation parameter. Exploiting this
perturbation structure allows the construction of more efficient (de facto) higher-order
schemes compared to generic ones.

1.1 Overview

We present some new contributions to the topic of splitting methods; here we will
concentrate on the generic case, i.e., no special properties of the vector field F are
assumed. At first we review the approach from [1] for the automatic setup of order
conditions represented by polynomial equations in the coefficients to be determined.
Special cases involving symmetries or composition methods based on lower-order
schemes can be treated as well. Splitting of the right-hand side of (1.1) into two or
three components is considered.

The goal is to identify good schemes of a desired order p. ‘Good’ refers to a com-
promise between efficiency (minimizing effort) as well as accuracy (minimizing a
measure for the expected behavior of the local error). In particular, we focus on the
constructions of pairs of schemes of orders (p, p + 1), where a scheme of order p
acts as a ‘worker’, while a related scheme of order p + 1 plays the role of a ’con-
troller’ for the purpose of practical local error estimation. The idea of using pairs of
embedded schemes (an idea related toRunge–Kutta pairs) is due to [17]. Viamore flex-
ible embeddings, optimized variants can be constructed. Here, ‘optimization’ means
searching for schemes where a reasonable measure for the behavior of the local error
becomes minimal among a set of comparable schemes. It is well-known that this is a
very relevant point, because such local error measures may vary over several orders
of magnitude.We also consider alternative ways of choosing (p, p + 1)-pairs, e.g.,
adjoint pairs.

Concerning the search for optimal solutions for a given set of order conditions
(see Sect. 4), different techniques were applied, depending on the particular case at
hand, including exact, symbolic solution representations using1 Maple (for lower-

1 Maple is a product of MaplesoftTM.
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order schemes), or numerical searches using optimization tools or straightforward
Monte-Carlo techniques.

The ultimate purpose is adaptive integration of evolution equations based on a
reliable local error control. This topic has been studied in detail, in particular in the
context of Schrödinger equations, in [2,4–6]. In these papers, an alternativemethod for
local error estimation has been constructed and analyzed. It is based on a computable
high order approximation of an integral representation of the local error in terms of the
defect of the numerical solution. While this approach is rather universal and useful in
several cases, the alternative of using optimized pairs of schemes, if applicable, will
usually be more efficient.

In Part II of this work we will present a detailed study of adaptive integration, using
both approaches for local error estimation, for different types of linear and nonlinear
evolution equations.

Remark 1 Recently we became aware of the paper [9], where a method of deriving
order conditions has been proposed which is similar to our approach. Both approaches
are based on the notion of a Lyndon basis (also called Lyndon–Shirshov basis) in a free
Lie algebra. In view of the similarities between ourwork and [9], we stress that we have
implemented a fully automatic computational procedure for deriving order conditions
which requires no extra analytical hand work. This is a versatile implementation,
and it can easily be adapted to cover special cases like palindromic schemes, flexible
embeddings, and also splitting into more than two operators (see Sects. 2, 3).

The procedure for setting up higher order conditions involves the generation of
long weighted sums of power products of noncommuting variables representing the
components of the split vector fields. These sums can easily be distributed in order to
obtain a significant speed-up in a parallel environment, and we have realized such a
version.

1.2 Problem setting and notation

For an evolution equation (1.1) where the right-hand side is split into two components,

∂t u(t) = F(u(t)) = A(u(t)) + B(u(t)), t ≥ 0, (1.2)

a single step of a multiplicative splitting scheme, starting from u and over a step of
length h, is given by2

S (h, u) = Ss(h,Ss−1(h, . . . ,S1(h, u))) ≈ φF (h, u), (1.3a)

with

S j (h, v) = φB(b j h, φA(a j h, v)), (1.3b)

2 φF denotes the flow associated with the given evolution equation.

123



W. Auzinger et al.

with appropriate coefficientsa j , b j .More general schemes based on splitting into three
operators are also considered, see Sect. 2.4, and a special case of additive splitting is
also included, see Sect. 2.2.

The local error of a splitting step is denoted by

S (h, u) − φF (h, u) =: L (h, u). (1.4)

1.3 Contents

In Sects. 2 and 3we describe our approach for setting up the order conditions for differ-
ent types of [pairs of] schemes. Some technical details concerning implementation of
this setup procedure are given in Sect. 4. By solving the resulting polynomial systems
we have constructed a number of new variants, and we have compiled a collection of
practically relevant (old and new) schemes and pairs of schemes up to order p = 6.
This collection can be found at

http://www.asc.tuwien.ac.at/~winfried/splitting

and is also expected to be extended in the future, depending on further investigations
on the topic at hand. We will refer to this webpage throughout as reference [3] to avoid
listing coefficients in the present paper for the sake of brevity. Some remarks on the
schemes collected in [3] are given in Sect. 5; for more detailed information about the
properties of the various schemes we also refer to [3]. In Sect. 7 we present a numerical
example.

2 Order conditions

Many authors have contributed to the topic of finding good methods. For an overview
on the topic see [7,20]. Here we do not attempt to describe the relevant approaches
and results in detail but mainly refer to work related to our present activity. For the
relevant mathematical background we refer to [7,15,20].

