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Abstract. Operator splitting methods combined with finite element spatial discretizations are studied
for time-dependent nonlinear Schrödinger equations. In particular, the Schrödinger–Poisson equation
under homogeneous Dirichlet boundary conditions on a finite domain is considered. A rigorous stability
and error analysis is carried out for the second-order Strang splitting method and conforming polyno-
mial finite element discretizations. For sufficiently regular solutions the classical orders of convergence
are retained, that is, second-order convergence in time and polynomial convergence in space is proven.
The established convergence result is confirmed and complemented by numerical illustrations.
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1. Introduction and overview

We consider full discretization methods for the time-dependent Schrödinger–Poisson equation, which typ-
ically arises in models of quantum transport [10, 20]. Our approach relies on a second-order Strang splitting
time discretization combined with a conforming hp finite element space discretization. The motivation for the
proposed solution method is that separate treatment of the nonlinear part suggests the application of special
solvers for the Poisson equation, which are particularly efficient in the context of an underlying finite element
space discretization. For this purpose it is common to truncate the unbounded spatial domain to a sufficiently
large finite domain and impose homogeneous Dirichlet boundary conditions. Indeed, the evaluation of the non-
local convolution integral in the standard formulation generally implies a huge computational effort caused by
the suitable treatment of the singular integral kernel for the evaluation on a large domain. By the splitting
approach, we can separately treat the Poisson equation by appropriate methods where optimized linear solvers
are available as for instance multigrid or domain decomposition methods [31, 33]. The finite element discretiz-
ation additionally enables a solution on a solution-adapted non-uniform spatial grid, which can be updated in
the course of the time integration [35].
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Our main objective is to provide an error analysis for this full discretization, showing the expected second-
order convergence of the Strang splitting method and polynomial spatial error decay corresponding with the
finite elements employed. By using Gauss–Lobatto nodes, the setup of the stiffness matrix is exact; the errors
arising in the construction of the mass matrix and the right-hand side are of higher order than the discretization
error and therefore will not be taken into account.

Splitting methods. The computational advantages of operator splitting methods for the time integration
of problems in quantum dynamics have been emphasized in recent literature. A comprehensive overview of
investigations for time-dependent Gross–Pitaevskii equations is given in [2], which summarizes most of the
studies conducted in this field. The Crank-Nicholson finite difference method preserves most of the important
invariants like symmetry in time, mass and energy and is unconditionally stable; however, the computational
cost for this fully implicit method is considerable, and the conservation properties only hold up to the accuracy
of the nonlinear solver. Semi-implicit relaxation methods which only treat the kinetic part implicitly share
the conservation properties if only a cubic nonlinearity is present, but they are still computationally expensive
and suffer from stability limitations. Semi-implicit finite difference schemes lose most of the desired properties.
For regular solutions, time-splitting methods in conjunction with Fourier- or Sine-spectral methods are overall
concluded to be the most successful discretization schemes; they are unconditionally stable, conserve norm,
energy, and also dispersion, which is not the case for many other time-stepping schemes. For non-smooth or
random spatial profiles, the spectral accuracy may be lost, however, and thus splitting methods in conjunction
with finite difference spatial discretizations may be more efficient (see [7]).

Recently, full discretization of the Schrödinger–Poisson equation by splitting methods in conjunction with
spectral space discretization has been investigated in [8], where the long-range interaction is approximated
efficiently by nonuniform fast Fourier transform (NUFFT). The authors conclude superior accuracy and per-
formance of their approach in particular over the Sine-spectral method.

Error analysis. The stability and error behavior of operator splitting methods for the Schrödinger–Poisson
equation have first been analyzed in [27]. For the structurally similar equations associated with the multi-
configuration time-dependent Hartree–Fock method, a complete convergence analysis of high-order splitting
methods has been given in [25]. An error analysis of splitting methods applied to the Schrödinger–Poisson
equation in the semiclassical regime is provided in [11].

Finite element method. The literature on finite element spatial discretizations is vast. Finite element
methods (FEM) have been widely used for electronic structure calculations, see for instance [14, 34] and [6, 13,
30, 38]. For the solution of time-dependent Schrödinger equations see for example [21, 37] and the more recent
contribution [22], and for atomic and molecular systems see [19] for a general review.

Truncation to a finite domain. In conjunction with the application of the finite element method, the
restriction to a finite domain introduces a truncation error which we do not consider in this work. Strategies
to cope with related issues have been proposed for instance in [3]. The investigation in the context of the
Schrödinger–Poisson equation remains an open question.

Outline. In Sec. 2 we state the Schrödinger–Poisson equation. We specify the full discretization method and
formulate our main convergence results. In Sec. 3 we provide the underlying comprehensive stability and error
analysis. Our numerical illustrations given in Sec. 4 confirm the theoretical convergence result and demonstrate
that also higher-order splitting methods show their expected behavior. The appendices contain proof details,
important results from the literature which we rely on and auxiliary estimates used in our analysis.
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2. Problem setting, discretization method, and main results

2.1. Problem setting

Schrödinger-Poisson equation. We consider the time-dependent Schrödinger-Poisson equation for ψ : Ω×
[0, T ]→ C, (x, t) 7→ ψ(x, t),

i ∂tψ(x, t) = − 1
2 ∆ψ(x, t) + ∆−1(|ψ(x, t)|2)ψ(x, t) , (2.1a)

where Ω ⊂ Rd, d ∈ {2, 3}, is a bounded domain with smooth boundary.
We impose homogeneous Dirichlet boundary conditions and an initial condition

ψ(x, t)
∣∣
x∈∂Ω

= 0 , ψ(x, 0) = ψ0(x) . (2.1b)

For the subsequent analysis we will assume that the initial state satisfies1 ψ0 ∈ H2 = H2(Ω). The nonlocal
nonlinear term ∆−1(|ψ|2) describing the electrostatic self-interaction is the solution Θ of the Poisson equation
under homogeneous Dirichlet boundary conditions,

∆Θ(x, t) = |ψ(x, t)|2 , Θ(x, t)
∣∣
x∈∂Ω

= 0 . (2.1c)

The evolution operator associated with problem (2.1) will be denoted by ϕSP, i.e.,

ψ( · , t) = ϕSP(t, ψ0) .

Abstract formulation. Introducing the operator notation

A : H2 ∩H1
0 → L2 : u 7→ 1

2 i ∆u ,

B̂ : H1
0 → H2 ∩H1

0 : w 7→ − i ∆−1(|w|2) ,

B : H1
0 → H1

0 : u 7→ − i ∆−1(|u|2)u ,

(2.2a)

we employ a compact formulation of problem (2.1) as an abstract evolution equation{
∂tψ = Aψ +B(ψ) = Aψ + B̂(ψ)ψ ,

ψ
∣∣
t=0

= ψ0 .
(2.2b)

2.2. Semidiscretization in time by the Strang splitting method

Subproblems. For the discretization of (2.2b) in time we apply exponential operator splitting methods based
on the solution of two subproblems, see for instance [17, 28].

• The evolution operator associated with the linear initial value problem{
∂tψ = Aψ ,

ψ
∣∣
t=0

= u ,
(2.3a)

is denoted by ϕA(t), such that
ψ( · , t) = ϕA(t)u . (2.3b)

1For simplicity of notation we write L2, Hk instead of L2(Ω), Hk(Ω), etc.
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• The evolution operator associated with the nonlinear initial value problem{
∂tψ = B(ψ) ,

ψ
∣∣
t=0

= u ,
(2.4a)

is denoted by ϕB(t, · ), such that
ψ( · , t) = ϕB(t, u) . (2.4b)

Due to the fact that ∆−1(|ψ( · , t)|2) defines a real-valued function and thus

∂t|ψ( · , t)|2 = 2<
(
ψ( · , t) ∂tψ( · , t)

)
= 2<

(
B̂(ψ( · , t)) |ψ( · , t)|2

)
= 0 ,

the nonlinear equation (2.4a) reduces to the linear equation{
∂tψ = B̂(u)ψ ,

ψ
∣∣
t=0

= u .
(2.4c)

We will also employ a notation analogous to (2.4c) but with a linear evolution operator EB depending
on u and w as the solution to {

∂tψ = B̂(w)ψ ,

ψ
∣∣
t=0

= u ,
(2.5)

such that ψ = EB(t, w)u. Clearly,

ϕB(t, u) = EB(t, u)u . (2.6)

Strang splitting method. Our main focus is on the symmetric second-order Strang splitting method applied
to the splitting according to (2.3), (2.4). That is, for a time increment τ > 0, the time-discrete solution values

ψn ≈ ψ(nτ) , n = 0, 1, 2, . . .

are determined by the recurrence

ψn = S(τ, ψn−1) = ϕA( 1
2τ)ϕB

(
τ, ϕA( 1

2τ)ψn−1

)
. (2.7a)

For notational simplicity we shall employ a formal notation for the n-fold composition,

ψn = Sn ψ0 := S(τ, · ) ◦ · · · ◦ S(τ, ψ0)︸ ︷︷ ︸
n times

. (2.7b)

Weak formulation of the subproblems. In view of full discretization (see Sec. 2.3) we consider the
following weak formulations of the subproblems. For (2.3a),{

(∂tψ, φ)L2 = − 1
2 i (∇ψ,∇φ)L2 for all φ ∈ H1

0 ,

ψ
∣∣
t=0

= u ,
(2.8)

where we require ψ, u ∈ H1
0 . For (2.4c),{

(∂tψ, φ)L2 = − i (Θψ, φ)L2 for all φ ∈ H1
0 ,

ψ
∣∣
t=0

= u ,
(2.9a)
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where Θ is the solution of the Poisson equation in weak formulation,

(∇Θ,∇χ)L2 = − (|u|2, χ)L2 for all χ ∈ H1
0 , (2.9b)

requiring ψ,Θ, u ∈ H1
0 .

In the following we use the standard denotation for the Sobolev semi-norms, i.e., |ψ|H1 = ‖∇ψ‖L2 for ψ ∈ H1
0 ,

and |ψ|H2 =
(∑

|α|=2 ‖Dαψ‖2L2

)1/2 for ψ ∈ H2.

2.3. Conforming finite element discretization of the subproblems

A full discretization arises by solving both initial value subproblems (2.3) and (2.4) in their weak reformula-
tion (2.8) and (2.9), respectively, by means of a finite element method (FEM).

Finite element space. For the space discretization of the subproblems, we choose a tessellation T h over
subdomains Ωk, with

Ω =

K⋃
k=1

Ωk , h = max
k∈{1,...,K}

diam Ωk ,

which are affine-equivalent to a reference domain Ω0. With Ω0 we associate a triplet (Ω0, P,N ), where the
set N comprises the interpolation nodes xi, and P is the linear space spanned by the polynomial nodal basis
functions vj of degree p. We require the finite elements to be conforming and quasi-uniform. As common we
choose a linear indexing of the basis functions, (vj)

J
j=1. The subspace spanned by these functions is denoted by

Vh = span{v1, . . . , vJ} ⊂ H1
0 . (2.10)

Finite element interpolation and projection. By Ih : C(Ω) → Vh we denote the nodal interpolation
operator,

Ih(f) =

J∑
j=1

f(xj) vj . (2.11)

The Rayleigh-Ritz projection Ph : H1
0 → Vh is defined implicitly by the Galerkin orthogonality relation

(∇(u− Ph u),∇vh)L2 = 0 for all vh ∈ Vh , (2.12a)

satisfying
|Ph u|H1 ≤ |u|H1 for all u ∈ H1

0 . (2.12b)
By the Poincaré inequality ‖v‖L2 ≤ C |v|H1 , this also implies

‖Ph u‖H1 ≤ C ‖u‖H1 for all u ∈ H1
0 , (2.12c)

with a constant C depending on Ω.

Remark 2.1. The Rayleigh-Ritz projection Ph is connected to the finite element approximation in the following
way. Consider a Poisson problem ∆u = f with homogeneous Dirichlet boundary conditions in weak formulation
(see (2.9b)),

(∇u,∇v)L2 = − (f, v)L2 for all v ∈ H1
0 ,

and its FEM discretization by the Galerkin equations (see (2.15b) below),

(∇uh,∇vh)L2 = − (f, vh)L2 for all vh ∈ Vh .

Then,
(∇(u− uh),∇vh)L2 = 0 for all vh ∈ Vh ,
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i.e.,
uh = Ph u .

