
Setup of Order Conditions for Splitting
Methods?

Winfried Auzinger1, Wolfgang Herfort1, Harald Hofstätter1, and
Othmar Koch2

1 Technische Universität Wien, Austria
w.auzinger@tuwien.ac.at, w.herfort@tuwien.ac.at,

hofi@harald-hofstaetter.at,
www.asc.tuwien.ac.at/~winfried, www.asc.tuwien.ac.at/~herfort,

www.harald-hofstaetter.at
2 Universität Wien, Austria
othmar@othmar-koch.org,
www.othmar-koch.org

Abstract. For operator splitting methods, an approach based on Taylor
expansion and the particular structure of its leading term as an element
of a free Lie algebra is used for the setup of a system of order conditions.
Along with a brief review of the underlying theoretical background, we
discuss the implementation of the resulting algorithm in computer alge-
bra, in particular using3 Maple 18. A parallel version of such a code is
described, and its performance on a computational node with 16 threads
is documented.

Keywords: Evolution equations, splitting methods, order conditions,
local error, Taylor expansion, parallel processing

1 Introduction

The construction of higher order discretization schemes of one-step type for the
numerical solution of evolution equations is typically based on the setup and so-
lution of a system of polynomial equations for a number of unknown coefficients.
Classical examples are Runge-Kutta methods, and their various modifications,
see e.g. [9].

To design particular schemes, we need to understand:

(i) how to generate a system of algebraic equations for the coefficients of the
higher-order method sought,

(ii) how to solve the resulting system of polynomial equations.

Here we focus on (i) which depends on the particular class of methods one is
interested in.4 We consider operator splitting methods, which are based on the

? The final publication is available at Springer http://download.springer.com/
3 Maple is a trademark of MapleSoftTM.
4 The aspect (ii) enters the discussion in [2]

2 Winfried Auzinger et al.

idea of approximating the exact flow of an evolution equation by compositions of
(usually two) separate subflows which are easier to evaluate. Splitting methods
represent a very useful class of one-step methods for certain types of evolution
equations, as for instance Schrödinger type equations, and if the operator split-
ting is done in an appropriate way, they have very good stability properties
(possibly with complex instead of real coefficients for the case of parabolic equa-
tions). The more difficult problem is to find coefficients such that a higher order
of accuracy is obtained, i.e., coping with (i) and (ii),

Computer algebra is an indispensable tool for dealing with (i). Typically
there is a tradeoff between ‘manual’ a priori analysis and machine driven au-
tomatization. For operator-splitting methods, a well-known approach is based
on a cumbersome recursive application of the Baker-Campbell-Hausdorff (BCH)
formula, see [8]. Here we are advocating another approach, namely implementa-
tion of an algorithm for (i) which runs in a fully automatic mode. This approach
is described in [1] and [2]; it is based on Taylor expansion and a theoretical
result concerning the structure of the leading term in this expansion. This has
the advantage that explicit knowledge of the BCH coefficients is not required. It
may be called a generic, ‘brute-force’ approach. The efficiency of such a general
algorithm cannot be optimal in an overall sense; on the other hand, it is easy
to implement with optimal speedup on a parallel computer. Moreover, it can be
easily adapted to special cases like coefficient symmetries, to operator splitting
into more than two parts, and to pairs of splitting schemes akin to embedded
Runge-Kutta methods.

In the present paper we focus on the implementation aspect, in particular in
a parallel environment. The preparation of a parallel version was motivated by
the computational complexity which strongly grows when the desired order is
increased. Our parallel code scales in computation time at an (almost) optimal
rate, and this speedup is of great practical advantage when trying out different
variants, especially for more complex higher-order cases. This may also be viewed
as a hardness test for parallelization in Maple.

Topic (ii) is not discussed in this paper. Details concerning the theoretical
background and a discussion concerning concrete results and optimized schemes
obtained are given in [2], and a collection of optimized schemes can be found
at [3]. We note that a related approach has recently also been considered in [5].

In the rest of this introductory section we describe the mathematical back-
ground. In Section 2 we review our algorithm introduced in [1, 2] based on Taylor
expansion of the local error. A parallel implementation is described in Section 3.
Modifications and extensions are indicated in Section 4, and performance mea-
sures are documented in Section 5 by means of some examples.