Amongmanyothers, [8,10,12,13] are devoted to the construction of optimal higher-
order methods with real or complex coefficients, either via composition or by solving
a set of order conditions generated in different ways. Order conditions take the form
of a polynomial system in the unknown coefficients or composition weights ωμ, see
Sect. 2.2. In the following we recapitulate and illustrate by examples how order con-
ditions can be set up according to [1]; as mentioned before, this is similar to one of the
approaches taken in [9]. Later on we will also present optimized schemes and pairs
of schemes obtained on the basis of this approach, where ‘optimized’ means that a
measure for the local error is chosen as small as possible.

2.1 Setup of order conditions

There are different ways to generate a polynomial system representing the conditions
on the splitting coefficients for a desired order p. An essential theoretical basis is the
well-known Baker–Campbell–Hausdorff (BCH) formula, see for example [15].
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The approachproposed in [1],whichwe followhere, also relies on theBCHformula,
but order conditions are set up in a completely automatic way. Most of the schemes
and pairs of schemes specified in [3] have been obtained on the basis of the algorithm
from [1]. In the followingwe explain and illustrate this approachbymeans of examples.
For the purpose of generating order conditions it is sufficient to consider the case of a
linear operator split into two parts A and B. We denote

A j = a j A, Bj = b j B, j = 1 . . . s.

For the linear case the local error (1.4) is of the form L (h) u with a linear operator
L (h).

Consider the Taylor expansion of the local error3 of a one-stepmethod starting at u,

L (h) u =
p∑

q=1

hq

q!
dq

dhq
L (0) u + h p+1

(p + 1)!
dp+1

dh p+1 L (0) u + O(h p+2). (2.1)

The method is of order p iff L (h) = O(h p+1); thus the conditions for order p are
given by

d

dh
L (0) = · · · = dp

dh p
L (0) = 0. (2.2)

For the case of a splitting method we have (with k = (k1, . . . , ks) ∈ N
s
0)

dp

dhq
L (0) =

∑

|k|=q

(
q

k

)
·

s∏

j=1

k j∑

l=0

(
k j
l

)
Bl
j A

k j−l
j − (A + B)q . (2.3)

If the conditions (2.2) are satisfied up to a given order p, then the leading term of the
local error is given by h p+1

(p+1)!
dp+1

dh p+1 L (0). This leading error term is a linear combi-
nation of higher-order commutators of the operators A and B. As explained in [1], a
non-redundant set of order conditions can be built in a recursive way by generating
the symbolic expressions (2.3) for q = 1, 2, 3, . . . in terms of formally linear but
non-commuting operators A, B, and identifying coefficients associated with power
products of A- and B-factors which uniquely identify commutators out of an appro-
priate basis of Lie-elements. For this purpose we use the so-called Lyndon basis, also
called Lyndon–Shirshov basis, of the free Lie algebra generated by A and B. The ele-
ments of this basis are represented by the (associative) Lyndonwords over the alphabet
{A,B}, see Table 1.

Let us first illustrate the procedure by means of a simple example.

3 By construction, L (0) = 0 for any consistent scheme.
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Table 1 �q is the number of words of length q

q �q Lyndon words over the alphabet {A,B}
1 2 A,B

2 1 AB

3 2 AAB,ABB

4 3 AAAB,AABB,ABBB

5 6 AAAAB,AAABB,AABAB, AABBB,ABABB,ABBBB

6 9 AAAAAB,AAAABB,AAABAB, AAABBB,AABABB,

AABBAB,AABBBB,ABABBB,ABBBBB

7 18 …

8 30 …

9 56 …

10 99 …

Example 1 For s = 2 we have

d

dh
L (0) = (a1 + a2 − 1) A + (b1 + b2 − 1) B, (2.4a)

d2

dh2
L (0) = ((a1 + a2)

2 − 1) A2

+ (2 a2 b1 − 1) AB + (2 a1 b1 + 2 a1 b2 + 2 a2 b2 − 1) BA

+ ((b1 + b2)
2 − 1) B2. (2.4b)

The basic consistency condition for order p = 1 is d
dhL (0) = 0 which is equivalent

to a1+a2 = 1 and b1+b2 = 1. Assuming these first-order conditions are satisfied, the
second derivative d2

dh2
L (0), which now represents the leading error term, simplifies

to the commutator expression

d2

dh2
L (0) = (2 a2 b1 − 1) [A, B], (2.5)

giving the additional condition 2 a2 b1 = 1 for order p = 2. Assuming now that
the conditions for p = 2 are satisfied, the third derivative d3

dh3
L (0), which will now

represent the leading error term, is a linear combination of the commutators [A, [A, B]]
and [[A, B], B], namely

d3

dh3
L (0) = (3 a22 b1 − 1) [A, [A, B]] + (3 a2 b

2
1 − 1) [[A, B], B]. (2.6)

This computation can be automatized:
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– Generate the representation (2.4a) of d
dhL (0) and extract coefficients of the

Lyndon words A and B. This gives the first-order conditions a1 + a2 = 1 and
b1 + b2 = 1.