For a sufficiently smooth boundary, the H2 regularity estimate

|∆−1(u− Phu)|H2 ≤ C ‖u− Phu‖L2 (2.13)

holds, see [9, Sec. 5.5].

Fully discrete solution and computational representation. The full discretization of the Schrödinger-
Poisson equation is based on solving the subproblems (2.8), (2.9) arising in the Strang splitting time discretiz-
ation by means of a FEM/Galerkin space discretization. Here, the coefficients associated with the prescribed
initial state are determined by interpolation,

Ih(ψ0) =

J∑
j=1

cj,0 vj ∈ Vh .

In each substep of the time propagation by Strang splitting, subproblems of the following types (2.14), (2.15)
for the solutions ψh ∈ Vh and Θh ∈ Vh are solved.

• For the first subproblem (2.8), ψh is determined from{
(∂tψh, φh)L2 = − 1

2 i (∇ψh,∇φh)L2 for all φh ∈ Vh ,
ψh
∣∣
t=0

= uh .
(2.14a)

With the ansatz in terms of the basis (2.10),

ψh(t) =

J∑
j=1

cj(t) vj ,

(2.14a) yields the Galerkin equations for the coefficients cj(t) in the form

J∑
j=1

∂t cj(t) (vj , vi)L2 = − 1
2 i

J∑
j=1

cj(t) (∇vj ,∇vi)L2 , i = 1 . . . J . (2.14b)

• For the second subproblem (2.9), ψh is determined such that{
(∂tψh, φh)L2 = − i (Θh ψh, φh)L2 for all φh ∈ Vh ,
ψh
∣∣
t=0

= uh ,
(2.15a)

where Θh is the solution of the discretized Poisson problem

(∇Θh,∇χh)L2 = − (|uh|2, χh)L2 for all χh ∈ Vh . (2.15b)

With the ansatz in terms of the basis (2.10),

ψh(t) =

J∑
j=1

cj(t) vj ∈ Vh , Θh =

J∑
j=1

dj vj ∈ Vh ,
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we obtain the Galerkin equations (2.15b) in the form

J∑
j=1

∂t cj(t) (vj , vi)L2 = − i

J∑
j=1

cj(t)

J∑
k=1

dk (vk vj , vi)L2 , i = 1 . . . J ,

J∑
j=1

dj (∇vj ,∇vi)L2 = −
J∑

j,k=1

cj(0) ck(0) (vj vk, vi)L2 , i = 1 . . . J .

(2.15c)

The above computations imply that the unknown coefficients cj , dj satisfy systems of linear ordinary differential
equations. For a more compact formulation we introduce the vectors

c(t) =
(
cj(t)

)J
j=1
∈ CJ , d =

(
dj
)J
j=1
∈ RJ ,

F (c(0)) =
( J∑
j,k=1

cj(0) ck(0) (vj vk, vi)L2

)J
i=1
∈ RJ ,

(2.16a)

and the invertible symmetric matrices

M =
(
Mij

)J
i,j=1

∈ RJ×J , with Mij = (vi, vj)L2 ,

K =
(
Kij

)J
i,j=1

∈ RJ×J , with Kij = (∇vi,∇vj)L2 ,

Φ(d) =
(
Φij(d)

)J
i,j=1

∈ RJ×J , with Φij(d) =
∑
k

dk(vk vi, vj)L2 .

(2.16b)

In this notation, the system (2.14b) reads{
M ∂t c(t) = − 1

2 iKc(t) ,

c(0) given ,
(2.17)

with solution
c(t) = e−

1
2 i tM−1K c(0) . (2.18)

System (2.15c) takes the form 
Kd = −F (c(0)) ,

M ∂t c(t) = − i Φ(d) c(t) ,

c(0) given ,
(2.19)

with solution
c(t) = e− i t (M−1Φ(d)) c(0) , where d = −K−1F (c(0)) . (2.20)

To realize the fully discrete propagation in time according to the Strang recurrence (2.7), systems of this type
are alternately solved.

Finite element operators. We define the discrete Laplace operator ∆h : Vh → H−1 (uh 7→ ∆h uh) and its
inverse ∆−1

h : H−1 → Vh (f 7→ ∆−1
h f) via

(∆h uh, vh)L2 = − (∇uh,∇vh)L2 for all vh ∈ Vh , (2.21a)

(∇∆−1
h f,∇vh)L2 = − (f, vh)L2 for all vh ∈ Vh . (2.21b)

In particular, (2.21b) means that for the solution u of ∆u = f we have

∆−1
h f = Ph u = uh (2.22)
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in the sense of Remark 2.1.
Moreover, in analogy to (2.2a) we set

Ah : Vh → H−1 : uh 7→ 1
2 i ∆huh ,

B̂h : Vh → Vh : wh 7→ − i ∆−1
h (|wh|2) ,

Bh : Vh → Vh : uh 7→ − i ∆−1
h (|uh|2)uh .

(2.23)

In this notation,

• ϕAh(t)uh is associated with subproblem (2.14a),
• ϕBh(t, uh) is associated with subproblem (2.15a).

For representing the solution ψh of a system of the type{
(∂tψh, φh)L2 = (B̂h(wh)ψh, φh)L2 for all φh ∈ Vh ,
ψh
∣∣
t=0

= uh ,
(2.24)

we will also employ an analogous notation as for problem (2.5),

ψh = EBh(t, wh)uh . (2.25a)

Then, analogously as in (2.6),

ϕBh(t, uh) = EBh(t, uh)uh . (2.25b)

For the resulting fully discrete Strang splitting solution we again write

ψn ≈ ψ(nτ) , n = 0, 1, 2, . . . ,

determined by the recurrence

ψn = Sh(τ, ψn−1) = ϕAh( 1
2τ)ϕBh

(
τ, ϕAh( 1

2τ)ψn−1

)
, (2.26a)

and we again employ a formal notation for the n-fold composition,

ψn = Snh ψ0 := Sh(τ, · ) ◦ · · · ◦ Sh(τ, ψ0)︸ ︷︷ ︸
n times

. (2.26b)

2.4. Main results

The central interest of this paper is to establish a convergence result for the splitting finite element discretiza-
tion of the Schrödinger–Poisson equation (2.1). Here we give a brief overview of the structure of our convergence
proof and state the resulting theorem. The detailed convergence analysis is worked out in Sec. 3.

In order to study the global error ψn − ψ(tn) we separate the terms associated with space and time discret-
ization, respectively. With ψn = Snh Ih ψ0 and ψ(tn) = ϕSP(tn, ψ0), we write

ψn − ψ(tn) =
(
Snh Ih ψ0 − Sn ψ0

)
+
(
Sn ψ0 − ϕSP(tn, ψ0)

)
. (2.27)

The first term represents the error attributable to the space discretization and the second term is the splitting
error at the semi-discrete level.
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• The first term in (2.27) is expanded into a telescoping sum in the following way:

Snh Ih ψ0 − Sn ψ0 = Snh (Ih − Ph)ψ0 + (Snh Ph − Ph Sn )ψ0 + (Ph − Id)Sn ψ0

= Snh (Ih − Ph)ψ0 +

n∑
j=1

Sn−jh (Sh Ph − Ph S)Sj−1 ψ0 + (Ph − Id)Sn ψ0 . (2.28a)

We combine a stability argument for the fully discrete splitting operator Sh (see Sec. 3.2) with the
approximation properties of the finite-element interpolants (see Theorem C.4) and the Rayleigh-Ritz-
projection Ph (see Theorem C.5). What remains to be estimated are terms of the form (Sh Ph−Ph S)u,
which is worked out in Sec. 3.3 (see Theorem 3.1)
• The second term in (2.27) can similarly be recast as

Sn ψ0 − ϕSP(tn, ψ0) =

n∑
j=1

Sn−j (S ϕSP(tj−1, ψ0)− ϕSP(τ, ϕSP(tj−1, ψ0)) . (2.28b)

Here apply a standard argument for estimating the splitting error at the semi-discrete level combining
the stability of the splitting operator S (see Sec. 3.2) with an estimate for the local splitting error
S(τ, ψ)− ϕSP(τ, ψ) (see Theorem 3.2 or [27]).

This leads to the following global error bound for the full discretization.

Theorem 2.2. Suppose that ψ ∈ H`, ` ≥ 4 and that Ω is such that (2.13) holds. Consider the fully discretized
method from (2.26a) based on the Strang splitting scheme and conforming finite elements of degree p, then

‖ψn − ψ(tn)‖L2 ≤ C tn
(
τ2 + hs (1 + 1

τ )β
)
,

‖ψn − ψ(tn)‖H1 ≤ C tn
(
τ + hs−1 (1 + 1

τ )β
)
,

(2.29)

where s = min{`, p+ 1} and β = max{0, sgn(p+ 3− `)}. Here, C depends on Ω, d, the H4- and the Hs+2(1−β)-
norms of ψ.

The proof of Theorem 2.2 is based on the combination of Theorem 3.1 for the contribution hs(1 + 1
τ )β and

on Theorem 3.2 for the contribution of τ2.

Conclusions. From Theorem 2.2, we can deduce the following convergence properties:
• For an initial value ψ0 ∈ Hp+3, we obtain the classical convergence order in τ and h,

‖ψn − ψ(tn)‖L2 ≤ C tn
(
τ2 + hp+1

)
, ‖ψn − ψ(tn)‖H1 ≤ C tn

(
τ + hp

)
.

• For an initial value ψ0 ∈ H`, ` < p + 3 we obtain convergence of order O(hs) respectively O(hs−1) in
space, but with a possibly reduced convergence order in time (depending in the ratio between τ and h),

‖ψn − ψ(tn)‖L2 ≤ C tn
(
τ2 + hs

τ

)
, ‖ψn − ψ(tn)‖H1 ≤ C tn

(
τ + hs−1

τ

)
,

where s = min{`, p+ 1}.

3. Convergence analysis

3.1. Global error bound

We start by separating the effects of space and time discretization, see (2.28a) and (2.28b), and consider
bounds in the H1- and L2-norm.
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By a Lady Windermere’s fan argument and the stability estimates from Sec. 3.2, the expression ‖Snh Ih ψ0−
Sn ψ0‖ in (2.28a) can be expressed by an hs-bound in L2 and an hs−1-bound in H1, as shown in the following
Theorem 3.1. The norms ‖Sn ψ0 − ϕSP(tn, ψ0)‖ have already been studied in [27] and are summarized in
Theorem 3.2 below. This implies the main convergence result stated in Theorem 2.2, where error bounds
depending on the regularity of the initial values are given.

In our convergence theory we make use of several stability estimates and consistency results which are
collected in Sec. 3.2–3.4 below. Several auxiliary results and estimates are collected in the appendix.

Theorem 3.1. Let ψ0 ∈ H` for ` ≥ 4, max
1≤m≤n

‖Sm ψ0‖Hs ≤Ms, and max
1≤m≤n

(‖Smh Ph Sn−m u‖H1) ≤ aSh . Then

for s = min{p+ 1, `}, the L2 and H1 bounds of the semi-discrete error Snh Ih ψ0 − Sn ψ0 can be bounded in L2

and H1:

‖Snh Ih ψ0 − Sn ψ0‖L2 ≤ C tn hs (1 + 1
τ )β ,

‖Snh Ih ψ0 − Sn ψ0‖H1 ≤ C tn hs−1 (1 + 1
τ )β ,

where β = max{0, sgn(p+ 3− `)} and C depends on d, Ω, tn, aSh and Ms+2(1−β).

Proof.

• L2-bound. We proceed as indicated at the beginning of Sec. 2.4 and use the stability properties (3.4) of
the splitting operator Sh (see Proposition 3.3 in Sec. 3.2):

‖Snh Ih ψ0 − Sn ψ0‖L2 ≤ ‖Snh (Id− Ih)ψ0‖L2 + ‖Snh (Id− Ph)ψ0‖L2

+

n∑
j=1

‖Sn−jh Sh PhSj−1 ψ0 − Sn−jh Ph S Sj−1 ψ0‖L2 + ‖(Id− Ph)Sn ψ0‖L2

≤ eC tn a
2
Sh
(
‖(Id− Ih)ψ0‖L2 + ‖(Id− Ph)ψ0‖L2

)
+

n∑
j=1

eC (tn−tj) a2Sh ‖Sh Ph Sj−1 ψ0 − Ph S Sj−1 ψ0‖L2 + ‖(Id− Ph)Sn ψ0‖L2

≤ eC tn a
2
Sh
(
‖(Id− Ih)ψ0‖L2 + ‖(Id− Ph)ψ0‖L2

)
(3.1a)

+ n eC tn a
2
Sh max

1≤j≤n
‖Sh Ph Sj−1 ψ0 − Ph S Sj−1 ψ0‖L2 + ‖(Id− Ph)Sn ψ0‖L2 . (3.1b)

By the regularity result for the splitting operator Sh, see Lemma 3.8 in Sec. 3.4, we can ensure the
existence of the constant aSh .

