
Widespread purifying selection on RNA structure
in mammals
Martin A. Smith1,2,*, Tanja Gesell3, Peter F. Stadler4,5,6,7 and John S. Mattick1,2,8,*

1RNA Biology and Plasticity Laboratory, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst,
Sydney, NSW 2010 Australia, 2Genomics and Computational Biology Division, Institute for Molecular
Bioscience, 306 Carmody Rd, University of Queensland, Brisbane, 4067 Australia, 3Department of Structural
and Computational Biology; and Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz
Laboratories (MFPL), University of Vienna, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna,
Austria, 4Bioinformatics Group, Department of Computer Science; and Interdisciplinary Center for
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ABSTRACT

Evolutionarily conserved RNA secondary structures
are a robust indicator of purifying selection and,
consequently, molecular function. Evaluating their
genome-wide occurrence through comparative
genomics has consistently been plagued by high
false-positive rates and divergent predictions. We
present a novel benchmarking pipeline aimed at
calibrating the precision of genome-wide scans for
consensus RNA structure prediction. The bench-
marking data obtained from two refined structure
prediction algorithms, RNAz and SISSIz, were
then analyzed to fine-tune the parameters of an
optimized workflow for genomic sliding window
screens. When applied to consistency-based
multiple genome alignments of 35 mammals, our
approach confidently identifies >4 million evolution-
arily constrained RNA structures using a conserva-
tive sensitivity threshold that entails historically low
false discovery rates for such analyses (5–22%).
These predictions comprise 13.6% of the human
genome, 88% of which fall outside any known
sequence-constrained element, suggesting that
a large proportion of the mammalian genome is
functional. As an example, our findings identify

both known and novel conserved RNA structure
motifs in the long noncoding RNA MALAT1. This
study provides an extensive set of functional
transcriptomic annotations that will assist
researchers in uncovering the precise mechanisms
underlying the developmental ontologies of higher
eukaryotes.

INTRODUCTION

The majority of the human genome is dynamically
transcribed into RNA, most of which does not code for
proteins (1–4). The once common presumption that most
non–protein-coding sequences are nonfunctional for the
organism is being adjusted to the increasing evidence that
noncoding RNAs (ncRNAs) represent a previously
unappreciated layer of gene expression essential for the
epigenetic regulation of differentiation and development
(5–8). Yet despite an exponential accumulation of
transcriptomic data and the recent dissemination of
genome-wide data from the ENCODE consortium (9),
limited functional data have fuelled discourse on the
amount of functionally pertinent genomic sequence in
higher eukaryotes (1,10–12). What is incontrovertible,
however, is that evolutionary conservation of structural
components over an adequate evolutionary distance is
a direct property of purifying (negative) selection and,
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consequently, a sufficient indicator of biological function.
The majority of studies investigating the prevalence of
purifying selection in mammalian genomes are predicated
on measuring nucleotide substitution rates, which are
then rated against a statistical threshold trained from
a set of genomic loci arguably qualified as neutrally
evolving (13,14).

Conversely, lack of conservation does not impute lack
of function, as variation underlies natural selection. Given
that the molecular function of ncRNA may at least be par-
tially conveyed through secondary or tertiary structures,
mining evolutionary data for evidence of such features
promises to increase the resolution of functional
genomic annotations. In this case, higher substitution
rates observed in evolutionary data can nonetheless be
informative of conserved base pairings in higher-order
structural interactions. When RNAs function through
their 2D or 3D structural conformations, mutations are
often tolerated provided that they maintain complemen-
tary base pairing—an occurrence termed covariation,
which is a bona fide indication of evolutionary selection
on RNA structure (15). The mutational flexibility of
ncRNA allows for faster evolutionary substitution rates
than proteins, entailing discrete patterns of mutation that
are sufficient to predict function (16).

Current technology renders 3D structural prediction un-
feasible for high-throughput comparative transcriptomics.
However, computational analyses predicated on secondary
structures—canonical Watson–Crick base pairings that
form stable helices—are well established and tractable for
large genomes. Indeed, there is already strong evidence that
RNA is subject to evolutionary preservation of secondary
structure conformations in mammalian species.

A handful of RNA secondary structure prediction
tools of various flavors have already been applied to
pan-genomic screens. The modus operandi of these algo-
rithms usually involves the sampling of genomic multiple
sequence alignments via consecutive overlapping windows
of fixed size (the ‘sliding window’ approach). Past studies
have used EvoFold (17), CMFinder (18), RNAz (19) and
AlifoldZ (20) on multiple genome alignments associated to
ENCODE pilot project loci (21).

EvoFold implements phylogenetic stochastic context-
free grammars to evaluate how well nucleotide substitu-
tions correlate to sampled secondary structure topologies
(17). Its predictions are strongly biased toward conserved
genomic sequences and AU-rich alignments (20).

RNAz uses a support vector machine (SVM) trained on
evolutionary conservation and thermodynamic stability
scores derived from known structured RNAs and
randomized background to emit consensus structure pre-
dictions (22). It has been reported that RNAz predicts
secondary structures with a high false-positive rate and a
bias toward strong GC content, although its speed may
supersedes these caveats.

The AlifoldZ algorithm uses the consensus 2D structure
prediction algorithm RNAalifold to compare the consen-
sus RNA secondary structure score of a native alignment
against the distribution of scores derived from shuffled
alignments (23–25). The algorithm also suffers from slow
runtimes and a high false-positive rate ensued by

background modeling through shuffling of individual
columns of the queried multiple sequence alignment.
This approach produces a background model without
consideration of dinucleotide frequencies, which have
been shown to increase the specificity of RNA structure
prediction through better representation of the thermo-
dynamic free energies of base-pair stacking (26,27).
The SISSI algorithm offers a solution to this problem by

producing dinucleotide-controlled, simulated alignments
through modeling of site-specific nucleotide interactions
in function of the branch lengths from a phylogenetic
tree inferred from the original alignment (28). The entailing
simulated alignments, which maintain the global sequence
characteristics of the original alignment, can then be used
as a background distribution for scoring RNA secondary
structure conservation with RNAalifold, as implemented
in SISSIz (29). This algorithm was also used to improve the
specificity of a revised version of RNAz (30). Both SISSIz
and the revised version of RNAz have yet to be applied to
genome-wide screens.
In contrast to the above-mentioned programs,

CMFinder essentially realigns the input alignment via an
iterative statistical method for optimizing a multiple align-
ment of RNA structures (31). CMFinder’s robustness
comes at the expense of computational complexity, a high
false-positive rate (�50%), and the need tomanually adjust
certain user-defined parameters. In addition to these con-
ventional methods, there are other algorithms that calcu-
late common RNA secondary structures to a set of
orthologous sequences [reviewed in (32–36)].
A prevalent shortcoming of Evolutionarily Conserved

