
A Case Study on Emulation-based Preservation

in the Museum: Flusser Hypertext
Frank Padberg

Karlsruhe University of Arts and Design (HfG)
76135 Karlsruhe, Germany

fpadberg@hfg-karlsruhe.de

Daniel Irrgang
Berlin University of the Arts (UdK)

10823 Berlin, Germany

irrgang@medienhaus.udk-berlin.de

Philipp Tögel
Berlin University of the Arts (UdK)

10823 Berlin, Germany

variantology@digital.udk-berlin.de

Martin Häberle
ZKM Center for Art and Media Karlsruhe

76135 Karlsruhe, Germany

martin.haeberle@zkm.de

ABSTRACT

We use emulation to preserve a complex digital artifact in the

museum. We describe all stages of the preservation process and

discuss the technical and curatorial problems that we

encountered. The exhibition setting defines additional

requirements for an emulation. Our findings and lessons learned

are instructive for emulation researchers and museum

practitioners. The preserved artifact now is on display in real

exhibitions.

Keywords

Emulation; Digital Preservation; Digital Art; Museum

Exhibition; Virtual Disk; Hypertext Systems; HyperCard;

Vilém Flusser; Media Theory

1. INTRODUCTION
We report on a successful effort to preserve a complex digital

artifact of the early 90s and present it in a museum exhibition

using emulation. We describe the instructive difficulties that we

encountered at all stages of the preservation process, ranging

from the preparation of the digital artifact to the operation of the

emulation in the exhibition. We also comment on the technical

and curatorial decisions that we made.

We suppose that our observations and findings are quite typical

for an emulation-based approach, and that the lessons learned in

our case study will prove useful for emulation researchers and

museum practitioners.

The digital artifact that we aimed to preserve is the so-called

―Flusser Hypertext‖ from 1992. This work not only is part of

the digital heritage of the philosopher and media theorist Vilém

Flusser, but also an important document of the early history of

hypertext systems. The Flusser Hypertext project started at a

time when the Web as we know it today was still in a very early

phase of its development. Few guidelines had been established

at that time for how to structure and lay out hypertext content,

and a lot of experimentation was going on.

The Flusser Hypertext lent itself to an emulation approach since

it originally executed on a standard computer of its time for

which an emulator is available ―off the shelf,‖ and it had no

special hardware or interface requirements. An earlier attempt

to display the Flusser Hypertext at the art festival

―Transmediale 2010‖ using a vintage computer had to be

suspended, because the old hardware turned out to malfunction

too frequently when operating over days. Hence, this time we

opted for an emulation of the vintage environment on modern,

reliable hardware.

The preserved Flusser artifact was actually presented in public

as part of the retrospective exhibition ―Without Firm Ground –

Vilém Flusser and the Arts,‖ shown from August to October

2015 at the ZKM Center for Art and Media in Karlsruhe, and

from November 2015 to January 2016 at the Academy of Arts

in Berlin. The exhibition is currently on display until May 2016

at ―The West,‖ a gallery and art museum in Den Haag,

Netherlands.

The emulation proved stable during its many weeks of

operation in the exhibition. Concerning the preservation

process, main summary findings are:

 The lion’s share of the effort went into the analysis of the

run time environment required by the artifact, and the

preparation of the virtual disk.

 The preservation required deep technical knowledge and

definitive curatorial judgments at all stages.

 The exhibition setting posed additional challenges for the

emulation.

 True to original hardware was a valuable, sometimes

indispensable tool in the preservation process.

This paper presents a single-case study, but our findings are

supported by our previous and ongoing experiences with

preparing multimedia and digital art objects for an emulation-

based presentation in the museum.

2. RELATED WORK
Emulation has been studied and discussed for 20 years [1] as a

preservation technique for digital objects, and it already was the

subject of substantial research efforts (see, f.e., [2][3][4]). Yet,

emulation seems to have been applied mainly to multimedia in

libraries [5][6] and computer games [7][8], but not much in

software-based art. There also seems to be a technical research

focus on automated emulation frameworks [9][10][11][12][13].

In the art museum, emulation seems to have been employed

only rarely as yet. As a result, there is a lack of concrete

observations from real exhibitions, and the amount of practical

advice available to museum practitioners is very limited.

Rinehart and Ippolito [14] report on a symposium and

exhibition in 2004 centered about various uses of emulation in

games and art. Among other things, three pieces of software-

based art were actually emulated one-one. The emulations were

compared against the originals, and the impact of emulation on

the appearance of the art works was discussed.

Kaufmann [15] in 2011 describes the hardware emulation of a

home computer cartridge that contained a rare, but important

software art object; the emulated cartridge was used in the

subsequent exhibition. Padberg [16] in 2014 shows a software

emulation of the same art object in contrasting juxtaposition

with a true-to-original version of the work. Falcao e.a. [17] in

2014 briefly sketch an in-house, exploratory trial to preserve

two digital objects from their art collection using virtualization.

The online museum rhizome.org [18] presents a growing

number of digital objects using emulation. Their emulations

must run over the Web and, hence, are restricted to objects that

have minimal interface requirements, requiring just a display,

keyboard, mouse, and sound. Clearly, presenting online is much

different from the typical museum exhibition in real spaces, and

this fact has a strong impact on the look-and-feel of the

emulated art object. Similarly, Espenschied e.a. [19] in 2013

present a case study in which six selected software-based

artifacts of the ―Transmediale‖ art collection on CD were

emulated online using their web service-based emulation

framework.

Lurk, e.a. [20] in 2012 discuss requirements for the emulation

of digital heritage objects, including digital art. Lorrain [21]

very briefly reports on a failed emulation of a software-based

art work in 2010. Besser [22] in 2001 discusses the effect of

exchanging vintage I/O devices against modern ones on the

appearance of digital art objects.

3. ARTIFACT
The Flusser Hypertext is based on the 1989 lecture ―Schreiben

für Publizieren‖ [Writing for Publishing] by the Czech

philosopher and media theorist, Vilém Flusser (1920-1991)

([23] p.510). The lecture was given at the Institute for

Technology Assessment and Systems Analysis (ITAS) of the

Karlsruhe Nuclear Research Center (today part of the Karlsruhe

Institute of Technology).