The expressions in (3.1a) can be bounded using Theorems C.4 and C.5,

‖(Id− Ph)u‖L2 ≤ C hs ‖u‖Hs ,
‖(Id− Ih)u‖L2 ≤ C hs ‖u‖Hs ,

and by the bound (C.12) from Proposition C.12 we obtain

‖Sn ψ0‖Hs ≤ eLs tn ‖ψ0‖Hs .

It remains to bound ‖Sh Ph Sj−1 ψ0 − Ph S Sj−1 ψ0‖L2 . By Theorem 3.7 from Sec. 3.3, it follows that

‖Sh(τ,Ph u)− Ph S(τ, u)‖L2 ≤ C τ (1 + 1
τ )β hs ,
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for s = min{l, p + 1} , β = max{0, sgn(p + 3 − l)}, where C depends on d, Ω, Ls, and Ms+2(1−β).
Altogether, we obtain

‖Snh Ih ψ0 − Sn ψ0‖L2 ≤ eC tn a
2
Sh hs ‖ψ0‖Hs + etn Ls hs ‖ψ0‖Hs + n eC tn a

2
Sh C τ (1 + 1

τ )β hs

≤ C hs
(
eC tn a

2
Sh ‖ψ0‖Hs + tn (1 + 1

τ )β eC tn a
2
Sh
)

≤ C tn (1 + 1
τ )β hs ,

which concludes the proof for the L2 bound.
• H1-bound. Analogously as for the L2-bound, we use Theorems C.4 and C.5 and Proposition C.12 and

Theorem 3.7. Hence we obtain

‖Snh Ih ψ0 − Sn ψ0‖H1 ≤ ‖Snh Ihψ0 − Snh ψ0‖H1 + ‖Snh ψ0 − Snh Phψ0‖H1

+

n∑
j=1

∥∥Sn−jh Sh Ph Sj−1 ψ0 − Sn−jh Ph S Sj−1 ψ0

∥∥
H1 + ‖Ph Sn ψ0 − Sn ψ0‖H1

≤ eC tn a
2
Sh
(
‖Ih ψ0 − ψ0‖H1 + ‖ψ0 − Ph ψ0‖H1

)
+ ‖Ph Sn ψ0 − Sn ψ0‖H1

+ n eC tn a
2
Sh max

1≤j≤n

∥∥Sh Ph Sj−1 ψ0 − Ph S Sj−1 ψ0

∥∥
H1

≤ eC tn a
2
Shhs−1 ‖ψ0‖Hs + etn Lshs−1 ‖ψ0‖Hs + n eC tn a

2
Sh C τ (1 + 1

τ )β hs−1

≤ C hs−1
(
eC tn a

2
Sh ‖ψ0‖Hs + tn (1 + 1

τ )β eC tn a
2
Sh
)

≤ C tn (1 + 1
τ )β hs−1 ,

where the constant C depends on aSh , tn, and ‖ψ0‖Hs .

�

The following theorem summarizes the semidiscrete error in time:

Theorem 3.2. Suppose that the exact solution ψ(tn) to the Schrödinger-Poisson equation (2.2b) is in H2 for
0 ≤ tn ≤ T . Then, the semi-discrete numerical solution Sn ψ0 given by the Strang splitting scheme (2.7) with
stepsize τ satisfies

‖Sn ψ0 − ψ(tn)‖L2 ≤ C1 τ
2 , (3.3a)

‖Sn ψ0 − ψ(tn)‖H1 ≤ C2 τ , (3.3b)

where both constants C1, C2 depend on T , Ω, and on the H2-norm of ψ.

Proof. The detailed proof can be found in [27] with the restriction that C1 and C2 depend on theH3- respectively
the H4-norm of ψ. For the improved bounds (3.3) in H2(Rd) we refer to [24] and for full details on the
computation of the commutators see [23]. In our case, the domain Ω is finite, but the analogous Sobolev
embeddings hold also in this case, see [1].

For the dominant terms we now show the sharp estimates directly. For the bound (3.3b), the dependence on
the H3-norm is indicated in [27] to arise from a bound of

‖∆−1(ψ∆ψ)ψ‖H1 .
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Since all other terms are already bounded in terms of ‖ψ‖H2 , it suffices to estimate this term likewise. Using
Proposition C.7 we obtain

‖∆−1(ψ∆ψ)ψ‖H1 ≤ ‖∇∆−1(ψ∆ψ)ψ‖L2 + ‖∆−1(ψ∆ψ)∇ψ‖L2

≤ ‖∆−1(ψ∆ψ)‖H1 ‖ψ‖L∞ + C ‖∆−1(ψ∆ψ)‖H1 ‖∇ψ‖H1

≤ C ‖ψ∆ψ ‖H−1 ‖ψ‖H2 ≤ C ‖ψ‖H1 ‖∆ψ ‖L2 ‖ψ‖H2

≤ C ‖ψ‖2H2 ‖ψ‖H1 .

For the bound (3.3a) in terms of ‖ψ‖H2 we refer to the bounds given in [27] and the improved bounds from [24].
For full details on the computation of the commutators involved, see [23].

However, the critical term in the commutator bound is identified as

‖4 i ∆−1(ψ∆2ψ)ψ‖L2 ,

for which we will show in detail that it can be bounded in terms of the H2-norm. Using a duality argument in
L2 and integration by parts we obtain

‖∆−1(ψ∆2ψ)ψ‖L2 ≤ C ‖∆−1(ψ∆2ψ)‖L2 ‖ψ‖H2 ≤ C sup
‖φ‖L2=1

(∆−1(ψ∆2ψ), φ)L2 ‖ψ‖H2

= sup
‖φ‖L2=1

(ψ∆2ψ,∆−1φ)L2 ‖ψ‖H2 ≤ C sup
‖φ‖L2=1

(∆2ψ,ψ∆−1φ)L2 · ‖ψ‖H2

= C sup
‖φ‖L2=1

(∆ψ,∆(ψ∆−1φ))L2 · ‖ψ‖H2

≤ C sup
‖φ‖L2=1

∫
Ω

(∆ψ)
(
(∆ψ) ∆−1(φ) + (∇ψ) · (∇∆−1(φ)) + ψ φ

)
dx · ‖ψ‖H2

≤ C sup
‖φ‖L2=1

(
‖∆ψ‖L2 ‖∆ψ‖L2 ‖∆−1(φ)‖L∞ + ‖∆ψ ‖L2 ‖∇ψ‖L4 ‖∇∆−1(φ)‖L4

+ ‖∆ψ ‖L2 ‖ψ‖L∞ ‖φ‖L2

)
· ‖ψ‖H2

≤ C sup
‖φ‖L2=1

(
‖ψ‖H2 ‖ψ‖H2 ‖∆−1(φ)‖H2 + ‖ψ‖H2 ‖∇ψ‖H1 ‖∆−1(φ)‖H2

+ ‖ψ‖H2 ‖ψ‖H2 ‖φ‖L2

)
· ‖ψ‖H2

≤ C ‖ψ‖3H2 ,

concluding the proof. �

3.2. Stability properties of the splitting operators

To reduce the analysis of the global error to the study of the splitting error in a single time step, the following
stability estimates for the splitting operators S and Sh are required. Since, analogously as in [27], the L2- and
H1-bounds depend on the H1-norms of the numerical solution, we first need a stability and convergence result
in H1 to show the H1-boundedness of the numerical solution. We list L2- and H1-bounds together and verify
the L2-bounds in hindsight.

Proposition 3.3. The fully discretized splitting operator Sh defined in (2.26a) enjoys H1-stability and H1-
conditional L2-stability, ∥∥Sh(τ, ũ)− Sh(τ, u)

∥∥
L2 ≤ eC τ a

2
Sh ‖ũ− u‖L2 , (3.4a)∥∥Sh(τ, ũ)− Sh(τ, u)

∥∥
H1 ≤ eC τ a

2
Sh ‖ũ− u‖H1 , (3.4b)

for u, ũ ∈ Vh, with aSh = max{‖u‖H1 , ‖ũ‖H1}, and C depending on h, d, and Ω.
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Proposition 3.4. The semi-discrete splitting operator S defined in (2.7a) enjoys H1-stability and H1-
conditional L2-stability,

‖S(τ, ũ)− S(τ, u)‖L2 ≤ eC τ a
2
S ‖ũ− u‖L2 ,

‖S(τ, ũ)− S(τ, u)‖H1 ≤ eC τ a
2
S ‖ũ− u‖H1 ,

for u, ũ ∈ H1
0 , with aS = max{‖u‖H1 , ‖ũ‖H1}, and C depending on d and Ω.

Proof of L2-stability in Proposition 3.3. Our goal is to find an estimate of Sh(τ, ũ)−Sh(τ, u) for two functions
u, ũ ∈ Vh.

• We combine the unitarity of the operators ϕAh and ϕBh (see Proposition C.3, (C.4a) and (C.5a)) with
the linearity of ϕAh and the definition of ϕBh(τ, u) = EBh(τ, u)u with the linear operator EBh(τ, · )
from (2.25b). With the abbreviations wh = ϕAh( 1

2τ)u, w̃h = ϕAh( 1
2τ)ũ we obtain

‖Sh(τ, ũ)− Sh(τ, u)‖L2 = ‖ϕAh( 1
2τ)
(
ϕBh(τ, w̃h)− ϕBh(τ, wh)

)
‖L2

= ‖EBh(τ, w̃h)w̃h − EBh(τ, wh)wh‖L2

≤ ‖EBh(τ, w̃h)(w̃h − wh)‖L2 + ‖EBh(τ, w̃h)wh − EBh(τ, wh)wh‖L2

= ‖w̃h − wh‖L2 + ‖EBh(τ, w̃h)wh − ϕBh(τ, wh)‖L2

= ‖ũ− u‖L2 + ‖EBh(τ, w̃h)wh − ϕBh(τ, wh)‖L2 .

To estimate the last term we use the mild formulation (A.1),

‖EBh(τ, w̃h)wh − ϕBh(τ, wh)‖L2

≤
∫ τ

0

∥∥EBh(τ − σ, w̃h)
(
B̂h(w̃h)− B̂h(wh)

)
EBh(σ,wh)wh

∥∥
L2 dσ

≤ τ sup
0≤σ≤τ

∥∥(B̂h(w̃h)− B̂h(wh)
)
EBh(σ,wh)wh

∥∥
L2 . (3.6)

• To find an estimate for the right-hand side in (3.6) we denote zh = B̂h(wh), z̃h = B̂h(w̃h), and consider
the Galerkin equations

(∇zh,∇vh)L2 = −(|wh|2, vh)L2 for all vh ∈ Vh ,

(∇z̃h,∇vh)L2 = −(|w̃h|2, vh)L2 for all vh ∈ Vh .

The difference

(∇(z̃h − zh),∇vh)L2 = −(|w̃h|2 − |wh|2, vh)L2 for all vh ∈ Vh ,

is again a discrete Poisson problem with solution

z̃h − zh = ∆−1
h (|w̃h|2 − |wh|2) .
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With this observation we obtain for (3.6):

τ sup
0≤σ≤τ

‖(B̂h(w̃h)− B̂h(wh))|EBh(σ,wh)wh|‖L2

= τ sup
0≤σ≤τ

‖∆−1
h (|w̃h|2 − |wh|2)|EBh(σ,wh)wh|‖L2

≤ τ sup
0≤σ≤τ

‖∆−1
h (|w̃h − wh| · |w̃h + wh|)|EBh(σ,wh)wh|‖L2 . (3.7)

Proposition C.8 in the appendix yields

‖∆−1
h (|w̃h − wh| · |w̃h + wh|)|EBh(σ,wh)wh|‖L2

≤ C ‖w̃h − wh‖L2 ‖w̃h + wh‖H1‖EBh(σ,wh)wh‖H1 .