Structure (ECS) prediction algorithms and methodologies
used for genomic screens is the lack of a diverse set of true
positives presenting the evolutionary signatures of selec-
tion for RNA structure. With the exception of the output
from the above-mentioned studies, which seldom overlap,
there are few known examples of mammalian ECSs that
cannot be detected through purely sequence-based
approaches (e.g. rRNAs). The prediction algorithms are
usually trained and benchmarked on refined structural
alignments of individual molecules, namely the RNA
FAMily database (RFAM) and BRAliBASE (37–39).
These offer ideal conditions to make predictions yet do
not represent actual experimental conditions; published
results are chiefly derived from fragmented sequence-
based genome alignments generated by speedy heuristics,
such as the TBA/Multiz data sets from the UCSC gen-
ome browser (40,41). Furthermore, ECS prediction
endeavors often use a sliding-window approach, where
the boundaries of potential structural elements are not
guaranteed to coincide with the sampled alignment (34).
There is hence need for an objective measure of the
efficiency of ECS prediction algorithms in line with imple-
mented high-throughput methodologies to improve the
quality and confidence of resulting experiential predic-
tions. This necessity is of particular significance now
that sequencing technologies are more available and will
inevitably generate considerable evolutionary informa-
tion—an outcome that will contrast greater alignment
depths with shorter syntenic alignment blocks to accom-
modate the broader diversity of genome organizations.
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Here, we investigate the prevalence of potentially func-
tional sequences in the expanses of mammalian genomes
with undetermined function by investigating evolutionary
patterns of genetic variation consistent with the formation
of RNA secondary structures. Through an original bench-
marking pipeline that reproduces the experimental condi-
tions of genome-wide sliding window methodologies,
we improve the confidence and resolution of consensus-
based ECS predictions with SISSIz and RNAz by creating
tailor-made data sets of known structured RNAs and
negative controls. Optimal prediction parameters are
then extended to a high-throughput genomic screen via a
massively parallel composite algorithm, which faithfully
detects evolutionary patterns of structural conservation.
This is achieved with little sequence composition bias for
any sampled alignment, thus overcoming caveats arising
from regions of weaker sequence conservation. Our
approach exposes millions of novel genomic loci present-
ing strong evidence for purifying selection at the level of
RNA secondary structure, while maintaining high specifi-
city and reasonable computational complexity.

MATERIALS AND METHODS

Data generation and benchmarking pipeline

The full alignments of 89 structural RNA families contain-
ing at least one mammalian sequence (excluding miRNAs,
tRNAs and most snoRNAs) were downloaded from
RFAM release 10.0 (ftp://ftp.sanger.ac.uk/pub/data
bases/Rfam/10.0/; Supplementary Data S1). Our algo-
rithm first selects one of the alignment files (converted
from stockholm to fasta format) at random, from which
10, 20 and 30 sequences were randomly extracted. At this
stage, an optional realignment step can be performed to
emulate the experimental conditions encountered in
genome-wide screens. The MAFFT-GINSI (42) alignment
program that uses fast Fourier transforms and iterative
refinement was used as it is renowned to perform well
on structured RNA alignments (43,44). It also has the
advantage of being fast enough for realigning alignment
fragments at the genome scale. Once a subset of sequences
is selected, empty columns are removed and then a
subalignment—or window—of specified length is chosen
randomly within the full alignment (Supplementary Data
S2–S3), thus mimicking the sampling procedure in a
genome-wide screen using sliding windows. A schematic
of this pipeline is illustrated in Figure 1A. Sensitivity
and specificity are measured as true positives/(true posi-
tives+false negatives) and true negatives/(true nega-
tives+false positives), respectively.
The mean pairwise identity (MPI—defined as the

average amount of identities divided by the length of the
shortest sequence for all sequence pairs), the standard de-
viation of the MPI, the normalized Shannon entropy (45),
GC content and gap content are calculated for all sampled
alignments. Next, the RFAM structure annotation is
compared with the RNAalifold consensus structure predic-
tion (with default scoring and RIBOSUM scoring metric
variants), using ‘RNAdistance -DP’ from the Vienna RNA
package version 1.8.5 (http://www.tbi.univie.ac.at/RNA/)

(46). The alignments are then scored with SISSIz version
2.0 (29) (updated binaries can be downloaded from the
Supplementary Information) using default parameters
(‘-j’ option for RIBOSUM scoring) and with RNAz
version 2.0 (30) using the following parameters: ‘-f -d’ for
MAFFT alignments; ‘-f -t -l’ for native RFAM structural
alignments. Finally, the subalignments are saved and the
process is reiterated until a sufficient amount of subalign-
ments is obtained for all user-defined MPI ranges. The
algorithm is implemented in JAVA and can be downloaded
from a link in the Supplementary Information.

Multiple genome alignments

Enredo-Pecan-Ortheus (EPO) consistency-based multiple
alignments of 35 eutherian mammals for human genome
assembly GRCh37 were downloaded from ENSEMBL-
compara release 65 (ftp://ftp.ensembl.org/pub/release-65/
emf/ensembl-compara/epo_35_eutherian/) and converted
from EMF to MAF format. Segmental duplications
were removed from each alignment block, when present,
to ensure that no more than one sequence from each
species was surveyed.

Generating true-negative controls

Previous studies have evaluated specificity through
negative controls by using genomic alignments from
intergenic regions (29) or by permuting the positions of
individual columns or bases in the alignments (17–20).
While the latter falsely increases specificity through dis-
ruption of dinucleotide composition, the former assumes
these regions are not transcribed, ergo are unlikely to
undergo purifying selection for higher-order structure.
We tested several different strategies for generating true
negatives, including (i) employing the independent
program MULTIPERM to shuffle each sampled align-
ment window before making predictions (47);
(ii) combining two shuffling algorithms, i.e. using the
simulation algorithm (SISSI) of SISSIz on the entire
syntenic alignment block, then MULTIPERM on indi-
vidually sampled windows. The last approach ensures
that any algorithm-specific biases for null model gener-
ation are reduced through the combined action of both
tools. It also avoids using the same null model to
generate the simulated alignment and the ECS prediction
because different alignments are used to train the model.
All shuffled alignments were performed for human
chromosome 10 (an average-sized chromosome) on EPO
35-way alignments (as described above) using a window
size of 200 nt, a 100-nt step, and the same quality control
filters as described below.

Hybrid algorithm for optimized ECS prediction

Our algorithm first reads a MAF (Multiple Alignment
Format) file that can optionally be stripped of indels
and realigned with MAFFT-GINSI (42). Input alignments
are then split into sliding windows of 200 nt that overlap
by 100 nt. Identical sequences are removed just as those
with �50% gaps or ambiguous characters. Alignments
with three or more sequences, including human, are then
reverse-complemented and their sequence characteristics
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are calculated (MPI, standard deviation of the MPI,
normalized Shannon entropy, GC content, gap content).
The underlying ECS prediction algorithm selection par-
ameters are as follows: RNAz is used when the MPI is
>85%; SISSIz is used when MPI is between 60 and 85%
and when GC content is <70%; otherwise, SISSIz with
RIBOSUM scoring is used. SISSIz with RIBOSUM is
also used when RNAalifold fails to predict a consensus
structure or when SISSIz’s background distribution
presents a standard deviation <0.5, which can produce
extreme Z-scores (Supplementary Figure S5). Based on
preliminary data, we selected thresholds of �2.7, �2.2
and 0.32 for SISSIz, SISSIz+RIBOSUM and RNAz pre-
dictions, respectively, for reporting ECS predictions.

The program outputs a six-field browser extensible data
file with the sequence characteristics in the name field, and
the RNAz or SISSIz score in the score field, while filtered
alignments corresponding to hits presenting scores >99%
specificity thresholds are saved (Supplementary Figure S6).
The user-friendly pipeline is implemented in JAVA, is com-
patible with high-performance computing infrastruc-
tures and can be accessed through the Supplementary
Information.