The Flusser Hypertext was developed as part of the ITAS

research project ‖Elektronisches Buch― [Electronic Book]. The

project goal was to conduct research on the conceptual and

technological possibilities of an ―innovative electronic

presentation form for results of scientific projects‖ 1 [24]. The

ITAS team envisioned to develop a ―multimedia study system‖

that would use Flusser’s lecture (which was accessible as both

audio recording and text) as a starting point, and to expand it

with additional information and interactive elements.

To transform Flusser’s lecture into a multimodal hypertext

means to take Flusser’s theories serious: transferring the spoken

word into the electronic text domain, while enriching it with

other forms of media (sound, images) and interactive elements

[25]. Flusser himself described multimodal electronic media as

transitional phenomena, preparing the dawn of an ―universe of

technical images‖ [26]. By building upon his earlier language

philosophy and communication theory, Flusser’s media theory

of the 1970s and 1980s can be read as an analysis of the coming

informatized society, claiming (similar to Marshall McLuhan)

the end of writing as the dominant discursive form. According

to Flusser, written text and the ―linear‖ structure of discourses

will vanish and soon be replaced by what he called ―synthetic

images‖: visualizations of concepts that need not be transcoded

into letters but can be ―calculated‖ as computer generated

images.

The Flusser Hypertext was developed by the team of the ITAS

(Knud Böhle, Ulrich Riehm, and Bernd Wingert) and a team of

freelance programmers. Vilém Flusser was not directly

involved in the development. However, he did supply further

information on and explanations of references that he made

during his lecture. Bernd Wingert demonstrated an early version

of the Hypertext in May 1991 at Flusser’s home in Robion,

France (cf. [24] p.209 and [27] p.109). According to Bernd

Wingert2, Vilém Flusser was obviously honored to see his

1 all quotes were translated from German by Daniel Irrgang
2 personal conversation with Daniel Irrgang and Philipp Tögel

words being adopted by the technological apparatuses which he

had been theorizing about for years.

The Flusser Hypertext was never finalized or officially

published. The version discussed in this paper reflects the last

state of the project work from 1992. Live versions of the

Hypertext prototype were demonstrated and discussed at six

different public venues between 1990 and 1993 ([28] cf. [29];

[30] cf. [24] p.161; [31]; [32]; [33] cf. [24] p.194; [34][35]).

The Hypertext was programmed using Apple’s ―HyperCard‖

system, an early, general-purpose authoring system that

supports multimedia content and allows for programmed

layouts. The backbone of the work is the transcript of Flusser’s

lecture. The transcript is organized as a so-called stack of cards,

that is, the text is subdivided into slices that fit onto a single,

fixed-size HyperCard screen. The cards are linked by number,

and the user can browse through the cards by clicking on the

numbers at the bottom and right edge of each card, see Figure 1.

Figure 1. Sample text card

When audio gets activated by the user, the text cards are

underlaid with the live recording of Flusser’s lecture: The

fragment of the recording corresponding to the current card is

played, and at the end of the card the system automatically

moves to the next card.

The transcript is augmented by hypertext links that open

separate cards containing bibliographical references, short

articles, or annotations explaining particular topics and names

mentioned in the lecture, similar to today’s web links. The

articles were provided by experts in the field, including Flusser

himself. This supplementary material (about 450 cards) far

exceeds the main text in size (49 cards). Additionally, users

have the option to add their own notes to any card: The note pad

opens; any text will be saved automatically and can be edited

later.

Overall, the Flusser Hypertext is clearly structured. There is no

poly-hierarchical network of links but a structure which could

be described as ―horizontal and vertical‖ ([24] p.187-188): The

cards in horizontal order present the lecture, the cards in vertical

order contain the supplements; see Figure 2. Each vertical

―string of cards‖ is separated from other vertical strings – there

are no links connecting articles or annotations from different

text cards.

Figure 2. Link structure of the Hypertext

As Peter Wiechens concludes in a case study [36] on the Flusser

Hypertext: The Hypertext does not put an end to the lecture’s

linear structure but rather adds a dimension of simultaneity due

to its multimodal features (text, image, sound). Simultaneity

and multi-modality, as well as the ―instantaneous availability‖

of further information (the annotation and reference cards) are

pointed out as the Flusser Hypertext’s pivotal aspects in the

ITAS research report [24]. One might add to this list the

possibility to add own notes to each card. For Vilém Flusser,

this kind of productive engagement – the reader being put in the

position of an author – was certainly a striking feature that he

emphasized in his reflections on the Flusser Hypertext [37]:

―The original lecture level falls into oblivion, overwhelmed by

comments and counterarguments.‖ 1

4. PREPARATION
For an emulation, a so-called virtual hard disk is required as

input. This is a file (on the host computer) that has the same

internal structure as the hard disk of the vintage, to-be emulated

system. The virtual disk also contains a copy of the vintage

operating system, which will be booted automatically by the

emulator.

There are basically two ways to obtain a virtual disk: either by

using a tool that creates a file with such a structure and allows

for installing the vintage operating system on this file; or, by

taking a one-one file image of an existing vintage hard disk. In

our case study, we started with a hard disk image.

The digital artifact can be put in two places: either it is placed in

a separate file having a standard format such as an ISO file that

serves as additional input for the emulator; or, the artifact’s files

get copied to the virtual disk. In our case, the hard disk image

already contained the Flusser Hypertext files.

Although we started from a one-one image of a real hard disk,

we encountered technical problems when preparing a virtual

disk for the emulation. We had to take additional measures to

adjust the run time environment of the Flusser Hypertext on the

virtual disk. Exceptionally for an emulation, we even patched

the code of the artifact. We also had to de-activate certain

extensions of the vintage operating system so that the emulator

booted the virtual disk. This is a common problem, since many

emulators do not support all features of a vintage system.

4.1 Creating the Initial Virtual Disk
The Flusser Hypertext is a research prototype that never

advanced into a production-quality release. Only a single copy

of its code and data files still existed, stored as a snapshot of the

last development version3 on the physical hard disk of a vintage

Macintosh Performa 630 computer. The vintage Mac was

donated to the Flusser Archive in Berlin in 2007.