– Generate the representation (2.4b) of d2

dh2
L (0). For a solution of the equations

for order 1, the leading local error will have the form h2
2

d2

dh2
L (0) with d2

dh2
L (0)

from (2.5). The coefficient of [A, B] in (2.5) is determined by extracting the
coefficient of the Lyndon word AB in (2.4b). This gives the equation 2 a2 b1 = 1
which, together with the first-order conditions, represents a set of conditions for
order p = 2.

– Generate the representation of d3

dh3
L (0) (we do not display it here). For a solution

of the equations for order 2, the leading local error will have the form h3
6

d3

dh3
L (0)

with d3

dh3
L (0) from (2.6). The coefficients of [A, [A, B]] and [[A, B], B] in (2.6)

are determined by extracting the coefficients of the Lyndon words AAB and ABB

in the expression for d3

dh3
L (0).

In the simple case considered here, there is a one-dimensional manifold of solutions
for order p = 2, and for each solution {a1, a2, b1, b2} the size of the coefficients
in (2.6) is a quality measure.

If a scheme of order 3 is desired, the system of equations is augmented by the
further equations 3 a22 b1 = 1 and 3 a2 b21 = 1. (For the case s = 2 displayed here, the
resulting system of equations has no solution; we need s ≥ 3.)

In general, for arbitrary s and p, this procedure is continued up to the desired
order, by ‘implicit recursive elimination’ as described in [1], automatically produc-
ing a generically non-redundant set of order conditions for a desired order p. This
process is based on a special bijection between (associative) Lyndon words and brack-
eted, non-associative versions of these words which, in our context, are identified with
higher-order commutators representing basis elements for the free Lie algebra gen-
erated by A and B. The expanded version of such a commutator is a Lie polynomial
in terms of the non-commutative variables A and B. The essential point is that its
leading monomial, with respect to (alphabetically increasing) lexicographical order,
is precisely the monomial represented by the corresponding Lyndon word; see [11].

In the following, the relation ‘<’ refers to lexicographical order of words over the
alphabet {A,B}.
Example 2 Consider a scheme of order p = 4, i.e., assume that the conditions up to

order p = 4 are satisfied. Then, d5

dh5
L (0) is a linear combination of commutators,

or non-associative words, listed below and represented by the six Lyndon words of
length 5 (see Table 1),

AAAAB < AAABB < AABAB < AABBB < ABABB < ABBBB.

The commutators are bracketed, non-associative versions of these words,4

4 The bracketing can be computed using the SageMath function StandardBracketedLyndonWords,
see http://www.sagemath.org.
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[A, [A, [A, [A, B]]]] = A4 B − 4 A3 B A + 6 A2 B A2 − 4 A B A3 + B A4,

[A, [A, [[A, B], B]]] = A3 B2 − 2 A2 B A B + 4 A B A B A − A B2 A2 − A2 B2 A

− 2 B A B A2 + B2 A3,

[[A, [A, B]], [A, B]] = A2 B A B − A2 B2 A − 3 A B A2 B + 4 A B A B A

+ 2 B A3 B − 3 B A2 B A − A B2 A2 + B A B A2,

[A, [[[A, B], B], B]] = A2 B3 − 3 A B A B2 + 3 A B2 A B − 2 A B3 A

+ 3 B A B2 A − 3 B2 A B A + B3 A2,

[[A, B], [[A, B], B]] = A B A B2 − 3 A B2 A B + 2 A B3 A − B A2 B2

+ 4 B A B A B − 3 B A B2 A − B2 A2 B + B2 A B A,

[[[[A, B], B], B], B] = A B4 − 4 B A B3 + 6 B2 A B2 − 4 B3 A B + B4 A.

Asmentioned above, the leading (lowest) monomials in the expanded commutators,
in the sense of lexicographical order, correspond to the Lyndon words. Note that
some of these monomials also occur in lower commutators (‘lower’ again in the sense
of lexicographical ordering). Let us now denote these six commutators by Kk, k =
1 . . . 6. We a priori know that d5

dh5
L (0) is of the form, with �5 = 6,

d5

dh5
L (0) =

�5∑

k=1

κk Kk

where the scalars κk are multivariate polynomials of degree 5 in the coefficients a j , b j

of the underlying scheme of order p = 4. Therefore the additional conditions for order
p = 5 are given by

κk = 0, k = 1 . . . �5. (2.7a)

Extracting these coefficients κk from the expression (2.3) for d5

dh5
L (0) is a combina-

torial challenge, but we can do better:We simply extract the coefficients of the Lyndon
monomials—let us denote them by λk—which is a standard operation in computer
algebra. Now, instead of (2.7a) we require

λk = 0, k = 1 . . . �5. (2.7b)

In our example, for κ = (κ1, . . . , κ6)
T and λ = (λ1, . . . , λ6)

T we have

λ = M κ, with M =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1

−2 1
1

−3 1
1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2.7c)
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where the lower diagonal entries correspond to the additional occurrence of the λk in
non-leading positions. Therefore the systems (2.7a) and (2.7b) are equivalent.

The situation displayed in this example occurs also in the general case. For any order
p, the vectors κ andλ consisting of polynomials of degree p+1 satisfyλ = M κ where
M is a lower triangular matrix with unit diagonal. In particular, a Lyndonmonomial λk
never occurs in an expanded commutator K j for j > k because this would contradict
the leading position [11] of the Lyndon monomial λ j > λk in K j .