1.1 Splitting Methods for the Integration of Evolution Equations

In many applications, the right hand side F (u) of an evolution equation

∂tu(t) = F (u(t)) = A(u(t)) +B(u(t)), t ≥ 0, u(0) given, (1)

Order Conditions for Splitting Methods 3

splits up in a natural way into two terms A(u) and B(u), where the separate
integration of the subproblems

∂tu(t) = A(u(t)), ∂tu(t) = B(u(t))

is much easier to accomplish than for the original problem.

Example 1. The solution of a linear ODE system with constant coefficients,

∂tu(t) = (A+B)u(t),

is given by
u(t) = et(A+B) u(0).

The simplest splitting approximation (‘Lie-Trotter’), starting at some initial
value u and applied with a time step of length t = h, is given by

S(h, u) = ehB ehA u ≈ eh(A+B)u.

This is not exact (unless AB = BA), but it satisfies

‖(ehB ehA − eh(A+B))u‖ = O(h2) for h→ 0,

and the error of this approximation depends on behavior of the commutator
[A,B] = AB −BA. ut
A general splitting method takes steps of the form5

S(h, u) = Ss(h,Ss−1(h, . . . ,S1(h, u))) ≈ ΦF (h, u), (2a)

with
Sj(h, v) = ΦB(bj h, ΦA(aj h, v)), (2b)

where the (real or complex) coefficients aj , bj have to be found such that a certain
desired order of approximation for h→ 0 is obtained.

The local error of a splitting step is denoted by

S(h, u)− ΦF (h, u) =: L(h, u). (3)

For our present purpose of finding asymptotic order conditions it is sufficient
to consider the case of a linear system, F (u) = F u = Au + B u with linear
operators A and B. We denote

Aj = aj A, Bj = bj B, j = 1 . . . s.

Then,
S(h, u) = S(h)u, S(h) = Ss(h)Ss−1(h) · · · S1(h) ≈ ehF , (4a)

with
Sj(h) = ehBj ehAj , j = 1 . . . s. (4b)

For the linear case the local error (3) is of the form L(h)u with the linear operator
L(h) = S(h)− ehF .

5 By ΦF we denote the flow associated with the equation ∂tu = F (u), and ΦA, ΦB are
defined analogously.

4 Winfried Auzinger et al.

1.2 Commutators

Commutators of the involved operators play a central role. For formal consis-
tency, we call A and B the ‘commutators of degree 1’. There is (up to sign) one
non-vanishing6 commutator of degree 2,

[A,B] := AB −BA,

and there are two non-vanishing commutators of degree 3,

[A, [A,B]] = A [A,B]− [A,B]A, [[A,B], B] = [A,B]B −B [A,B],

and so on; see Section 2.2 for commutators of higher degrees.

2 Taylor Expansion of the Local Error

2.1 Representation of Taylor Coefficients

Consider the Taylor expansion, about h = 0, of the local error operator L(h) of a
consistent one-step method (satisfying the basic consistency condition L(0) = 0),

L(h) =

p∑
q=1

hq

q!

dq

dhq
L(h)

∣∣∣
h=0

+ O(hp+1). (5)

The method is of asymptotic order p iff L(h) = O(hp+1) for h → 0; thus the
conditions for order ≥ p are given by

d

dh
L(h)

∣∣∣
h=0

= . . . =
dp

dhp
L(h)

∣∣∣
h=0

= 0. (6)

The formulas in (6) need to be presented in a more explicit form, involving the
operators A and B. For a splitting method (4), a calculation based on the Leibniz
formula for higher derivatives shows7 (see [2])

dq

dhq
L(h)

∣∣∣
h=0

=
∑
|k|=q

(
q

k

) ∏
j=s...1

kj∑
`=0

(
kj
`

)
B`

j A
kj−`
j − (A+B)q, (7)

with k = (k1, . . . , ks) ∈ Ns
0.

Representation of (7) in Maple. The non-commuting operators A and B are
represented by symbolic variables A and B, which can be declared to be non-
commutative making use of the corresponding feature implemented in the pack-
age Physics. Now it is straightforward to generate the sum (7), with unspecified
coefficients aj , bj , using standard combinatorial tools; for details see Section 3.

6 ‘Non-vanishing’ means non-vanishing in general (generic case, with no special as-
sumptions on A and B).

7 If A and B commute, i.e., AB = BA, then all these expressions vanish.

Order Conditions for Splitting Methods 5

2.2 The Leading Term of the Local Error Expansion

Formally, the multinomial sums in the expressions (7) are multivariate homoge-
neous polynomials of total degree q in the variables aj , bj , j = 1 . . . s, and the
coefficients of these polynomials are power products of total degree q composed
of powers of the non-commutative symbols A and B.

