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ABSTRACT
We present a model and testbed for a curation and preser-
vation infrastructure, “Brown Dog”, that applies to hetero-
geneous and legacy data formats. “Brown Dog” is funded
through a National Science Foundation DIBBs grant (Data
Infrastructure Building Blocks) and is a partnership between
the National Center for Supercomputing Applications at the
University of Illinois and the College of Information Stud-
ies at the University of Maryland at College Park. In this
paper we design and validate a “computational archives”
model that uses the Brown Dog data services framework
to orchestrate data enrichment activities at petabyte scale
on a 100 million archival record collection. We show how
this data services framework can provide customizable work-
flows through a single point of software integration. We also
show how Brown Dog makes it straightforward for organi-
zations to contribute new and legacy data extraction tools
that will become part of their archival workflows, and those
of the larger community of Brown Dog users. We illustrate
one such data extraction tool, a file characterization utility
called Siegfried, from development as an extractor, through
to its use on archival data.

Keywords
Computational archival science, Digital curation, Data min-
ing, Metadata extraction, File format conversion, Brown
Dog, Cyberinfrastructure, Big data

1. INTRODUCTION

1.1 The Data Observatory in Maryland
The Digital Curation Innovation Center (DCIC) at the

UMD College of Information Studies (“Maryland’s iSchool”)
is building a 100 Million-file data observatory (called CI-
BER –“cyberinfrastructure for billions of electronic records”)
to analyze big record sets, provide training datasets, and
teach students practical digital curation skills. At 100 Mil-
lion files we seek to anticipate the billion-file scale, test-
ing approaches on collections one order of magnitude re-
moved. The DCIC is contributing to a $10.5M National
Science Foundation / Data Infrastructure Building Blocks
(DIBBs)-funded project called “Brown Dog”, with partners
at the University of Illinois NCSA Supercomputing Center.
The DCIC is also partnering with industry storage leader

NetApp and an archival storage startup company, Archive
Analytics Solutions, Ltd. As a newly formed center for dig-
ital curation, we are fortunate to collaborate on a project
that addresses large-scale challenges and has extraordinary
strategic potential. The Brown Dog project1 is the largest of
the implementation awards to date under the NSF Data In-
frastructure Building Blocks (DIBBs) program. Brown Dog
is creating web-scale infrastructure services that open up
data collections for appraisal, analysis, and reuse. The ap-
proach has been described as creating a new infrastructure
service for the web, like a domain name service (DNS) for
data, the idea being that data-focused services are a missing
component of the web we have today. The role of the DCIC
in Brown Dog is to use these infrastructure services to enrich
the collections and meet the curation challenges we face in
data-driven research.

1.2 Digital Legacies and Format Debt
Heterogeneous data accumulate in research and memory

institutions, but often remain locked in native formats and
are not easily accessed or understood as rich, informative
sources. Legacy files will often not open in current software
readers or viewers. Moreover, their internal information re-
mains opaque to modern search and analytic approaches.
As the files accumulate, so do the missed opportunities to
effectively exploit them. We refer to this accumulation of ef-
fectively opaque file formats as a type of institutional debt,
“format debt”, which we would quantify as the theoretical
technology investment required to reveal the complete intel-
lectual content of all the accumulated files.

The existence of a functionally opaque format is rarely
due to the lack of available software. Many legacy and cur-
rent software tools can process legacy file formats and re-
veal their intellectual content. From commercial Windows
applications, such as CorelDraw, to Linux-hosted computer
vision tools for image processing; the available software list
goes on and on. The challenge with “format debt” is not the
lack of software, but the instrumentation of all the associ-
ated software in a workflow.

Each software executes in a particular technical environ-
ment, including the required operating system and machine
architecture. A technical expert must set up each software
environment, devise a way of passing in a file, running the
software, and interpreting the results. The myriad of old

1http://browndog.ncsa.illinois.edu/



and new software tools produce diverse output formats that
rarely conform to current standards like JSON or RDF.
These are the real barriers to instrumentation. It requires a
significant investment to add each different software to the
workflow. Unlike a digital collection of a single format, big
archives of born digital materials contain thousands of for-
mats. Big archives require a new strategy to tackle spiraling
“format debt” and for that reason we explore integrations
between archival collections and Brown Dog services.