Structural congruence analysis pipeline

We define structural congruence as how well an individual
sequence complies with the evolutionarily conserved
consensus structure. The structural congruence of all
ECS predictions was evaluated 2-fold: (i) by measuring

the relative difference between both base pairing
probabilities as calculated with McCaskill’s partition
function algorithm, and (ii) by comparing the thermo-
dynamic stability of both folds, a metric akin to RNAz’s
structure conservation index. The RNAalifold consensus
dot-bracket annotation is extracted for all alignments that
generate a high-confidence prediction (‘RNAalifold -r’ is
used for hits generated with the RIBOSUM variant of
SISSIz). The reference sequence is then processed to
remove gaps, while the corresponding positions in the con-
sensus structure are removed, in addition to any unpaired
positions that may arise in the consensus structure. Next,
the reference sequence is submitted to partition function
folding as implemented in ‘RNAfold -p’ from the Vienna
RNA package version 1.8.5 [(46); http://www.tbi.univie.
ac.at/RNA/] from which the MFE structure annotation
is extracted. The resulting base pairing probability
matrix is then used to calculate the relative difference in
folding probabilities for both structure annotations in the
following manner:
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Figure 1. Benchmarking the sensitivity of sliding-window RNA structure prediction. (A) Benchmarking pipeline for simulating the experimental
conditions of sliding-window methodologies using known RNA structure alignments. (B) The relative sensitivities of conserved RNA secondary
structure prediction algorithms are plotted for randomly sampled, native RFAM subalignments in function of the amount of sequences, window
length and MPI. Opaque bars represent high-confidence predictions (RNAz probability� 0.9, SISSIz Z-score��4), while translucent bars represent
lower-confidence predictions (RNAz probability� 0.5, SISSIz Z-score��2). Each bar represents the outcome of 200 sampled alignments with RNAz
version 2.0 (using options ‘-f–d–l’), SISSIz using default parameters and SISSIz with RIBOSUM scoring (option ‘-j’) for all indicated window sizes,
sequence depths and MPI ranges. The latter are indicated by their bounded values on the x-axis.
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where �P is the ratio of base-pairing probabilities, RS is
the reference sequence, Smfe and Sc are the minimum free
energy and consensus structure annotations, respectively.
The relative difference in free energies is also measured
as the ratio of the constrained structure’s free energy
normalized to the unrestricted minimum free energy.
A reference sequence (human in this case) is qualified
as structurally congruent to an alignment’s consensus
structure when both of these ratios are >0.75 and when
either one is >0.9. The pipeline is implemented in JAVA
and is available for download in the Supplementary
Information.

RESULTS

Performance evaluation of ECS prediction algorithms

We tested the performance of two recent ECS prediction
algorithms suited for genome-wide screens of conserved
RNA secondary structure from multiple sequence align-
ments, namely SISSIz and RNAz 2.0 (hereafter referred to
as RNAz). Both SISSIz and RNAz evaluate the likelihood
of evolutionary selection on higher-order structure by
comparing structure conservation and sequence conserva-
tion within any given multiple alignment sample. In other
words, these tools test whether the consensus RNA sec-
ondary structure is more divergent than expected from the
observed sequences. RNAz 2.0 and SISSIz emit consensus
structure predictions with greater specificity than the other
tools mentioned above and have not yet been applied to
genome-wide screen in mammals. We revised SISSIz to
incorporate the latest RNAalifold scoring metrics, which
enable the use of RIBOSUM substitution matrices that
improve consensus RNA secondary structure significantly
(23). By comparing the patterns of base substitutions in
sampled alignments to the substitution patterns observed
in the evolutionary history of ribosomal RNAs, a
RIBOSUM-empowered version of SISSIz should enable
stronger discrimination between genomic regions harbor-
ing higher-order structures and those that do not.
Currently, the most extensive database of structured

RNAs is RFAM (37), which contains homologous, hand
curated RNA families with well-characterized secondary
structural components. The inherent alignments are of
structural nature, where homologous helical regions (i.e.
stems) and unpaired regions are aligned together through
manual intervention or from the output of sophisticated
statistical models (48). RFAM alignments provide an
ideal data set of positive controls for RNA structure pre-
diction algorithms that consider consistent (e.g. G:C !
G:U) and compensatory (e.g. G:C! A:U) base substitu-
tions that preserve base pairings in helical RNA structures.
Consequently, we tested the performance of SISSIz
and RNAz on 89 full RFAM alignments with at least
one mammalian representative, totaling 186 662 curated
RNA structures (see ‘Materials and Methods’ section).
On average, each selected RNA family contains a median
value of 154 sequences with 59.4% of them being unique
(Supplementary Figure S3), thus providing a substantially
more diverse data set than BRAliBASE (39).

Because the most computationally tractable approach
to genome-wide scans is to sample multiple genomic align-
ments iteratively via sliding windows of fixed length and
overlap, it is not unlikely that the boundaries of natural
RNA structures occur outside a given window position.
We developed a benchmarking pipeline that reproduces
this limitation by selecting random subalignments from
the RFAM data to evaluate the sensitivity of ECS predic-
tion algorithms in experimental conditions (Figure 1A).
To measure the impact of sequence conservation on
ECS prediction, we iterated the process for different
MPI values to generate multiple ‘bins’ of varying
sequence conservation. Figure 1 illustrates the impact of
the amount of surveyed sequences, the window length and
sequence similarity on the sensitivity (as defined in
‘Materials and Methods’ section) of RNAz, SISSIz and
SISSIz using RIBOSUM scoring. Using a statistical
cutoff of 4 standard deviations from the mean of each
sampled subalignment’s background distribution
(P< 1.5�10�5), SISSIz produces on average more than
twice as many predictions than high-confidence RNAz
predictions (Figure 1, Table 1). This difference is most
remarkable when alignments present MPI values
between 50 and 80%, while RNAz performs best on align-
ments with higher sequence conservation for the applied
confidence thresholds. The RIBOSUM-enabled version of
SISSIz performs particularly well with alignments of low
sequence homology (<60%), which are referred to as the
‘twilight zone’ of multiple sequence alignments where
sequence alignment algorithms perform poorly. Genomic
regions presenting sequence conservation values in this
range are regularly classified as not being subject to
negative selection, suggesting that SISSIz with
RIBOSUM scoring has the potential to uncover putative
functional genomic regions that have previously been
ignored.

We next investigated the topological quality of pre-
dicted RNA secondary structures, as the underlying con-
sensus structure generation tool (RNAalifold) is highly
dependent on the quality of the input alignment. Both
tested algorithms were expected to perform similarly
given their common usage of RNAalifold, yet RNAz
high-confidence predictions (RNA SVM-class probabil-
ity� 0.90) recover slightly more annotated RFAM base
pairs than SISSIz (Figure 2A). This suggests that the topo-
logical quality of ECS predictions by RNAz predictions is
more accurate than those from SISSIz, which highlights
the strength of RNAz’s SVM classifier. It also raises the
possibility that RNAz predictions are biased toward its
SVM’s training data, which is less likely for SISSIz pre-
dictions given its unsupervised nature. Indeed, the specific
use of the Structural Conservation Index (SCI) by RNAz
favors predictions that contain a higher density of base
pairs, whereas SISSIz predictions are less affected by
this parameter (Figure 2B). In combination to its relatively
weaker sensitivity, these results suggest that RNAz’s SVM
could be refined for genome-wide sliding-window scans by
including a more diverse set of positive controls, such as
the data used for this study. Despite the higher sensitivity
of the RIBOSUM-enabled version of SISSIz, its predic-
tions do not reproduce validated structural topologies as
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accurately as the other algorithms. Consistent with its
higher sensitivity, SISSIz with RIBOSUM predictions
encompass >85% of SISSIz’s or RNAz’s predictions
(Figure 2C), which further substantiates its use for
genomic screens. The majority (91%) of high-confidence
RNAz predictions are also detected by either variant of
SISSIz, whereas RNAz predictions overlap just over 37%
of predictions from either version of SISSIz.