Inserting wh = ϕAh( 1
2τ)u and w̃h = ϕAh( 1

2τ)ũ again and using Proposition C.11 yields

‖EBh(τ, ϕAh( 1
2τ)ũ)ϕAh( 1

2τ)u− ϕBh(τ, ϕAh( 1
2τ)u)‖L2

≤ τ C ‖ϕAh( 1
2τ)(ũ− u)‖L2 ‖ϕAh( 1

2τ)(ũ+ u)‖H1 eτ C ‖u‖
2
H1 ‖u‖H1

≤ τ C ‖ũ− u‖L2 (‖ũ‖H1 + ‖u‖H1) eτ C ‖u‖
2
H1 ‖u‖H1

≤ C τ a2
Sh eτ C ‖u‖

2
H1 ‖ũ− u‖L2 .

With 1 + x ≤ ex we finally obtain

‖Sh(τ, ũ)− Sh(τ, u)‖L2 ≤ eC τ a
2
Sh‖ũ− u‖L2 ,

with aSh = max{‖u‖H1 , ‖ũ‖H1}. To show the boundedness of the constant aSh in H1, we further need
the H1 stability result (Proposition 3.3), the H1 interpolation error (Theorem 3.7) and the regularity
of the H1 solution (Lemma 3.8).

�

Proof of the H1-stability in Proposition 3.3. We start similarly as for the L2 case:
We combine the unitarity of the operator ϕAh in H1 (see Proposition C.3, (C.4b)) with the linearity of

ϕAh and the definition of ϕBh(τ, u) = EBh(τ, u)u with the linear operator EBh(τ, · ) from (2.25b). With the
abbreviations wh = ϕAh( 1

2τ)u, w̃h = ϕAh( 1
2τ)ũ we obtain

‖Sh(τ, ũ)− Sh(τ, u)‖H1 = ‖ϕAh( 1
2τ)ϕBh(τ, w̃h)− ϕAh( 1

2τ)ϕBh(τ, wh)‖H1

= ‖EBh(τ, w̃h)w̃h − EBh(τ, wh)wh‖H1

≤ ‖EBh(τ, w̃h)w̃h − EBh(τ, w̃h)wh‖H1 + ‖EBh(τ, w̃h)wh − EBh(τ, wh)wh‖H1

= ‖EBh(τ, w̃h)ϕAh( 1
2τ)(ũ− u)‖H1 (3.8a)

+ ‖EBh(τ, w̃h)wh − EBh(τ, wh)wh‖H1 . (3.8b)

Now we separately estimate (3.8a) and (3.8b). First, from Proposition C.11 we obtain for (3.8a)

‖EBh(τ, w̃h)ϕAh( 1
2τ)(ũ− u)‖H1 ≤ eτ C‖ũ‖

2
H1‖ũ− u‖H1 .
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To obtain a bound for (3.8b), we use the linear variation-of-constant formula as in (A.1) and Proposition C.11,

‖EBh(τ, w̃h)wh − EBh(τ, wh)wh‖H1

≤ τ sup
0≤σ≤τ

‖EBh(τ − σ, w̃h)(B̂h(w̃h)− B̂h(wh)) · EBh(σ,wh)wh‖H1

≤ τ sup
0≤σ≤τ

eτ C‖w̃h‖
2
H1 ‖(B̂h(w̃h)− B̂h(wh)) EBh(σ,wh)wh‖H1

≤ τ sup
0≤σ≤τ

eτ C‖ũ‖
2
H1
(
‖(∇(B̂h(w̃h)− B̂h(wh))) EBh(σ,wh)wh‖L2 (3.9a)

+ ‖(B̂h(w̃h)− B̂h(wh))∇(EBh(σ,wh)wh)‖L2

)
. (3.9b)

For (3.9a) we use the bound (C.10) from Corollary C.10,

‖(∇(B̂h(w̃h)− B̂h(wh))) EBh(σ,wh)wh‖L2 = ‖(∇∆−1
h (|w̃h|2 − |wh|2)) EBh(σ,wh)wh‖L2

≤ ‖(∇∆−1
h (|w̃h − wh| |w̃h + wh|)) EBh(σ,wh)wh‖L2

≤ C (1 + h) ‖w̃h − wh‖H1 ‖w̃h + wh‖H1 ‖EBh(σ,wh)wh‖H1

≤ C (1 + h) ‖ũ− u‖H1 ‖ũ+ u‖H1 eτ C‖u‖
2
H1 ‖u‖H1 .

For (3.9b) we use in addition (C.7), the L∞ bound from Theorem C.4,

‖(B̂h(w̃h)− B̂h(wh))∇(EBh(σ,wh)wh)‖L2

≤ ‖∆−1
h (|w̃h − wh| |w̃h + wh|)‖L∞ ‖∇(EBh(σ,wh)wh)‖L2

≤
(
‖∆−1(|w̃h − wh| |w̃h + wh|)−∆−1

h (|w̃h − wh| |w̃h + wh|)‖L∞

+ ‖∆−1(|w̃h − wh| |w̃h + wh|)‖L∞
)
‖∇(EBh(σ,wh)wh)‖L2

≤
(
C h2− 3

2 ‖∆−1(|w̃h − wh| |w̃h + wh|)‖H2 + C ‖∆−1(|w̃h − wh| |w̃h + wh|)‖H2

)
· eσ C ‖wh‖

2
H1 ‖wh‖H1

≤ C (1 + h1/2) ‖w̃h − wh‖H1 ‖w̃h + wh‖H1 eτ C ‖wh‖
2
H1 ‖wh‖H1

≤ ‖w̃h − wh‖H1

(
eτ C ‖wh‖

2
H1 C (1 + h1/2)(‖w̃h‖H1 + ‖wh‖H1) ‖wh‖H1

)
≤ ‖ũ− u‖H1

(
eτ C ‖u‖

2
H1 C (1 + h1/2)(‖ũ‖H1 + ‖u‖H1) ‖u‖H1

)
.

Summarizing, we conclude

‖Sh(τ, ũ)− Sh(τ, u)‖H1 ≤ ‖ũ− u‖H1 eτ C a
2
Sh (1 + C τ a2

Sh eτ C a
2
Sh ) ,

where aSh = max{‖u‖H1 , ‖ũ‖H1} and C depends on h, on d, and on Ω. The dependence on h for h < 1 is
negligible and will be omitted in the further analysis.

With 1 + x ≤ ex we finally obtain

‖Sh(τ, ũ)− Sh(τ, u)‖H1 ≤ eC τ a
2
Sh‖ũ− u‖H1 ,

finishing the proof. �
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Proof of Proposition 3.4. This is conducted analogously to the proof of Proposition 3.3, substituting ϕA( 1
2τ)u

by w and ϕA( 1
2τ)ũ by w̃, with the Sobolev embedding replaced by Hardy’s inequality (see the proof in [27]),

‖∆−1(|w̃ − w| · |w̃ + w|)ϕB(τ, w)‖L2 ≤ C ‖w̃ − w‖L2‖w̃ + w‖H1‖ϕB(τ, w)‖L2

≤ C ‖ũ− u‖L2 ‖ũ+ u‖H1 ‖u‖L2

≤ C ‖ũ− u‖L2 a2
S .

For the proof of H1-stability, which is less involved for S than for Sh, we refer to [27]. �

3.3. Consistency of the fully discretized splitting operator

The aim of this section is to provide an estimate for Sh(τ,Ph u) − PhS(τ, u) in the H1- and the L2-norm,
which will be presented in Theorem 3.7. As an essential part of the proof, we first bound the approximation
error of ϕAh as compared to PhϕA in these norms.

L2- and H1-estimates for (PhϕA(τ)− ϕAh(τ)Ph)u. Propositions 3.5 and 3.6 below specify bounds for

eA(τ) := (PhϕA(τ)− ϕAh(τ)Ph)u ∈ Vh . (3.10)

As before, p denotes the polynomial degree associated with the FEM subspace Vh.
Proposition 3.5 requires a higher Sobolev regularity of s+ 2, but offers an additional dependence on τ , while

Proposition 3.6 requires only a Sobolev regularity of s. Both results can be recast together as

‖eA(τ)‖L2 ≤ C τ ( 1
τ )βhs‖u‖Hs+2(1−β) ,

‖eA(τ)‖H1 ≤ C τ ( 1
τ )βhs−1‖u‖Hs+2(1−β) ,

where β = max{0, sgn(p + 3 − `)} and s = min{p + 1, `}. Here, the dependence on ( 1
τ )β indicates a reduced

approximation quality for ` < p+ 3.

Proposition 3.5. Let u ∈ H` for ` ≥ 1. Then, eA(τ) from (3.10) satisfies

‖eA(τ)‖L2 ≤ C τ hs‖u‖Hs+2 , (3.11)

‖eA(τ)‖H1 ≤ C τ hs−1‖u‖Hs+2 , (3.12)

where C depends on d and Ω and s = min{p+ 1, `− 2}.
Proposition 3.6. Let u ∈ H` for ` ≥ 1. Then, eA(τ) from (3.10) satisfies

‖eA(τ)‖L2 ≤ C hs ‖u‖Hs , (3.13)

‖eA(τ)‖H1 ≤ C hs−1 ‖u‖Hs , (3.14)

where C depends on d and Ω and s = min{p+ 1, `}.
The proof is given after the proof of Proposition 3.5.

Proof of Proposition 3.5. We denote

y(t) = ϕA(t)u , yh(t) = ϕAh(t)Ph u , such that eA(t) = Ph y(t)− yh(t) .

Here, eA(0) = 0, and y(t) and yh(t) are the solutions of

(∂t y(t), v)L2 + 1
2 i (∇y(t),∇v)L2 = 0 for all v ∈ H1

0 ,

(∂t yh(t), vh)L2 + 1
2 i (∇yh(t),∇vh)L2 = 0 for all v ∈ Vh .
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Setting v = vh = eA(t) and subtracting these equations we obtain

(∂t(y(t)− yh(t)), eA(t))L2 + 1
2 i
(
∇y(t)−∇yh(t),∇eA(t))L2 = 0 .

With y(t)− yh(t) = eA(t)− (Ph y(t)− y(t)) this takes the form

(∂t eA(t), eA(t))L2 − (∂t(Ph y(t)− y(t)), eA(t))L2 + 1
2 i (∇eA(t),∇eA(t))L2 − (∇Ph y(t)−∇y(t),∇eA(t))L2 = 0 .

Due to the property (2.12a) of the Rayleigh-Ritz projection we have (∇Ph y(t) −∇y(t),∇eA(t))L2 = 0. Thus
we obtain

(∂t eA(t), eA(t))L2 + 1
2 i (∇eA(t),∇eA(t))L2 = (Ph ∂t y(t)− ∂t y(t), eA(t))L2 ,

and its complex conjugate

(eA(t), ∂t eA(t))L2 − 1
2 i (∇eA(t),∇eA(t))L2 = (eA(t),Ph ∂t y(t)− ∂t y(t))L2 .

Adding these equations gives

2<(∂t eA(t), eA(t))L2 = 2< (Ph ∂t y(t)− ∂t y(t), eA(t))L2 . (3.15)

For the left-hand side of (3.15) we find

2<(∂t eA(t), eA(t))L2 = ∂t‖eA(t)‖2L2 = 2 ‖eA(t)‖L2 ∂t‖eA(t)‖L2 ,

and on the right-hand side of (3.15) we apply the Cauchy-Schwarz and Hölder inequalities,

2< (Ph ∂t y(t)− ∂t y(t), eA(t))L2 ≤ 2
(
|Ph ∂t y(t)− ∂t y(t)|, |eA(t)|

)
L2

≤ 2 ‖Ph ∂t y(t)− ∂t y(t)‖L2 ‖eA(t)‖L2 .

Hence, (3.15) yields the inequality

2 ‖eA(t)‖L2 ∂t‖eA(t)‖L2 ≤ 2 ‖Ph ∂t y(t)− ∂t y(t)‖L2 ‖eA(t)‖L2 .

Dividing by 2 ‖eA(t)‖L2 we obtain

∂t‖eA(t)‖L2 ≤ ‖Ph ∂t y(t)− ∂t y(t)‖L2 .

