
Towards a Risk Model for Emulation-based Preservation
Strategies: A Case Study from the Software-based Art

Domain

Klaus Rechert
University of Freiburg

Hermann-Herder Str. 10
79104 Freiburg, Germany
klaus.rechert@rz.uni-

freiburg.de

Patrícia Falcão
Time Based Media
Conservation, Tate
7-14 Mandela Way

London SE1 5SR, U.K.
patricia.falcao@tate.org.uk

Tom Ensom
Department of Digital

Humanities, King’s College
Drury Lane

London, WC2B 5RL, U.K.
thomas.ensom@kcl.ac.uk

ABSTRACT
Virtualization and emulation provide the technical basis for
a potential preservation strategy to keep performing digi-
tal objects accessible, despite obsolescence of their original
technical platform. By simulating the presence of physical
components, in the form of virtual hardware, it is possible to
maintain the software environments needed to run original
software.

In this paper we describe a conceptual model to anal-
yse and document the hardware and software elements of
software-based artworks, in order to then identify depen-
dencies and assess risks. This information is used to select
the most appropriate options when creating disk images,
and to make decisions about whether an emulation or virtu-
alization platform is more appropriate in supporting these
disk images. We conclude with recommendations for ensur-
ing the sustainability of disk images in the medium-to-long-
term, and strategies to mitigate the risks related to external
dependencies.

Keywords
Software-based Art; Emulation; Preservation Strategy

1. INTRODUCTION
Successful preservation of software-based artworks requires

a deep understanding of both the technical aspects that un-
derlie the performance of the software and the properties
of the artwork that must be maintained to ensure its au-
thenticity. Only by looking at those two aspects together is
it possible to determine the relevant technical strategies to
apply.

Software-based artworks are typically understood as art-
works for which software is the primary medium. Software
usually makes use of source code, as in Richard Rinehart’s
definition, ”... There is one aspect of digital media that sep-
arates them from traditional art media and even other elec-
tronic art media; source code.” [15] Sometimes however, soft-
ware might be created at a level abstracted from the source
code itself – through the use of production tools (for exam-
ple, a WYSIWYG or visual editor).

Currently, Tate’s collection includes only ten software-
based artworks, a small number even in the Museum context.
However, these artworks have been produced by markedly
different artists and programmers, over a period of ten years;

resulting in a wide variety both in the functions performed
by the software and in the hardware and software systems
used. The software is often custom-built for a specific art-
work, so there are no standards as to how it is built or
documented. The unique nature of the technologies used
means that individual preservation plans are essential, and
for some of the artworks emulation has already proven to
deliver satisfactory results. However, the expected growth
of the collection and the related practical and economic con-
straints highlight the importance of identifying common fea-
tures and developing strategies that can be applied consis-
tently, so as to make the preservation of the artworks and
related artefacts sustainable.

The proposal in this paper aims at keeping the digital arte-
facts required to perform an artwork available and accessible
by preserving the technical platform they were developed
for. These platforms, partly physical (hardware) and partly
non-physical (software), are superseded by new platforms
every five to ten years. Once the hardware parts are out
of production, the software parts also become inaccessible
and old platforms disappear from the market and general
use. To keep born-digital objects accessible, a promising
approach is to focus on keeping the hardware platform alive
by simulating the presence of the physical parts through vir-
tual hardware. Virtualization and emulation are able to pro-
vide the technical basis for a potential preservation strategy
to keep performing digital objects accessible, despite obso-
lescence of their original technical platform. Virtualization
and emulation are proposed as generic technical preservation
strategies, which can be shared among similar artefacts. The
process of creating an emulated version of an artwork has
the advantage of highlighting preservation risks posed by a
constantly changing technical environment. It is also the
moment to evaluate specific external dependencies the digi-
tal object may have and identify possible solutions or steps
that can be taken to reduce the impact of the loss of these
dependencies.