In sliding-window screens, precision is compromised for
speed by limiting the sampled alignments to a fixed size.
The impact of the sampled alignment size (i.e. window)
was also tested through our tailor-made benchmarking
pipeline. Our results suggest that the length of alignments
has more impact than alignment depth—i.e. number of
sequences—for both scoring variants of SISSIz, yet less
so for RNAz (Figure 1). This confirms that longer
windows are preferable to smaller ones in a genome-
wide screen, as they are likely to encompass more
ribonucleotide base pairings. Nonetheless, >2�107 predic-
tions would be performed in a genome-wide screen on
standard multiple genomic alignment data using a
window size of 300 bases that overlap by 50%. The dif-
ference in average speed between all algorithms favors
SISSIz, surprisingly, as RNAz is promoted as one of the
faster algorithms for genome-wide screens. In its current
release, RNAz struggles with longer alignments as it
undergoes full SVM training when the parameters of the
input data fall outside the inherent classifier’s range
(Figure 2D). Overall, these results highlight SISSIz’s
strength at detecting evolutionary constrain on higher-
order structures, while supporting the use of RNAz for
more conserved sequence alignments. The reported
sensitivities can be viewed as a theoretical maximal per-
formance measure of sliding-window approaches for
detecting conserved RNA structures.

Multiple genome alignments lack the refinement and
precision of RFAM-sourced structural alignments, as
their underlying heuristics tend to minimize gap content
to maximize sequence homology. Sequence-based align-
ment leads to diminished frequency of consecutive nucleo-
tides in the alignment consensus, which significantly
impacts base stacking energy contributions in minimum
free energy folding of RNA sequences (23). We submitted

RFAM alignments to a sequence-based alignment tool to
measure the extent at which structural information is
dispersed during the construction of genomic alignments,
and how this consequently affects consensus structure
prediction (see ‘Materials and Methods’ section).
Unsurprisingly, the measured sensitivities drop overall in
this emulated genomic alignment benchmark. RNAzmain-
tains roughly the same prediction sensitivities compared
with the RFAM-sourced structural alignments (Table 1,
Supplementary Figure S4), while both variants of SISSIz
present weaker performance on the emulated genomic
alignments for most MPI ranges, with the notable excep-
tion of alignments presenting very weak conservation
values (<50%). The disruption of homologous helices in
the native RFAM by sequence alignment algorithms can
scramble bona fide signatures of covariant base pair muta-
tions, thus reducing the sensitivity of predictions. Yet when
sequence conservation is faint, i.e. well within the twilight
zone, minimizing gaps increases the normalized Shannon
entropy that can consequently provide false covariation
signals for paired bases in the consensus, which should be
reflected in specificity testing (see below). Overall, the dif-
ferences between prediction rates from native RFAM
alignments and emulated genomic alignments suggest
that classical sliding-window approaches to ECS detection
suffer from high false-negative rates.

Measuring specificity

We first measured specificity (as defined in ‘Materials and
Methods’ section) by producing simulated alignments for
each sampled subalignment with the SISSI algorithm,
which ensures that each alignment’s sequence characteris-
tics are conserved in the simulated null alignment. At the
defined confidence thresholds, all surveyed algorithms
present a false-positive rate (1-specificity) �1%
(Table 1), a substantial improvement from the �50%
false discovery rate of the tools used in the original
ENCODE scans (18,20). These results are a direct conse-
quence of considering dinucleotide composition in the
background models and scoring metrics of consensus
structure prediction.

Table 1. Accuracy of SISSIz and RNAz on RFAM sub-alignments

Alignment source Algorithm Sensitivitya Specificitya,b

SISSIz-s Multiperm

Native RFAM RNAz 17.7 99.8 100
SISSIz 37.8 99.0 92.3
SISSIz+RIBOSUM 40.9 99.2 90.8

Emulated genomic
c RNAz 16.1 99.7 99.8

SISSIz 30.3 99.0 93.2
SISSIz+RIBOSUM 34.3 99.6 93.0

aUsing a confidence threshold half way between those reported in Figure 1 (Z-score��3 for SISSIz; P� 0.75 for RNAz).
bFrom the associated dinucleotide-controlled shuffled alignments.
cSelected RFAM sequences are de-gapped and realigned with MAFFT-GINSI (42). RNAz predictions for alignments >300 nt were not calculated.
Values reflect the cumulative specificity for 10 200 and 6800 alignments of 10, 20 and 30 sequences with window lengths of 100, 200, 300 for SISSIz;
100 and 200 for RNAz, respectively. RNAz scoring for native RFAM alignments used the ‘�l’ option for structure alignments.
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To circumvent the potential redundancy bias of using
the same null model for true-negative generation and
background scoring (i.e. SISSIz predictions intrinsically
uses SISSI), we also randomized alignments for specificity
testing with the independent program MULTIPERM that
also maintains dinucleotide composition (47). With the
exception of RNAz, which predicts fewer false positives
in the MULTIPERM data set, the specificity of both
variants of SISSIz is lower while nonetheless remaining
>90% (Table 1). The lower specificity of SISSIz predic-
tions on MULTIPERM true negatives, particularly for
very low sequence conservation scores (Supplementary
Figure S5), can explain the increase in sensitivity for
poorly conserved true-positives alignments that have

been realigned (Supplementary Figure S4). The average
MPI of the MULTIPERM alignments differs on average
by 7.4% from the native RFAM alignments, versus 0.2%
using SISSI (Supplementary Figure S6). This indicates
that MULTIPERM is not as accurate as SISSI in
reproducing the precise sequence characteristics from
native alignments, therefore reducing the reliability of
derived specificity values.

Performance of ECS algorithms on genomic data

Given the apparent limitations of generating true nega-
tives from positive controls, we also surveyed genomic
data to accurately evaluate the specificity of the tested
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ECS prediction algorithms. The RFAM-derived align-
ments, used to measure maximal prediction sensitivity,
present analogous RNA structures composed of sequences
that are not necessarily orthologous, unlike the evolution-
ary sequence data from multiple genome alignments. To
estimate the specificity of RNAz and SISSIz in genomic
screens, we applied alternative and independent shuffling
strategies to the consistency-based EPO genome align-
ments of 35 eutherian mammals from chromosome 10
(see ‘Materials and Methods’ section). Albeit not ideal,
the use of scrambled alignments as negative controls is
preferable to alignments from genomic loci suspected of
being devoid of function, such as ancient repeats that are
commonly used to calibrate evolutionary conservation
metrics. These ‘neutrally’ evolving loci are possibly func-
tional, which while controversial, means that one cannot
be confident that any existing genomic sequence is a true
negative (13).