2.2 Special cases: symmetries

In the sequel,

S ∗(h, u) = S −1(−h, u)

denotes the adjoint scheme associated with S .
The order conditions generated by the algorithm indicated in Sect. 2.1 are generi-

cally non-redundant. However, there exist special cases:

– Symmetric (or: ‘time-symmetric’) one-step schemes are characterized by the prop-
erty

S (−h,S (h, u)) = u, i.e., S (h, u) = S ∗(h, u). (2.8)

For symmetric splitting schemes we have either a1 = 0 or bs = 0, and the
remaining coefficient tupels (a j ) and (b j ) are both palindromic. Since symmetric
schemes have an even order p (cf. [15, Chapter 3]), only odd-order conditions
for an appropriately reduced number of free coefficients need to be imposed. The
general algorithm described in Sect. 2.1 can easily be adapted to this case.

– The following type of schemes seems not to have been considered earlier in the
literature:5

Palindromic schemes, or ‘reflected schemes’ in the terminology of [1], are char-
acterized by b j = as+1− j , j = 1 . . . s, i.e.,

(a1, b1, a2, b2, . . . , as−1, bs−1, as, bs)

= (a1, b1, a2, b2, . . . , b2, a2, b1, a1). (2.9)

Assume a scheme of order p is given, and consider a splitting step of the form (1.3).
Interchanging the roles of A and B, i.e., replacing (1.3) by

Š (h, u) = Šs(h, Šs−1(h, . . . , Š1(h, u))), (2.10a)

with

Š j (h, v) = φA(b j h, φB(a j h, v)), (2.10b)

5 The Lie–Trotter scheme, with s = p = 1, a1 = b1 = 1, is a trivial special case.
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also results in a scheme of order p. IfS is palindromic then

S (−h, Š (h, u)) = u, i.e., Š (h, u) = S ∗(h, u). (2.11)

Thus we infer from [15, Theorem II.3.2] that in the palindromic case the local
errors L (h, u) = S (h, u) − φF (h, u) and Ľ (h, u) = Š (h, u) − φF (h, u) are
related via

L (h, u) = C(u) h p+1 + O(h p+2), (2.12a)

Ľ (h, u) = (−1)p C(u) h p+1 + O(h p+2), (2.12b)

with C(u) = 1
(p+1)!

dp+1

dh p+1 L (0, u). For an ansatz with palindromic coefficients,
exchanging the roles of A and B in the algorithm from Sect. 2.1 will lead to the
identical set of order conditions. Therefore the order conditions associated with
‘Lyndon twins’ are pairwise identical. Here, we call a pair of Lyndon words a twin
if one of them is obtained by exchanging the role of A and B and reading it from
right to left, see Table 1. For instance, the 6 words of odd length 5 consist of three
twins; the 9 words of even length 6 consist of three twins, the selfie AAABBB,
and two solitary words. Due to this redundancy the number of order conditions is
appropriately reduced.

– Higher order one-step schemes can be generated by m-fold composition of
lower-order schemes with appropriately chosen sub-steps hμ = ωμh satisfying
ω1 + · · · + ωm = 1 plus additional conditions guaranteeing that a certain order is
obtained.6

A popular class of composition methods are symmetric Strang compositions.
Schemes of this type of orders 4, 6 and higherwere first devised in [23]. Someof the
composition coefficients have to be chosen negative, and the local error measures
of these composition schemes are rather large. On the other hand, for higher orders,
composition beats the generic lower limits on the number s of stages such that a
given order p can be expected. For instance, the sevenfold 6-th order symmetric
Strang composition [3, ‘Y 8-6’] recombines into an 8-stage scheme, whereas the
generic number of order conditions for a symmetric scheme of order p = 6 is 10,
which would require s = 10 stages involving 11 free coefficients.
Evidently, (symmetric) compositions are an attractive option for constructing
higher-order schemes. Therefore we have included this class into our consider-
ations concerning the search for optimal variants (see Sect. 4).

2.3 Complex coefficients

Our considerations are not restricted to schemes with real coefficients a j , b j . Complex
schemes,with coefficients having positive real parts, are appropriate for the application

6 We note that the idea of composition is of a general nature and not restricted to the class of splitting
methods.
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of splitting methods to parabolic problems, since real schemes with positive coeffi-
cients do not exist for order p ≥ 3, see [7]. For this class of methods, in particular
based on complex compositions, we refer to [8,13].

2.4 Splitting into more than two operators

We also consider evolution equations where the right-hand side splits into three parts,

∂t u(t) = F(u(t)) = A(u(t)) + B(u(t)) + C(u(t)), t ≥ 0, u(0) given, (2.13)

and according multiplicative splitting schemes,

S (h, u) = Ss(h,Ss−1(h, . . . ,S1(h, u))) ≈ φF (h, u), (2.14a)

with

S j (h, v) = φC (c j h, φB(b j h, φA(a j h, v))). (2.14b)

Themethodology from [1] can be directly generalized to the case of splitting intomore
than two operators. For the practically relevant case of splitting into three operators
A, B,C , as in (2.14), the representation (2.3) generalizes as follows, with A j =
a j A, Bj = b j B, C j = c j C , and k = (k1, . . . , ks) ∈ N

s
0, l = (lA, lB, lC ) ∈ N

3
0:

dq

dhq
L (0) =

∑

|k|=q

(
q

k

) s∏

j=1

∑

|l|=k j

(
k j
l

)
ClC

j BlB
j AlA

j − (A + B + C)q . (2.15)

On the basis of these identities, the algorithm fromSect. 2.1 generalizes in a straightfor-
ward way. The Lyndon basis representing independent commutators now corresponds
to Lyndon words over the alphabet {A,B,C}, see Table 2.