1.3 CI-BER Testbed
Our testbed explores how the Brown Dog services [1, 7]

can be applied within a large organization’s archives, to re-
veal the data within the diverse file formats of archival col-
lections. We present a model architecture for a born-digital
repository that inserts Brown Dog services into a repository
workflow that also includes a scalable mix of search and
analysis services, namely Indigo (Cassandra), Elasticsearch,
and Kibana.

Several extractor tools have been developed for our testbed,
with archives in mind. We use these as examples of community-
developed tools added to the Brown Dog tools catalog, which
is designed for such user contributions.

Lastly, the 100 Million files in the CI-BER data set are be-
ing used to systematically test the Brown Dog service APIs.
These tests include load tests, to ensure that performance
does not degrade under web-scale load, and qualitative tests
of the services’ response to diverse file formats.

2. BACKGROUND
Brown Dog (BD) [1, 7] is a set of extensible and dis-

tributed data transformation services, specifically, data for-
mat conversions, named Data Access Proxy (DAP), and
metadata extraction from data content, named Data Till-
ing Service (DTS). With ever increasing varieties of data
formats, data sometimes becomes inaccessible due to obso-
lete software/file formats. The DAP, through a set of REST
APIs, allows users to convert inaccessible data to accessi-
ble formats, thus unlocking valuation information. Similarly
DTS, through a set of REST APIs, allows users to extract
metadata, signatures, tags or any other possible feature in-
formation from a file’s content. Using the extracted infor-
mation, files can be indexed and retrieved based on data
content.

The scale and scope of the Brown Dog data service will
often prompt comparisons with the SCAPE project for Scal-
able Preservation Environments2. Both are aimed at pre-
serving data that resides in diverse file formats, but they
are highly complementary. Brown Dog specifically focuses
on building a cloud-based service, allowing data to broadly
transcend format. In contrast SCAPE pursued diverse strate-
gies, tools, and policies for digital preservation. SCAPE
policies can provide a decision-making framework for ongo-
ing preservation activities, whereas Brown Dog can provide
the supporting metadata and format conversions. Brown
Dog’s DAP and DTS REST services are a natural fit for use
in SCAPE preservation work flows.

The DAP, built on top of Polyglot framework [4, 5], does
file format conversions, i.e. it converts an input file to a given
output format. It encompasses several Software Servers (SS).
A SS uses a wrapper script (alternatively, known as Con-

2http://scape-project.eu/

verter within BD) which wraps any piece of code, third party
software, or library, to provide access to their conversion
capabilities (e.g. open/save/convert) through a consistent
REST interface. The wrapper script also provides infor-
mation on the input and output formats supported by the
underlying software, and thus, available through the SS. The
DAP performs a format conversion by obtaining the avail-
able input/output formats from all the different SS, chaining
these together for all possible conversion paths. It then finds
the shortest conversion path from a given input format to a
given output format. Lastly, the DAP performs the format
conversion by passing the file data through the chain of SS
along the shortest path. A user can write a wrapper script
(or a custom converter) for the software she uses and con-
tribute that to the Tools Catalog. Then a Software Server
(SS) containing her script can be deployed within BD ser-
vices and can be made available for other users to leverage.

The DTS is built on top of the Clowder framework [3, 6]
and performs metadata extractions on-demand from a given
input file’s content. The extraction process is triggered
based on file mime type and then carried out by any ap-
propriate extractors that are available. An extractor is a
software process that listens for extraction requests from
DTS on a message queue (RabbitMQ). It performs extrac-
tion of metadata from the file through analysis of the con-
tent, generating rich JSON-LD3 metadata and tags, creating
previews, and breaking files out into sections with more de-
tails. Each extractor then uploads the new information to
Clowder, where it is combined with results from other ex-
tractors and made available through the DTS REST API.
Using the pyClowder4 library, a DTS user can write her own
extractor that can use any piece of code, software, library,
or webservice extraction functionality under the hood, and
can potentially be deployed as a BD service for other users.

The DAP’s SS and the DTS’s extractors reside in a dis-
tributed environment such as the cloud. To handle heavy
load, adapt to peak user demand and support heterogeneous
architectures, another module, named the Elasticity Module
(EM), has been incorporated into the BD. EM automati-
cally scales up or down the DAP’s SS and DTS’s extractors
based on user demands and loads. It monitors conversion
and extraction requests in the RabbitMQ queues for SS and
extractors. If any queue length exceeds a particular thresh-
old, it launches another instance of that specific extractor or
SS listening to the respective queue. Current implementa-
tion of EM uses the NCSA OpenNebula Openstack cloud for
launching a new VM with a SS or extractor. It also has the
option of using Docker as another layer of virtualization.
Thus, this EM design allows BD services to dynamically
grow/shrink based on demand and also ensures scalability.
A detailed description of the BD services architecture can
be found in [7].