The independent dinucleotide-controlled alignment
randomization algorithm MULTIPERM was used to
produce negative controls from genomic alignments,
both on its own and combined to randomization of the
entire syntenic alignment block with SISSI. Although
SISSI’s null model reproduces the sequence characteristics
of the native alignments with high fidelity, the combin-
ation of both SISSI and MULTIPERM alignment simu-
lations avoids potential algorithm-specific biases that may
be encountered when using only a single randomization
strategy. The ensuing alignments provide a compromise to
false-positive evaluation with reduced bias and without
assumptions of nonfunctionality. Table 2 describes the
impact of both strategies on the false discovery rate of
the ECS prediction approach described below, highlight-
ing the discriminative power of the used tools.

We next investigated the performance of RNAz and
SISSIz on native EPO genomic alignments. EPO align-
ments are more robust than alignments produced with
TBA/Multiz, which have been used in previous structural
characterization endeavours. They present substantially
longer syntenic blocks and are >500 times less fragmented
than Multiz alignments (49,50), which translate to better
sampling coverage in sliding-window screens. Using a
sliding-window strategy (see ‘Materials and Methods’
section), we compared the distribution of alignment char-
acteristics for predicted ECSs with the genomic back-
ground to evaluate how both tools perform on genomic
data (Figure 3). RNAz predictions are enriched for align-
ments with less than nine species or those presenting
>80% mean pairwise sequence identity, which mainly
consist of primate specific lineages (not shown).

Conversely, SISSIz predictions are synonymous with
alignments containing less conserved sequences that
evade detection by RNAz, yet compose the bulk of align-
ments with >10 species. The lack of hits with higher MPI
values highlights SISSIz’s difficulty to create a phylogen-
etic model when confronted with little sequence variation.
Similarly, SISSIz is prone to generating excessively strong
scores when its background distribution has a low average
minimum free energy score or small variance
(Supplementary Figure S1). The RIBOSUM variant of
SISSIz overcomes these caveats as the distribution of
sequence characteristics associated to high-confidence pre-
dictions is comparable with the genomic background,
although this comes at the cost of an average runtime
twice that of SISSIz (Figure 2D). Because these methods
all have their peculiarities, selecting the optimal program
given the sequence characteristics of an input alignment
would thus be advantageous for genome-wide screens,
where computational complexity is an eminent limiting
factor.

Optimized genome-wide detection of mammalian ECS

Based on the above-mentioned benchmarking results, we
constructed a hybrid algorithm for large-scale comparative
genomic elucidation of RNA secondary structure conser-
vation throughout mammalian evolution, using consensus
sequence-based prediction tools. Our hybrid algorithm
processes genomic alignments to remove extraneous or
deleterious information (such as identical sequences or
high gap content) and submits the resulting overlapping
windows to the optimal structure prediction tool given
the alignment’s sequence characteristics (see ‘Materials
and Methods’ section and Supplementary Figure S2).
When applied to the EPO alignments of 35 eutherian
mammals, the process completes in just over 130 000
CPU h (�15 years) and yields >4 million alignment
windows predicted to contain ECSs (Supplementary Data
S4). The bulk of the predictions from the hybrid algorithm
were sourced from SISSIz (30% with RIBOSUM scoring;
43% without), while RNAz was used for the remaining
27%. Because our benchmarking was performed on
MAFFT-GINSI alignments, we implemented this
software in our analytic pipeline to enable direct compari-
son between the results of the genomic screen and those
from the RFAM benchmarking. Based on tests from
chromosome 10, the additional realignment using
MAFFT was beneficial in that �10% more high-confi-
dence ECS predictions were generated than when using
the native EPO alignments (not shown). However, this

Table 2. Effect of randomization strategies on the calibration of genomic false discovery rates

Randomization strategy Surveyed alignments (200 nt) RNAz SISSIz SISSIz+RIBOSUM Normalized FDR (%)
P0.01 Z0.01 Z0.01

Multiperm (window) 1.17� 106 64% �5.0 �3.1 21.7
SISSIz (block)+Multiperm (window) 1.07� 106 26% �2.5 �2.0 4.9

Values are for 99% specificity (P=probability of comprising a conserved RNA structure as calculated by RNAz’s SVM RNA class probability
metric; Z=Z-score from normal distribution).
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improved performance comes with an �50% increase in
the computational runtime. Given that EPO alignments
generate less ECS predictions than MAFFT-derived pre-
dictions, we consider that the native EPO alignments are
sufficient to estimate a lower bound on the prevalence of
ECSs in mammalian species.
The resulting ECS predictions encompass 18.5% of the

surveyed alignments that, in turn, span across 84.1% of
the human genome (GRCh37 assembly), suggesting that a
substantially greater proportion of mammalian genomes is
conserved at the level of RNA structure than previously
thought. Furthermore, our optimized prediction pipeline
entails an unprecedented false discovery rate between 4.7
and 21.7% (sensitivity/1-specificity), depending on the
source of negative controls (Table 2). To exclude the pos-
sibility that short consensus structures spanning only a
fraction of the sampled alignment might inflate predic-
tions, the genomic coordinates were truncated to exclude
regions flanking the outermost paired bases from the pre-
dicted consensus structure, yielding a total genomic
coverage of 13.6% (Supplementary Data S5). This
includes 116 657 clusters of three or more intersecting pre-
dictions, a figure that doubles (224 475) when including
hits falling within 100 nt of any ECS boundary in the
same orientation of transcription (Figure 4A).
With regards to the genomic distribution of hits, the

majority of predictions lie within intronic and intergenic
regions as annotated in GENCODE version 14 (51)
(Figure 4B). Predictions are roughly 2-fold enriched
(odds ratio) in annotated exons, with the highest enrich-
ment observed in protein-coding regions (Figure 4C). This
is consistent with experimental data from genome-wide
RNA structure profiling in yeast (59) and alternative com-
putational approaches (60–62). In addition to the observed
enrichment for ECS predictions in annotated and extended
mRNA untranslated regions, we measured the distribution
of cumulative distances between observed ECS predictions
and the extremity of the nearest coding sequence. The

analysis reveals that there is a relationship between the
position of ECS predictions and protein-coding sequences,
where ECS predictions are preferentially located up to
50 kb in either direction of protein-coding genes
(Supplementary Figure S7), exposing their potential in-
volvement as cis-regulatory elements. Long non–protein-
coding transcripts, as defined in the comprehensive
GENCODE annotations, are also enriched for evolution-
arily conserved RNA secondary structures but to a lesser
extent than other exonic sequences. Interestingly, repeat
elements display significant enrichment for ECSs as well
(1.34 odds ratio, Supplementary Table S2). In fact, about
half of the ECS predictions we report overlap repeat
elements, although their distribution is not uniform
across the different repeat families (Supplementary
Figure S8 and Supplementary Table S2). The prevalence
of ECS structures is strongly enriched in Alu elements,
which are known to form conserved RNA secondary struc-
tures (63), as well as endogenous retrovirus repeats.
Conversely, ECSs predictions are �2-fold under-repre-
sented (0.6 odds ratio) in the most abundant class of
genomic repeats—long interspersed nuclear elements
(LINEs).