Example 2 ([2]). For s = 2 we obtain

d

dh
L(h)

∣∣∣
h=0

= (a1 + a2)A+ (b1 + b2)B − (A+B),

d2

dh2
L(h)

∣∣∣
h=0

= ((a1 + a2)2)A2 + (2 a2 b1)AB

+ (2 a1 b1 + 2 a1 b2 + 2 a2 b2)BA+ ((b1 + b2)2)B2

− (A2 +AB +BA+B2).

The consistency condition for order p ≥ 1 reads d
dh L(h)

∣∣
h=0

= 0, which is
equivalent to a1 + a2 = 1 and b1 + b2 = 1.

At first sight, for order p ≥ 2 we need 4, or (at second sight) 2 additional

equations to be satisfied, such that d2

dh2 L(h)
∣∣
h=0

= 0. However, assuming that

the conditions for order p ≥ 1 are satisfied, the second derivative d2

dh2 L(h)
∣∣
h=0

simplifies to the commutator expression

d2

dh2
L(h)

∣∣∣
h=0

= (2 a2 b1 − 1) [A,B],

giving the single additional condition 2 a2 b1 = 1 for order p ≥ 2. Assuming now
that a1, a2 and b1, b2 are chosen such that all conditions for p ≥ 2 are satisfied,

the third derivative d3

dh3 L(h)
∣∣
h=0

, which now represents the leading term of the
local error, simplifies to a linear combination of the commutators [A, [A,B]] and
[[A,B], B], of degree 3, namely

d3

dh3
L(h)

∣∣∣
h=0

= (3 a22 b1 − 1) [A, [A,B]] + (3 a2 b
2
1 − 1) [[A,B], B]. ut

Remark 1. The classical second-order Strang splitting method corresponds to
the choice a1 = 1

2 , b1 = 1, a2 = 1
2 , b2 = 0, or a1 = 0, b1 = 1

2 , a2 = 1, b2 = 1
2 .

The observation from this simple example generalizes as follows:

Proposition 1. The leading term dp+1

dhp+1 L(h)
∣∣
h=0

of the Taylor expansion of
the local error L(h) of a splitting method of order p is a Lie element, i.e., it is
a linear combination of commutators of degree p+ 1.

Proof. See [1, 8]. ut

6 Winfried Auzinger et al.

Example 3. Assume that the coefficients aj , bj , j = 1 . . . s have been found such
that the associated splitting scheme is of order p ≥ 3 (this necessitates s ≥ 3).
This means that

d

dh
L(h)

∣∣∣
h=0

=
d2

dh2
L(h)

∣∣∣
h=0

=
d3

dh3
L(h)

∣∣∣
h=0

= 0,

and from Proposition 1 we know that

d4

dh4
L(h)

∣∣∣
h=0

= γ1 [A, [A, [A,B]]] + γ2 [A, [[A,B], B]] + γ3 [[[[A,B], B], B]

holds, with certain coefficients γk depending on the aj and bj . Here we have
made use of the fact that there are three independent commutators of degree 4
in A and B. ut

Targeting for higher-order methods one needs to know a basis of commutators
up to a certain degree. The answer to this question is known, and a full set of
independent commutators of degree q can be represented by a set of words of
length q over the alphabet {A,B}. A prominent example is the set of Lyndon-
Shirshov words (see [6]) displayed in Table 1. A combinatorial algorithm due to
Duval [7] can be used to generate this table.

Here, for instance, the word AABBB represents the commutator

[A, [[[A,B], B], B]] =

A2B3 − 3ABAB2 + 3AB2AB − 2AB3A+ 3BAB2A− 3B2ABA+B3A2,

with leading power product A2B3 = AABBB (w.r.t. lexicographical order).

q Lq Lyndon-Shirshov words over the alphabet {A, B}
1 2 A, B

2 1 AB

3 2 AAB, ABB

4 3 AAAB, AABB, ABBB

5 6 AAAAB, AAABB, AABAB, AABBB, ABABB, ABBBB

6 9 AAAAAB, AAAABB, AAABAB, AAABBB, AABABB, AABBAB, AABBBB, ABABBB, ABBBBB

7 18 . . .

8 30 . . .

9 56 . . .

10 99 . . .
...