3. BROWN DOG WITHIN THE CI-BER
DATA INFRASTRUCTURE

The DCIC has accumulated a large-scale archival data
repository in collaboration with the National Archives and
Records Administration (NARA) consisting primarily of fed-
eral and community-sourced digital archives, both born-digital

3http://json-ld.org/
4opensource.ncsa.illinois.edu/bitbucket/projects/CATS/
repos/pyclowder



and digitized, which were part of an earlier NSF-funded CI-
BER project [2]. The DCIC’s Digital Archives Repository
for Research and Analytics (DARRA) houses more than 100
Million files and 72 Terabytes of unique, heterogeneous data.

The DCIC staff rely on assistance from the Division of
Information Technology (Div IT) staff on campus and our
industry partner for the Indigo repository software, Archival
Analytics, to maintain the DARRA facility. DARRA equip-
ment occupies half of a rack in a campus data center. Our
storage array is maintained there on-site by NetApp ser-
vices. The four virtual machine hosts are administered by
Div IT staff. These relationships allows us to build and
maintain the facility and carry out Brown Dog research in
virtual machines, with a single software architect on staff.
For production operations of this kind a dedicated system
administrator is also required, providing for more formal
change management, reporting, and vacation coverage.

The DCIC approach to curation infrastructure relies upon
distributed databases, messaging, and virtual machine tech-
nology to eliminate bottlenecks and create linear scalabil-
ity. The archival repository and related services are run on
a cluster of four physical servers. The servers have high
bandwidth connections to a peta-scale NetApp storage ar-
ray. These physical servers play host to a constellation of
guest virtual machines that run all the software. The DCIC
is working with industry partners NetApp and Archive An-
alytics, Ltd., a big data startup, to build a scalable stor-
age facility. Our catalog uses Archive Analytics’ repository
software, Indigo; a resilient and scalable solution for stor-
age virtualization and workflow automation. Based on the
Apache Cassandra distributed database5, Indigo gives us
high performance data access over a standard cloud storage
API (Cloud Data Management Interface – CDMI), which is
critical to data processing activities. The Indigo repository
software is to become a community open source initiative.

The Brown Dog service is integrated with the catalog
through its two main web endpoints. The Data Access Proxy
(DAP) exposes an API for arbitrary, on-demand file format
conversion. The Data Tilling Service (DTS) provides an API
that runs all of the metadata extraction tools that are ap-
propriate to a submitted file. In our workflow the DAP and
DTS APIs are called by very simple worker scripts that are
written in Python. The worker scripts submit CI-BER data
to the Brown Dog APIs and place the resulting metadata
back into the Indigo catalog. A pool of Python workers are
always available to handle this work, which is queued and
tracked in a local RabbitMQ message queue. The Brown
Dog workflow may be triggered automatically by placing a
new file into Indigo, or it may be run on-demand, when the
existing repository hierarchy is traversed.

For those building systems on a similar scale, the hard-
ware in the data center rack totals 166,000 US dollars, which
breaks down into $29,000 for the four servers and $137,000
for the NetApp storage array. The raw storage costs are a
little over $190 per terabyte. The NetApp storage is used for
the archives and also parceled out for other virtual machine
needs, such as databases and index space.

5http://cassandra.apache.org/

4. CONTRIBUTE YOUR TOOL TO
BROWN DOG AND SHARE

Researchers often build new tools for their research, in
order to extract useful information from unstructured or
semi-structured data and to do necessary file format con-
versions in the process. A lot of effort goes into developing
such tools and such efforts are often unacknowledged. In
addition, similar tool development efforts are repeated by
multiple researchers within the same domain of research.
Towards acknowledging such tool development efforts, the
BD Tools Catalog (TC) was designed and implemented to
be a framework for these contributions. BD TC is a web
application where a user can upload any existing/new tool
with conversion or extraction capabilities, e.g., imagemag-
ick6, and tesseract7 and can share it with the research com-
munity. It has a web interface to upload BD tools (alterna-
tively, known as BD scripts). A BD tool/script is a script
that wraps the original software developed by a researcher,
or third-party software, and make it deployable within the
BD service. The TC can also deploy these BD tools to the
cloud environment in an automated way. Thus, members
of different research communities can contribute and share
their tools or BD scripts within the BD framework using the
TC. In the TC web user interface, users can provide citation
information about their tool and will get proper credit for
their effort in creating the software