As the first step in the preparation process, which began in June

2013 at the Flusser Archive in Berlin, we created a one-one

image of the vintage hard disk and stored it in a file. Detaching

the hard disk from the vintage computer and attaching it to a
standard PC usually is the best option, see Figure 3.

Figure 3. Cloning the hard disk4

The image file contains both the vintage operating system and

the Flusser files and, basically, can serve as the virtual disk for

the emulation. When trying to boot this first image file as-is

with the emulator (see section 5), the emulation crashes on

loading the system extensions. We solved this problem [38] by

creating another disk containing a fresh installation of the

vintage operating system, from which we could access the first

disk image and disable the system extensions in question

("Video Startup" and "A/ROSE").

4.2 Problems in the Run Time Environment
Tests on the Performa computer uncovered a reproducible error

that leads to a crash of the HyperCard application: When

invoking the audio playback on certain text cards (33-42), the

application displays an error message "Unerwarteter Fehler

5454" [unexpected error 5454], forcing the user to quit the

application,

see Figure 4. After re-launching the application, the buttons for

selecting the individual cards and for playing audio do not react

until the user either hits the ―stop audio‖ button or navigates to
the Hypertext’s reference layers, and back again.

Figure 4. Unexpected error

While the previous error already occurred on the original

computer, the following problem could only be observed when

copying and running the Flusser Hypertext files on other

machines (even of the same model series), or when running

them in the emulator: The Hypertext executes, but fails to

output any sound at all. The audio function of the HyperCard

framework as such was tested, and it worked on all systems. All

3 Incomplete supplementary cards of the development version

had subsequently been filled with content by Bernd Wingert

(between 1994 and 2007). No cards were added, and the

structure was left unchanged.

4 image taken from the Vilém Flusser Archive collection

(© Vilém Flusser Archive)

attempts to solve this problem by altering the run time

environment failed. The original machine seemed to remain the

only system capable of playing the Hypertext’s audio content.

Online sources indicate that error 5454 relates to corrupted

HyperCard files. We traced the defect back to a particular file

("Ton 8") that holds the audio data of the affected text cards.

This file produced the same error when opened in HyperCard

directly.

We found a way to inspect the Hypertext’s source code (written

in HyperCard’s scripting language HyperTalk). We traced

function calls that relate to audio, and found some functions

("FSound", "Search", and "Fplay") that were neither defined in

the code, nor part of the HyperTalk language. Instead, these

functions are contained in precompiled libraries which get

stored along with the Flusser files, see Figure 5 . We also found

a special driver library (".SndDriver―) that might possibly be

involved in the error.

Figure 5. Precompiled libraries and drivers

Apparently, we had encountered a highly intricate problem with

the specific run time environment in the form of these libraries.

4.3 Patching the Artifact
A reverse engineering of the precompiled libraries was beyond

the scope of the project, both technically and with respect to

time and effort. Thus, we made the decision to avoid all calls to

unknown functions in the Hypertext code, whilst keeping its

functionality unaltered.

To eliminate the need for custom audio-related code, we ported

[38] the Flusser Hypertext from HyperCard 2.0 to version 2.3,

whose "ADDmotionII" standard library provided the desired

audio functionality. By replacing the artifact’s special audio

functions with the standard library functions, we succeeded in

enabling audio playback in the emulation as well as on our

vintage Mac computers.

Having access to the artifact’s code also enabled us to solve the

error 5454 issue: In HyperCard, we built a replacement file for

the seemingly corrupted "Ton 8" file from scratch, using the

original audio resources, which we had salvaged from the "Ton

8― file.

As a result of the whole process we obtained a virtual disk that

boots with the emulator and is fully functional. The patched

artifact shows no unexpected error messages or even crashes.

Otherwise, it appears almost unaltered to the user. In particular,

the patches are not obvious to the user as an amendment to the

artifact. The only minor exception is a short interruption of the

playback of the audio recording (see section 3) in the middle of

each text card, when HyperCard loads the second half of the

audio data for the card. This deviation results from the patches

that we applied to enable audio playback, and could not be

avoided.

The decision to accept such slight deviations was reached by

the exhibition curators who were aware of the conservational

implications of the technical patches. Yet, a guiding theme of

the exhibition was to reveal the continuing effect of Flusser’s

philosophical writings on current phenomena in arts and media.

An early, striking example for such a crosslink was the Flusser

Hypertext, an innovative ―multimedia study system‖ that

reflected Flusser’s ideas (see section 3). Hence, the curators

favored a smooth user experience and the stability of the

emulation during the exhibition over absolute fidelity to the

inherited object at the code level.

The patches are marked by comments in the code, but cannot be

reversed at the push of a button. Certainly, we saved different

intermediate versions of the code during the patching process,

including a completely unaltered disk image which can serve as

the starting point for more traditional conservation approaches.

5. EMULATION
The vintage Macintosh computer that contained the snapshot of

the Flusser Hypertext features a Motorola 68040 CPU running

System 7.1.2 as its operating system. This type of computer can

be emulated using the ―BasiliskII‖ emulator that is freely

available for Windows, Linux, and OSX hosts. The Flusser

Hypertext poses no special hardware or interface requirements

to the emulator.

At the beginning of the preservation project, we had little

experience with this particular emulator. We asked colleagues

from the University of Freiburg for support, who kindly helped

by setting up the initial emulation.

5.1 Emulation during Preparation
Once we had managed to produce a virtual disk that was

bootable with the emulator (see subsection 4.1), we made

extensive use of emulation during the preparation phase. We

found this to be a convenient approach since our artifact

required an unusually long trial and error-phase of changes to

its run time environment and even code (see subsection 4.2). If

some change failed, it was much easier to return to the last

working copy of the virtual disk under emulation than to restore

the previous state of the real hard disk in the vintage computer.

We used a stand-alone setup of the BasiliskII emulator during

preparation. A stand-alone setup must be manually configured,

but provides fast emulator start-ups, direct access to the

emulator’s configuration parameters, and easy restoration of

any input file that did not work as desired or got damaged in a

trial run, by simply overwriting the file with a backup copy.