Now we apply the bound for the projection operator from Theorem C.5, yielding

∂t‖eA(t)‖L2 ≤ ‖Ph ∂t y(t)− ∂t y(t)‖L2 ≤ C hs ‖∂t y(t)‖Hs , s = min{p+ 1, `} ,

where l is the degree of maximal Sobolev regularity of ∂t y(t). Now we integrate over σ from 0 to t,

‖eA(t)‖L2 − ‖eA(0)‖L2 ≤ C
∫ t

0

hs ‖∂t y(σ)‖Hs dσ

and use the differential equation ∂t y(t) = 1
2 i ∆ y(t), which yields

‖eA(t)‖L2 ≤ ‖eA(0)‖L2 + C

∫ t

0

hs ‖∆y(σ)‖Hs dσ .
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With eA(0) = 0, and taking the supremum over the integrand we finally obtain the L2-estimate (3.11).
The H1-estimate (3.12) now follows directly from the inverse estimate, Theorem C.6. �

Proof of Proposition 3.6. We start as in the proof of Proposition 3.5 and recall (3.15) in the form

∂t‖eA(t)‖2L2 = 2< (Ph ∂ty(t)− ∂ty(t), eA(t))L2 .

By integrating over σ from 0 to t, applying partial integration and using Hölder’s inequality we obtain

‖eA(t)‖2L2 − ‖eA(0)‖L2 = 2

∫ t

0

<(Ph ∂σy(σ)− ∂σy(σ), eA(σ))L2 dσ ≤ 2<
∫

Ω

∣∣∣ ∫ t

0

∂σ(Ph y(σ)− y(σ)) eA(σ) dσ
∣∣∣dx

≤ 2<
∫

Ω

∣∣∣[(Ph y(σ)− y(σ)
)
eA(σ)

]t
0
−
∫ t

0

(Ph y(σ)− y(σ)) ∂σeA(σ) dσ
∣∣∣dx

≤ 2
(
‖Ph y(t)− y(t)‖L2 ‖eA(t)‖L2 +

∫
Ω

sup
0≤σ≤t

∣∣Ph y(σ)− y(σ)
∣∣ · ∣∣∣ ∫ t

0

∂σeA(σ) dσ
∣∣∣dx)

≤ 2
(
‖Ph y(t)− y(t)‖L2 ‖eA(t)‖L2 + sup

0≤σ≤t
‖Ph y(σ)− y(σ)

∥∥
L2 ‖eA(t)‖L2

)
≤ C hs sup

0≤σ≤t
‖y(σ)‖Hs · ‖eA(t)‖L2 ,

for C depending on d and Ω. Since eA(0) = 0, dividing by ‖eA(t)‖L2 results in the L2-estimate of Proposition 3.6.
The H1-estimate now follows directly from the inverse estimate, Theorem C.6. �

The major part of the proof of Theorem 2.2 relies on the following consistency result for the splitting
operator Sh.

Theorem 3.7. Let u ∈ H l for l ≥ 1, and ‖u‖Hs ≤Ms for s = min{l, p+1}. Then, the difference Sh(τ,Ph u)−
PhS(τ, u) is bounded by

‖Sh(τ,Ph u)− Ph S(τ, u)‖L2 ≤ C τ (1 + 1
τ )β hs ,

‖Sh(τ,Ph u)− Ph S(τ, u)‖H1 ≤ C τ (1 + 1
τ )β hs−1 ,

β = max{0, sgn(p+ 3− l)} ,

where C depends on ‖u‖Hs+2(1−β) , d and Ω.

Proof. We consider the specific errors of the subflows ϕA and ϕB and take account of the special structure
of the Strang splitting operator. The difference ϕBh(τ,Ph u) − PhϕB(τ, u) is recast as a sum of terms with
appropriate asymptotics in terms of τ and h. In the final step, we use the unitarity of ϕBh and EBh . We



19

abbreviate wh = ϕAh( 1
2τ)Ph u and w = ϕA( 1

2τ)u and obtain

‖Sh(τ,Ph u)− Ph S(τ, u)‖L2

= ‖ϕAh( 1
2τ)ϕBh(τ, wh)− PhϕA( 1

2τ)ϕB(τ, w)‖L2

≤ ‖ϕAh( 1
2τ)ϕBh(τ, wh)− ϕAh( 1

2τ)ϕBh(τ,Phw)‖L2

+ ‖ϕAh( 1
2τ)ϕBh(τ,Phw)− ϕAh( 1

2τ)PhϕB(τ, w)‖L2

+ ‖ϕAh( 1
2τ)PhϕB(τ, w)− PhϕA( 1

2τ)ϕB(τ, w)‖L2

≤ ‖EBh(τ, wh)wh − EBh(τ, wh)Phw‖L2 + ‖EBh(τ, wh)Phw − EBh(τ,Phw)Phw‖L2

+ ‖EBh(τ,Phw)Phw − EB(τ, w)Phw‖L2 + ‖EB(τ, w)Phw − Ph
(
EB(τ, w)w

)
‖L2

+ ‖ϕAh( 1
2τ)PhϕB(τ, w)− PhϕA( 1

2τ)ϕB(τ, w)‖L2

≤ ‖wh − Phw‖L2 (3.16a)
+ ‖EBh(τ, wh)Phw − EBh(τ,Phwh)Phw‖L2 (3.16b)
+ ‖EBh(τ,Phw)Phw − EB(τ, w)Phw‖L2 (3.16c)

+ ‖EB(τ, w)Phw − Ph
(
EB(τ, w)w

)
‖L2 (3.16d)

+ ‖
(
ϕAh( 1

2τ)Ph − PhϕA( 1
2τ)
)
ϕB(τ, w)‖L2 . (3.16e)

Now, we consider the expressions (3.16) and obtain the following five estimates.

• For (3.16a) we use the Propositions 3.5 and 3.6 and obtain

‖wh − Phw‖L2 ≤ C τ hs( 1
τ )β ‖u‖Hs+2(1−β) ,

where s = min{l, p+ 1} and β = max{0, sgn(p+ 3− l)}.
• For (3.16b), we use the linear variation-of-constant formula as in (A.1), with arguments u = Phw,
ũ = wh, and obtain

EBh(τ,Phw)Phw − EBh(τ, wh)Phw

=

∫ τ

0

EBh(τ − σ,wh)
(
B̂h(Phw)− B̂h(wh)

)
EBh(σ,Phw)Phw dσ .

Hence

‖EBh(τ, wh)Phw − EBh(τ,Phw)Phw‖L2 ≤ τ sup
0≤σ≤τ

∥∥(B̂h(wh)− B̂h(Phw)
)
ϕBh(σ,Phw)

∥∥
L2 ,

since EBh is unitary. We now proceed similarly as in Appendix C. By the same argument as in (3.7)
we obtain

‖(B̂h(wh)− B̂h(Phw))ϕBh(σ,Phw)‖L2 = ‖∆−1
h (|wh|2 − |Phw|2) EBh(σ,Phw)Phw‖L2

≤ ‖∆−1
h (|wh − Phw| |wh + Phw|) · EBh(σ,Phw)Phw‖L2 .

Via Propositions C.8 and C.11 this can further be bounded by

C ‖wh − Phw‖L2 ‖wh + Phw‖H1 eσ C‖u‖
2
H1 ‖u‖H1 .
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Now we use Propositions 3.5 and 3.6 applied to the term ‖wh − Phw‖L2 in combination with the
conservation properties of ϕA and ϕAh (see (C.1a) and (C.4)) and obtain

‖wh − Phw‖L2 ‖wh + Phw‖H1 eσ C‖u‖
2
H1 ‖u‖H1

≤ C τ ( 1
τ )β hs ‖u‖Hs+2(1−β)

(
‖Ph u‖H1 + ‖Phw‖H1

)
eσ C‖u‖

2
H1 ‖u‖H1 , (3.17)

where s = min{l, p+ 1} and β = max{0, sgn(p+ 3− l)}.
The projection property (2.12c) and (3.17) yield

‖EBh(τ, wh)Phw − EBh(τ,Phw)Phw‖L2

≤ C τ2 ( 1
τ )β hs ‖u‖Hs+2(1−β)

(
‖Ph u‖H1 + ‖Phw‖H1

)
eτ C‖u‖

2
H1 ‖u‖H1

≤ C τ2 ( 1
τ )β hs eτ C‖u‖

2
H1 ‖u‖Hs+2(1−β) ‖u‖2H1 .

(3.18)

• For (3.16c) we use variation of constants as in (A.2),

EBh(τ,Phw)Phw − EB(τ, w)Phw =

∫ τ

0

EBh(τ − σ,Phw)
(
B̂h(Phw)− B̂(w)

)
EB(σ,w)Phw dσ .

Hence, with B̂h(w) = PhB̂(w),

‖EBh(τ,Phw)Phw − EB(τ, w)Phw‖L2 ≤ C τ sup
0≤σ≤τ

‖(B̂h(Phw)− B̂(w))EB(σ,w)Phw‖L2

≤ C τ sup
0≤σ≤τ

(
‖(B̂h(Phw)− B̂h(w))Phw‖L2 + ‖(B̂h(w)− B̂(w))Phw‖L2

)
= C τ sup

0≤σ≤τ

(
‖(B̂h(Phw)− B̂h(w))Phw‖L2 + ‖(Ph(B̂(w))− B̂(w))Phw‖L2

)
.

Now we separately estimate the two contributions on the right-hand side. Analogously as for (3.16b),
we have

‖(B̂h(Phw)− B̂h(w))Phw‖L2 ≤ C ‖Phw − w‖L2 ‖Phw + w‖H1 ‖Phw‖H1

≤ C hs ‖w‖Hs
(
‖w‖H1 + ‖Phw‖H1

)
‖Phw‖H1

≤ C hs ‖w‖Hs ‖w‖2H1 .

For the second contribution we make use of an estimate based on Theorem C.4 and the Sobolev em-
beddings of H1 in L4 and Hs+1 in W s

4 ,

‖(Ph(B̂(w))− B̂(w))Phw‖L2 ≤ ‖Ph(B̂(w))− B̂(w)‖L4 ‖Phw‖L4

≤ C hs ‖B̂(w)‖W s
4
‖Phw‖L4

≤ C hs ‖B̂(w)‖Hs+1 ‖Phw‖H1

≤ C hs ‖|w|2‖Hs−1 ‖Phw‖H1

≤ C hs ‖w‖2Hη1‖w‖H1 , η1 = s− χ[3,∞](s) ,

where χ is the indicator function. The two values of η1 are related to different bounds for s ∈ {1, 2},
‖u v‖Hs−1 ≤ C ‖u‖Hs ‖u‖Hs , while for higher values of s, the bounds are valid with ‖u v‖Hs ≤
C ‖u‖Hs ‖v‖Hs .
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Altogether this yields

‖EBh(τ,Phw)Phw − EB(τ, w)Phw‖L2 ≤ C τ hs
(
‖w‖2Hη1‖w‖H1 + ‖w‖Hs ‖w‖2H1

)
with η1 = s− χ[3,∞](s).

• For (3.16d), we apply variation of constants as for (3.16c) and obtain

‖EB(τ, w)Phw − Ph(EB(τ, w)w)‖L2

≤ C τ ‖B̂(w)Ph(EB(τ, w)w)− Ph(B̂(w)EB(τ, w)w)‖L2

≤ C τ
(
‖B̂(w)Ph(EB(τ, w)w)− B̂(w)EB(τ, w)w‖L2

+ ‖B̂(w)EB(τ, w)w − Ph(B̂(w)EB(τ, w)w)‖L2

)
≤ C τ

(
‖B̂(w)‖H2‖Ph(EB(τ, w)w)− EB(τ, w)w‖L2

+ ‖B̂(w)EB(τ, w)w − Ph(B̂(w)EB(τ, w)w)‖L2

)
≤ C τ

(
‖|w|2‖L2 hs ‖EB(τ, w)w‖Hs + hs ‖B̂(w)EB(τ, w)w‖Hs

)
≤ C τ hs

(
‖w‖2H1‖EB(τ, w)w‖Hs + ‖B̂(w)EB(τ, w)w‖Hs

)
.

Now we consider ‖B̂(w)EB(τ, w)w‖Hs in more detail for different values of s,

‖B̂(w)EB(τ, w)w‖Hs ≤ ‖∆−1|w|2‖Hκ ‖EB(τ, w)w‖Hs κ = max{s, 2}
≤ ‖w‖2Hη2 eτ Ls‖w‖Hs , η2 = s− χ[2,∞](s)− χ[4,∞](s) ,

with Ls from (C.12) and where χ is the indicator function. Hence,∥∥EB(τ, w)Phw − Ph
(
EB(τ, w)w

)∥∥
L2 ≤ C τ hs eτ Ls ‖u‖Hs ‖u‖2Hη2 .