...
. . .

Table 1. Lq is the number of words of length q.

Order Conditions for Splitting Methods 7

2.3 The Algorithm: Implicit Recursive Elimination

On the basis of Proposition 1, and with a table of Lyndon-Shirshov words avail-
able, we can build up a set of conditions for order ≥ p for a splitting method
with s stages in the following way (recall the notation Aj := aj A, Bj = bj B).
This procedure corresponds to [1, Algorithm 2]:

For q = 1 . . . p :

– Generate the symbolic expressions (7) in the indeterminate coefficients aj , bj
and the non-commutative variables A and B.

– Extract the coefficients of the power products (of degree q) represented by
all Lyndon-Shirshov words of length q, resulting in a set of Lq polynomials
Pq,k(aj , bj) of degree q in the coefficients aj and bj.

The resulting set of
∑p

q=1 Lq multivariate polynomial equations

Pq,k(aj , bj) = 0, k = 1 . . . Lq, q = 1 . . . p (8)

represents the desired conditions for order p.
We call this procedure implicit recursive elimination, because the equations

generated in this way are correct in an ‘a posteriori’ sense (cf. Example 2):

– For q = 1, the basic consistency equations

P1,1(aj , bj) = a1 + . . .+ as − 1 = 0,

P1,2(aj , bj) = b1 + . . .+ bs − 1 = 0,
(9a)

are obtained.
– Assume that (9a) is satisfied. Then, due to Proposition 1, the additional

(quadratic) equation (note that L2 = 1)

P2,1(aj , bj) = 0, (9b)

represents one additional condition for a scheme of order p = 2.
– Assume that (9a) and (9b) are satisfied. Then, due to Proposition 1, the

additional (cubic) equations (note that L3 = 2)

P3,1(aj , bj) = P3,2(aj , bj) = 0, (9c)

represent two additional conditions for a scheme of order p = 3.
– The process is continued in the same manner.

If we (later) have found a solution S = {aj , bj , j = 1 . . . s} of the resulting
system

(8) = {(9a), (9b), (9c), . . .}

of multivariate polynomial equations, this means that

– S satisfies (9a) ⇒
S represents a solution of order q = 1 at least;

8 Winfried Auzinger et al.

– S satisfies (9a) and (9b) ⇒
S represents a solution of order q = 2 at least;

– S satisfies (9a), (9b), and (9c) ⇒
S represents a solution of order q = 3 at least;

and so on. By induction we conclude that the whole procedure indeed results
in a solution S representing a method of the desired order p. See [2] for a more
detailed exposition of this argument.

Remark 2. In addition, it makes sense to generate the additional conditions for
order p + 1. Even if we do not solve for these conditions, they represent the
leading term of the local error, and this can be used to search for optimized

solutions for order p, where the coefficients in dp+1

dhp+1 L(h)
∣∣
h=0

become minimal
in size.

3 A Parallel Implementation

In our Maple code, a table of Lyndon-Shirshov words up to a fixed length (cor-
responding to the maximal order aimed for; see Table 1) is included as static
data. The procedure Order conditions displayed below generates a set of order
conditions using the algorithm described in Section 2.3.

– First of all, we activate the package Physics and declare the symbols A and
B as non-commutative.

– For organizing the multinomial expansion according to (7) we use standard
functions from the packages combinat and combstruct.

– The number of terms during each stage rapidly increases as more stages are
to be computed. Therefore we have implemented a parallel version based on
the package Grid. Parallelization is taken into account as follows:
• On a multi-core processor, all threads execute the same code. Each

thread identifies itself via a call to MyNode(), and this is used to control
execution. Communication between the threads is realized via message
passing.

• Thread 0 is the master thread controlling the overall execution.
• For q = 1 . . . p :
∗ Each of the working threads generates symbolic expressions of the

form (recall Aj = aj A, Bj = bj B)

Πk :=

(
q

k

) ∏
j=s...1

kj∑
`=0

(
kj
`

)
B`

j A
kj−`
j , k ∈ Ns

0,

appearing in the sum (7). Here the work is equidistributed over the
threads, i.e., each of them generates a subset of {Πk, k ∈ Ns

0} in
parallel.

∗ For each of these expressions Πk, the coefficients of all Lyndon-
Shirshov monomials of degree q are computed, and the according
subsets of coefficients are summed up in parallel.