A BD script that wraps the tool’s conversion capability
and exposes it within BD service is known as converter;
while a BD script that wraps the extraction capability of the
tools and makes it available within the BD system is known
as extractor. In subsequent subsections we will explain how
to write an extractor or a converter through examples per-
taining to archival data. In [7], creating of a BD tool (ex-
tractor or a converter) has been described in brief. To make
writing of an extractor easy, a python package known as py-
Clowder was developed that handles common interactions
with Clowder.

4.1 Create BD Tools
The CI-BER data observatory primarily consists of archival

data, records from many federal agencies, cities, and civic
organizations. These data are in many formats and in a
variety of original folder structures. The unique challenge
for the digital archivist at this scale is simply to know what
they have in these collections and where, such that they can
take appropriate preservation actions and provide access to
researchers. We looked at the many extractors provided
by the NCSA team, a compendium of computer vision and
3D modelling feature extractors, amongst others. We found
that we needed additional extractors more germane to dig-
ital preservation practice, namely file characterization and
digest. We created three extractors specific to archival data
with the aim of applying them within CI-BER.

4.1.1 Siegfried extractor
The first extractor is based on Siegfried [8], which is a fast

file characterization tool. It identifies sub-formats or format
versions and other format characteristics about each file.
These formats are discovered through byte matching with

6http://www.imagemagick.org/
7github.com/tesseract-ocr



Code 1: Connects to RabbitMQ with proper cre-
dentials
1 # connect to rabbitmq
2 extractors.connect_message_bus(extractorName =

extractorName, messageType = messageType,
processFileFunction = process_file,
rabbitmqExchange = rabbitmqExchange,
rabbitmqURL=rabbitmqURL)

the file patterns found in a registry of format signatures,
PRONOM [9]. PRONOM, run by the National Archives of
the United Kingdom, was the first web-based, public format
registry in the world. Siegfried in particular is a project of
Richard LeHane 8. We use PRONOM-based file characteri-
zation in order to understand the exact format used in a file.
The formats identified by file extension can be arbitrary, as
data files can be renamed in arbitrary ways and as they of-
ten are unrecognized in older archival data. The Siegfried
extractor is a BD tool that uses Siegfried, signature-based
format identification tool, under the hood. Now provided
as a BD extraction service, this is helping us obtain format
data from the 100 million files that make up CI-BER.

To write a Siegfried extractor, we use the Clowder integra-
tion package for Python, pyClowder; and the Siegfried tool.
Code snippet 1 shows the way to connect to RabbitMQ with
proper credentials. Code snippet 2 shows the implementa-
tion of the process file method based on the Siegfried tool
and also how to upload the extracted metadata to the Clow-
der web app. The metadata extracted can be accessed using
DTS API. Note the way Siegfried is called within the pro-
cess file method (Line 8). connect message bus and
upload file metadata jsonld are methods from pyClowder pack-
age.

4.1.2 FITS extractor
The second extractor is based on File Information Tool

Set (FITS)9, a file characterization toolkit. The FITS wraps
several of the known digital preservation tools within it.
They all run on a given file and the results are presented
in one report where they can be compared, including points
of agreement and disagreement. FITS is slower to run than
Siegfried, but produces more data for analysis. It includes
DROID, which does exactly the same PRONOM-based for-
mat identification as Siegfried. So a FITS file report will
allow an archivist or an archival analytics tool to compare
PRONOM identification with other tools, such as the Linux
FileInfo tool, which has its own internal list of formats and
byte patterns.