Before making any changes permanent, we tested on our

vintage computers whether the changes had any unwanted

impact on the behavior of the artifact.

5.2 Configuring the Emulation
For the actual exhibition, the BasiliskII emulator was packaged

into a stand-alone, bootable-from-stick version of the Freiburg

emulation framework [12].

The bootable stick comprises of a special boot loader and two

partitions. One partition holds the Linux host system, the

emulation framework, and the emulator. The other partition

holds the virtual disk file with the patched Flusser Hypertext

files, a Mac Quadra 630 ROM image, and the configuration

data for the emulator.

Using this pre-fabricated stick had practical advantages for us:

The Linux host system boots automatically when power is

turned on at the mini PC that served as the host computer in the

exhibition. The Linux system also was configured to

automatically start the emulator at boot time with (a fresh copy

of) the virtual disk. In addition, some keyboard shortcuts were

disabled to prevent users from gaining access to the underlying

Linux host system.

The screen resolution in the emulator was set to 640x480 pixels,

a resolution which is typical for Mac computers of the time.

The color depth was set to maximum. Otherwise, standard

values were used for the configuration parameters of the

emulator (see subsection 5.5).

5.3 Sound Problem
Despite its benefits, the automated framework approach turned

out to have significant drawbacks: Since the emulator was

completely encapsulated within the framework, which booted

immediately to the emulation when turning power on, there was

no direct access to the configuration of the emulator, nor to the

virtual disk.

This caused problems right before the exhibition started, when

we discovered that the sound was missing in the emulation.

The sound must be activated at all levels of the emulation: in

the host system, in the configuration of the emulator, in the

options (if any) of the artifact, in the emulated Mac system, and,

finally, at the speakers. The problems were resolved in

Freiburg.

For future exhibitions, we are seriously considering to use a

stand-alone emulator in the exhibition instead of a packaged

emulator, providing for more direct, in-house control over the

emulator configuration.

5.4 Peripheral Devices
The screen resolution for the emulation is 640x480 pixels.

Presenting such a low resolution on a modern display results in

a small area on screen; alternatively, scaling this up to the size

of a modern display results in a blurred or even distorted

picture. In addition, the curatorial goal was to preserve as much

of the original look-and-feel of the Flusser Hypertext as

possible in the emulation.

Hence, the curatorial decision was made to use original, resp.,

true to original peripheral devices in the exhibition.

We used a 15 inch vintage Apple multiscan color display. This

particular model is slightly more recent (1994-96) than the

Flusser artifact, but it comes with a VGA port instead of the

more typical Apple DB-15 port, which made it easy to connect

the display to the mini PC using a standard VGA cable. No

special adapter was needed, as opposed to 14 inch Apple

displays.

We also used a vintage Apple extended keyboard and Apple

mouse. To connect them to the mini PC, an Apple Desktop Bus

(ADB) to USB adapter was required. Such adapters are still

available over the Internet for a reasonable price.

For the sound output, we used a pair of external vintage

speakers placed next to the display and connected with standard

audio cables to the mini PC.

Only the display, keyboard, mouse, and speakers were placed

on top of the table used in the exhibition — the mini PC was

hidden underneath the table (see Figure 6) and was not easily

visible to the visitors. The whole arrangement looked quite

authentic; as if it came straight from the 90s, see Figure 7.

Figure 6. Mini PC under the table5

Figure 7. Emulation in the exhibition6

5.5 Memory Configuration
In an emulation, the main memory (RAM) required by the

vintage operating system for its execution gets emulated; that is,

it is provided by the emulator program through software means.

The amount of main memory to be emulated must be

configured as a parameter of the emulator.

When setting this parameter to a common value of 32 MB (the

Performa 630 has a physical maximum of 36 MB), our virtual

disk booted under emulation, but the Hypertext failed to start,
complaining about not having enough memory, see Figure 8.

Figure 8. Not enough memory

When an application requires more memory than is available as

physical RAM on a vintage Mac, the administrator can reserve

part of the hard disk as so-called virtual memory, which then is

added automatically by the Mac operating system to the total

memory available to applications.

In the BasiliskII emulator, support for virtual memory is not

implemented, though: When activating virtual memory in the

emulated Mac, the emulator crashes. The quick solution is to

simply set the amount of emulated RAM to the desired total

value. For the Flusser Hypertext, setting the emulator’s memory

parameter to 128 MB works; we used this value in the

exhibition.

At a later occasion, though, we observed that only a small

fraction of the reserved memory actually gets consumed by the

HyperCard application that processes the Flusser Hypertext, see

Figure 9.

5 image © Martin Häberle

6 image taken from https://www.itas.kit.edu/2015_032.php

(© Karlsruhe Institute of Technology)

Figure 9. Actual memory consumption

On a vintage Mac system, the amount of memory that a

program claims at start-up is preset and can be viewed in its

―Information‖ window. For the HyperCard program, this value

was set to 60,000 KB, which is far more than is actually needed

for processing the Flusser files. Changing this value to more

moderate 20,000 KB is completely sufficient and eliminates the

need to use virtual memory on the vintage Macs, resp., to use an

exceedingly high value for the emulator’s memory parameter.

This issue demonstrates that settings in the emulated operating

system can feed back into the configuration of the emulator, and

vice versa.

6. OPERATION
The emulation operated continuously for more than 4 months in

the exhibition. During this period, we made a number of

instructive observations concerning the proper setup and

operation of emulations in a museum and exhibition setting. In

some cases, we learned that we should better do certain things

differently in future emulation-based exhibitions.

We also extended our comparison of the look-and-feel of the

Flusser Hypertext under emulation against its original

appearance when executing on restored, vintage Mac

computers. This allowed us to better assess the quality of the

emulation, and it provided additional observations about the run

time environment required by the artifact.

6.1 Deleting the Object
After booting-up the host system, the emulation automatically

starts (see subsection 5.1). The emulator presents the desktop of

the vintage Mac system to the user, including an icon in the

center for starting the Flusser Hypertext (see Figure 10),

waiting to get double-clicked. The desktop also offers two

supplementary videos that explain the usage of the Flusser

Hypertext; the videos were produced in the 90s along with the
Flusser project.