Order Conditions for Splitting Methods 9

∗ Finally, the master thread 0 sums up the results received from all the
working threads. This results in the set of multivariate polynomials
representing the order conditions at level q.

– The Maple code displayed below is, to some extent, to be read as pseudo-
code. For simplicity of presentation we have ignored some technicalities, e.g.,
concerning the proper indexing of combinatorial tupels, etc. The original,
working code is available from the authors.

> with(combinat)

> with(combstruct)

> with(Grid)

> with(Physics)

> Setup(noncommutativeprefix={A,B})

> Order_conditions := proc()

global p,s,OC, # I/O parameters via global variables

Lyndon # assume that table of Lyndon monomials is available

this_thread := MyNode() # each thread identifies itself

max_threads := NumNodes() # number of available threads

for j from 1 to s do

A_j[j] := a[j]*A

B_j[j] := b[j]*B

term[-1][j] := 1

end do

OC=[0$p]

for q from 1 to p do

if this_thread>0 then # working threads start computing

master thread 0 is waiting

Mn := allstructs(Composition(q+2),size=2)

for j from 1 to s do

term[q-1][j] := 0

for mn from 1 to nops(Mn) do

term[q-1][j] :=

term[q-1][j] +

multinomial(q,Mn[mn])*B_j[j]^Mn[mn][2]*A_j[j]^Mn[mn][1]

end do

end do

k := iterstructs(Composition(q+s),size=s)

OC_q_this_thread := [0$nops(Lyndon[q])]

while not finished(k) do # generate expansion (7) term by term

Ms := nextstruct(k)

if get_active(this_thread) then # get_active:

auxiliary Boolean function

for equidistributing workload

Pi_k := 1

for j from s to 1 by -1 do

Pi_k := Pi_k*term[Ms[j]-1][j]

end do

Pi_k := multinomial(q,Ms)*expand(Pi_k)

OC_q_this_thread := # compare coefficients of Lyndon monomials

10 Winfried Auzinger et al.

OC_q_this_thread +

[seq(coeff(Pi_k,Lyndon[q][l]),l=1..nops(Lyndon[q]))]

end if

end do

Send(0,OC_q_this_thread) # send partial sum to master thread

else # master thread 0 receives and sums up

partial results from working threads

OC[q] := [(-1)$nops(Lyndon[q])] # initialize sum

for i_thread from 1 to max_threads-1 do

OC[q] := OC[q] + Receive(i_thread)

end do

end if

end do

end proc

> # Example:

> p := 4

> s := 4

> Launch(Order_conditions,imports=["p","s"],exports=["OC"]) # run

> OC[1]

[a[1]+a[2]+a[3]+a[4]-1,

b[1]+b[2]+b[3]+b[4]-1]

> OC[2]

[2*a[2]*b[1]+2*a[3]*b[1]+2*a[3]*b[2]

+2*a[4]*b[1]+2*a[4]*b[2]+2*a[4]*b[3]-1]

> OC[3]

[3*a[2]^2*b[1]+6*a[2]*a[3]*b[1]+6*a[2]*a[4]*b[1]

+3*a[3]^2*b[1]+3*a[3]^2*b[2]+6*a[3]*a[4]*b[1]+6*a[3]*a[4]*b[2]

+3*a[4]^2*b[1]+3*a[4]^2*b[2]+3*a[4]^2*b[3]-1,

3*a[2]*b[1]^2+3*a[3]*b[1]^2+6*a[3]*b[1]*b[2]

+3*a[3]*b[2]^2+3*a[4]*b[1]^2+6*a[4]*b[1]*b[2]+6*a[4]*b[1]*b[3]

+3*a[4]*b[2]^2+6*a[4]*b[2]*b[3]+3*a[4]*b[3]^2-1]

> OC[4]

[4*a[2]^3*b[1]+12*a[2]^2*a[3]*b[1]+12*a[2]^2*a[4]*b[1]

+12*a[2]*a[3]^2*b[1]+24*a[2]*a[3]*a[4]*b[1]+12*a[2]*a[4]^2*b[1]

+4*a[3]^3*b[1]+4*a[3]^3*b[2]+12*a[3]^2*a[4]*b[1]

+12*a[3]^2*a[4]*b[2]+12*a[3]*a[4]^2*b[1]+12*a[3]*a[4]^2*b[2]