4.1.3 Byte Digest
The third extractor we created was for computing byte

digests for files. We created a python based extractor that
efficiently computes the MD5, SHA1, SHA256, SHA384, and
SHA512 digests in a single pass through the data. Repos-
itories rely on these kinds of digests to ensure the fixity of
data across a variety of storage systems. Repositories may
want to rely on the DTS for all forms of data extraction, or
as a third-party cross-check to compare with digests created

8github.com/richardlehane/siegfried
9http://projects.iq.harvard.edu/fits

Code 2: BD script- Siegfried Extractor’s process file
implementation and upload methods
1 # Process the file and upload the results
2 def process_file(parameters):
3 global extractorName
4

5 inputfile = parameters[’inputfile’]
6

7 # call the Siegfried (sf) program
8 resultStr = subprocess.check_output([’sf’,

’-json’, inputfile],
stderr=subprocess.STDOUT)

9 result = json.loads(resultStr)
10

11 afile = result[’files’][0] # always one file
only

12

13 content = {} # assertions about the file
14 content[’dcterms:extent’] = afile[’filesize’]
15

16 matches = []
17 for match in afile[’matches’]:
18 _logger.info(match)
19 m = {}
20 if ’id’ in match:
21 m[’@id’] = ’info:pronom/’+match[’id’]
22 if ’format’ in match:
23 m[’sf:name’] = match[’format’]
24 if ’version’ in match:
25 if len(match[’version’].strip()) > 0:
26 m[’sf:version’] = match[’version’]
27 if ’mime’ in match:
28 m[’sf:mime’] = match[’mime’]
29 if ’basis’ in match:
30 m[’sf:basis’] = match[’basis’]
31 matches.append(m)
32

33 if len(matches) > 0:
34 content[’dcterms:conformsTo’] = matches
35

36 #wraps the metadata in JSON-LD format
37 jsonld_metadata = jsonld_wrap (content)
38

39 # upload metadata (metadata is a JSON-LD array
of dict)

40 extractors.upload_file_metadata_jsonld(mdata =
jsonld_metadata, parameters = parameters)

within proprietary systems. By comparing a locally com-
puted digest with the digest coming back from the DTS, we
can also ensure that the file data sent to the DTS was able
to reach the extractors intact.

4.1.4 Imagemagick Converter
In this subsection we provide an example of a converter to

be deployed within the BD system. We chose imagemagick,
a third-party software with file format conversion capabili-
ties. As described in [7] to write a converter, we provided
in the comment of the script - line 2 : software name with
version number, line 3: data type supported, i.e., image,
in this case, line 4: list of input formats supported by im-
agemagick, line 5: list of supported output formats. Line
12 and 14 contain the actual imagemagick convert function
call that converts an input file in supported input format
to specific supported output format. For example, 3 script
allows conversion of an image in pcd format to svg format.



Code 3: BD Script - Imagemagick Converter
1 #!/bin/sh
2 #ImageMagick (v6.5.2)
3 #image
4 #bmp, dib, eps, fig, gif, ico, jpg, jpeg, jp2, pcd,

pdf, pgm, pict, pix, png, pnm, ppm, ps, rgb,
rgba, sgi, sun, svg, tga, tif, tiff, ttf, x,
xbm, xcf, xpm, xwd, yuv

5 #bmp, dib, eps, gif, jpg, jpeg, jp2, pcd, pdf, pgm,
pict, png, pnm, ppm, ps, rgb, rgba, sgi, sun,
svg, tga, tif, tiff, ttf, x, xbm, xpm, xwd, yuv

6

7 output_filename=$(basename "$2")
8 output_format="${output_filename##*.}"
9

10 #Output PGM files as ASCII
11 if [ "$output_format" = "pgm" ]; then
12 convert "$1" -compress none "$2"
13 else
14 convert "$1" "$2"
15 fi

Figure 1: Tools Catalog web user interface showing
list of tools/BD tool available in TC

4.2 Contribute and Share tool
To enable users to contribute and share a tool and its

corresponding BD scripts, a Tools Catalog (TC) web appli-
cation has been designed and is provided as a web service for
BD users. Figure 1 shows the TC web user interface where
a user can browse all tools information and BD tools/scripts
that are being shared through TC, and can download BD
scripts. It also has options to add tools information and
contribute BD scripts and for admin to approve/disapprove
a submitted BD tool/script. Figure 2 shows the specific tool
information, e.g., Siegfried software information, after it has
been added to TC.

5. INTEGRATED BROWN DOG TOOLS
WITH REPOSITORIES

The DCIC team has integrated a number of services around
the Indigo archival repository in Maryland. For demon-
stration purposes we have installed several Elasticsearch10

nodes and the Kibana visualization tool11. In addition to
rich search, these give us metrics and visualizations of the
collections as they are enhanced with new data from Brown
Dog.