The predicted ECSs we report intersect with�40% of all
conserved RNA secondary structures reported in previous
genome-wide screens (Figure 4E), which all derive from the
more fragmented TBA/Multiz genome alignments. Our
approach recovers >15% of EvoFold predictions (53),
which are nearly always completely covered by our predic-
tions. Conversely, we recover >50% of CmFinder annota-
tions (18) yet their coordinates are not precisely resolved.
To further validate the accuracy of the divulged predic-
tions, we measured the overlap between ECS hits and
both known and putative functional RNAs (Figure 4F).
Smaller ncRNAs, such as miRNAs and HaCa snoRNAs,
are well accounted for in the predictions, just as the recently
published EvoFam predictions from 29 mammals (52,53).
Annotated ncRNAs that are less well detected include the
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largely unstructured CD-box snoRNAs and tRNAs, of
which a majority source from alignments that were not
sampled by our methodology. Indeed, 311 of the 625
annotated tRNAs and pseudo-tRNAs in the human
genome are present in alignments longer than 200 nt that
contain less than three nonidentical sequences (64), thus
would not be sampled in the current implementation of
this genome-wide screen. Our ECS predictions span
across 38.4% of all nucleotides associated to the latter
tRNAs. The low recall of tRNAs is thus a consequence
of the rapid turnover of tRNA genes at individual loci
(65). Nonetheless, the bulk of our predictions fall outside
annotated transcripts and within introns, providing new
evidence that many functional elements remain to be
characterized in mammalian genomes.

We next questioned what proportion of the predicted
ECSs constitute novel constrained regions by measuring
overlap with known sequence-constrained elements, which

are currently estimated to compose between 4.6 and 10%
of the human genome (52,66). For placental mammals,
the combined (high-confidence) data from these reports
encompass 9.2% of the human genome, whereas the
majority (87.8%) of the ECS predictions reported herein
lie outside annotated sequence-constrained elements
(Figure 4D). We investigated whether this dichotomy
was a consequence of ECS predictions derived from
primate-specific lineages, which display higher than
average sequence homology compared to deeper align-
ments. Primate-specific lineages may inflate the proportion
of ECS predictions that do not overlap with sequence-con-
strained elements as they are common in the 35-way EPO
multiple genome alignments, as represented by the
narrower, outer-most peak of the bimodal distributions
of the MPI and the number of species in Figure 3. In
our pipeline, RNAz is optimally employed to predict
conserved RNA structures within these higher ranges of
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sequence conservation. When removing RNAz-derived
predictions from our data set, the remaining ECS predic-
tions encompass 8.9% of the genome and overlap only
18.1% of annotated sequence-constrained elements
(versus 13.6% and 12.2% with RNAz, respectively).
We also compared the sequence composition

distribution of ECS-associated alignments between
known sequence-constrained elements and novel struc-
ture-constrained predictions to further emphasize the
structural nature of our findings and to accentuate the
divergence between ECS predictions and sequence-con-
strained elements (Supplementary Figure S9). Indeed,
the distribution of MPI values for ECS predictions con-
trasts and complements that of sequence-constrained
elements. The predictions that do not overlap with
sequence-constrained elements are produced from align-
ments with lower sequence homology for all three
employed algorithms. The dichotomy between the
genomic loci we expose as being under negative selection
at the RNA secondary structure level and those reported
to be under sequence constraint reinforce the novelty of
our findings, while suggesting that this is not due to the
consideration of primate-specific lineages in our data.
Taken together, these results substantiate the prevalence
of higher-order structure complexity in mammalian
genomes and suggest that the extent of purifying selection
in mammalian genomes has been hitherto underreported.

Structural congruence in human

The nature of consensus-based structure predictions does
not guarantee that any given sequence in the queried
alignment will form an RNA secondary structure compat-
ible with that of the consensus. The RNAalifold algo-
rithm, inherent to both algorithms implemented in our
pipeline, only requires that half of all the input sequences
form a consensus. Therefore, the human sequence may not
be compatible with the consensus secondary structure that
stems from a primary structure alignment. To increase the
reliability of the reported predictions, we measured the
likelihood that a human RNA secondary structure is com-
patible with that of the consensus by comparing the struc-
tural propensity of the unconstrained, native reference
(human) sequence to the same sequence that is constrained
to fold into the predicted consensus structure; a metric we
term structural congruence (see ‘Materials and Methods’
section for details). This process retained 1 941 247 of the
predicted ECSs encompassing 6.9% of the human
genome, 95.1% of which do not intersect known
sequence-constrained elements (Supplementary Data S6).
Another potential limitation of the method we describe

is the sampling of evolutionary shallow alignments pre-
senting restricted sequence diversity that, by default, are
structurally congruent in human. Although our pipeline
implements software and preprocessing steps that reduce
the impact of shallow phylogenetic sampling, limited di-
versity can potentially reduce the statistical power of our
approach as it is premised on the identification of genetic
variation that is consistent with higher-order structural
conservation of RNA. For example, �8% (322,125) of
the all ECS predictions we report are sourced from

alignments displaying MPI standard deviation and
normalized Shannon entropy values <2.5 and <0.05,
respectively, indicative of weak sequence diversity. In
such instances, RNAz is preferentially used to make
ECS predictions given its use of the SCI metric as an add-
itional source of information. Including these predictions
in our study is substantiated by the relative strength of
RNAz in these ranges of sequence variation, which is sup-
ported by our benchmarking results and our evaluation of
the experimental false discovery rate. However, to
evaluate the nature and abundance of ECS predictions
derived from alignments with optimal evolutionary infor-
mation, we removed predictions with �10 sequences from
our analysis. This essentially eliminates all primate-specific
alignments, while 77.4% of the resulting 688 861 predicted
ECSs nonetheless fail to overlap any locus annotated as
evolutionarily constrained at the level of sequence. Thus,
through empirical analysis of thermodynamic stability and
evolutionary patterns of base pair covariation, combined
to previous reports thoroughly investigating sequence-
constrained elements, we can postulate a revised lower
bound of functional sequence in the human genome at
�15.6%.

Structural annotation of a long ncRNA

As an example of how our results can contribute to the
structure–function annotation of ncRNAs, we annotated
ECS predictions associated to the long (intergenic)
ncRNA MALAT1. MALAT1 (Metastasis-Associated
Lung Adenocarcinoma Transcript 1, also known as
Neat2) is an �7 kb unspliced ncRNA involved in
regulating alternative splicing and is implicated in
various cancers (67–72). It harbors an evolutionarily
conserved hairpin and tRNA-like structure at its 30-end,
which is specifically cleaved by RNAse P to produce a
mature polyadenylated transcript and a small cytoplasmic
RNA (termed mascRNA) (73). Our high-confidence ECS
predictions accurately detect the mascRNA and the
conserved hairpin upstream of it (Figure 5), while iden-
tifying another conserved helical structure between the
latter that was recently shown to form a stable triple
helix at the 30-end of MALAT1 (74). Our approach also
identified this additional helix at the 30-end of the Neat1
lncRNA (not shown), which forms similar hairpin- and
tRNA-like structures (75). For sake of comparison, the
EvoFold algorithm only detects a substructure of the
mascRNA. Furthermore, we predict several other RNA
structures with evidence of evolutionary constraint in the
MALAT1 locus, the majority of which are supported by
strong base-pairing probabilities in human. These results
indicate that there are a variety of concise ECS motifs that
can serve as putative ligands for RNA-binding proteins or
for ribonucleoprotein complex formation, in MALAT1
and (almost) every other transcribed region of the genome.

DISCUSSION

The findings presented herein provide novel evidence for
widespread functionality acting through RNA secondary
structure, under the premise that negative evolutionary
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selection is a bona fide indicator of molecular function, in
conjunction with the fact that the majority of the human
genome is transcribed. Our findings provide an additional
layer of support for previous reports advancing that
>20% of the human genome is subjected to evolutionary
selection (13,78), while suggesting that additional evidence
for function can be uncovered through careful investiga-
tion of analytically involute higher-order RNA structures.
Furthermore, our approach entails an empirically
determined false discovery rate well below that reported
in previous endeavors (i.e. 5–22% versus 50–70%) (18,20),
supporting the widespread involvement of RNA second-
ary structure in mammalian evolution.