Concerning symmetries, similar considerations as in Sect. 2.2 apply.

Table 2 �q is the number of words of length q

q �q Lyndon words over the alphabet {A, B, C}

1 3 A, B, C

2 3 AB, AC, BC

3 8 AAB, AAC, ABB, ABC, ACB, ACC, BBC, BCC

4 18 …

5 48 …

6 115 …

7 312 …

8 810 …
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For a general convergence theory of ABC-splitting for the linear case and some
applications we refer to [6]. For example, splitting into three operators can be used
to handle evolution equations where the right-hand side splits up into two non-
autonomous parts. Introducing the independent variable t as an unknown variable
satisfying t ′ = 1, such a problem can be formally considered as an autonomous sys-
tem split into three parts. In this case, splitting means that the variable t is frozen
over several subintervals comprising an integration step. Since the ODE t ′ = 1 is triv-
ial, a large number of higher-order commutators vanishes in this case, and therefore
the number of necessary order conditions is significantly reduced, a situation to be
considered in further work.

3 Pairs of splitting schemes

For the purpose of efficient local error estimation as a basis for adaptive stepsize
selection, using pairs of related schemes is awell-established idea. One of the schemes,
of order p, acts as the worker, and the other, of order p+1, is the controller responsible
for local error estimation.7 Criteria for the selection of pairs of schemes are accuracy
and computational efficiency.

Order conditions for pairs of schemes of the types listed below can be generated
with minor modifications of the approach described in Sect. 2.

– Embedded pairs. In [17], pairs of splitting schemes of orders p and p + 1 are
specified. The idea is to select a controller S̄ of order p + 1 and to construct a
worker S of order p for which a maximal number of stages S j coincides with
those of the controller. Let a j , b j and ā j , b̄ j denote the coefficients of the worker
and controller, respectively. The approach adopted in [17] may be called static,
finding S and S̄ such that a j = ā j and b j = b̄ j for as many j = 1, 2, . . . as
possible. In this sense the schemes are related to each other but, in general, the total
number of order conditions, and thus the total number of necessary evaluations, is
the same as for an arbitrary unrelated (p, p + 1) pair.
Here we develop the idea of embedding further: again we fix a ‘good’ controller of
order p + 1 and wish to adjoin to it a ‘good’ worker of order p. Since the number
of stages s̄ of S̄ will be higher than the number of stages s of S , we can select
an optimal embedded worker S from a set of candidates obtained by flexible
embedding, where the number of coinciding coefficients is not a priori fixed.

Example 3 In [17], an embedded (3, 4)-pair was constructed, where the controller is
an optimized symmetric scheme of order p = 4 with s = 7 stages due to [10], with
local error measure LEM = 0.01 (‘LEM’ in the sense of (4.2b) below). The worker
specified in [17] is a scheme of order p = 3 with s = 6 stages, where the coefficients
a1, a2, a3, a4 and b1, b2, b3 coincide with those of the controller. This amounts to 7
additional evaluations for the worker, and its local error measure is LEM = 0.2.

For flexible embedding, in contrast, we consider all possible embedded workers,
and we find that a scheme of order p = 3 with s = 4 stages is to be preferred, see [3,

7 Of course, a scheme acting as a controller can also be used as an integrator in a normal way.
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Emb 4/3 BM PRK/A], where a1, a2 and b1 coincide with those of the controller. This
amounts to five additional evaluations for the worker, and it has LEM = 0.1.

– Milne pairs. In the context of multistep methods for ODEs, the so-called Milne
device is a well-established technique for constructing pairs of schemes. In our
context, one may aim for finding a pair (S , S̃ ) of schemes of the same type, with
equal s and p, such that their local errorsL , L̃ are related according to

L (h, u) = C(u) h p+1 + O(h p+2), (3.1a)

L̃ (h, u) = γ C(u) h p+1 + O(h p+2), (3.1b)

with γ �= 1. Then, the additive scheme

S̄ (h, u) = − γ

1 − γ
S (h, u) + 1

1 − γ
S̃ (h, u)

is a method of order p + 1, and

S (h, u) − S̄ (h, u) = 1

1 − γ

(
S (h, u) − S̃ (h, u)

)

provides an asymptotically correct local error estimate for S (h, u).
– Adjoint pairs. Let S be a scheme of odd order p and and S ∗ its adjoint, see
Sect. 2.2. Due to [15, Theorem II.3.2] the leading error terms ofS and its adjoint
S ∗ are identical up to the factor −1. Therefore, the averaged additive scheme

S̄ (h, u) = 1

2

(
S (h, u) + S ∗(h, u)

)
(3.2)

is a method of order p + 1, and

S (h, u) − S̄ (h, u) = 1

2

(
S (h, u) − S ∗(h, u)

)

provides an asymptotically correct local error estimate forS (h, u). In this case the
additional effort for computing the local error estimate is identical with the effort
for the workerS but not higher as is the case for embedded pairs. An example are
palindromic pairs, whereS is palindromic (of odd order p), such thatS ∗ = Š ,
see Sect. 2.2.

