
Symbolic Manipulation of Flows of Nonlinear
Evolution Equations, with Application in the

Analysis of Split-Step Time Integrators?

Winfried Auzinger1, Harald Hofstätter1, and Othmar Koch2

1 Technische Universität Wien, Austria
w.auzinger@tuwien.ac.at, hofi@harald-hofstaetter.at,

www.asc.tuwien.ac.at/~winfried, www.harald-hofstaetter.at
2 Universität Wien, Austria
othmar@othmar-koch.org,
www.othmar-koch.org

Abstract. We describe a package realized in the Julia programming
language which performs symbolic manipulations applied to nonlinear
evolution equations, their flows, and commutators of such objects. This
tool was employed to perform contrived computations arising in the anal-
ysis of the local error of operator splitting methods. It enabled the proof
of the convergence of the basic method and of the asymptotical correct-
ness of a defect-based error estimator. The performance of our package
is illustrated on several examples.

Keywords: Nonlinear evolution equations, time integration, splitting
methods, symbolic computation, Julia language

1 Problem Setting

We are interested in the solution to nonlinear evolution equations

∂tu(t) = A(u(t)) +B(u(t)) = H(u(t)), u(0) = u0, (1)

on a Banach spaceX, where A andB are general nonlinear, unbounded operators
defined on a subset D ⊂ X, the solution is denoted by EH(t, u0), and analogously
for the two sub-flows associated with A and B. The structure of the vector fields
often suggests to employ additive splitting methods to separately propagate the
two subproblems defined by A and B,

u(t1) ≈ u1 := S(h, u0) = EB(bsh, ·)◦EA(ash, ·)◦. . .◦EB(b1h, ·)◦EA(a1h, u0), (2)

where the coefficients aj , bj , j = 1 . . . s are determined according to the require-
ment that a prescribed order of consistency is obtained [5].

Both in the a priori error analysis and for a posteriori error estimation, a
defect-based approach has been introduced in [4], which serves both to derive
theoretical error bounds and as a basis for adaptive step-size selection.

? The final publication is available at Springer http://download.springer.com/

2 Winfried Auzinger et al.

In the analysis of this error estimate, extensive symbolic manipulation of the
flows defined by the operators in (1), their Fréchet derivatives and arising com-
mutators is indispensable. As such calculations imply a high effort of formula
manipulation and are highly error prone, we have implemented an automatic
tool in the Julia programming language to verify the calculation. The present
paper focusses on this tool, since in [4] no details on the implementation are
given. We are not aware of available tools providing the functionality required
for our task in established computer algebra systems, whence we decided on an
implementation from scratch. Julia is a high-level, high-performance dynamic
programming language for technical computing, see [1], which appeared conve-
nient for our purpose.

By defining a suitable set of substitution rules, the algorithm can check the
equivalence of expressions built from the objects mentioned. On this basis, it
was possible to ascertain the correctness of all steps in the proofs given in [4].

2 Local Error, Defect, and Error Estimator

We describe the background arising from the application of splitting methods (2)
to the solution of evolution equations (1), see [4]. The defect of the splitting
approximation is defined as

D(t, u) = S(1)(t, u) = ∂tS(t, u)−H(S(t, u)),

while the local error is given by

L(t, u) = S(t, u)− EH(t, u) =

∫ t

0

F(τ, t, u) dτ, (3)

with
F(τ, t, u) = ∂2EH(t− τ,S(τ, u)) · S(1)(τ, u).

The Lie-Trotter Method

We illustrate our analysis of the local error for the simplest Lie-Trotter splitting
method,

S(t, u0) = EB(t, EA(t, u0)),

see [4]. This involves some nontrivial crucial identities, namely (4)–(9) below,
which will be verified using our Julia package in Section 4.

Our aim is to show
S(1)(t, u) = O(t),

and thus
L(t, u) = O(t2).

