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Abstract. Recent advances in the manipulation of molecules now allow us
to also probe nanoporous silified biomaterials. We demonstrate the quantum
coherent propagation of phthalocyanine through the skeleton of the alga
Amphipleura pellucida. A micro-focused laser source prepares a molecular beam
which is sufficiently delocalized to be coherently transmitted through the alga’s
frustule—in spite of the substantial dispersive interaction between each molecule
and the nanomembrane.
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1. Introduction

Throughout the last few decades, matter–wave physics has probed fundamental quantum
physics [1–4] and has led to interesting applications in precision measurements, quantum
sensing and quantum information.

Recently, it has become possible to extend the range of coherent manipulation schemes to
the de Broglie interference of complex molecules [5–8], including quantum-enhanced molecule
metrology [9, 10] and coherent nanoparticle nanolithography [11].

For massive matter, one of the conceptually most elementary gedanken-experiments
of quantum physics—the diffraction at a double slit or grating—usually implies rather
sophisticated micro- or nanotechnologies to realize diffraction elements that are adapted to very
short de Broglie wavelengths [12–17].

In this work, we emphasize that molecular coherence experiments can also be done with
simple structures made by nature, and that molecular diffraction is interesting and well adapted
for the imaging of nanoporous structures. Particles of mass m and velocity v are associated with
a short de Broglie wavelength λdB = h/mv. They achieve high sensitivity to external potentials
and internal phase changes, at rather low kinetic energies. Molecules are also interesting
nanoprobes, since we are free to choose them according to their internal characteristics—with
different electric, magnetic or optical properties. The high fluorescence yield of PcH2 makes it
a particularly appealing candidate for particle detection at the single-molecule level.

We exploit here a coherent molecular beam of phthalocyanine to obtain a one-dimensional
(1D) Fourier projection of the silified cell wall (frustule) of the diatom Amphipleura pellucida.
These unicellular algae, which can be found in large abundance in freshwater phytoplankton,
have attracted great interest in the nanotechnology [18–20] and optics community [21, 22].

Van der Waals forces are thought to have a high impact on the performance of algae as
nanoporous filters [23]. In our experiments, we can access these forces, as they directly affect
the observed interference patterns.

2. Experimental setup

The experiment is sketched in figure 1(A). It consists of three principal components: a coherent
molecular beam source, the frustule of a diatom—suspended in vacuum with its pores oriented
toward the molecular beam—and a laser-induced fluorescence microscope with single-molecule
sensitivity.

In order to observe an interference pattern, we first need to prepare the transverse coherence
of the molecular de Broglie wave by reducing the source size to a level, such that quantum
indeterminism ensures the required coherent momentum spread and the position delocalization
across several alga pores. We have implemented this idea using a micro-focus laser evaporation
source. A 421 nm laser beam (70 mW) is spatially filtered with a 15 µm pinhole and tightly
focused by a 50× objective onto a vacuum window whose inner surface is coated with many
layers of PcH2 (514 amu). The molecules are thus heated and evaporated into high vacuum
(10−8 mbar). The window is mounted onto a motorized translation stage and it is continuously
scanned at 1 mm s−1 to expose new material to the laser beam. The evaporation process is
monitored by imaging the emitted source fluorescence onto a CMOS camera. Figure 1(B)
shows a picture of the molecular target: five lines desorbed from the substrate are depicted,
each with a Gaussian waist of roughly 1.6 µm (figure 1(C)). The high localization on the glass
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camera camera

Figure 1. (A) Experimental setup: after launch in a microfocus laser evaporation
source (421 nm, 100 mW diode laser), the molecular beam coherently illuminates
the frustule of the diatom Amphipleura pellucida. The interference pattern is
collected on a quartz plate and imaged using single-molecule fluorescence
microscopy, excited by a red diode laser (661 nm, 12 W cm−2) [24]. (B) Light
microscopy picture of some desorbed lines from the molecular target. (C) The
cross-cut shape of the lines is approximately Gaussian with a waist of 1.6 µm.

and Heisenberg’s uncertainty relation then guarantee the coherent illumination of the diatom
sample 1.57 m downstream.

The micro-laser source has many benefits: it can be operated in a pulsed mode on a short
time scale to protect the thermo-labile molecules. It can serve as a multi-species source, with
different molecules coated onto different regions of the same substrate. The evaporation region
can also be arbitrarily shaped (point, slit, circle, square) to the needs of the experiment.

Figure 2 shows scanning electron microscope (SEM) images of the alga. Its boat-like
shape is structured by a natural array of nanopores with an average distance of 205 nm and
a typical width of 122 nm along the x-axis. According to electron energy loss spectroscopy
measurements, the cell wall is roughly 90 nm thick and suspended between rod-like support
structures of 110 nm thickness.