10www.elastic.co
11www.elastic.co/products/kibana

Figure 2: Displays Siegfried tool information after
it has been added to Tools Catalog using Add Tool
form with proper citation.

Figure 3: Workers and Task Queue

5.1 Simple Middleware
In order to coordinate the workflows we want around the

Indigo repository, Brown Dog services, and Elasticsearch, we
needed to create additional middleware. This middleware is
mostly a work queue system, which allows us to perform
work asynchronously, and at a predictable rate, instead of
having to perform all operations immediately upon deposit
or immediately in response to Indigo data changes.

When a user makes a change to the data in the Indigo
repository, say they upload a new file, a message is generated
and broadcast to any software that is listening to the Indigo
message feed. The first step in the DCIC workflow is to
listen for these Indigo messages. Our listener converts each
message into a task and places that task in our work queue.
The first task, called React, can be described as “respond
to this Indigo message”. Our simple listener has no trouble
keeping up with all of the Indigo changes, as the significant
work has been postponed for later.

Next in the workflow we have a pool of workers, see Fig-
ure 3. These are software processes that are waiting to pick
up and perform any work from the work queue above. At
the DCIC we normally have ten workers running, but if the
queue of work keeps growing due to a large number of de-
posits, we can increase the number of workers. Workers can
be distributed across multiple servers if necessary. There
may be a variety of tasks added to the work queue and these
workers can perform any of them. Let’s look at some of the
tasks that make up our workflow.



5.2 Tasks That Support Workflow

• React - Responds to the content of an Indigo mes-
sage. This task is created by the Indigo listener. The
worker will figure out what change was made in Indigo
and what tasks should be performed as a result. For
instance, any metadata change will result in an index
task. This task adds other tasks to the work queue.

• Index - Indexes (or re-indexes) a file or folder in Elas-
ticsearch. The worker will fetch any necessary data
from Indigo.

• Deindex - Removes a file or folder from Elasticsearch.

• Post for Extracts - Uploads a file to Brown Dog’s
Data Tilling Service (DTS) for feature extraction. Adds
a Poll for Extracts task to the queue.

• Poll for Extracts - Checks to see if the DTS extract
operations above are complete yet. If incomplete, this
task is scheduled to run again after a delay. If com-
plete, the worker downloads the extracted metadata
from DTS and puts this metadata into Indigo.

• Text Conversion - Uploads a file to the DAP for
conversion into a text file, if possible. Schedules a Poll
for Text task to run after a delay.

• Poll for Text - Checks to see if text conversion is
available from DAP yet. If text is not yet available,
this task is scheduled to run again after a delay. If
text is available, it downloads the text and puts the
text into a full text field in Indigo metadata.

Each step in the workflow is separated into a discrete task
and each task is only performed when it gets to the front
of the work queue. We can monitor the work queue to see
how long it has become and how long tasks must wait to
be performed. Organizations with available server resources
can scale up the number of workers to keep up with demand.
Organizations with few server resources can control server
load and still eventually process the queued jobs.

The asynchronous middleware we describe here was im-
plemented in the Python language and uses Celery12 task
queues. The work queues that are managed by Celery are
persisted in a RabbitMQ messaging service. Each task may
be relatively simple. For example Code 4 shows the com-
plete code for the React task.

As shown, the React task schedules other tasks on reposi-
tory paths in response to the Indigo operation. Other tasks
are longer and involve requests to web services, either Brown
Dog, Indigo or Elasticsearch. In some cases further workflow
steps will result indirectly, via calls to Indigo services. For
example, after full text is added to an Indigo metadata field,
then the listener will be notified and will schedule a React
task, then the React task will schedule an Index task, which
will update Elasticsearch to include a full text field.

5.3 Workflow On Demand
As we incorporate more services into the workflow, or add

new fields to our Elasticsearch index, we will add new work-
flow reactions in the React task. These will respond to new
file deposits and changes in the data. However, we also want

12http://www.celeryproject.org/

Code 4: Code Sample for the React Task
1 @app.task
2 def react(operation, object_type, path,

stateChange):
3 if ’create’ == operation:
4 index.apply_async((path,))
5 if ’resource’ == object_type:
6 postForExtract.apply_async((path,))
7 elif "update_object" == operation:
8 index.apply_async((path,))
9 elif "delete" == operation:

10 deindex.apply_async((path, object_type))

to trigger these new workflows on existing repository data.
For this we turn to a special task called Traverse:

• Traverse - Traverse schedules another task for each
file or folder within a given part of the repository tree,
starting at the root and extending in a breadth-first
manner to the branches. Traverse lets you perform
workflow on demand for large areas of the repository.
Traverse works recursively, making use of the work
queue to schedule a further Traverse task for each sub-
folder at a given level. Recursive traverse tasks can
reliably process folders of arbitrary depth without any
long running worker processes.