Our results are consistent with annotations from
previous ECS screens (Figure 4E), as their intersection is
of comparable magnitude when specificity is taken into
consideration. The independent alignment sources, algo-
rithm properties, preprocessing steps and methodologies
used in these analyses also explain why the overlap is not
greater. For example, EvoFold predictions are skewed
toward lower GC content and highly conserved sequence
alignments. Our method attempts to avoid the latter by
removing identical sequences to optimize information
content on the premise that strong sequence conservation
over an adequate evolutionary distance is sufficient
evidence for negative evolutionary selection. Set apart
from its higher false-positive rate, EvoFold predictions
nonetheless complement the ones reported in this manu-
script, which present slightly higher GC content than the
genomic background (Figure 3); this is a consequence of
thermodynamics-based RNA structure prediction (e.g.
RNAalifold) where GC base pairs contribute more to
the free energy score. However, higher GC content is
also associated with longer transcript half-lives in stability
assays (79), thus providing additional, albeit unspecific,
functional evidence to the computational predictions we
report.

The expanding compendium of experimentally verified
RNA structures has facilitated the benchmarking of func-
tional RNA prediction algorithms (37,38), yet applying it
to quantify structured RNAs in comparative genomic
screens is not straightforward. In this work, the practical-
ity of RFAM alignments with regards to consensus
sequence-based RNA structure prediction is 2-fold: (i) to
calculate an upper limit for sliding-window predictions on
validated data, and (ii) to estimate the experimental error
incurred by multiple sequence alignment heuristics. By
comparing both results, it is possible to extrapolate the
approximate accuracy of a classical scans for evolutionar-
ily conserved RNA secondary structure.

Hence, the RNA structure predictions we report using
conservative thresholds are likely to span >13.6% of the
human genome we report. This number is probably a sub-
stantial underestimate of the true proportion given the
conservative scoring thresholds employed, the neglect of
pseudoknots, the liberal distance between overlapping
windows and the incapacity of the sliding-window
approach to detect base-pair interactions outside the
fixed window length. A less conservative estimate would
place this ratio somewhere above 20% from the reported
sensitivities measured from native RFAM alignments and

over 30% from the observed sensitivities derived from
sequence-based realignment of RFAM data (Table 1,
Figure 1 and Supplementary Figure S4). The accuracy of
such extrapolations obviously depends on the reliability of
the true-positive data sets, but also on how related the
cataloged structures are. For instance, the covariance
models used by INFERNAL (48) to generate structural
RNA alignments (e.g. RFAM) from evolutionary dispar-
ate sequences can be more permissive to extreme sequence
variability than what is observed in sequence alignments
of a given phylum, potentially leading to divergent results
on experimental data. By breaking down the control data
in function of their sequence characteristics and by
reproducing experimental conditions through sequence-
based realignment of the input, we set the foundation
for an optimized genome-wide investigation of RNA sec-
ondary structure conservation.
Our data complement recent findings from the

ENCODE consortium, which report that 74.7% of the
human genome is transcribed in multiple cell lines and
that many novel unannotated genes are detected when
sequencing RNA from subcellular compartments (3,9).
In addition, the analysis of active chromatin marks and
DNAseI hypersensitivity sites identified �45 000 novel
transcription start sites without any associated RNA tran-
scripts (80). These findings are consistent with data from
high-resolution transcriptome enrichment methodologies,
which reveal that even regions with sparse transcription
from classic RNA sequencing experiments express a
plethora of alternatively spliced RNAs in specific cells
(2). These reports suggest that there is a diverse multitude
of processed, noncoding transcripts in mammalian cells
that fulfill regulatory roles. We postulate that the forma-
tion of higher-order structure motifs is important for
specific interaction with other regulatory molecules, such
as histone modification complexes (81–84). The evolution-
ary plasticity ensuing from higher-order structure motifs
partially explains the lack of genome-wide evidence for
pan-mammalian selection of novel RNA sequences
reported by the ENCODE consortium. The latter none-
theless identifies an appreciable proportion of uncon-
strained, lineage-specific genomic elements that are
required for organismal function through analysis of
human genetic variation (9). Concordantly, we propose
that the higher-order structural components of RNA
serve as a flexible and modular evolutionary platform
for the diversification of regulatory mechanisms guiding
developmental ontologies, assisted by low penetrance of
the affected alleles and by compensatory base pairing.
The ECS predictions we report fall largely outside

known sequence-constrained elements, testifying to
SISSIz’s predictive power when primary sequence conser-
vation is weak. RNA structure algorithms predicated on
measuring base-pair covariation events—the telltale
idiosyncrasies of functional RNAs acting through
higher-order structures—are impertinent when sequence
conservation is high, where they are superseded by se-
quence-based approaches. The inclusion of RNAz in
the hybrid algorithm is supported by SISSIz’s poorer
performance when sequence conservation is high, as
fewer mutations fail to generate sufficient statistical

Nucleic Acids Research, 2013, Vol. 41, No. 17 8231

more than 
-
employed 
s
two
much more than the 
,
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt596/-/DC1
of the 
u
employed 
,
-
,
-
evolutionarily conserved structure
-
--�
--�
d


Scale
chr11:

2 kb

65268000 65270000 65272000 65274000

All conserved RNA 2D structure predictions

Enredo-Pecan-Ortheus 35 way alignment (with BlastZ-net) from Ensembl 62

Gerp Constrained Elements (35 eutherian mammals) on homo_sapiens in Ensembl 63

MALAT1

Repeating Elements by RepeatMasker

EvoFold Predictions of RNA Secondary Structure

1% 99%

A

B

65266000

erp

G
G
C
GC

A
G
CG

C
C
A
U UU

U
A
G
CA
A
C
G
C G

G A A G C C
C G GC G C C

G
G
G
A
A
G C C

U
C
A

GC
U
C
G
C
C
U
G A

A
G
G
C A

G
G
U
C
C
C

CU
C
U
G
C
C
G

C
C

UC
C

G
G

GA
GCCC

AGGUUUC
C
C
A GA

G
U
C

C
U
U
G
G
G
A C

G C A G C G
A C G A

G
UUGUGCUGU

U
A

CCUUA
GCUGUCCCU

U
U A G GC U G G C

C
A
U
U
C
C
A
G
GG

G
G
U

G
GU

U A G G UG A
U U A A

A
A U

A A U UU
G
A
A
G GC G A U C U U U UAA

AAAGAGAUU
AAA

CC
G
A
A
G
G
U GA

U
U
AAAA

G
A

C
C

U
UGAAA

U
C

C
AUGACGCAG

GG
A
G
A A U U G C G U C A U

UUAAAGCCUA

5’

3’