An aqueous solution of diatoms was gently dropped onto a holey carbon grid. The drying
process results in a random distribution of diatoms that are electrostatically bonded to the carbon
mesh. We have selected a diatom that fully covered one of the 5 µm holes in the membrane
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Figure 2. SEM pictures of Amphipleura pellucida. (A) The diatom has a boat-
like shape. (B) The frustule is masked by a collimation hole of 5 µm diameter.
(C) The diatom frustule fully covers the selected hole. The nanoporous arrays
were aligned to within 5 mrad with respect to gravity.

and we blocked all remaining holes with a 50 µm thick mylar foil. Selecting a circle of 5 µm
diameter is necessary in order to reduce the divergence of the molecular beam to less than the
expected diffraction angle.

Quantum diffraction of the coherent molecular beam at the alga’s nanoporous structure
leads to the formation of an interference pattern, i.e. a molecular density pattern that is deposited
on a quartz window 0.57 m further downstream at the vacuum–air interface. It is imaged in situ
and with single-molecule sensitivity using fluorescence microscopy. The laser evaporation
source generates a molecular velocity distribution that can be fitted with a Maxwell–Boltzmann
curve at a temperature of ∼ 675 K. Since the molecules fall freely in the gravitational field,
fast molecules end up at the top and slow molecules at the bottom of the detection screen
(figure 3(A)). We can thus assign a molecular velocity band to a given height on the detector.

3. Discussion

Using the SEM image of the alga’s frustule (figure 2), we can predict the two-dimensional
(2D) diffraction pattern in the absence of gravity (figure 3(B)). To do so, we first binarize
the porous structure and calculate the interference pattern by solving the Kirchhoff–Fresnel
integral, including the finite source size and the velocity spread of the molecular beam. Although
the nanoporous array was aligned to within 5 mrad with respect to the axis of gravity, we
expect the vertical diffraction peaks to smear out because of the free-fall spread, while the
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Figure 3. (A) Diffraction pattern of PcH2 molecules after their coherent
propagation through the frustule of Amphipleura pellucida. The vector of
gravity is oriented vertically. (B) Predicted 2D interference pattern based on
the binarized version of figure 2(C), not including gravity or any additional
phase shifts. (C) Vertically integrated trace of the experimental 2D diffraction
image (A) in the mentioned velocity range (red dots). The higher-order, high-
contrast interference fringes document the high molecular coherence as well as
the presence of interactions between the phthalocyanines and the alga’s frustule.
While the higher orders are missing in the simple simulation (B), they can be
qualitatively reproduced (panel C, green line) by assuming an effective radial
reduction of the pore openings by 83 nm in the 2D simulation of panel (D).
The simulation represented by the black line in (C) starts from the measured
transmission mask (figure 2(C)) and includes a basic 1D horizontal van der Waals
dephasing [25] with C3 = 66 nm3 meV.

horizontal diffraction fringes will be fully preserved. The expected result is the blue solid line
in figure 3(C). We compare this with the experimental result by integrating the 2D data of
figure 3(A) vertically over the same velocity band of v = 142–168 m s−1. This interference line
is represented by the red dots of figure 3(C). We can draw a number of conclusions from these
curves.

Firstly, the high interference fringe visibility proves the coherent transport of material
through the silified microbiological specimen. It is fully consistent with assuming each molecule
to be delocalized across several of the alga’s pores.
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Secondly, by evaluating the distance between the zeroth and the first diffraction peak, we
are able to reconstruct the expected pore periodicity of 205 nm with an accuracy of ∼ 5%.

Thirdly, the comparison between the naive Kirchhoff–Fresnel solution and the experiment
shows that we observe more and more intense diffraction peaks than the simulation would
suggest. It has been known from earlier experiments [24–26] that the van der Waals interaction
between polarizable particles and a nearby solid surface induces a significant phase shift in the
diffraction process. The most prominent overall effect of this interaction is to virtually reduce
the open pore size. This is corroborated by figure 3(D), which shows how the higher diffraction
orders are populated when we reduce the pore size in our simulation. The vertically integrated
trace of that is shown as the green solid line in figure 3(C).

We may also model the effect by integrating a van der Waals phase shift with a fixed C3-
constant, where we only take into account the horizontal particle–wall distance in the cylindrical
pores. The result of that is shown as the black solid line, which also fits the experimental data
reasonably. Molecular diffraction can yield information of the internal material properties of
a mechanical masks. A fully quantitative model will, however, have to include various details
such as entrance and departure effects, pore irregularities, the full electronic spectrum of the
molecules and others.

4. Conclusion

Our proof-of-concept experiment demonstrates high-contrast coherent diffraction of molecules
at a biological nanostructure. Future studies shall also explore 2D-holography of different types
of diatoms in a vertical setup. This shall permit one to not only reveal the structural differences
between frustules of different alga specimens but also to distinguish different internal properties,
which affect the molecular phase shifts. More than 100 000 different types of diatoms are
known to exist [27] and also offer a playground for a number of pedagogical experiments in
matter–wave physics.

While natural diatoms have a silica frustule, it has been shown that it is also possible to
systematically exchange the diatom’s base material. In future experiments, it could be intriguing
to explore arbitrary but topologically equal shapes with different atomic compositions [28] (Si,
Ge, Mg) to shed more light on van der Waals interactions in natural geometries.
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