S(1)(t, u) can be represented in the form

S(1)(t, u) = ∂t S(t, u)−H(S(t, u)) = S̃(1)(t, EA(t, u)), (4a)

Symbolic Manipulation of Nonlinear Flows 3

with
S̃(1)(t, v) = ∂2EB(t, v) ·A(v)−A(EB(t, v)). (4b)

S̃(1)(t, v) satisfies

∂tS̃(1)(t, v) = B′(EB(t, v)) · S̃(1)(t, v) + [B,A](EB(t, v)),

S̃(1)(0, v) = 0,
(5)

where
[B,A](u) = B′(u)A(u)−A′(u)B(u)

denotes the commutator of the two vector fields.
From

∂tEF (t, u) = F (EF (t, u)) ⇒ ∂t∂2EF (t, u) · v = F ′(EF (t, u)) · ∂2EF (t, u) · v

it follows that ∂2EF (t, u) is a fundamental system of the linear differential equa-
tion

∂tX(t, u) = F ′(EF (t, u)) ·X(t, u)

which satisfies
∂2EF (t, u)−1 = ∂2EF (−t, EF (t, u)).

The solution of an inhomogenous system like (5) of the form

∂tX(t, u) = F ′(EF (t, u)) ·X(t, u) +R(t, u),

X(0, u) = X0(u)

can be represented by the variation of constant formula,

X(t, u) = ∂2EF (t, u) ·
(
X0(u) +

∫ t

0

∂2EF (−τ, EF (τ, u)) ·R(τ, u) dτ

)
.

Hence, the term S̃(1)(t, v) defined in (4b) satisfies

S̃(1)(t, v) = ∂2EB(t, v) ·
∫ t

0

∂2EB(−τ, EB(τ, v)) · [B,A](EB(τ, v)) dτ.

From this integral representation it follows

D(t, u) = S̃(1)(t, EA(t, u)) = O(t),

and

L(t, u) =

∫ t

0

∂2EH(t− τ,S(τ, u)) · D(τ, u) dτ = O(t2).

As a basis for adaptive time-stepping, we define an a posteriori local error
estimator by numerical evaluation of the integral representation (3) of the local
error by the trapezoidal rule, yielding

L̂(t, u) = 1
2 tF(t, t, u) = 1

2 tD(t, u) = 1
2 tS

(1)(t, u).

4 Winfried Auzinger et al.

To analyze the deviation of this error estimator from the exact error, we use the
Peano representation

L̂(t, u)− L(t, u) =

∫ t

0

K1(τ, t) ∂τF(τ, t, u) dτ,

with the kernel

K1(τ, t) = τ − 1
2 t = O(t).

To infer asymptotical correctness of the error estimator, we wish to show that

L̂(t, u)− L(t, u) = O(t3).

To this end, we compute

∂τF(τ, t, u) = ∂2EH(t− τ,S(τ, u)) · S(2)(τ, u)

+ ∂22EH(t− τ,S(τ, u))(S(1)(τ, u),S(1)(τ, u)) (6)

= ∂2EH(t− τ,S(τ, u)) · S(2)(τ, u) +O(t),

where

S(2)(t, u) = ∂t S(1)(t, u)−H ′(S(t, u)) · S(1)(t, u)

= S̃(2)(t, EA(t, u)), (7a)

with

S̃(2)(t, v) = ∂2S̃(1)(t, v) ·A(v)−A′(EB(t, v)) · S̃(1)(t, v) + [B,A](EB(t, v)). (7b)

S̃(2)(t, v) satisfies

∂tS̃(2)(t, v) = B′(EB(t, v)) · S̃(2)(t, v)

+B′′(EB(t, v))(S̃(1)(t, v), S̃(1)(t, v))

− [B, [B,A]](EB(t, v))− [A, [B,A]](EB(t, v)) (8)

+ 2[B,A]′(EB(t, v)) · S̃(1)(t, v),

S̃(2)(0, v) = [B,A](v).

This implies the integral representation

S̃(2)(t, v) = ∂2EB(t, v) · [B,A](v) + ∂2EB(t, v) ·
∫ t

0

∂2EB(−τ, EB(τ, v)) ·(
B′′(EB(τ, v))(S̃(1)(τ, v), S̃(1)(τ, v))

− [B, [B,A]](EB(τ, v))− [A, [B,A]](EB(τ, v))

+ 2[B,A]′(EB(τ, v)) · S̃(1)(τ, v)
)

dτ.