+4*a[4]^3*b[1]+4*a[4]^3*b[2]+4*a[4]^3*b[3]-1,

6*a[2]^2*b[1]^2+12*a[2]*a[3]*b[1]^2+12*a[2]*a[4]*b[1]^2

+6*a[3]^2*b[1]^2+12*a[3]^2*b[1]*b[2]+6*a[3]^2*b[2]^2

+12*a[3]*a[4]*b[1]^2+24*a[3]*a[4]*b[1]*b[2]+12*a[3]*a[4]*b[2]^2

+6*a[4]^2*b[1]^2+12*a[4]^2*b[1]*b[2]+12*a[4]^2*b[1]*b[3]

+6*a[4]^2*b[2]^2+12*a[4]^2*b[2]*b[3]+6*a[4]^2*b[3]^2-1,

4*a[2]*b[1]^3+4*a[3]*b[1]^3+12*a[3]*b[1]^2*b[2]

+12*a[3]*b[1]*b[2]^2+4*a[3]*b[2]^3+4*a[4]*b[1]^3

+12*a[4]*b[1]^2*b[2]+12*a[4]*b[1]^2*b[3]+12*a[4]*b[1]*b[2]^2

Order Conditions for Splitting Methods 11

+24*a[4]*b[1]*b[2]*b[3]+12*a[4]*b[1]*b[3]^2+4*a[4]*b[2]^3

+12*a[4]*b[2]^2*b[3]+12*a[4]*b[2]*b[3]^2+4*a[4]*b[3]^3-1]

For practical use some further tools have been developed, e.g. for generating
tables of polynomial coefficients for further use, e.g., by numerical software other
than Maple. This latter job can also be parallelized.

3.1 Special Cases

Some special cases are of interest:

– Symmetric schemes are characterized by the property S(−h,S(h, u)) = u.
Here, either a1 = 0 or bs = 0, and the remaining coefficient sets (aj) and
(bj) are palindromic. Symmetric schemes have an even order p, and the order
conditions for even orders need not be included; see [8]. Thus, we use a special
ansatz and generate a reduced set of equations.

– Palindromic schemes were introduced in [2] and characterized by the prop-
erty S(−h, Š(h, u)) = u, where Š denotes the scheme S with the role of A
and B interchanged. In this case, the full coefficient set

(a1, b1, . . . , as, bs)

is palindromic. As for symmetric schemes, this means that a special ansatz is
used, and again it is sufficient to generate a reduced set of equations, see [2].

Apart from these modifications, the basic algorithm remains unchanged.

4 Modifications and Extensions

4.1 Splitting into more than two Operators

Our algorithm directly generalizes to the case of splitting into more than two
operators. Consider evolution equations where the right-hand side splits into
three parts,

∂tu(t) = F (u(t)) = A(u(t)) +B(u(t)) + C(u(t)), (10)

and associated splitting schemes,

S(h, u) = Ss(h,Ss−1(h, . . . ,S1(h, u))) ≈ ΦF (h, u), (11a)

with
Sj(h, v) = ΦC(cj h, ΦB(bj h, ΦA(aj h, v))), (11b)

see [4]. Here the linear representation (7) generalizes as follows, with Aj =
aj A, Bj = bj B, Cj = cj C, and k = (k1, . . . , ks) ∈ Ns

0, ` = (`A, `B , `C) ∈ N3
0:

dq

dhq
L(h)

∣∣∣
h=0

=
∑
|k|=q

(
q

k

) ∏
j=s...1

∑
|`|=kj

(
kj
`

)
C`C

j B`B
j A`A

j − (A+B + C)q.

(12)

12 Winfried Auzinger et al.

On the basis of these identities, the algorithm from Section 2.3 generalizes in a
straightforward way. The Lyndon basis representing independent commutators
now corresponds to Lyndon words over the alphabet {A, B, C}, see [2]. Concern-
ing special cases (symmetries etc.) and parallelization, similar considerations as
before apply.

4.2 Pairs of Splitting Schemes

For the purpose of adaptive time-splitting algorithms, the construction of (opti-
mized) pairs of schemes of orders (p, p+ 1) is favorable. Generating a respective
set of order conditions can also be accomplished by a modification of our code;
the difference lies in the fact that some coefficients are chosen a priori (corre-
sponding to a given method of order p+ 1), but apart from this the generation
of order conditions for an associated scheme of order p works analogously as
before. Finding optimal schemes is then accomplished by tracing a large set of
possible solutions; see [2].