Figure 10. Desktop icons for the Hypertext and videos

Clearly, this is not a fail-safe setup for a public exhibition.

Instead of starting the digital artifact, the user can access

various Mac system functions using the menu bar at the top

edge of the desktop. The user can even delete the object by

dragging it into the waste basket, see Figure 11. This will leave

the emulation in an unusable state for the next visitor, who will

probably be confused and turn away from the object without

telling anybody.

Figure 11. Draging the artifact into the waste basket

When the object has been deleted, a functional state can only be

recovered by re-booting the emulation. This problem actually

occurred during the Karlsruhe exhibition. In the sequel, the

technical staff kept an eye on the Hypertext exhibit to take

corrective action if necessary. For the exhibition in Berlin, the

supervisory staff was asked to check the state of the emulation

several times a day; if something was wrong, they re-booted the

whole system.

Our approach was motivated in part by the desire to make the

videos accessible to the visitors, but we might better have

presented the videos on a separate computer and display.

For future exhibitions, a more elaborate and fail-safe approach

is needed. In a museum setting, not only the emulator should

start automatically, but even more so the digital object itself.

Users should not be allowed to exit the running object. If the

exit function cannot be de-activated within the object itself, the

object must get restarted automatically and immediately by the

system whenever a user chooses to quit.

This automatic restart-feature for the object must be

implemented at the level of the emulated operating system,

combining autostart features of the vintage system with a

special ―watchdog‖ program that runs in the background to

supervise the object in question: If the object (more precisely,

its application process) stops running for some reason, the

―watchdog‖ restarts the object.

For some digital objects, it may also be appropriate to restart

the object whenever it has been inactive for some time, because

visitors typically just leave one exhibit and move to the next.

An automatic reset will always present a tidy object to the next

visitor. Inactivity can be detected using a watchdog

programmed with a time-out.

6.2 Exit
After the emulation has started, the desktop of the vintage Mac

system is presented to the user. Similar to the problem of

deleting the digital object as described in the previous

subsection, a user can also deliberately shut down the emulated

Mac system using the menu bar on the Mac desktop. This

occasionally occurred in the Karlsruhe exhibition. When the

emulated Mac shuts down, the emulator program itself exits

automatically, and control returns to the underlying host

system. The emulation framework then presents a screen that

asks the user to restart the emulation.

Again, this is not a fail-safe setup for a public exhibition. There

should be no way for museum visitors to exit the emulation or

shut down the emulated system. If the shutdown functionality

cannot be de-activated at the level of the vintage system, the

emulation must restart immediately without manual

intervention. This can be achieved using standard start-up and

process control features of the underlying host operating

system.

6.3 Pixel Errors
In the emulation, some spots occur in the small Flusser

photograph that is placed at the right hand side of the text cards

(see Figure 12). At first, we thought that these spots were pixel

errors introduced somehow by the emulation. Yet, a quick

comparison revealed that the spots are also visible when

running the patched artifact on a vintage Mac; that is, the pixel
errors were nothing but false positives.

Figure 12. Pixel errors

This issue serves as an example that original hardware not only

is an indispensable tool to identify deviations of the emulation

from the original, but, contrary, also helps to confirm that the

emulation actually conforms to the original appearance.

6.4 Missing Fonts
A problem that we often encounter in emulations of digital

objects is missing fonts. For the Flusser Hypertext, this initially

seemed to be no issue, since we used a hard disk image of the

vintage computer as the basis for the virtual disk in the

emulation, and that image contained all necessary add-ons,

including fonts. But when installing the Flusser data and code

files on our restored vintage Macs, which carried a fresh system

installation, the missing font problem popped up: As the vintage

operating system substituted a standard font for some missing

fonts automatically, the text on each card was incomplete and

the layout looked somewhat distorted.

The problem would also have occurred if we would have taken

the (quite common) approach of using two virtual hard disks for

the emulation instead of one, separating the operating system to

be emulated from the files of the digital object.

Under the Mac operating system, required fonts must be copied

to the proper system folder. Our disk image contained several

dozens of fonts that had been added to the development system

after installation; hence, determining the exact set of required

fonts was quite time-consuming. The Flusser Hypertext actually

requires 3 non-standard fonts.

This example shows that original hardware is often helpful to

identify additional, hidden dependencies of the digital artifact

on its run time environment.

6.5 Pace of Operation
We conducted a few experiments to evaluate whether the

emulation shows any noticeable difference in its pace of

operation as compared to the Flusser Hypertext running on a

vintage Mac computer. The emulator executed on a standard

laptop (dual-core at 1.9 GHz, 4 GB of memory, Windows 7);

the vintage Mac was a restored Performa 630 (68040 at 20

MHz, 36 MB of RAM, no virtual memory, Mac system 7.6).

The Flusser Hypertext is largely static in nature, changing

screen only when the user interacts with the program; typically,

when moving to the next card by clicking on a number at the

bottom or right edge of the current card. The only ―animated‖

behavior can be observed when the recording of the lecture is

played. In this mode, the system automatically moves from card

to card, in sync with the recording, see section 3.

There is no noticeable speed difference when listening to any

individual card. Overall, the emulation is slightly faster than the

original Mac, lying ahead by 1.5 text cards at the end of the

whole lecture, which consists of 49 text cards. On the vintage

Mac, there is a slightly longer delay when the system moves

from card to card. The emulator running on modern hardware

seems to be faster when it comes to loading the next data into

the HyperCard program.

The total gap is much larger when comparing the Performa 630

(no virtual memory) against another vintage Mac (Quadra 650,

68040 at 33 MHz, 36 MB of RAM, Mac system 7.6) that has

virtual memory enabled. Although the Quadra is the faster

computer, the virtual memory mechanism slows down the

loading of data significantly. The Performa with no virtual

memory is ahead by 1 card already after about 1/3 of the

lecture.

The experiments show that the audio sequences are replayed

faithfully in the emulation, which is a key factor for the

authenticity of any emulation. In addition, we learned that

variation in the vintage hardware or configuration can have a

much larger impact on the appearance of a digital object than

the emulation. Such measurements are impossible to conduct

without having original hardware at hand.