For instance, if we add new fields to our Elasticsearch, we
will traverse the entire repository to apply the Index task. If
we add a new workflow, such as conversion to plain text, to
the React tasks, we can apply the new workflow to existing
data through the Traverse task. We add Traverse tasks to
the queue directly, via a command-line script, rather than
through the Indigo listener.

5.4 Taking Incremental Steps
With the 100 Million files in CI-BER collections we ap-

proach the problems of billion-file scale. Even given an asyn-
chronous work queue, if we traverse a large collection with-
out pausing, we will quickly overload the work queue with
pending tasks, bringing the machine it runs on to a halt. In-
stead a traverse must proceed in stages. The traverse task
has special logic that checks the length of the pending task
queue and postpones itself whenever the queue is too large.
A traverse will only proceed with creating more tasks while
the queue is of a manageable size. In Figure 4 you can see
the size of the overall queue over time, including all tasks,
as we gradually traversed a collection. Each bump was cre-
ated by a traverse operation that waited until the queue was
small and then added more tasks.

In this way the workers can gradually traverse the entire
repository to bring all materials up to date with respect to
the current workflow.

6. VISUALIZATION OF EXTRACTED
METADATA

The integration between Indigo, Brown Dog, and Elas-
ticsearch creates an expanded set of metadata fields in the
repository. When these are indexed in Elasticsearch, we
can ask new questions and understand the collections and
folders at every level in greater level of detail. All of the



Figure 4: Incrementally Adding Work to the Task
Queue over Time

Figure 5: Kibana visualization of mimetype (inner
sections) and format (outer sections)

following charts were created in the Kibana visualization
tools for Elasticsearch, using data drawn from Brown Dog
services. Each chart is part of the overview provided by a
Kibana dashboard. The Kibana dashboard, our overview,
can be redrawn with arbitrary index fields as filters, much
like the drill-down feature of a faceted search system. Most
importantly we can look at the dashboard of visualizations
for any folder in CI-BER to better understand the contents.

6.1 Format Distribution
One of the insights we gain from the Siegfried extractor is

detailed format information for every file we process. This
chart captures a high level view of the most common file
formats in the repository. The concentric pie chart shows
mimetypes in the inner circle and then breaks these mime-
types down into specific sub-formats in the outer ring.

In its web-based interactive form, this chart has pop-up
labels and can be used to target further preservation and
access enhancements, such as format migration or format
specific extraction and indexing. In the collection shown
above the most common mimetype is application/pdf, with
a distribution of subformats from PDF v1.2 through v1.6.

Figure 6: Total Images by Pixel Count (Orders of
10)

6.2 Image Features
Our Elasticsearch cluster includes fields that the DTS has

derived from images. Using these metrics we can formulate
queries based on image content. For instance we can easily
formulate an Elasticsearch query that will find all megapixel
images. Below we have a graph showing the numbers of
images in a collection falling within pixel count ranges, in
orders of ten.

There are a number of other visual features extracted by
Brown Dog that may be useful. Visual symmetry is reflected
in skewness and kurtosis factors. Human features are tagged
and delimited by box regions, including faces, eyes, profiles,
and close-ups. Note that this will include both photographs
and realistic drawings of people. By indexing these features,
we can find all of the images that feature people, or that
feature a certain number of people.

6.3 Textual Features
We leveraged both the OCR and format conversion offer-

ings of Brown Dog to acquire as much of the text content
from the CI-BER files as possible. The text was recorded
in Indigo metadata fields and indexed by Elasticsearch. We
have done little beyond a search index with these text fields
so far, but we see much more potential for text analysis, now
that the text is no longer locked in a file format. For one
example, we can find unusual terms to understand how text
in one part of our repository is different from elsewhere.