We describe a methodology for evaluating whether emu-
lation or virtualization can or should be applied to the dig-
ital artefacts that make up a software-based artwork. The
methodology combines an assessment of risks for preserva-
tion, a proposal for best-practice when migrating between
physical and virtual environments, and consideration of how
to maintain virtual machines in the long-term. The final sec-
tion addresses the fact that emulators themselves become



obsolete. It discusses ways in which dependency on a par-
ticular emulation platform can be reduced and how best
to migrate to a virtual hardware environment in order to
facilitate long-term access to the software. The processes
described in this paper have particular potential for imple-
mentation in art museums, but may also be broadly relevant
to other types of software collection.

2. RELATED WORK
Emulation as a preservation strategy has been discussed

for 20 years, an early example being Jeff Rothenberg’s pa-
per from 1995, ”Ensuring the Longevity of Digital Docu-
ments” [17]. These early ideas were later reframed in an
art context by Richard Rinehart’s work for Rhizome [14].
The term emulation was also used in various other projects
in art conservation, but often in a wider sense, to refer to
the re-coding of a work or changing the technologies used to
instantiate a work [19, 6].

Hardware virtualisation was first specifically proposed as
an approach in the context of software-based art by Tabea
Lurk in 2008 [9], and positioned as a potential conservation
tool. The SCART project investigated the use of emulation,
virtualization and re-coding for Mondophrenetic™. 1 Today,
however, emulation is still neither common practice nor has
it evolved from singular project-based experiments.

In the last years, further research by various institutions
has resulted in progress regarding usability and scalability
of emulation and virtualization for the preservation of com-
plex digital objects. Some of the most significant of these
projects were the Olive Archive [10], the bwFLA Emula-
tion as a Service [13] and the Internet Archive’s Emularity2.
While all three approaches greatly reduced technical hur-
dles and seem to be ready for broader adaptation and usage
within the preservation community [16], there is still a lack
of generic emulation-based preservation strategies. Recent
research on software-based art preservation has mostly fo-
cused on CD-ROMs [5, 2, 3].

The notion of significant properties has been examined for
complex digital objects of various kinds, including software,
and these studies have included discussion of an artefact’s
technical features and dependencies [7]. However identify-
ing and classifying these kinds of properties can be chal-
lenging due to, ”The diffuse nature of software-based art-
works and the systems of which they are made, means that
obsolescence is often more difficult to monitor than in tradi-
tional time-based media works of art and the risk of failure
in these works is harder to predict.” [8] Further to that, for
artworks, the concept of significant property must extend
beyond the properties of the digital objects themselves. It
must include other elements that influence the experience
and understanding of an artwork, such as the spatial pa-
rameters of display in the gallery space [8].

With software-based artworks now making their way into
the collections of art museums typically associated with more
traditional media, there is a pressing need to address the
challenges of preserving these works and to develop the as-

1Mondophrenetic™ a work made by Herman Assel-
berghs, Els Opsomer and Rony Vissers in 2001,
https://www.scart.be/?q=en/content/case-study-report-
mondophrenetic-2000-herman-asselberghs-els-opsomer-
rony-vissers-0
2http://digitize.archiveteam.org/index.php/
Internet Archive Emulation (online, 4/22/16)

sociated skills among practitioners. Best practices however,
are not yet available, or indeed, arrived at with any real con-
sensus. It is hoped that this paper will be a useful contribu-
tion to this developing area and help provoke a movement
toward agreeing best practices among the community.

3. TECHNICAL CHARACTERIZATION
At first glance a digital artefact consists of a set of byte

streams, e.g. binary files. Keeping these accessible in the
long-term (i.e. being able to retrieve exactly the same byte
stream as originally stored) poses some risks, but from to-
day’s perspective is a manageable task supported by estab-
lished procedures and tools. In contrast, keeping a digital
artefact’s experienceable features accessible is a much harder
task, since the artefact needs to be rendered, or performed
(and possibly requires interaction with viewers/visitors) and
depends on a suitable technical environment to do so. To
ensure the long-term availability of a computer platform’s
hardware (e.g. to render a (preserved) digital artefact) em-
ulation and virtualization can be considered as potential
access and preservation strategies. In order to prepare an
emulation-based preservation plan, a detailed technical anal-
ysis of the digital artefact and its technical environment is
required, to uncover explicit but also implicit dependencies
as well as determine present and future risk-factors.