UGAGGAC
U
UG C C U C A

A
CU

C
C
CU

C
U
U
U
C
U
G

G
AGU

G
A
A G C

A
U
C
CG

A A G GA
A
U
G
C U U GA A G U A C C

CC
U
G
G
G
C
U
U

C
U
C
U
U
AA

C A U
U U A A G

C A
A G C U G U U U

U
U

AU
AGCAGCUCUUAA

U
A
A

UAA
A
G
C
C
C
A
A
A
U
C
UCAAG

C
GGUGCUUGA

AG
G

GGAG
G
GA

A
A
G
G
G
G
G
A
A
A
G
C
G G G C

A A C
C
A
CUU

UUC
CCUA

G
C
U
U
U
U
C
CA

tio

ne

mo

ke

tr

pr

a

on

tM

da

AU
U
G
C
U
U
G
U
C
A
A
G
C
U
A
U
A
A

CCACAAAA
AU

A
A
UGA

AUU
G

A
U

GA
G
AA

A
U
A C

A
A U

G
AA GA

G
GC

A
AU

G
U
C
C
A
U
C U C A

A
A
A
U
A
C

U
G
C

U
U

U
U
AC AA

A
A
G
C
A
G A

A U A A A
A
G
C
G
A
A 5’
3’

CUCCUGA
C
C
C
C
U
U
C
C

CU
A

G
G

G
GA

U
U
U
C
A
G
GAUU

G
A
G
A
A
A
UU

U
UUCCAUC

G
A
G
C
C
U U

U
U
U
A
A

AAUU
G
UAGGACU

U
G UU C C U G

U
G
G
G
C
U
U

C
A
GU G

A U G G G A
U
A
G
U
AC

A C U UC
A
C
U C A G A G

5’
3’

5’
3’5’

3’ G
C

U
C

UU
C
A GU

A
G
G
G
U C A UG

A
A
G
G
U U

U
UU

C
U

U
U
U
C C U G A G A A A A C A A C A

C
G

UA
UUGUUUUCUCAGG

U
U
U
U
G
C
U
U
U
U
U GG

C
C
U
U
U
U U

C
U
A

GCU
U
A

A
A

AAA
A
A
A

A
A

A
A

G
C

A
A

A
AG

A
U
G
C
U
G
G U GG U

U
GGCAC

U
C
C
U
G
G
U

U
U
C
C
A
G
G
A

CGGGGUUC
A
AA U

C C C U G
C
G
G
C
G
U
CU

U
U
G

5’3’

Figure 5. Structural characterization of the long ncRNA MALAT1. (A) UCSC genome browser (hg19) screenshot of the MALAT1 locus with the
following tracks: EPO multiple genome alignment (used to emit predictions), GERP++constrained sequence element track, repeat elements, EvoFold
evolutionarily conserved RNA secondary structure predictions, and the ECS predictions reported herein, with colors representing the algorithm used
to make the prediction (SISSIz in red, SISSIz with RIBOSUM in green, RNAz in blue). Red rectangles represent ECS predictions that are
structurally congruent with the reference sequence. (B) Human RNA secondary structures associated to predictions. Consensus RNA secondary
structures were extracted from the associated alignments and used as a constraint for folding the human sequence with RNAfold (76). The base
colors represent the (unconstrained) partition function base-pairing probabilities associated to the represented structures. Gray structure annotations
correspond to RNAalifold consensus structures supported by conserved or compensatory mutations. The substructures outlined in black (bottom
right) correspond to the previously characterized mascRNA and associated stem-loop, which are required for efficient RNAse P cleavage (cleavage
site indicated with an arrow) (74). Structure representations were created with VARNA (77).
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power required for SISSIz’s underlying phylogenetic
model. Short external branch lengths (intrinsic to higher
MPI ranges) generate a disproportionate amount of
closely related sequences, thus increasing the influence
of states at internal nodes of SISSIz’s phylogenetic
model, potentially misleading consensus structure predic-
tions when intermediate structures deviate by chance. The
improved performance of SISSIz with RIBOSUM scoring
for extreme MPI ranges can be attributed to the modified
weighting of bonus energies derived from covariation
events. These bonus energies have a higher contribution
to the consensus than in the conventional SISSIz model,
thereby favouring true conservation patterns by
producing lower total free energy (23) and thus a
stronger Z-score. For higher MPI values, it is likely
that RIBOSUM scoring improves the discernment of an-
cestral correlations through the topology of the inherent
phylogenetic tree. For lower MPI values, where consen-
sus-based algorithms are accountable to the caveats
stemming from the twilight zone of multiple sequence
alignments, the explicit scoring of compensatory muta-
tions (as quantified in RIBOSUM substitution matrices)
is responsible for the exceptional performance of this
variant of SISSIz. Furthermore, limitations caused by
imperfect alignments are, in all likelihood, overcome via
the discernment of each alignment’s local composition of
nucleotide transitions and transversions, which can be
used on their own to detect functional RNA structures
(85). Although the topological accuracy of RIBOSUM
endorsed predictions diverges from that in control align-
ments (Figure 2A), adjusting the weight of RNAalifold’s
unfounded, covariation-derived bonus energy parameter
may consequently provide more accurate structure predic-
tion topologies.

The abundant ECS motifs uncovered in this work are
the product of heuristic sequence alignments that sacrifice
precision to accommodate speed and global orthology.
Sequences conserved throughout evolution are typically
used to anchor synteny maps and multiple genome align-
ments before the heuristic optimization of sequence simi-
larity, which is sufficient to juxtapose orthologous
sequences. We have shown that multiple genome align-
ments in the twilight zone can generate ECS predictions,
yet the amount and quality of predictions can undoubt-
edly be improved (at the cost of significantly higher time
complexity) by realigning the input alignments with
sequence-based programs (42,86), with algorithms tailor-
made for the purpose (87), or with full-fledged structure
alignment algorithms [reviewed in (32,34,88)]. Although
we have incorporated one realignment option to our
pipeline (MAFFT-GINSI) that increased the prediction
rate by �10% in test runs (not shown), we did not
apply it to the genome-wide screen owing to a significant
increase in time and memory constraints. Because EPO
alignments generate less ECS predictions than MAFFT-
derived predictions and given the fact that our bench-
marking results represent a practical upper bound (at
least for sensitivity), we consider that the native EPO
alignments are sufficient to support the main claims of
our manuscript. Higher resolution of ECS prevalence
can also be achieved through use of longer windows

with smaller steps, although the current implementation
of RNAz may need to be retrained for this purpose. Small
structural motifs are nonetheless functionally pertinent, as
they are suspected of being involved in the binding of
specific ligands and of guiding the formation of higher-
order structures (82,89).
Although this work identifies millions of putative func-

tional RNA structures, their exact functional nature
remains largely uncharted. One way to achieve this is by
clustering them into families based on their structural
topologies, thus deriving function via homology—an
approach that has been applied to smaller sets of RNA
structures (53,90,91). Using current tools, these analyses
are too computationally complex to be rendered practical
on the extensive set of predictions we report.
Alternatively, recent advances in high-throughput

sequencing of chemical- and enzyme-digested RNA struc-
tures (59,92,93) and the development of computational
tools to analyze the results (94) open the door to a
broader elucidation of the precise mechanisms involving
higher-order RNA structures. Nonetheless, our findings
reappraise the amount of functional sequence in mamma-
lian genomes through comparative genomics by providing
further evidence for widespread negative selection at
the transcriptomic level. Bearing in mind that the vast
majority of the mammalian genome is dynamically tran-
scribed in different cells and developmental stages (2),
these observations are consistent with the hypothesis
that ncRNAs are prevalent molecular conveyors of regu-
latory plasticity in mammals. We further suggest that the
approaches taken here will progressively reveal even more
evidence for genome-wide functional selection on higher-
order RNA structures as they are applied to denser
lineage-restricted genomic comparisons that will inevit-
ably emerge in the near future.
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