5 Computational Performance; Conclusions

The following computations were performed on a node consisting of two proces-
sors of type AMD Opteron 6132 HR (2.2 GHz) with 8 cores. This means that
together with a master thread up to 15 working threads can be used. An ample
memory of 32 GB is available.

Beginning with order p = 6, the computational effort becomes significant
(and strongly increases with higher orders). We consider two different parameter
settings (without assuming any symmetries for the setup of order conditions):

(i) AB – splitting, 10-stage scheme (s = 10), desired order p = 6,
(ii) ABC – splitting, 15-stage scheme (s = 15), desired order p = 6.

Timing data are specified in the format [d]:[hh]:mm:ss.
For case (i) we compare the performance for the fully parallelized version

including 15 working threads with a restricted, essentially sequential version
where only 1 working thread is used.

(i) • 15 active working threads:
wall clock time = 00:45,
total CPU time = 09:48.

This amounts to an overall processor utilization of about 85 %.
• 1 active working thread:

wall clock time = 07:46,
total CPU time = 07:58.

We approximately observe the expected linear speedup of running (wall
clock) time with the number of threads used. The slightly increased cost
(in terms of total CPU time) of the fully parallel version is to be attributed
to communication between the threads.

Order Conditions for Splitting Methods 13

(ii) • 15 active working threads:
wall clock time = 01:46:03,
total CPU time = 1:01:29:47.

This amounts to an efficient overall processor utilization of about 90 %.
For this case we have not performed a run with a single working thread.

For the ABC case the absolute timing data are significantly larger due to the
fact that the number of terms in the Taylor expansion of the local error grows
much faster.8

Especially in this latter case, the poor computational performance of a general-
purpose symbolic system like Maple (including the Physics package) becomes
evident. Here, parallelization is essential to reduce wall-clock times as much as
possible. The algorithm presented here could also be implemented in a ‘slimmer’
language as for instance C or Julia, but of course at the expense of implementing
many auxiliary components like various combinatorial functions and, in particu-
lar, handling of expressions involving non-commutative variables. In this sense,
our implementation is a pragmatic one: Make use of a readily available soft-
ware package and gain performance via parallelization, a strategy which may be
relevant also for other kinds of symbolic codes.

Acknowledgements. This work was supported by the Austrian Science Fund
(FWF) under grant P24157-N13, and by the Vienna Science and Technology
Fund (WWTF) under grant MA-14-002. Computational results based on the
ideas in this work have been achieved in part using the Vienna Scientific Cluster
(VSC).

References

1. Auzinger, W., Herfort, W.: Local error structures and order conditions in terms of
Lie elements for exponential splitting schemes. Opuscula Math. 34, 243–255 (2014)

2. Auzinger, W., Hofstätter, H., Ketcheson, D., Koch, O.: Practical splitting methods
for the adaptive integration of nonlinear evolution equations. Part I: Construction
of optimized schemes and pairs of schemes. to appear in BIT Numer. Math.

3. Auzinger, W., Koch, O.: Coefficients of various splitting methods.
At www.asc.tuwien.ac.at/~winfried/splitting/.

4. Auzinger, W., Koch, O., Thalhammer, M.: Defect-based local error estimators for
high-order splitting methods involving three linear operators. Numer. Algorithms
70, 61–91 (2015)

5. Blanes S., Casas, F., Farrés, A., Laskar, J., Makazaga, J., A. Murua, A.:
New families of symplectic splitting methods for numerical integration in dynam-
ical astronomy. Appl. Numer. Math. 68, 58–72 (2013)

6. Bokut, L., Sbitneva, L., Shestakov, I.: Lyndon-Shirshov words, Gröbner-Shirshov
bases, and free Lie algebras. In ‘Non-Associative Algebra and Its Applications’,
Chapter 3. Chapman & Hall / CRC, Boca Raton, Fl. (2006)

8 There are special cases of practical interest where this growth is much more moder-
ate; we do not discuss such details here.

14 Winfried Auzinger et al.

7. Duval, J.P.: Géneration d’une section des classes de conjugaison et arbre des mots
de Lyndon de longueur bornée. Theoret. Comput. Sci. 60, 255–283 (1988)

8. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. 2nd ed.,
Springer-Verlag, Berlin–Heidelberg–New York, 2006.

9. Ketcheson, D., MacDonald, C., Ruuth, S.: Spatially partitioned embedded Runge-
Kutta methods. SIAM J. Numer. Anal. 51, 2887–2910 (2013)