For detailed comments on a number of new pairs listed in [3], see Sect. 5.

4 Implementation aspects: constructing schemes and minimizing local
error terms

Our approach for setting up order conditions described in Sect. 2.1 has been
implemented in Maple 18. We use the Physics package for the manipulation of
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noncommuting symbols, and tables of Lyndon words generated using an algorithm
devised in [14]. Since the number of terms in (2.3) resp. (2.15) rapidly increases with
q we have implemented a parallel version relying on Maple’s Grid package. In par-
ticular, the job of generating all the terms in the long sums (2.3) and (2.15) can be
(equi-)distributed over several parallel threads.

The resulting set of order conditions is a multivariate polynomial system which,
for higher orders, requires numerical solution techniques. Once a scheme of order p
has been found, its leading local error term is of the form (see Sect. 2)

h p+1

(p + 1)!
dp+1

dh p+1L (0) =
�p+1∑

k=1

κp+1,k K p+1,k, (4.1)

with �p+1 commutators Kp+1,k associated with Lyndon words of length p + 1. To
compare schemes of equal order p one may consider

⎛

⎝
�p+1∑

k=1

|κp+1,k |2
⎞

⎠
1/2

(4.2a)

as a reasonable measure for the accuracy of a scheme. However, we use the quantity

LEM :=
⎛

⎝
�p+1∑

k=1

|λp+1,k |2
⎞

⎠
1/2

(4.2b)

instead. Using (4.2b) has the advantage that the coefficients λk = λp+1,k are exactly
those which are generated in the course of the setup of the conditions for order p+ 1,
see Sect. 2.1, while the coefficients from (4.2a) are more difficult to compute (cf. the
discussion in Sect. 2.1). Since different particular solutions to the order conditions
typically result in leading local error terms varying over several orders of magnitudes,
we consider (4.2b) equally reasonable as (4.2a).

For finding and evaluating solutions and pairs of solutions we follow two different
strategies.

– For the case where the number of equations equals the number of free coefficients
we expect a set of isolated solutions. In this case we use the fsolve function
in Maple combined with a Monte-Carlo strategy for generating different initial
intervals. Higher precision is used to generate solutions with double precision
accuracy. For each detected solution the LEM (4.2b) is computed.

– Especially for the case where the number of equations is smaller than the number
of free coefficients, the problem is to be considered as a constrained minimization
problem: minimize the LEM representing the objective function, with the order
conditions imposed as nonlinear equality constraints. To this end we employ state-
of-the-art techniques which have also been applied for the construction of special
classes of Runge–Kutta methods, see for instance [16]. In particular we have used
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the MATLAB8 optimizer fmincon. Again a large number of initial guesses are
generated randomly, since this optimization problem is nonconvex in general. The
results cannot be guaranteed globally optimal, but results froman exhaustive search
usually suggest that this is indeed the case.
A post-processing, i.e., refining the solutions to full double precision, is again
performed in Maple using higher precision sfloat arithmetic.

We have also re-checked a number of known methods, refined their coefficients to full
double precision, and computed their LEMs.

5 Schemes from the collection [3]

This collection is not intended to be exhaustive. It includes some known and quite a
number of new schemes, in particular pairs of schemes, up to order p = 6, with their
essential properties. Some methods are included mainly for the sake of completeness
or their historical significance.

In the following we comment on some of these methods; for complete information,
consult [3]. ‘Best’ or ‘optimal’ means that it has minimal LEM (4.2b) among a certain
class of methods with comparable effort for a given order p. In some simple cases
such optimality properties can be established theoretically; for higher orders we have
resorted to more or less exhaustive numerical search.

Methods whose label contains the letter ‘A’ are new, or taken again into considera-
tion in the context of constructing pairs, or their LEM has been computed for the first
time.9 The list also includes some pairs of embedded schemes (‘Emb ...’), pairs of
Milne type (‘Milne ...’), and palindromic pairs (‘PP ...’), see Sect. 3.

More detailed information about all thesemethods can be found on thewebpage [3].

5.1 Splitting into two operators (‘AB schemes’)

Real coefficients.

– The best schemes up to order p = 5 we have found are palindromic:
– ‘best 2-stage 2nd order’ (s = p = 2).
– ‘Emb 3/2 AKS’ (palindromic controller with s = p = 3).
– ‘Emb 4/3 AKS p’ (palindromic controller with s = 5, p = 4).
In particular, this scheme has essentially the same LEM as the fourth order
scheme from [10] which has been used in [17], but it has only 5 stages instead
of 7.