Symbolic Manipulation of Nonlinear Flows 5

Thus,

S(2)(τ, u) = ∂2EB(τ, EA(τ, u)) · [B,A](EA(τ, u)) +O(t),

and altogether

L̂(t, u)− L(t, u) =

∫ t

0

K1(τ, t) ∂τF(τ, t, u) dτ

=

∫ t

0

K1(τ, t) ·

· ∂2EH(t− τ,S(τ, u)) · ∂2EB(τ, EA(τ, u)) · [B,A](EA(τ, u)) dτ +O(t3)

=

∫ t

0

K2(τ, t) ·

· ∂τ
(
∂2 EH(t− τ,S(τ, u)) · ∂2 EB(τ, EA(τ, u)) · [B,A](EA(τ, u))

)
dτ +O(t3),

where K2(τ, t) = 1
2τ(t− τ) = O(t2) by partial integration. Here,

∂τ

(
∂2EH(t− τ,S(τ, u)) · ∂2EB(τ, EA(τ, u)) · [B,A](EA(τ, u))

)
= O(1), (9a)

because this derivative can be expressed as[
∂2EH(t− τ, EB(τ, v)) · ∂2EB(τ, v) · [[B,A], A](v)

+ ∂2EH(t− τ, EB(τ, v)) · ∂2S̃(1)(τ, v) · [B,A](v)

+ ∂22EH(t− τ, EB(τ, v))
(
S̃(1)(τ, v), ∂2EB(τ, v) · [B,A](v)

)]
v=EA(t,u)

. (9b)

The Strang Splitting Method

For the Strang splitting method

S(t, u0) = EB(t2 , EA(t, EB(t2 , u0))),

our aim is to show

S(1)(t, u) = O(t2),

and thus

L(t, u) = O(t3).

In this case the necessary manipulations become significantly more complex than
for the Lie-Trotter case, in particular concerning the analysis of a defect-based
a posteriori error estimator. The analysis is based on multiple application of
variation of constant formulas in a general nonlinear setting. This was the main
motivation for the development of our computational tool; in particular, the
theoretical results from [4], which are not repeated here, have been verified using
this tool.

6 Winfried Auzinger et al.

Fig. 1. Data type hierarchy of Flows.jl.

3 The Julia Package Flows.jl

The package described in the following is available from [2]. It consists of approx-
imately 1000 lines of Julia code and is essentially self-contained, relying only on
the Julia standard library but not on additional packages. A predecessor written
in Perl has been used for the preparation of [4]. In a Julia notebook, the package
is initialized as follows:

In [1]: using Flows

Data Types

The data types in the package Flows.jl and their hierarchical dependence are
illustrated in Figure 1.

Objects of the abstract type TimeExpression represent a first argument t in a
flow expression like EH(t, u).

Objects of type TimeVariable are generated as follows:

In [2]: @t vars t s r

Out[2]: (t,s,r)

Objects of type TimeLinearCombination:

In [3]: ex = t - 2s + 3r

Out[3]: 3r + t− 2s

Symbolic Manipulation of Nonlinear Flows 7

Similarly, objects of the abstract type SpaceExpression represent a second ar-
gument u in a flow expression like EH(t, u).

Objects of type SpaceVariables:

In [4]: @x vars u v w

Out[4]: (u,v,w)

In order to construct objects of type AutonomousFunctionExpression or Flow-
Expression like A(u) or EA(t, u) we first need to declare a symbol for A of type
AutonomousFunction.3

In [5]: @funs A

Out[5]: (A,)

Now we can generate objects of types AutonomousFunctionExpression and
FlowExpression:

In [6]: ex1 = A(u)

Out[6]: A(u)

In [7]: ex2 = E(A,t,u)

Out[7]: EA(t, u)

Additional arguments in such expressions represent arguments for Fréchet deriva-
tives with respect to a SpaceVariable u. Note that the order of the derivative
is implicitly determined from the number of arguments.

In [8]: ex1 = A(u,v,w)

Out[8]: A′′(u)(v, w)

In [9]: ex2 = E(A,t,u,v)

Out[9]: ∂2EA(t, u) · v

Objects of type SpaceLinearCombination can be built from such expressions:

In [10]: ex = -2E(A,t,u,v,w)+2u+A(v,w)

Out[10]: −2∂22EA(t, u)(v, w) + 2u+A′(v) · w

Methods

differential

This method generates the Fréchet derivative of an expression with respect to a
SpaceVariable applied to an expression.