• For (3.16e), we use the results from Propositions 3.5 and 3.6, and obtain∥∥(ϕAh( 1
2τ)Ph − PhϕA( 1

2τ)
)
ϕB(τ, w)

∥∥
L2 ≤ C τ ( 1

τ )β hs sup
0≤τ1≤τ

‖ϕA( 1
2τ1)ϕB(τ1, w)‖Hs+2(1−β)

≤ C τ ( 1
τ )β hs sup

0≤τ1≤τ
‖ϕB(τ1, w)‖Hs+2(1−β)

≤ C τ ( 1
τ )β hs eτ Ls+2(1−β) ‖u‖Hs+2(1−β) ,

where s = min{l, p+ 1} and β = max{0, sgn(p+ 3− l)}.
• Combining these results, we obtain

‖Sh(τ,Ph u)− PhS(τ, u)‖L2 ≤ C τ hs
(

( 1
τ )β‖u‖Hs+2(1−β) + τ ( 1

τ )β eτ C‖u‖
2
H1 ‖u‖Hs+2(1−β) ‖u‖2H1

+ ‖u‖2Hη1‖u‖H1 + ‖u‖Hs ‖u‖2H1 + eτ Ls ‖u‖Hs ‖u‖2Hη2

+ ( 1
τ )β eτ Ls+2(1−β) ‖u‖Hs+2(1−β)

)
≤ C τ hs

(
‖u‖Hs ‖u‖Hη1 ‖u‖H1 + ( 1

τ )βeτ Ls+2(1−β) ‖u‖Hs+2(1−β)

+ eτ Ls ‖u‖Hs ‖u‖2Hη2 + τ ( 1
τ )β eτ C‖u‖

2
H1 ‖u‖Hs+2(1−β) ‖u‖2H1

)
,

where η1 = s− χ[3,∞](s) and η2 = s− χ[2,∞](s)− χ[4,∞](s). Thus, we can find a constant C∗ for some
τ < tn such that

‖Sh(τ,Ph u)− PhS(τ, u)‖L2 ≤ C∗ τ (1 + 1
τ )βhs . (3.19)



22

The H1 approximation result follows directly from the L2 approximation via the inverse estimate, Theorem C.6,

‖Sh(τ,Ph u)− PhS(τ, u)‖H1 ≤ h−1 ‖Sh(τ,Ph u)− PhS(τ, u)‖L2 ,

which concludes the proof. �

3.4. H1-regularity of the fully discretized splitting operator

Lemma 3.8. Suppose that u ∈ H4, tn ≤ T is fixed and that h is sufficiently small compared to ‖u‖H4 and T .
Then we can bound the iterative application of the splitting operator Sh from (2.26) in H1 in terms of C̃
depending on tn and on ‖u‖H4 ,

max
1≤m≤n

‖Smh Ph Sn−m u‖H1 ≤ C̃ .

Proof. We use induction over n for tn = nτ ≤ T . For n = 1 we apply Proposition 3.3, giving

‖Sh Ph u‖H1 ≤ eC τa
2
1 ‖u‖H1 ,

where a1 = ‖u‖H1 . For n = 2 we use the consistency estimate (3.19), giving

‖S2
h Ph u‖H1 = ‖Sh Sh Ph u‖H1

≤ ‖Ph S2 u‖H1 + ‖(Ph S − Sh Ph)S u‖H1 + ‖Sh (Ph S u− Sh Ph u)‖H1

≤ ‖S2 u‖H1 + C∗ τ h+ eC τ a
2
2 ‖Ph S u− Sh Ph u‖H1

≤ ‖S2 u‖H1 + C∗ τ h
(
1 + eC τ a

2
2
)
,

where a2 = max{‖S u‖H1 , ‖Sh Ph u‖H1} and where C∗ depends in particular on ‖Sm u‖H4 , m ∈ {0, 1} as it
appears in (3.19). Here we have used the H1-bound of Theorem 3.7 for s = 2, which involves the regularity
requirement u ∈ H4. For sufficiently small h we can control the contribution of τ (1 + eC τ a

2
2) such that

‖S2
h Ph u‖H1 ≤ ‖S2 u‖H1 + C∗ ≤ C̃ ,

for a constant C̃ depending on tn and ‖u‖H4 . This follows from the regularity of the splitting solution in H4,

‖S2 u‖H4 ≤ eL4 t2 ‖u‖H4 ≤ eL4T ‖u‖H4 ≤ C̃

2
,

with L4 from (C.12).

• n 7→ n+ 1 . We assume inductively that an = max
m∈{0,...,n−1}

‖Smh Ph Sn−1−m u‖H1 satisfies an ≤ C̃ and show

an+1 ≤ C̃ .

In particular, the constant C̃ depends on T and ‖u‖H4 such that

‖Sn u‖H4 ≤ eL4 tn ‖u‖H4 ≤ C̃

2
.
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Now we use this inequality to show that ‖Snh Ph u‖H1 is bounded. In fact,

‖Snh Ph u‖H1 ≤
∥∥Ph Sn u− n∑

k=1

(
Sk−1
h Ph S Sn−k u− Sk−1

h Sh Ph Sn−k u
)∥∥
H1

≤ ‖Ph Sn u‖H1 +

n∑
k=1

‖Sk−1
h Ph S Sn−k u− Sk−1

h Sh Ph Sn−k u‖H1

≤ ‖Sn u‖H1 +

n∑
k=1

eC τ (k−1) a2n ‖Ph S Sn−k u− Sh Ph Sn−k u‖H1

≤ ‖Sn u‖H1 +

n∑
k=1

C∗ τ h eC τ (k−1) a2n ≤ ‖Sn u‖H1 + C∗ n τ h eC τ na
2
n

≤ ‖Sn u‖H1 + C∗ T h eC T a
2
n ≤ ‖Sn u‖H1 + C∗ ≤ C̃

for sufficiently small h to control tneC T a
2
n .

Obviously, we can apply the same estimate for terms of the form

‖Smh Ph Sn−m u‖H1 , m = 0 . . . n .

Hence
an+1 = max

m∈{0,...,n}
‖Smh Ph Sn−m u‖H1 ≤ C̃ .

�

This proof was inspired by [15], where an Hermite spectral discretization was considered.

4. Implementation and numerical results

4.1. Implementation aspects

For the efficient implementation of the FEM model introduced in Sec. 2, we use a method based on [12]
and [26]. To this end we choose (tensor) Gauss–Lobatto nodes of degree p on rectangular elements for the
definition of the nodal basis and for the numerical evaluation of the inner products in (2.16). These nodes allow
exact integration of polynomials up to degree 2p− 1, hence the evaluation of the matrix K, which involves the
gradients ∇v(k,j), is exact. The evaluation of the matrix M involves integrals of the form∫

Ωk

v(k,i)(x) v(k,j)(x) dx ≈
∑
`

w` v(k,i)(x`) v(k,j)(x`) =
∑
`

w` δi` δj` = wi δij ,

where wl are the associated quadrature weights. Hence the matrix M is diagonal, and M−1K preserves the
sparsity of K (see Algorithm 1), and likewise for the matrix Φ.

Analogously, the evaluation of F simplifies to

F (c) = M ·
(
c .∗ c

)
,

where .∗ denotes component-wise multiplication. For the computation of the numerical solution ψn = Snh (τ, ψ0)
for the full FEM discretization, we refer to Algorithm 1.

The obtained systems of differential equations for ϕAh can be solved efficiently via fast exponential solvers
(for instance the function expv from the package expokit, see [36], which is based on an adaptive Krylov
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Algorithm 1 A splitting solution of the Schrödinger-Poisson problem

1: procedure Schrödinger-Poisson(M,K,ψ0)
2: ψ0 . . . interpolated initial function
3: procedure Calculate matrices(vi) . vi . . .Galerkin basis functions
4: for k = 1 . . . nG do . nG . . . number of integration nodes per element
5: Ki,j := Ki,j + wk · ∇vi(xk) · ∇vj(xk) · det(Tk) . Tk . . . Jacobian of translation to xk
6: Mi,j := Mi,j + wk · vi(xk) · vj(xk) · det(Tk) . wk . . . integration weights
7: Preliminary calculation of Φ(·), F (·)
8: Φi,j := Φi,j + wk · vm(xk) · vi(xk) · vj(xk) · det(Tk) . vm vi = v2

i using vm(xk)vi(xk) = δm,iδm,k
9: Fi := Fi + wk · vi(xk)2 · vi(xk) · det(Tk)

10: end for
11: end procedure
12: t := τ . τ . . .initial time stepsize
13: ψ := ψ0

14: while t < T do
15: ψtmp := ψτ (τ, ψ, α, β) . α, β. . . splitting coefficients
16: err := error estimator(ψtmp, τ, ψ) . any suitable error estimator
17: if err < tol then
18: ψ := ψtmp, t := t+ τ
19: else
20: Choose smaller τ to reduce err
21: end if
22: end while
23: end procedure

24: procedure ψτ (τ ,ψinp,α,β)
25: ψτ := ψinp
26: for k = 1 . . . ns do . ns . . . number of splitting stages
27: ψτ = ϕBh(β(k) · τ, ϕAh(α(k) · τ, ψτ ))
28: end for
29: end procedure

30: procedure ϕAh(τ , ψinp)
31: A := −i 1

2 M
−1 ·K . A . . .temporary matrix

32: ϕAh := eτA · ψinp . matrix exponential calculated via an effective solver (expokit)
33: end procedure

34: procedure ϕBh(τ , ψinp)
35: d := −K−1 · F · |ψinp|2 . d . . . solution of Poisson problem
36: B̂ := −i M−1 · Φ · d . B̂ . . . diagonal matrix
37: ϕBh := eτB̂ · ψinp . exponential calculated via pointwise multiplication
38: end procedure

integrator, see [32]), and since K is a symmetric positive definite band matrix, the Poisson problem can be
solved efficiently by common solvers for sparse systems of linear equations.

In Algorithm 1 we have indicated a time-adaptive version based on an appropriate local error estimator. For
this purpose, one may e.g. adopt the approach from [4]. For adaptivity in space, an appropriate a posteriori
error estimator is required, but this is not in the scope of this presentation.
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4.2. Numerical example

We illustrate the performance of time-splitting for a two-dimensional test example. The problem data are
chosen as follows:

• Ω = [0, 5]2

• ψ0(x, y) = 10 e−10((x−2.5)2+(y−2.5)2) (Gaussian initial state)
• Integration from t = 0 to t = 0.1. In Figure 1 we display the wave function at time t = 0.1 using a

100×100 mesh and polynomial basis functions of degree 2, obtained via a fourth order splitting method
with time stepsize τ = 0.0005.

Global time-splitting error. For the finite element discretization we choose 25 × 25 uniform rectangular
elements of degree p = 2 with Gauss–Lobatto nodes. We apply time-splitting methods of orders q = 1 to 4,
namely Lie–Trotter splitting (q = 1), Strang splitting (q = 2), a scheme of order q = 3 with rational coefficients
by Ruth ([5, 3rd order scheme from the pair Emb 3/2 RA]), and an optimized scheme of order q = 4 by Blanes
and Moan ([5, 4th order scheme from the pair Emb 4/3 BM PRK/A]); see the collection [5] for tables of coefficients
and further references.

In Figure 2 we display the L2-norm of the global error at tn = 0.1 for different choices of the time stepsize τ
together with the observed orders q̂,

‖ψ(tn)− ψn‖L2 ≈ C τ q̂ .

A reference solution was obtained using a high order splitting scheme with a significantly refined time stepsize.

FEM approximation error. In Figure 3 we document the behavior of the spatial discretization error using
the Strang splitting method for a fixed time stepsize τ = 0.002 in dependence of the FEM-mesh for different
values of the polynomial degree p, varying the mesh parameter h from 1 to 2−6 and determining the respective
observed order p̂ of the spatial error via extrapolation for h→ 0,

‖ψ(tn)− ψn‖L2 ≈ C hp̂+1 .

Figure 1. Wave function at t = 0.1. Left: Absolute value |ψ|. Right: Real part <ψ.
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Figure 2. Global time-splitting error. Left: Global time-splitting error in L2 at t = 0.1
in dependence of the time stepsize τ for splitting methods orders q = 1 to 4. Right: Observed
order q̂.

Figure 3. Spatial approximation order. Left: FEM approximation error in L2 at t = 0.1
in dependence of the meshsize h for polynomial degree p ∈ {1, 2, 4, 6}. Right: Observed order
p̂+ 1.