3.1 Software Layer
Many digital artefacts are not self-contained. They do

not only require hardware, but also additional software to
be rendered. Therefore, one part of an artefact’s technical
environment represents a software runtime – the software
(rendering) environment. A minimal software environment
is typically an installed and configured operating system,
but in most real-world scenarios a more complex software
environment with additional software installed and config-
ured is required. When acquiring an artefact, its software
environment needs to be assessed.

3.1.1 Interfaces between Hardware and Software
Operating systems (OS) play an important role in soft-

ware environments, as they typically provide a hardware
abstraction layer, for instance, any application is able to con-
nect to the internet without knowing technical details about
the hardware used. This abstraction is usually achieved
through technical interfaces – the so called hardware ab-
straction layer.

The technical interfaces between an operating system and
hardware have two sides: the top-side (OS-side) unifies us-
age of different hardware components (e.g. sound card, net-
work card, graphic cards etc.) and the bottom part (hardware-
side) operates the hardware in (vendor-) specific ways. The
connection between top- and bottom interfaces are imple-
mented as hardware drivers (sometimes as BIOS or ROMs
extension3).

Through the use of OS hardware abstraction, software de-
pendencies on physical hardware components are usually un-
necessary. Software artefacts then pose only abstract hard-
ware dependencies (e.g. the minimal screen resolution, sound
and network support etc.). This approach has greatly sim-
plified software development and improved the compatibil-

3Apple Macintosh Computers are a good example for relying
on ROMs



Figure 1: Rendering environment of a dig. artefact.

ity of software with a wide spectrum of different computer
setups, since most artefacts and software dependencies typ-
ically use operating systems to interact with hardware.

Some digital artefacts, however, have no software depen-
dencies and are able to interact with hardware components
directly. However, these cases are rather rare (at least for
typical computer setups) and usually associated with specific
hardware – for example, game consoles, arcade machines,
robots or similar special purpose machinery. There are also
some rare cases where an operating system is used but the
artefact also relies on direct access to a specific hardware
resource.

3.2 Hardware Layer
The hardware layer connects the digital artefact (and its

software runtime) with the physical world. Hardware com-
ponents, as considered in this paper, can be classified into
two classes: a ’machine’ with built-in hardware (e.g. a com-
puter, phone, tablet etc.), and external hardware compo-
nents connected to this machine. For the purpose of this
paper the hardware’s properties are only relevant in so far
as they influences the options for emulation or virtualization.
The focus of this section then, is on the hardware character-
istics to document when considering its use for emulation or
virtualization purposes.

When an artwork is acquired it is important to analyze
and describe the hardware used by a digital artefact, as
this will help to define the technical environment required
for that digital artefact to be rendered. The level of detail
needed to describe the hardware depends on the character-
istics of the software environment where the digital artefact
is run.

3.2.1 Virtual Hardware
Any computational (binary) operation can be implemented

in hardware (i.e. hard-wiring operations for a specific pur-
pose as a machine or machine component) or in software
(i.e. translating a set of complex logic operations by com-
piling source code into instructions for a generic machine –
e.g. any generic CPU). Both implementation options are in
theory equivalent, however operations implemented in hard-
ware are usually by magnitudes faster compared to a pure
software implementation. This equivalence allows, however,
the replication of any outdated hardware component in soft-
ware and the exposing of its functionality using contempo-
rary hardware. Hence, the Computer System block, depicted
in Fig. 1 can be implemented either as physical or virtual

hardware.
There are currently two generic technical options to re-

place outdated hardware: virtualization and emulation. These
two technologies are not mutually exclusive, and in fact
share many concepts.