In [11]: ex = A(B(u)) + E(A,t,u,v)

Out[11]: A(B(u)) + ∂2EA(t, u) · v
In [12]: differential(ex,u,B(w))

Out[12]: A′(B(u)) ·B′(u) ·B(w) + ∂22EA(t, u)(v,B(w))

3 Likewise for objects of type NonAutonomousFunction.

8 Winfried Auzinger et al.

t derivative

This method generates the derivative of an expression with respect to a Time-

Variable.

In [13]: ex = E(A,t-2s,u+E(B,s,v))

Out[13]: EA(t− 2s, u+ EB(s, v))

In [14]: t derivative(ex,s)

Out[14]: ∂2EA(t−2s, u+EB(s, v)) ·B(EB(s, v))−2A(EA(t−2s, u+EB(s, v))

expand

A (higher-order) Fréchet derivative is a (multi-)linear map. The method expand

transforms the application of such a (multi-)linear map to a linear combination
of expressions into the corresponding linear combination of (multi-)linear maps.

In [15]: ex1 = E(A,t,u,2v+3w)

Out[15]: ∂2EA(t, u) · (2v + 3w)

In [16]: expand(ex1)

Out[16]: 2∂2EA(t, u) · v + 3∂2EA(t, u) · w
In [17]: ex2 = A(u,v+w,v+w)

Out[17]: 2A′′(u)(v + w, v + w)

In [18]: expand(ex2)

Out[18]: 2A′′(u)(v, w) +A′′(u)(v, v) +A′′(u)(w,w)

substitute

Different variants of substitutions are implemented. The most sophisticated one
is substitution of an object of type Function by an expression. For example,
this allows to define the double commutator [A, [A,B]](u) by substituting B in
[A,B](u) by [A,B](u):

In [19]: C AB = A(u,B(u))-B(u,A(u))

Out[19]: A′(u) ·B(u)−B′(u) ·A(u)

In [20]: substitute(C AB,B,C AB,u)

Out[20]: −A′′(u)(B(u), A(u)) +B′(u) ·A′(u) ·A(u) +B′′(u)(A(u), A(u))
−A′(u) ·B′(u) ·A(u) +A′(u) · (−B′(u) ·A(u) +A′(u) ·B(u))

commutator

This method generates expressions involving commutators [A,B] and double
commutators [A, [B,C]].

In [21]: ex1 = commutator(A,B,u)

Out[21]: A′(u) ·B(u)−B′(u) ·A(u)

Symbolic Manipulation of Nonlinear Flows 9

In [22]: ex2 = commutator(A,B,C,u)

Out[22]: C ′(u) ·B′(u) ·A(u) + C ′′(u)(B(u), A(u))−B′(u) · C ′(u) ·A(u)
−B′′(u)(C(u), A(u)) +A′(u) · (B′(u) · C(u)− C ′(u) ·B(u))

Example: We verify the Jacobi identity [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0:

In [23]: ex3 = expand(commutator(A,B,C,u)+commutator(B,C,A,u)

+commutator(C,A,B,u))

Out[23]: 0

FE2DEF, DEF2FE

These methods substitute expressions according to the fundamental identity

A(EA(t, u)) = ∂2EA(t, u) ·A(u),

see [4].

In [24]: ex1 = A(E(A,t,u))

Out[24]: A(EA(t, u))

In [25]: ex2 = FE2DEF(ex1)

Out[25]: ∂2EA(t, u) ·A(u)

In [26]: DEF2FE(ex2)

Out[26]: A(EA(t, u))

reduce order

This method constitutes the essential manipulation needed for the verification of
the identities (4)–(9) in Section 2. By repeated differentiation of the fundamental
identity

A(EA(t, u))− ∂2EA(t, u) ·A(u) = 0

we obtain

A′(EA(t, u)) · ∂2EA(t, u) · v − ∂22EA(t, u)(A(u), v)− ∂2EA(t, u) ·A′(u) · v = 0,

A′′(EA(t, u))(∂2EA(t, u) · v, ∂2EA(t, u) · w) +A′(EA(t, u)) · ∂22EA(t, u)(v, w)