6.6 Hanging Print Function
Except for the text cards containing the transcript of Flusser’s

lecture, all cards in the Flusser Hypertext can be printed out

using an icon in the lower right corner of each card, see Figure

13. This includes the cards containing supplementary material

for Flusser’s lecture, such as explanatory articles or

bibliographies, and the personal note cards created by the user
(see section 3).

Figure 13. Print function

In the exhibition, no printer was connected to the host

computer, and the emulation was not configured to accept and

handle print requests. Nonetheless, it was possible for a visitor

to click on the printer icon and create print jobs. If done

repeatedly, a long print queue emerged that blocked the user

interface – the program became irresponsive and seemed to

―hang.‖

The Flusser Hypertext does not offer an option for deactivating

its print function similar to deactivating its audio function in the

settings. Hence, either a real printer must be added and the

emulation configured accordingly, or, a non-blocking ―mock

printer‖ must be installed at the level of the emulated vintage

Mac system. The problem was discovered only late in the

Karlsruhe exhibition. For the Berlin exhibition, we left the

virtual disk as is and relied on our supervisory staff to handle

any problems.

This issue highlights the fact that digital objects can include

features that must be explicitly handled at the technical level in

an emulation. For objects with a complex internal structure,

such features need not be as obvious as the print function, but

can be buried rather deep inside the object. F.e., in other objects

under preparation we encountered hidden links to the internet.

Such features might even be undocumented, especially in

digital art that often includes elements of surprise which the

user is expected to discover when interactively exploring the

piece of art.

7. CONCLUSIONS
In this paper, we presented a real case study that illustrates the

whole process of preserving a digital object in the museum by

means of emulation. The required steps range from creating the

virtual disk to operating the emulation in a public exhibition.

We encountered a number of instructive technical and curatorial

problems that resulted in a number of specific lessons that we

learned, some typical for any emulation-based preservation,

others typical for the exhibition setting that we worked in.

(L1) Preparing an artifact for the emulation demands a close

analysis of the run time environment needed by the artifact.

This includes the identification of special drivers, non-standard

support files, external interfaces, and special system settings (cf.

subsections 4.2, 5.3, 6.4, 6.6).

The ties of a digital object into its run time environment can be

very subtle; one missing detail can lead to a strange behavior or

failure. In our experience, the required run time environment

often is not documented in sufficient detail even for artifacts

published on distributable media, turning the analysis into a

trial-and-error process.

(L2) Emulators typically do not support every feature of the

vintage system.

Under emulation, drivers may fail to work or crash the

emulator, system options may crash the emulator when

activated, or external interfaces may be unavailable. This

creates problems when trying to install and/or execute an object

with its run time environment under emulation (4.1, 4.2, 5.5).

In practice, it is not always possible to pin down and fix the

root-cause of a vintage system-level problem. It may be

necessary to circumvent the problem by de-activating system

features, exchanging certain drivers, or moving to another

version of the vintage application program and operating

system. Patching the digital object (as we did) should be a last

resort.

(L3) Emulating a whole system-image can be a non-trivial task.

A full image might reflect an intermediate version of a digital

object (as in our case), or conserve a complete heritage work

environment. Assuming a non-networked system, the image

will contain all required run-time components; yet, some

components may not work under emulation (4.1, 4.2).

The complexity of a full image of a ―living‖ system exacerbates

the difficulties of fixing inconsistencies in the run time

environment under emulation. When the artifact to be emulated

is not finalized, tested software, it may contain bugs, and its

documentation will likely be fragmentary or missing, adding to

the problem.

(L4) In the museum, curatorial judgments provide the direction

for the technical setup of the emulation.

Curatorial judgments refer to the choice of peripheral devices,

the acceptance or rejection of deviations of the emulation from

the original, the user interface offered, and the acceptance of

any changes to the artifact (5.4, 6.5, 6.1, 4.3).

An emulation need not necessarily be perfect. Augmenting the

emulation with true to original peripheral devices can provide a

way to preserve the essentials of the original look-and-feel.

In our case, even patches to the artifact seemed admissible from

a curatorial perspective, given two facts: The Flusser Hypertext

was not a final, production-quality release, but an advanced

prototype; the computer on which it was stored was not

Flusser’s own personal computer, hence, it made little sense to

try and preserve something like Flusser’s ―digital working

environment.‖

(L5) In a museum exhibition, the emulation must be specifically

safe-guarded.

In a public exhibition, the continuous operation of the

emulation must be guaranteed. This poses technical challenges

for the setup of the emulation, in excess of configuring the

emulator. The artifact itself must be protected against deletion,

and the emulation must be sealed to prevent any unintended

usage of the emulator, vintage system, or underlying host

system (6.1, 6.2, 6.6).

Visitors should best be prevented from quitting the running

artifact at all. This requires elaborate technical measures at the

vintage and host system level.

(L6) Preparing an emulation requires substantial technical

knowledge and skills.

Knowing the configuration options of the emulator certainly is a

prerequisite to tailor the emulation to the object (5.2, 5.5). In

addition, in the preparation phase frequent trial runs of the

emulation are typical, until a working overall setup is found

(5.1, 5.3, 5.5). To achieve short cycle times, a stand-alone

emulator is better suited than a framework, which encapsulates

the emulator and input files into additional software layers and

special workflows. Yet, such a stand-alone setup must be

manually configured.

Knowledge of the emulator is not sufficient to prepare the one

central input for the emulation: the virtual disk. The virtual disk

contains the vintage run time environment of the object to be

emulated. An understanding of and practical experience with

the vintage operating system, its hardware and application

programs is indispensable for solving any problems of

incompatibility of the digital object with the emulator, by

customizing the virtual disk (cf. L2). This also applies to safe-

guarding the emulation in an exhibition (cf. L5). In addition,

settings in the vintage system can feed back into the

configuration of the emulator, and vice versa (5.5, 5.3).

(L7) The preparation of a virtual disk for the emulation

consumes the lion’s share of the total effort.