– ‘Emb 5/4 A’ (palindromic controllerwith s=8, p=5), see also ‘PP 5/6 A’.
– ‘Emb 5/4 AK (ii)’ is an optimized embedded pair. The controller is a new
scheme with s = 7, p = 5, and the worker of order p = 4 is chosen out of several

8 MATLAB is a trademark of TheMathWorks, Inc.
9 Of course, ‘new’ may not be considered as a rigorous statement in each case since the literature on the
subject is rather large by now.
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dozens of candidates of order 4 which share the same computational effort but have
LEMs varying over several orders of magnitudes.

– Palindromic pairs: ‘PP 3/4 A’, ‘PP 5/6 A’.

Complex coefficients (with positive real parts).

– Since for order p = 3 we need 5 conditions, the question is whether there exists a
third-order scheme with s = 3 and 5 evaluations. It turns out that the only scheme
of this type, ‘A 3-3 c’, has complex coefficients.

– ‘A 4-4 c’ (s = 4, p = 4) is the best complex symmetric Strang composition
method of order 4; see also [12,13].

– ‘Emb 3/2 A c’ and ‘Emb 4/3 A c’ are embedded pairs with palindromic
controller and optimized worker. We note that the controller in ‘Emb 4/3 A c’
(s = 5, p = 4) has a significantly smaller LEM than ‘A 4-4 c’ (factor ≈ 20).

– ‘C 8-6 c’ (s = 8, p = 6) is the best symmetric complex Strang composition
method of order 6; see also [12,13].

– Palindromic pairs: ‘PP 3/4 A c’, ‘PP 5/6 A c’.

5.2 Splitting into three operators (‘ABC schemes’)

Due to the rapidly increasing number of generic order conditions, finding general
higher order schemes would be a very challenging task for this case. For p = 6,
for instance, the generic number of order conditions is 196 for the general case and
59 for the symmetric case. For p = 6 we therefore only consider real or complex
Strang compositions which are easier to construct and lead to more compact schemes.
Generating the expression for the leading error term d7

dh7
L (0) for the purpose of com-

puting the LEM for p = 6, involving 312 coefficients (see Table 2), is computationally
expensive, but it can be done at reasonable effort, for the purpose of computing the
LEM of a given composition and comparing different variants.

Real coefficients.

– ‘AK 5-2’ (s = 5, p = 2, 9 evaluations) appears to be a possible rival of the
Strang scheme (s = 3, p = 2, 5 evaluations), with a LEM which is smaller by a
factor ≈ 7.

– ‘PP 3/4 A 3’ is a palindromic pair based on the best palindromic scheme found
for s = 6, p = 3.

– ‘Y 7-4’ (s = 7, p = 4, 13 evaluations) is the best symmetric Strang composition
of order p = 4. It is the analog of the AB composition ‘Y 4-4’, with the same
composition weights.

– ‘AK 11-4’ (s = 11, p = 4, 21 evaluations) has been found on the basis of 11
conditions for a symmetric ABC scheme of order 4. Its LEM is smaller by a factor
≈ 13 compared to ‘Y 7-4’.

– ‘AY 15-6’ (s = 15, p = 6) is the best symmetric Strang composition of
order p = 6. It is the analog of the AB composition ‘Y 8-6’, with the same
composition weights.
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Complex coefficients (with positive real parts).

– ‘AK 7-4 c’ (s = 7, p = 4) is the best symmetric Strang composition of
order p = 4. It is the analog of the AB composition ‘A 4-4-c’, with the same
composition weights.

– ‘AK 15-6 c’ (s = 15, p = 6) is the best symmetric Strang composition of
order p = 6. It is the analog of the AB composition ‘C 8-6-c’, with the same
composition weights.

6 Palindromic schemes: discussion and open questions

As indicated in Sect. 2.2, one motivation for considering palindromic schemes is the
fact that they are easier to construct. Moreover, as already mentioned in Sect. 5, small
error constants are usually observed in this case. Apparently, palindromic schemes
tend to have minimal LEMs among a set of competitors, for instance the third-order
scheme in the pair ‘PP 3/4 A’ (a theoretical explanation for this observation is
missing). This is the reason why we have included some adjoint pairs of (optimized)
palindromic type of orders (p, p + 1), p odd, in our collection [3].

Palindromic schemes have a certain type of symmetry, but they are not time-
symmetric. Investigating special properties of such schemes appears to be of interest in
the context of geometric integration, for instance when they are applied to partitioned
systems of the form

∂t u = f (v),

∂tv = g(u), (6.1)

with the natural splitting of the vector field ( f, g) into ( f, 0) and (0, g). In this case,
splittingmethods are equivalent to a subclass of PartitionedRunge–Kutta (PRK)meth-
ods, characterized by a pair (A,α), (B,β) of Runge–Kutta schemes. For each AB
splitting scheme, the associated PRK coefficients satisfy

αi Bi j + β j A j i = αi β j , i, j = 1 . . . s.

As a consequence, all splitting schemes preserve quadratic invariants when applied to
a partitioned system (6.1), and they are symplectic when applied to a Hamiltonian
system with a separable Hamiltonian H(p, q) = T (p) + U (q), see [15, Theo-
rem IV.2.4 and Theorem VI.4.6].