−∂32EA(t, u)(A(u), v, w)− ∂22EA(t, u)(A′(u) · v, w)

−∂22EA(t, u)(A′(u) · w, v)− ∂2EA(t, u) ·A′′(u)(v, w) = 0,

and so on. The method reduce order transforms expressions of the form of the
highest order derivative in these identities by means of these very identities:

In [27]: ex1 = E(A,t,u,A(u))

Out[27]: ∂2EA(t, u) ·A(u)

In [28]: reduce order(ex1)

Out[28]: A(EA(t, u))

10 Winfried Auzinger et al.

In [29]: ex2 = E(A,t,u,A(u),v)
Out[29]: ∂22EA(t, u)(A(u), v)

In [30]: reduce order(ex2)
Out[30]: A′(EA(t, u)) · ∂2EA(t, u) · v − ∂2EA(t, u) ·A′(u) · v
In [31]: ex3 = E(A,t,u,A(u),v,w)
Out[31]: ∂32EA(t, u)(A(u), v, w)

In [32]: reduce order(ex3)
Out[32]: − ∂22EA(t, u)(A′(u) · w, v)− ∂22EA(t, u)(A′(u) · v, w)

− ∂2EA(t, u) ·A′′(u)(v, w) +A′(EA(t, u)) · ∂22EA(t, u)(v, w)

+A′′(EA(t, u))(∂2EA(t, u) · v, ∂2EA(t, u) · w)

Similarly for higher derivatives of analogous form.

4 Verification of Crucial Identities

We describe a Julia notebook which implements the verification of the identities
(4)–(9) of Section 2.

Check (4)

We verify identity (4),

∂tS(t, u)−H(S(t, u)) =
[
∂2EB(t, v) ·A(v)−A(EB(t, v))

]
v=EA(t,u)

.

In [1]: using Flows

In [2]: @t vars t
Out[2]: (t,)

In [3]: @x vars u v
Out[3]: (u,v)

In [4]: @funs A B
Out[4]: (A,B)

In [5]: E Atu = E(A,t,u)
Out[5]: EA(t, u)

In [6]: E Btv = E(B,t,v)
Out[6]: EB(t, v)

In [7]: Stu = E(B,t,E(A,t,u))
Out[7]: EB(t, EA(t, u))

In [8]: S1tv = differential(E(B,t,v),v,A(v))-A(E(B,t,v))
Out[8]: ∂2EB(t, v) ·A(v)−A(EB(t, v))

In [9]: S1tu = substitute(S1tv,v,E(A,t,u))
ex1 = S1tu

Out[9]: −A(EB(t, EA(t, u))) + ∂2EB(t, EA(t, u)) ·A(EA(t, u))

In [10]: ex2 = t derivative(Stu,t)-(A(Stu)+B(Stu))
Out[10]: −A(EB(t, EA(t, u))) + ∂2EB(t, EA(t, u)) ·A(EA(t, u))

In [11]: ex1-ex2
Out[11]: 0

Symbolic Manipulation of Nonlinear Flows 11

Check (5)

We verify identity (5),

∂tS̃(1)(t, v) = B′(EB(t, v)) · S̃(1)(t, v) + [B,A](EB(t, v)).

In [12]: ex1 = B(E(B,t,v),S1tv)+commutator(B,A,E(B,t,v))

Out[12]: −A′(EB(t, v)) ·B(EB(t, v)) +B′(EB(t, v)) · (∂2EB(t, v) ·A(v)

−A(EB(t, v))) +B′(EB(t, v)) ·A(EB(t, v))

In [13]: ex2 = t derivative(S1tv,t)

Out[13]: −A′(EB(t, v)) ·B(EB(t, v)) +B′(EB(t, v)) · ∂2EB(t, v) ·A(v)

In [14]: reduce order(expand(ex1-ex2))

Out[14]: 0

Check (6)

We verify identity (6),

∂τ
(
∂2EH(t− τ,S(τ, u)) · S(1)(τ, u)

)
= ∂2EH(t− τ,S(τ, u)) · S(2)(τ, u) + ∂22EH(t− τ,S(τ, u))(S(1)(τ, u),S(1)(τ, u)).