The virtual disk contains the run time environment for the

emulated artifact, compensates any shortcomings of the

emulator, and reflects the special technical measures taken for

an exhibition setup. The more complex the digital object, the

larger the preparation effort. Even for more average objects of

digital art, which do not require analyzing and patching the

artifact’s code as in our case, we found that the effort for

preparing the virtual disk (including the time-consuming trial

runs of the emulation during preparation) typically is substantial

and far exceeds the effort for installing and configuring the

emulator. This fact seems to get severely underestimated in the

literature.

(L8) Original hardware is a valuable, sometimes indispensable

tool in the preservation process.

Comparing the emulation against the original is obligatory for

assessing the quality of the emulation in an art context.

Comparing is easier when the original hardware is still working

(6.3, 6.5). An original hardware environment is also a valuable

tool when tracing problems in the emulated run time

environment (4.2, 5.5, 6.4).

Hence, museums should start their preservation effort while the

hardware for their digital artifact is still functional and spare

parts are still available.

Our digital object under preservation, the Flusser Hypertext, is

an important cultural artifact that was already close to getting

lost forever: only the binary files of this work still existed,

stored on the physical hard disk of a vintage computer. We now

have a salvaged version on hand, in the form of a disk image

file that can be easily copied to various media, distributed, and

placed into long-term digital storage. This version of the Flusser

Hypertext is ready to execute using an ―off-the-shelf‖ emulator.

8. ACKNOWLEDGMENTS
Thanks go to Dirk von Suchodoletz and Klaus Rechert from the

University of Freiburg, who helped with the hard disk image

and the setup of the emulation, and who provided their

emulation framework as a bootable from stick-version. We’d

also like to thank Baruch Gottlieb for establishing this contact.

The German Research Foundation DFG supported the first

author with a research grant.

Adam Rosen from the Vintage Mac Museum in Boston kindly

made us aware of how to overcome access restrictions to the

source code of locked HyperCard stacks.

We’d also like to thank Bernd Wingert for donating his

Macintosh Performa computer with the Flusser Hypertext to the

Vilém Flusser Archive in Berlin, and for freely sharing his
inside knowledge of the Flusser Hypertext.

9. REFERENCES
[1] Rothenberg, J. 1995. Ensuring the Longevity of Digital

Information. Scientific American, 272(1) (Jan. 1995), 42-

47

[2] Holdsworth, D., and Wheatley, P. 2001. Emulation,

Preservation and Abstraction. In Research Libraries Group

RLG DigiNews 5, 4 (Aug. 15, 2001) Online at

http://sw.ccs.bcs.org/CAMiLEON/dh/ep5.html

[3] Farquhar, A., and Hockx-Yu, H. 2007. Planets: Integrated

Services for Digital Preservation. Int. Journal of Digital

Curation IJDC 2, 2 (2007), 88-99.

[4] KEEP project. Project information online at

http://cordis.europa.eu/project/rcn/89496_en.pdf

[5] Cochrane, E. 2014. Emulation as a Service (EaaS) at Yale

University Library. Online at

http://blogs.loc.gov/digitalpreservation

/2014/08/emulation-as-a-service-eaasat-yale-university-

library/

[6] Brown, G. 2012. Developing Virtual CD-ROM

Collections: The VoyagerCompany Publications. Int.

Journal of Digital Curation 7, 2 (2012), 3-20.

[7] Pinchbeck, D., Anderson, D., Delve, J., Otemu, G.,

Ciuffreda, A., and Lange, A. 2009. Emulation as a strategy

for the preservation of games: the KEEP project. In Proc.

of the Int. Conf. on Breaking New Ground: Innovation in

Games, Play, Practice and Theory (Brunel University,

London, UK, Sep. 2009), DiGRA 2009.

[8] Loebel, J.-M. 2014. Lost in Translation [in German]. Ph.D.

Dissertation. Humboldt University Berlin & VWH Verlag,

Glückstadt.

[9] Matthews, B., Shaon, A., Bicarreguil, J., and Jones, C.

2010. A Framework for Software Preservation. Int.

Journal of Digital Curation 5, 1 (June 2010), 91-105.

[10] Braud, M., Lohman, B., and van der Hoeven, J. 2012. How

to run emulators remotely via the Emulation Framework.

Online at http://emuframework.sourceforge.net/docs/EF-

howto-remoteemulation-1.0.pdf

[11] Satyanarayanan, M. 2013. Olive: One-click Execution of

Internet-Archived Software. In NYU Scientific

Reproducibility Workshop (New York, USA, May 30,

2013).

[12] Liebetraut, T., Rechert, K., Valizada, I., Meier, K., and von

Suchodoletz, D. 2014. Emulation-as-a-Service: The Past in

the Cloud. In 7th Int. Conf. on Cloud Computing CLOUD

2014. 906-913.

[13] Rechert, K., Liebetraut, T., Stobbe, O., Valizada, I., and

Steinke, T. 2015. Characterization of CDROMs for

Emulation-based Access. In 12th Int. Conf. on Digital

Preservation (Chapel Hill, USA, Nov. 2-6, 2015). IPRES

2015.

[14] Rinehart, R., and Ippolito, J. 2015. Re-collection: Art, New

Media, and Social Memory. MIT Press.

[15] Kaufmann, F. 2013. Hacking Mondrian. In Digital Art

Conservation: Theory and Practice in the Conservation of

Digital Art, B. Serexhe (Ed.). Ambra V, Vienna, 273-284.

[16] Padberg, F. 2014. Emulation of Media Art or Art-Handling

in the Change of Technology [in German]. In Int. Symp. on

Art-Handling (Migros Museum for Contemporary Art,

Zurich, Switzerland, Nov. 27-28, 2014).

[17] Falcao, P., Ashe, A., and Jones, B. 2014. Virtualisation as

a Tool for the Conservation of Software-Based Artworks.

In 11th Int. Conf. on Digital Preservation (Melbourne,

Australia, Oct. 6-10, 2014). IPRES 2014.

[18] Fino-Radin, B. 2011. Digital Preservation Practices and

the Rhizome Artbase. Technical Report. Online at

http://media.rhizome.org/artbase/documents/Digital-

Preservation-Practices-and-the-Rhizome-ArtBase.pdf

[19] Espenschied, D., Rechert, K., von Suchodoletz, D.,

Valizada, I., and Russler, N. 2013. Large-Scale Curation

and Presentation of CD-ROM Art. In 10th Int. Conf. on

Digital Preservation (Lisbon, Portugal, Sep. 2-6, 2013).