Appendix A. Solution representation by variation-of-constant formulas

Since in our context nonlinear operators B and Bh arise, we will resort to the following variants of the
variation-of-constants formula. We recall that B and B̂ are defined in (2.2a) and define subflows ϕB and EB in
the subproblem (2.4a) and (2.5). In the spatially discrete case, the operators Bh and B̂h are defined in (2.23)
and define the subproblems (2.15a) and (2.24) for the evolutionary operators ϕBh and EBh .

(i) Same operators Bh, but with different argument.
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To rewrite the difference

ϕBh(τ, u)− EBh(τ, ũ)u = EBh(τ, u)u︸ ︷︷ ︸
v(τ)

−EBh(τ, ũ)u︸ ︷︷ ︸
w(τ)

,

we use the fact that for all φh ∈ Vh,(
v′(τ), φh

)
L2 =

(
B̂h(u) v(τ), φh

)
L2 ,

(
w′(τ), φh

)
L2 =

(
B̂h(ũ)w(τ), φh

)
L2 , v(0) = w(0) ,

which defines a new differential equation,{ (
(v − w)′(τ), φh

)
L2 =

(
B̂h(ũ)

(
v − w

)
(τ) +

(
B̂h(u)− B̂h(ũ)

)
v(τ), φh

)
L2 ,(

(v − w)(0), φh
)
L2 = 0 .

By the variation-of-constant formula we obtain the mild formulation

(
v − w)(τ)u =

∫ τ

0

EBh(τ − σ, ũ)
(
B̂h(u)− B̂h(ũ)

)
EBh(σ, u)udσ . (A.1)

(ii) Different operators B, Bh.
To rewrite the difference

EB(τ, ũ)u− ϕBh(τ, u) = EB(τ, ũ)u︸ ︷︷ ︸
v(τ)

−EBh(τ, u)u︸ ︷︷ ︸
w(τ)

,

we use the fact that Vh ⊂ V, such that for all φh ∈ Vh,(
v′(τ), φh

)
L2 =

(
B̂(ũ) v(τ), φh

)
L2 ,

(
w′(τ), φh

)
L2 =

(
B̂h(u)w(τ), φh

)
L2 , v(0) = w(0) .

Again we obtain a differential equation,{ (
(v − w)′(τ), φh

)
L2 =

(
B̂h(u)

(
v − w

)
(τ) +

(
B̂(ũ)− B̂h(u)

)
v(τ), φh

)
L2 ,(

(v − w)(0), φh
)
L2 = 0

such that the variation-of-constant formula yields

(
v − w)(τ)u =

∫ τ

0

EBh(τ − σ, u)
(
B̂(ũ)− B̂h(u)

)
EB(σ, ũ)udσ . (A.2)

Appendix B. Useful inequalities

In our theoretical estimates, we recurrently resort to estimates of Sobolev type. For convenience of the
reader, we briefly recapitulate these technical tools here. We start by repeating some elementary notions from
functional analysis, see for example [9, 16, 29]. The underlying space is L2 equipped with the inner product
(·, ·)L2 ,

(v, w)L2 =

∫
Ω

v(x)w(x) dx , v, w ∈ L2 ,

and the norm ‖ · ‖L2 , where Ω is a bounded domain with smooth boundary (for the Sobolev embeddings cited
below, it is necessary that Ω satisfies the cone condition).
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The set of all functions in L2 having weak derivatives up to order ≤ k is denoted as the Sobolev space Hk.
It is equipped with the norm

‖u‖Hk :=
(∑

α

‖∂αu‖2L2

)1/2

,

where the sum is over all derivatives up to order k.
Furthermore, we will denote by ‖ · ‖L∞ the supremum norm on the space of functions bounded almost

everywhere.
In our analysis, we will make use of the following results, see for instance [9]. Our formulations are specific

to Rd, d ∈ {2, 3}:

Theorem B.1. Let k,m ∈ N such that k − m > 3/2. Then for u ∈ Hk there is a Cm function in the L2

equivalence class of u and
‖u‖Cm :=

∑
‖∂αu‖L∞ ≤ C‖u‖Hk ,

where the sum is over all derivatives of order up to m.

This implies the following inequalities, see for instance [1], [9], [18], and [29]:

Corollary B.2. For u, v ∈ H2, the following inequalities hold:

‖uv‖L2 ≤ ‖u‖L2‖v‖L∞ ≤ C ‖u‖L2‖v‖H2 ,

‖uv‖H1 ≤ C ‖u‖H1‖v‖H2 ,

‖uv‖H2 ≤ C ‖u‖H2‖v‖H2 ,

‖uv‖L2 ≤ C ‖u‖L4‖v‖L4 ≤ C‖u‖H1‖v‖H1 ,

‖uvw‖L2 ≤ C‖u‖L6‖v‖L6‖w‖L6 ≤ C‖u‖H1‖v‖H1‖w‖H1 .

Appendix C. Auxiliary results

This section contains a collection of useful theorems and bounds which are used in the convergence theory
in Section 3.

C.1. Conservation and stability properties of the subflows

Proposition C.1.
(i) The evolution operator ϕA(t) is unitary with respect to ‖ · ‖L2 and ‖ · ‖H1 , for t > 0 and u ∈ H1

0 ,

‖ϕA(t)u‖L2 = ‖u‖L2 , (C.1a)
‖ϕA(t)u‖H1 = ‖u‖H1 . (C.1b)

(ii) The evolution operator ϕB(t, · ) is unitary with respect to ‖ · ‖L2 for t > 0 and u ∈ H1
0 ,

‖ϕB(t)u‖L2 = ‖u‖L2 . (C.2)

Proof. (i) We proceed from the weak formulation (2.9a),{
(∂tψ, φ)L2 = − i (Θψ, φ)L2 for all φ ∈ H1

0 ,

ψ
∣∣
t=0

= u ,
(C.3)

set φ = ψ = ϕA(t, u),
(∂tψ,ψ)L2 = − 1

2 i (∇ψ,∇ψ)L2 ,
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and obtain
∂t‖ψ‖2L2 = ∂t(ψ,ψ)L2 = 2<(∂tψ,ψ)L2 = <(−i (∇ψ,∇ψ)L2) = 0 ,

which implies (C.1a). Furthermore, setting φ = ∂tψ = ∂t ϕA(t, u) in (C.3),

‖∂tψ‖L2 = (∂tψ, ∂tψ)L2 = − 1
2 i (∇ψ,∇∂tψ)L2 ,

we obtain
∂t|ψ|2H1 = ∂t(∇ψ,∇ψ)L2 = 2<(∇ψ,∇∂tψ)L2 = 2<(2 i ‖∂tψ‖2L2) = 0 ,

which together with (C.1a) implies (C.1b).
(ii) For the flow defined by (2.5), ∂tψ = B̂(w)ψ, ψ

∣∣
t=0

= u, and ψ = EB(t, w)u we have

∂t‖ψ‖2L2 = 2< (ψ, B̂(w)ψ)L2 = 2< (|ψ|2, B̂(w))L2 = 0,

which, in particular, implies (C.2).
�

Remark C.2. More generally, the Hk-norms for k ≥ 1 are conserved under the flow ϕA(t). To see this, we
consider the strong formulation (2.3a), ∂tψ = Aψ, ψ(0) = u, with u ∈ Hk+2 ∩ H1

0 and wish to show that
‖∂kxψ‖L2 = ‖∂kxu‖L2 for any partial derivative ∂x. We compute

∂t(∂
k
xψ, ∂

k
xψ)L2 = 2<(∂kx∂tψ, ∂

k
xψ)L2 = 2<

(
1
2 i (∂k+2

x ψ, ∂kxψ)L2

)
= <

(
− i ‖∂k+1

x ψ‖2L2

)
= 0 .

Via a density argument, the result also holds for all ψ ∈ Hk ∩H1
0 .

C.2. Conservation and stability properties of the discrete subflows

For our convergence analysis we will make use of the following facts.

Proposition C.3.
(i) The evolution operator ϕAh(t) is unitary with respect to ‖ · ‖L2 and ‖ · ‖H1 , for t > 0 and uh ∈ Vh,

‖ϕAh(t)uh‖L2 = ‖uh‖L2 , (C.4a)
‖ϕAh(t)uh‖H1 = ‖uh‖H1 . (C.4b)

(ii) The evolution operator EBh(t, · ) is unitary with respect to ‖ · ‖L2 i.e., for t > 0 and uh, wh ∈ Vh,

‖EBh(t, wh)uh‖L2 = ‖uh‖L2 . (C.5a)

For wh = uh, this implies ‖ϕBh(t, uh)‖L2 = ‖uh‖L2 . Furthermore, EBh(t, · ) satisfies the differential
inequality

∂t|EBh(t, wh)uh|H1 ≤ ‖EBh(t, wh)uh∇Θh‖L2 , (C.5b)
where Θh = ∆−1

h (|wh|2).

Proof. (i) For uh ∈ Vh and ψh = ϕAh(t)uh ∈ Vh we have ∂tψh = 1
2 i ∆hψh. Hence by the definition of the

discrete Laplacian (2.21a),

∂t‖ψh‖2L2 = ∂t(ψh, ψh)L2 = 2<(∂tψh, ψh)L2 = <(i ∆hψh, ψh)L2 = −<(i∇ψh,∇ψh)L2 = 0 ,

which implies (C.4a). Furthermore,

∂t|ψh|2H1 = ∂t(∇ψh,∇ψh)L2 = 2<(∇ ∂tψh,∇ψh)L2 = −2<(∂tψh,∆hψh)L2

= −2<(∂tψh,− 2 i ∂tψh)L2 = −4=(∂tψh, ∂tψh)L2 = 0 ,
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which implies (C.4b).
(ii) For uh, wh ∈ Vh and ψh = EBh(t, wh)uh we have ∂tψh = −i Θhψh with Θh = ∆−1

h (|wh|2), hence

∂t ‖ψh‖2L2 = ∂t(ψh, ψh)L2 = 2<(∂tψh, ψh)L2 = 2=(Θh ψh, ψh)L2 = 0,

since Θh is real. This implies (C.5a).
On the other hand, EBh does not conserve the H1-norm. To derive a bound we compute

∂t|ψh|2H1 = ∂t(∇ψh,∇ψh)L2 = 2<(∇ ∂tψh,∇ψh)L2 = 2<(− i (∇(Θhψh),∇ψh)L2)

= 2=(Θh∇ψh,∇ψh)L2 + 2=(ψh∇Θh,∇ψh)L2 = 0 + 2=(ψh∇Θh,∇ψh)L2 ,

and estimate

2 |ψh|H1 ∂t|ψh|H1 = ∂t|ψh|2H1 ≤ 2
∣∣(ψh∇Θh,∇ψh)L2

∣∣ ≤ 2 ‖ψh∇Θh‖L2

∣∣ψh∣∣H1 .

This implies (C.5b),

∂t|ψh|H1 ≤ ‖ψh∇Θh‖L2 for ψh = EBh(t, wh)uh ,

concluding the proof.
�

C.3. Interpolation bounds and inverse estimates

In our convergence analysis we will refer to the following standard interpolation and inverse estimates.

Theorem C.4. Suppose 1 < p <∞ and m− d/p > 0. Then, for 0 ≤ s ≤ m and u ∈Wm
p ,

‖u− Ih u‖W s
p
≤ C hm−s |u|Wm

p
, (C.6)

where C depends on m and d.
Furthermore,

‖u− Ih u‖L∞ ≤ Chm−d/p |u|Wm
p
, (C.7)

where C depends on m and d.

This follows from our assumptions and [9, Theorem 4.4.20].

Theorem C.5. Suppose that the boundary of Ω is such that (2.13) holds. Then,

‖u− Phu‖L2 ≤ C hm|u|Hm .

The proof relies on a duality argument and can be found in [9, Theorem 5.4.8].

Theorem C.6 (Inverse estimate). Suppose that 0 < h < 1. Then there exists C such that

‖uh‖H1 ≤ C h−1 ‖uh‖L2

for all uh ∈ Vh.

This follows from the remark of [9, Theorem 4.5.11].
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C.4. Bounds involving ∆−1
h

At first we note the H1-regularity property (see (2.22)),

‖uh‖H1 = ‖∆−1
h f‖H1 = ‖Ph ∆−1f‖H1 ≤ C ‖∆−1f‖H1 ≤ C ‖f‖H−1 . (C.8)

The following estimate will be useful:

Proposition C.7. For f ∈ L2 and g ∈ H1,

‖f g‖H−1 ≤ C ‖f‖L2 ‖g‖H1 , (C.9)

where C depends on d and on Ω.