In [15]: @nonautonomous funs S

Out[15]: (S,)

In [16]: @funs H

Out[16]: (H,)

In [17]: S1tu = t derivative(S(t,u),t)-H(S(t,u))

Out[17]: −H(S(t, u)) + ∂1S(t, u)

In [18]: S2tu = t derivative(S1tu,t)-H(S(t,u),S1tu)

Out[18]: −H ′(S(t, u)) · ∂1S(t, u) + ∂21S(t, u)−H ′(S(t, u)) · (−H(S(t, u))

+∂1S(t, u))

In [19]: @t vars T

Out[19]: (T,)

In the following, a trailing semicolon in the input suppresses the display of the
corresponding output.

In [20]: ex1 = E(H,T-t,S(t,u),S2tu)+E(H,T-t,S(t,u),S1tu,S1tu);

In [21]: ex2 = t derivative(E(H,T-t,S(t,u),S1tu),t);

In [22]: reduce order(expand(ex1-ex2))

Out[22]: 0

12 Winfried Auzinger et al.

Check (7)

We verify identity (7),

∂t S(1)(t, u)−H ′(S(t, u)) · S(1)(t, u)

=
[
∂2S̃(1)(t, v) ·A(v)−A′(EB(t, v)) · S̃(1)(t, v) + [B,A](EB(t, v))

]
v=EA(t,u)

.

In [23]: S2tu = t derivative(S1tu,t)-A(Stu,S1tu)-B(Stu,S1tu)

ex1 = S2tu;

In [24]: S2tv = (differential(S1tv,v,A(v))-A(E(B,t,v),S1tv)

+commutator(B,A,E(B,t,v)))

ex2 = substitute(S2tv,v,E(A,t,u));

In [25]: expand(ex1-ex2)

Out[25]: 0

Check (8)

We verify identity (8),

∂tS̃(2)(t, v) = B′(EB(t, v)) · S̃(2)(t, v)

+B′′(EB(t, v))(S̃(1)(t, v), S̃(1)(t, v))

− [B, [B,A]](EB(t, v))− [A, [B,A]](EB(t, v))

+ 2[B,A]′(EB(t, v)) · S̃(1)(t, v).

In [26]: ex1 = (B(E(B,t,v),S2tv) + B(E(B,t,v),S1tv,S1tv)

-commutator(B,B,A,E(B,t,v))

-commutator(A,B,A,E(B,t,v))

+2*substitute(differential

(commutator(B,A,w),w,S1tv),w,E(B,t,v)));

In [27]: ex2 = t derivative(S2tv,t);

In [28]: expand(ex1-ex2)

Out[28]: 0

Check (9)

We verify identity (9),

∂τ

(
∂2EH(t− τ,S(τ, u)) · ∂2EB(τ, EA(τ, u)) · [B,A](EA(τ, u))

)
=[

∂2EH(t− τ, EB(τ, v)) · ∂2EB(τ, v) · [[B,A], A](v)

+ ∂2EH(t− τ, EB(τ, v)) · ∂2S̃(1)(τ, v) · [B,A](v)

+ ∂22EH(t− τ, EB(τ, v))
(
S̃(1)(τ, v), ∂2EB(τ, v) · [B,A](v)

)]
v=EA(t,u)

.

Symbolic Manipulation of Nonlinear Flows 13

In [29]: ex1 = t derivative(E(H,T-t,Stu,E(B,t,E(A,t,u),

commutator(B,A,E(A,t,u)))),t);

In [30]: ex2 = (substitute(-E(H,T-t,E(B,t,v),E(B,t,v,

commutator(A,B,A,v)))+E(H,T-t,E(B,t,v),

differential(S1tv,v,commutator(B,A,v)))

+E(H,T-t,E(B,t,v),S1tv,E(B,t,v,

commutator(B,A,v))),v,E(A,t,u)));

In [31]: diff = ex1-ex2

diff = FE2DEF(diff)

diff = substitute(diff,H,A(v)+B(v),v)

diff = expand(reduce order(diff))

Out[31]: 0

5 Elementary Differentials

To further demonstrate the functionality and correctness of our package, we
consider the elementary differentials obtained by repeated differentiation of a
differential equation,

y′(t) = F (y(t)),

y′′(t) = F ′(y(t)) · F (y(t)),

y′′′(t) = F ′′(y(t))(F (y(t), F (y(t)) + F ′(y(t)) · F ′(y(t)) · F (y(t)),

...