IPRES 2013.

[20] Lurk, T., Espenschied, D., and Enge, J. 2012. Emulation in

the context of digital art and cultural heritage. Praxis der

Informationsverarbeitung und Kommunikation PIK 35, 4

(2012), 245-254.

[21] Lorrain, E. 2013. PACKED Case Study report:

Mondophrenetic (2000, Herman Asselberghs, Els

Opsomer, Rony Vissers). Online at

http://www.scart.be/?q=en/content/case-study-report-

mondophrenetic%E2%84%A2-2000-herman-asselberghs-

els-opsomer-ronyvissers-0

[22] Besser, H. 2001. Longevity of Electronic Art. In Int.

Cultural Heritage Informatics Meeting (Milano, Italy, Sep.

3-7, 2001). ICHIM 01.

[23] Irrgang, D., and Marburger, M. R. 2015. Vilém Flusser –

A Biography. In Flusseriana. An Intellectual Toolbox,

S. Zielinski, P. Weibel, and D. Irrgang (Eds.). Univocal

Publishing, Minneapolis, 452-519.

[24] Böhle, K., Riehm, U. and Wingert, B. 1997. Vom

allmählichen Verfertigen elektronischer Bücher. Ein

Erfahrungsbericht [in German]. Campus Verlag,

Frankfurt/M. and New York.

[25] Gottlieb, B. 2015. Hypertext. In Flusseriana. An

Intellectual Toolbox, S. Zielinski, P. Weibel, and

D. Irrgang (Eds.). Univocal Publishing, Minneapolis, 212-

214.

[26] Flusser, V. 1985. Into the Universe of Technical Images,

N. A. Roth (Transl. 2011). University of Minnesota Press.

[27] Wingert, B. 1992. Schreiben für Publizieren. Ein

Hypertext-Experiment mit einem Flusser-Text [in

German]. In Kunstforum International 117 (1992), 109-

110.

[28] Wingert, B. 1991. Erfahrungen bei der Entwicklung eines

Hypertextes [in German]. (talk and prototype demo). In

Arbeitskreis Literatur im Informationszeitalter [Workshop

on Literature in the Information Age]

(Wissenschaftszentrum Nordrhein-Westfalen, Düsseldorf,

Germany, June 20, 1991).

[29] Wingert, B. 1996. Kann man Hypertexte lesen? [in

German]. In Literatur im Informationszeitalter [Literature

in the Information Age], D. Matejovski and F. Kittler

(Eds.). Campus Verlag, Frankfurt/M. and New York, 184-

218.

[30] Wingert, B., 1991. (prototype demo). In CULTEC – Kultur

und Technik im 21. Jahrhundert [Culture and Technology

in the 21st Century] (Wissenschaftszentrum Nordrhein-

Westfalen, Essen, Germany, Nov. 22-23, 1991).

[31] Böhle, K., Riehm, U, and Wingert, B. 1992. (prototype

demo). In Workshop Hypersystem-Konzepte in Medien und

kultureller Produktion II [Workshop on Hyper-system

Concepts in the Media and Cultural Production II]

(University of Lüneburg, Germany, July 13-15, 1992).

Workshop program and list of exhibits online at

http://www2.leuphana.de/hyperkult/archiv/hk2.pdf

[32] Wingert, B. 1992. Flusser-Hypertext. Prototyp und

Entwicklungserfahrungen [in German]. (talk and prototype

demo). In GI-Symposium Hypertext und Multimedia. Neue

Wege der computerunterstützten Aus- und Weiterbildung

[Symposium of the GI on Hypertext and Multimedia.

Novel Approaches in Computer-supported Education],

U. Glowalla and E. Schoop (Eds.). Springer, Berlin, 137-

144 and 356. (Schloss Rauischholzhausen/Marburg, Apr.

28-30, 1992).

[33] Wingert, B., and Riehm, U. 1992. Wie wirken Hypertexte?

[in German]. (talk and prototype demo). In Ergebnisse der

12. Arbeitstagung Mensch-Maschine-Kommunikation

[Results of the 12th Workshop on Man-Machine

Communication], S. Dutke (Ed.). Free University of

Berlin, Institute of Psychology, 41-50. (Berlin, Nov. 15-18,

1992).

[34] Wingert, B. 1993. Die neue Lust am Lesen? Überlegungen

zur Lesbarkeit von Hypertexten [in German]. (talk and

prototype demo). In 2nd Int. Vilém-Flusser-Symposium

(Antwerpen, Belgium, Oct. 28-31, 1993). List of talks and

exhibitors online at http://www.flusser-archive.org

(Vilém Flusser Symposien und Konferenzen zu

Flusser 1993: Zweites Internationales Vilém-Flusser-

Symposium)

[35] Wingert, B. 1995. Die neue Lust am Lesen? Erfahrungen

und Überlegungen zur Lesbarkeit von Hypertexten [in

German]. In Kursbuch Neue Medien. Trends in Wirtschaft

und Politik, Wissenschaft und Kultur [New Media Guide.

Trends in Economy and Politics, Science and Culture],

S. Bollmann (Ed.). Bollmann Verlag, Mannheim, 112-129.

[36] Wiechens, P. 1998. Hypertext und Künstlerbuch. Das

Buch nach dem Ende des Buches [in German]. In

Einführung in die Kulturwissenschaft [Introduction to

Cultural Studies], T. Düllo, J. Greis, C. Berthold, and

P. Wiechens (Eds.). LIT Verlag, Münster, 328-346.

[37] Flusser, V. 1991. Hypertext. Über das Schicksal von

Büchern [in German]. In NZZ Folio 10 (Oct. 1999), 35-36.

Online at http://folio.nzz.ch/1991/oktober/hypertext

[38] Tögel, P. 2016. Denk-Maschinen – Flussers Digitale

Publikationen in der Ausstellung “Bodenlos – Vilém

Flusser und die Künste” [in German]. Master Thesis.

Berlin University of the Arts.