Proof. We apply Cauchy-Schwarz and Hölder inequalities and the Sobolev embedding of H1 in L4,

‖f g‖H−1 = sup
‖v‖H1=1

|(f g, v)L2 | ≤ sup
‖v‖H1=1

‖f‖L2 ‖g v‖L2 ≤ sup
‖v‖H1=1

‖f‖L2 ‖g‖L4 ‖v‖L4 ≤ C ‖f‖L2 ‖g‖H1 ,

completing the proof. �

Proposition C.8. For a ∈ L2 and b, c ∈ H1
0 ,

‖∆−1
h (a b) c‖L2 ≤ C ‖a‖L2 ‖b‖H1 ‖c‖H1 ,

where C depends on d and on Ω.

Proof. We use Hölder’s inequality, the Sobolev embedding of H1 in L4, the estimate (C.8), and Proposition C.7:

‖∆−1
h (a b) c‖L2 ≤ ‖∆−1

h (a b)‖L4 ‖c‖L4 ≤ C ‖∆−1
h (a b)‖H1 ‖c‖H1

≤ C ‖a b‖H−1 ‖c‖H1 ≤ C ‖a‖L2 ‖b‖H1 ‖c‖H1 ,

completing the proof. �

Proposition C.9. For a, b, c ∈ H1
0 ,

‖(∇∆−1
h (a, b)) c‖L2 ≤ C ‖a‖L3 ‖b‖L3 ‖c‖H1 + C h ‖a‖L6 ‖b‖L6 ‖c‖H1 ,

with a constant C depending on d and Ω.

Proof. We use Hölder’s inequality, apply Theorem C.4, and use the Sobolev embedding of H1 in L6,

‖(∇∆−1
h (a b)) c‖L2 ≤ ‖∇∆−1

h (a b)‖L3 ‖c‖L6

≤ ‖∇(∆−1
h −∆−1) (a b)‖L3 ‖c‖L6 + ‖∇∆−1(a b)‖L3 ‖c‖L6

≤ C h |∆−1(a b)|W 2
3
‖c‖L6 + ‖∆−1(a b)‖W 1

3
‖c‖L6

≤ C h ‖a b‖L3 ‖c‖L6 + ‖a b‖W−1
3
‖c‖L6

≤ C h ‖a‖L6 ‖b‖L6 ‖c‖H1 + C ‖a b‖W−1
3
‖c‖H1

≤ C h ‖a‖L6 ‖b‖L6 ‖c‖H1 + C ‖a‖L3 ‖b‖L3 ‖c‖H1 ,

where the last inequality follows from a duality argument and the Hölder inequality, ‖a b‖W−1
3
≤ ‖a‖L3 ‖b‖L3 . �

Corollary C.10. For a, b, c ∈ H1
0 ,

‖(∇∆−1
h (a b)) c‖L2 ≤ C (1 + h)‖a‖H1 ‖b‖H1 ‖c‖H1 . (C.10)

Proof. This follows from Proposition C.9 and the Sobolev embeddings of H1 in L3 and L6. �
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C.5. Conditional H1-stability of the evolution operator EBh(t, · )
Proposition C.11. For φ, ξ ∈ Vh, the evolution operator EBh(t, · ) defined in (2.25b) satisfies

‖EBh(t, φ) ξ‖H1 ≤ et C‖φ‖
2
H1 ‖ξ‖H1 , (C.11)

with a constant C depending on d and Ω.

Proof. Let ψh = EBh(t, φ) ξ and Θh = ∆−1
h (|φ|2) = ∆−1

h (φ · φ). According to (C.5b),

∂t ‖ψh‖H1 = ∂t|ψh|H1 ≤ ‖ψh∇Θh‖L2 .

From Corollary C.10 we obtain

∂t ‖ψh‖H1 = ‖ψh∇Θh‖L2 ≤ C (1 + h)‖φ‖H1 ‖φ‖H1 ‖ψh‖H1

which entails (C.11) for h < 1. �

C.6. Hm-regularity of the semi-discrete splitting solution

Here we show that an Hm-bound for the semi-discrete splitting solution Sn ψ0 defined in (2.7) depends
linearly on the Hm-norm of the initial value ψ0 times an exponential function depending on lower order Sobolev
norms. Hence for bounded times nτ ≤ T , the Hm-norm of the semi-discrete splitting solution will not behave
worse than the Hm-norm of the initial value.

Proposition C.12. Let m ∈ N. If ψ0 ∈ Hm and

‖Sn ψ0‖H1 ≤M1 for all n with nτ ≤ T,

then
‖Sn ψ0‖Hm ≤ eLm nτ ‖ψ0‖Hm for nτ ≤ T , m ≥ 2 , (C.12)

where Lm depends on M1 and on ‖ψ0‖Hj for all j < m. The specific dependence is indicated in the proof.

Proof. Since ϕA conserves the Hm-norm, we only consider the properties of the splitting operator ϕB , which is
the solution of (see Sec. 2) {

∂τψ = − i ∆−1(|u|2)ψ ,

ψ
∣∣
t=0

= u .
(C.13)

The basic idea is to bound the right-hand side of (C.13) in the corresponding Hm-norm, using the following
estimates. By the Hölder inequality and the Sobolev embeddings of H2 in L∞ and H1 in L4, we have

‖u v‖Hm ≤ C
m∑
j=2

‖u‖Hj‖v‖Hm−j+2 , m ≥ 2 .

We further use the bound

‖∆−1(|u|2)‖H2 ≤ C ‖|u|2‖L2 ≤ C ‖u‖2H1 ,

‖∆−1(|u|2)‖Hm ≤ C ‖|u|2‖Hm−2 ≤ C ‖u‖2Hl , l = max{2,m− 2} , for m ≥ 3 ,

and obtain

‖∆−1(|u|2) v‖H2 ≤ C ‖u‖2H1‖v‖H2 , (C.14a)

‖∆−1(|u|2) v‖Hm ≤ C
m−2∑
j=2

‖u‖2Hm−j‖v‖Hj + C ‖u‖2H2‖v‖Hm−1 + C ‖u‖2H1‖v‖Hm for m ≥ 3 . (C.14b)
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For the proof of (C.12), we first proceed along the lines of the arguments from [27], where the result was shown
for m = 2 and then extend the result for m ∈ {3, 4, 5}. For higher values of m the proof works analogously but
becomes technically more and more involved.

• m = 2 : From (C.13) we obtain an integral inequality in the H2-norm using the bound (C.14a),

‖ψ(τ)‖H2 ≤ ‖u‖H2 +

∫ τ

0

CM2
1 ‖ψ(σ)‖H2 dσ ,

where ‖u‖H1 ≤M1.
By a Gronwall argument it follows that

‖ψ(τ)‖H2 ≤ eτ C M
2
1 ‖u‖H2 ,

and thus ‖S ψ0‖H2 ≤ eτ C M
2
1 ‖ψ0‖H2 . Iterative application yields

‖Sn ψ0‖H2 ≤ enτ CM
2
1 ‖ψ0‖H2 (C.15)

and the constant L2 reads L2 = CM2
1 .

• m = 3 : Again, we bound the right-hand side of (C.13). By (C.14b), we obtain for m = 3,

‖∆−1(|u|2)ψ(τ)‖H3 ≤ C ‖u‖2H1‖ψ(τ)‖H3 + C ‖u‖2H2‖ψ(τ)‖H2 .

Hence,

‖ψ(τ)‖H3 ≤ ‖u‖H3 +

∫ τ

0

(
C ‖u‖2H1‖ψ(σ)‖H3 + C ‖u‖2H2‖ψ(σ)‖H2

)
dσ ,

and by a Gronwall argument it follows that

‖ψ(τ)‖H3 ≤ eτ C M
2
1
(
‖u‖H3 + τ sup

0≤σ≤τ
C ‖u‖2H2‖ψ(σ)‖H2

)
.

Setting ψ = Sn ψ0, u = Sn−1 ψ0, and inserting the bound (C.15) for the H2-norms, we conclude that

‖Sn ψ0‖H3 ≤ eτ C M
2
1 ‖Sn−1 ψ0‖H3 + τ C eτ C M

2
1 e2(n−1)τ C M2

1 ‖ψ0‖2H2 enτ CM
2
1 ‖ψ0‖H2

≤ eτ C M
2
1 ‖Sn−1 ψ0‖H3 + τ C e3nτ CM2

1 ‖ψ0‖3H2

≤ enτ CM
2
1 ‖ψ0‖H3 +

n−1∑
i=0

τ C e3nτ CM2
1 ‖ψ0‖3H2

≤ enτ CM
2
1 ‖ψ0‖H3 + nτ C e3nτ CM2

1 ‖ψ0‖2H2 ‖ψ0‖H3

≤ e3nτ CM2
1
(
1 + nτ C ‖ψ0‖2H2

)
‖ψ0‖H3

≤ e3nτ CM2
1 enτ C ‖ψ0‖2H2 ‖ψ0‖H3

≤ enτ C (3M2
1 +‖ψ0‖2H2 ) ‖ψ0‖H3 .

• m = 4 : From (C.14b) and (C.13) we obtain

‖ψ(τ)‖H4 ≤ ‖u‖H4 +

∫ τ

0

(
C ‖u‖2H1‖ψ(σ)‖H4 + C ‖u‖2H2‖ψ(σ)‖H3 + C ‖u‖2H2‖ψ(σ)‖H2

)
dσ ,



34

hence

‖ψ(τ)‖H4 ≤ eτ C M
2
1

(
‖u‖H4 + τ C ‖u‖2H2 sup

0≤σ≤τ

(
‖ψ(σ)‖H3 + ‖ψ(σ)‖H2

))
.

Setting ψ = Sn ψ0 and u = Sn−1 ψ0 and following the argument for m = 3, we conclude that

‖Sn ψ0‖H4 ≤ eτ C M
2
1 ‖Sn−1 ψ0‖H4

+ τ C e2nτ CM2
1 ‖ψ0‖2H2

(
enτ C (3M2

1 +‖ψ0‖2H2 ) ‖ψ0‖H3 + enτ CM
2
1 ‖ψ0‖H2

)
≤ eτ C M

2
1 ‖Sn−1 ψ0‖H4 + τ C enτ C (5M2

1 +‖ψ0‖2H2 ) ‖ψ0‖2H2 ‖ψ0‖H3

≤ enτ CM
2
1 ‖ψ0‖H4 + nτ C enτ C (5M2

1 +‖ψ0‖2H2 ) ‖ψ0‖2H2 ‖ψ0‖H4

≤ enτ C (5M2
1 +‖ψ0‖2H2 )

(
1 + nτ C ‖ψ0‖2H2

)
‖ψ0‖H4

≤ enτ C (5M2
1 +2 ‖ψ0‖2H2 ) ‖ψ0‖H4 .

• m = 5 : In a similar way as before we obtain

‖ψ(τ)‖H5 ≤ ‖u‖H5 + C

∫ τ

0

‖u‖2H1‖ψ(σ)‖H5 + ‖u‖2H2(‖ψ(σ)‖H4 + ‖ψ(σ)‖H3) + ‖u‖2H3‖ψ(σ)‖H2 dσ

and thus

‖Sn ψ0‖H5 ≤ eτ C M
2
1 ‖Sn−1 ψ0‖H5 + τ C e2nτ CM2

1 ‖ψ0‖2H2

(
enτ C (5M2

1 +2 ‖ψ0‖2H2 ) ‖ψ0‖H4

+ enτ C (3M2
1 +‖ψ0‖2H2 ) ‖ψ0‖H3

)
+ τ C e2nτ C (3M2

1 +‖ψ0‖2H2 )‖ψ0‖2H3 enτ CM
2
1 ‖ψ0‖H2

≤ eτ C M
2
1 ‖Sn−1 ψ0‖H5 + τ C enτ C (7M2

1 +2‖ψ0‖2H2 ) ‖ψ0‖H2 ‖ψ0‖H3 ‖ψ0‖H4

≤ enτ C (7M2
1 +2‖ψ0‖2H2 )

(
1 + nτ C ‖ψ0‖2H3

)
‖ψ0‖H5

≤ enτ C (7M2
1 +2 ‖ψ0‖2H2+‖ψ0‖2H3 ) ‖ψ0‖H5 .

�
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