Extending these considerations to PRK schemes applied to general partitioned
systems

∂t u = f (u, v),

∂tv = g(u, v), (6.2)

again from [15] we know that under the additional condition αi = β i , i = 1 . . . s,
the invariance properties mentioned above remain valid for (6.2). The latter condition
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is satisfied if the scheme is a composition of steps of symplectic Euler type, i.e., for
ai = bi . In the palindromic case we have β i = αs+1−i , and this does not appear to be
a useful property in view of invariance questions. (Cf., for instance, the proof of the
general assertion of Theorem IV.2.4 in [15], which does not carry over.)

Summarizing, we may say that palindromic schemes by now have not been com-
pletely understood, and this may deserve further investigations.

7 Numerical example

For a numerical illustration, in particular concerning the expected performance of
palindromic schemes, we consider an example of a system of coupled nonlinear evo-
lution equations of Schrödinger type (see [22]),

i

(
∂ψ1

∂t
+ δ

∂ψ1

∂x

)
+ 1

2

∂2ψ1

∂x2
+ (|ψ1|2 + e |ψ2|2

)
ψ1 = 0,

i

(
∂ψ2

∂t
− δ

∂ψ2

∂x

)
+ 1

2

∂2ψ2

∂x2
+ (

e |ψ1|2 + |ψ2|2
)
ψ2 = 0,

(7.1)

with initial condition chosen such that the exact solution is a pair of solitons,

ψ1(x,t) =
√
2 α

1 + e
sech

(√
2 α (x − v t)

)
ei

(
(v−δ)x+(α−(v2−δ2)/2) t

)
,

ψ2(x,t) =
√
2 α

1 + e
sech

(√
2 α (x − v t)

)
ei

(
(v+δ)x+(α−(v2−δ2)/2) t

)
,

which is exponentially decreasing with |x |. We start at t = 0, the parameters are
chosen as δ = 0.5, α = 1.0, v = 1.1, and e = 0.8.

We impose periodic boundary conditions on the interval xmin, xmax = [−50, 70]
using an equidistant grid of size 2048. For splitting we choose the time step h and
separately integrate

– the kinetic part (‘A’) involving the derivatives w.r.t. x , using a Fourier spectral
discretization,

– and the nonlinear ‘ODE part’ (‘B’), which can be exactly propagated: at each grid
point x , the respective solution (ψ1,B, ψ2,B) = (ψ1,B(x, t), ψ2,B(x, t)) of the
ODE system

i
dψ1,B

d t
+ (|ψ1,B |2 + e |ψ2,B |2)ψ1,B = 0,

i
dψ2,B

d t
+ (

e |ψ1,B |2 + |ψ2,B |2)ψ2,B = 0,
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Table 3 Error tables for the palindromic pair ‘PP 3/4 A’ applied to problem (7.1)

h Scheme (i) Scheme ((i) + (ii))/2 Scheme (i)

errlocal ordlocal errlocal ordlocal errglobal ordglobal

0.100E+00 0.524E−03 0.120E−03 0.165E−02

0.500E−01 0.374E−04 3.74 0.467E−05 4.69 0.106E−03 3.96

0.250E−01 0.246E−05 3.93 0.150E−06 4.96 0.912E−05 3.54

0.125E−01 0.156E−06 3.98 0.468E−08 5.01 0.100E−05 3.18

0.625E−02 0.982E−08 3.99 0.146E−09 5.00 0.123E−06 3.03

0.313E−02 0.614E−09 4.00 0.455E−11 5.00 0.154E−07 2.99

0.156E−02 0.384E−10 4.00 0.142E−12 5.00 0.194E−08 2.99

0.781E−03 0.240E−11 4.00 0.456E−14 4.96 0.244E−09 2.99

Left: Local error (first step) for scheme (i) startingwith ‘A’ of order 3, and for the averaged scheme (see (3.2))
of order 4
Right: Global error for scheme (i) at tend = 5.0

Table 4 Error tables for the palindromic pair ‘PP 5/6 A’ applied to problem (7.1)

h Scheme (i) Scheme ((i) + (ii))/2 Scheme (i)

errlocal ordlocal errlocal ordlocal errglobal ordglobal

0.100E+00 0.322E−04 0.318E−04 0.166E−02

0.500E−01 0.590E−06 5.77 0.578E−06 5.78 0.189E−05 6.45

0.250E−01 0.723E−08 6.35 0.625E−08 6.53 0.229E−07 6.37

0.125E−01 0.903E−10 6.32 0.534E−10 6.87 0.408E−09 5.81

0.625E−02 0.129E−11 6.13 0.427E−12 6.97 0.719E−11 5.83

Left: Local error (first step) for scheme (i) startingwith ‘A’ of order 5, and for the averaged scheme (see (3.2))
of order 6
Right: Global error for scheme (i) at tend = 5.0

starting at t0 is given by

ψ1,B(x, t) = e i (t−t0)
(|ψ1,B (x,t0)|2+e |ψ2,B (x,t0)|2

)
ψ1,B(x, t0),

ψ2,B(x, t) = e i (t−t0)
(
e |ψ1,B (x,t0)|2+|ψ2,B (x,t0)|2

)
ψ2,B(x, t0).

All computations were performed in standard double precision arithmetic. In Tables 3
and 4, ‘err’ refers to a canonically scaled discrete L2 - norm, and ‘ord’ refers to the
order observed.
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