In the table generated by Kibana above there are two
rows for every folder, we see that the most unusual terms
in U.S. Supreme Court documents are, unsurprisingly, “de-
nied” and “v”, as in “motion was denied” and “Marbury v.
Madison”. The OSTP is more concerned with “science” and
“budget”, while NIST is more concerned with “specification”
and “diagram”. Unusual terms is an especially interesting
approach for archival material because it is comparative,
showing those terms that are distinctive for each “bucket”
within the result set. You can define what your “buckets”
are through any other indexed field, be it the folder path,
the author, or the year files were created.

The Kibana portal used to create the graphs above exists



Figure 7: Unusual Terms in Folders Containing the
Most Texts

as a separate analytics application that is not integrated into
the access repository. When we bring these additional search
and analytics features into our access repository, they will
provide an overview in the context of the collection struc-
ture. We will render a dashboard on demand for any folder
or collection in the repository, showing analysis of the con-
tents. This brings a pre-made set of relevant analytics into
view for every repository user, not just the person crafting
the visualizations.

7. DISCUSSION
The workflows described here and their application to ap-

praisal and access are in the early stages. There are several
direct steps we will take next to further explore our study.

We have begun to scratch the surface of the data in CI-
BER, running the extractors, etc. on a sampling of our
collections. However, we have not run the workflow on the
bulk of the scientific data in CI-BER, which will pose differ-
ent challenges and opportunities. The Elasticsearch index
and Kibana visualization tool, give us significant analysis
features “out of the box” and have promise as an investiga-
tive tool for born digital materials, but the dashboards are
not integrated into our user-facing access interface. Finally,
we can connect repository users to the DTS Clowder item
and collection interface, which delivers the complete super-
set of extracted data for each file, unfiltered by our local
repository design and indexing choices. With these straight-
forward next steps we will improve our understanding of the
potential for Brown Dog.

Another avenue to explore is the looping of data through
DTS and DAP to extract more knowledge. For instance, we
can first convert a document into full text via DAP, then feed
the full text into the DTS for all manner of text analysis ex-
tractions, including natural language processing to discover
dates and the names of people and places. The same text
analysis can be applied to OCR text or transcripts extracted
from audio. This text mining across diverse formats is hard
to achieve traditionally, requiring a dedicated repository and
software effort. Within the Brown Dog framework we may
be able to bring it within reach of more institutions. A sim-
ilar combining of Brown Dog services can be used to split
out and process sections of files, such as the detailed content
items within an MBOX, ZIP or disk image file.

The DTS provides us with metadata in the form of JSON-
LD graphs. Presently we only pull certain field values from
the JSON-LD, treating it as JSON. A triple store or graph

database can be used to index all of the extracted data, from
all of the files, in a larger graph. A graph of all of the ex-
tracted data opens the door to graph reasoning across the
collections. For instance, you might establish that a set of
people were working in a team for a time, since they have
frequently corresponded or shared authorship on documents.
Furthermore, a linked data store allows you to coordinate
and query your local data alongside linked data in other
places, such as dbpedia13 One simple example is to link rec-
ognized place names with their matching resource in Geo
Names. This gives you the ability to query for and index
all files that pertain to any level of administrative region
on a map. For example a document that mentions “Brook-
lyn” could be discovered via New York City and New York
State.

8. CONCLUSION
We have demonstrated a model architecture, consisting

of cloud-based Brown Dog services, Maryland/DCIC mid-
dleware, the Indigo repository, and the Elasticsearch ap-
plications, that function together at scale to populate the
CI-BER collections with enriched metadata records.

We contributed our own extractors to Brown Dog, adding
key digital preservation functions. We deployed the Siegfried
extractor into the DTS, wrapping the functions of the Siegfried
format identification software. While contributing the ex-
tractor required programmer effort, the integration of the
extracted data into workflows was automatic, as Siegfried’s
format-related findings merged with the rest of our DTS-
supplied metadata. The only change to the Maryland work-
flow was to decide which Siegfried data to put in the search
index. This experience further shows us that Brown Dog is
a potent aggregator of extraction and migration tools un-
der one API, capable of multiplying the value of the tool
building efforts in the broad data curation community.

Lastly, we find that an enriched supply of metadata di-
rectly extracted from digital materials can yield tremendous
benefits in the analysis of collections. Data analytics soft-
ware, such as Kibana, can be used without much domain-
specific configuration to gain insight into collection contents.
This gives us our first glimpse of what we can do with the
expanding workflows and metadata.
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