The number of terms in these expressions are available from the literature, see [6,
Table 2.1] or [3]. The following notebook generates the elementary differentials
and counts their number:

In [1]: using Flows

In [2]: @t vars t;

@x vars u;

@funs F;

In [3]: ex = E(F,t,u)

Out[3]: EF (t, u)

In [4]: ex = t derivative(ex,t)

Out[4]: F (EF (t, u))

In [5]: ex = t derivative(ex,t)

Out[5]: F ′(EF (t, u)) · F (EF (t, u))

In [6]: ex = t derivative(ex,t)

Out[6]: F ′(EF (t, u)) · F ′(EF (t, u)) · F (EF (t, u))

+ F ′′(EF (t, u))(F (EF (t, u)), F (EF (t, u)))

14 Winfried Auzinger et al.

In [7]: ex = t derivative(ex,t)

Out[7]: 3F ′′(EF (t, u))(F ′(EF (t, u)) · F (EF (t, u)), F (EF (t, u)))

+ F ′′′(EF (t, u))(F (EF (t, u)), F (EF (t, u)), F (EF (t, u)))

+ F ′(EF (t, u)) · (F ′(EF (t, u)) · F ′(EF (t, u)) · F (EF (t, u))

+ F ′′(EF (t, u))(F (EF (t, u)), F (EF (t, u))))

This is not yet fully expanded. It is a linear combination consisting of 3 terms:

In [8]: length(ex.terms)

Out[8]: 3

If we expand it, we obtain a linear combination of 4 terms, corresponding to the
4 elementary differentials (Butcher trees) of order 4:

In [9]: ex = expand(ex)

Out[9]: 3F ′′(EF (t, u))(F ′(EF (t, u)) · F (EF (t, u)), F (EF (t, u)))

+ F ′(EF (t, u)) · F ′(EF (t, u)) · F ′(EF (t, u)) · F (EF (t, u))

+ F ′′′(EF (t, u))(F (EF (t, u)), F (EF (t, u)), F (EF (t, u)))

+ F ′(EF (t, u)) · F ′′(EF (t, u))(F (EF (t, u)), F (EF (t, u)))

In [10]: length(ex.terms)

Out[10]: 4

In [11]: ex = expand(t derivative(ex,t));

In [12]: length(ex.terms)

Out[12]: 9

In [13]: ex = expand(t derivative(ex,t));

In [14]: length(ex.terms)

Out[14]: 20

In [15]: ex = expand(t derivative(ex,t));

In [16]: length(ex.terms)

Out[16]: 48

In [17]: ex = E(F,t,u)

ex = expand(t_derivative(ex,t))

println("order\t#terms")

println("---------------")

println(1,"\t",1)

ex = expand(t_derivative(ex,t))

println(2,"\t",1)

for k=3:16

ex = expand(t_derivative(ex,t))

println(k,"\t",length(ex.terms))

end

Symbolic Manipulation of Nonlinear Flows 15

order #terms

1 1

2 1

3 2

4 4

5 9

6 20

7 48

8 115

9 286

10 719

11 1842

12 4766

13 12486

14 32973

15 87811

16 235381

6 Acknowledgments

This work was supported in part by the projects P24157-N13 of the Austrian
Science Fund (FWF) and MA14-002 of the Vienna Science and Technology Fund
(WWTF).

References

1. http://julialang.org

2. https://github.com/HaraldHofstaetter/Flows.jl

3. The On-line Encyclopedia of Integer Sequences. https://oeis.org/A000081
4. Auzinger, W., Hofstätter, H., Koch, O., Thalhammer, M.: Defect-based local error

estimators for splitting methods, with application to Schrödinger equations, Part
III: The nonlinear case. J. Comput. Appl. Math. 273, 182–204 (2015)

5. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer-
Verlag, Berlin–Heidelberg–New York (2002)

6. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I, 2nd
edition. Springer-Verlag, Berlin–Heidelberg–New York (1993)