Virtualization. Virtualisation is a concept and a technical
tool to abstract (virtualize) hardware resources, such that
a so called virtual machine (VM) (also called guest) is not
interacting with the physical hardware directly. Instead a
hypervisor (also called host) provides a virtual hardware in-
terface for guests, usually providing access to a unified set
of (mostly emulated) hardware, regardless of the machine’s
hardware configuration the host is running on. A virtual
machine is still able to utilize performance advantages of
real hardware, in particular (but not restricted to) using the
host’s CPU. The hypervisor is in charge of enforcing rules
as to how a virtual machine is able to use the host’s CPU
(i.e. restricting access to specific, sensitive instructions – for
instance, preventing a VM accessing the host’s memory),
such that a VM is unable to takeover the physical machine
or interfere with other VMs running on the same host. Mod-
ern computer architectures have built-in hardware features
(e.g. dedicated CPU and memory-management features) to
support virtualization, implementing parts of the hypervisor
in hardware and thus reducing the virtualization overhead
as well as the complexity of the host system (software hy-
pervisor).

Hardware components available to guest VMs are either
fully emulated or, to improve performance by eliminating
most of the emulation overhead, paravirtualized [18]. Par-
avirtualized hardware offers (almost) direct and efficient ac-
cess to the host’s hardware, typically (but not restricted
to) network cards and storage controllers (e.g. disk access).
When using paravirtualized hardware, a driver specific to
the virtualization system needs to be installed within the
guest system. In contrast, when using fully emulated hard-
ware components, the guest system is able to use the same
driver code as if it were using a physical hardware compo-
nent.

Emulation. An emulator (usually) implements a specific
outdated computer system, primarily a CPU architecture,
interpreting the outdated machine’s instructions and trans-
lating these to equivalent instructions of the current host
system. This however, is not sufficient to run or execute
even the simpler applications. There is additional hardware
emulation required to attach storage devices (e.g. a bus to a
floppy or hard-drive controller), a memory management unit
(MMU), video and audio output, network interfaces, and
interfaces for interaction with users. In contrast to virtual-
ization, emulation implements a complete computer system
solely in software. Therefore, an emulated system is inde-
pendent of the current computer architecture, e.g. we are
able to run a Motorola 68k emulator (e.g. to boot MacOS
System 7) on a current Intel-based Windows PC.

3.2.2 Virtualization or Emulation?
The main difference between emulation and virtualiza-

tion is the reliance on contemporary hardware (or the lack
thereof). Virtualization relies on and utilizes real hardware
for performance reasons as it offers typically (almost) native
execution speed, but has restricted platform support. By



definition, virtualizers (such as VirtualBox and VMWare),
are only able to run Intel-based x86 VMs, whereas emulators
cover almost any technical platform, in particular obsolete
ones. Furthermore, the close ties to today’s computer plat-
forms restrict a virtualized machine’s longevity, particularly
if the virtual machine relies on contemporary (paravirtu-
alized) hardware components. To support paravirtualized
hardware, the VM (and the virtualization technology) not
only rely on VM-specific drivers installed in guest systems,
but these drivers also expect appropriate support from the
host OS, typically as a host-OS kernel extension to support
interaction with the host’s hardware directly. Any major
OS-kernel upgrade (e.g. changes to internal kernel interfaces)
requires an upgrade of the virtualizer too, and therefore the
longevity of the virtual machine guest depends also on ven-
dor or community supporting current operating systems.

As all hardware components (and respectively their low-
level interfaces to be used by drivers) of a computer system
have to be re-implemented in software, and the availabil-
ity of drivers for old operating systems is crucial, only a
small set of emulated hardware components are provided as
virtual or emulated hardware. Typically, emulator develop-
ers focused on hardware in widespread use and with good
driver support, e.g. Soundblaster 16/32 for soundcards and
Intel’s E10/100/1000 for network cards. In practice there is
a significant overlap between virtualizer and emulators, with
both supporting a similar set of emulated hardware compo-
nents, a useful property for a mixed preservation strategy.
Hence, for digital preservation and related tasks, one should
avoid extensions or drivers specific of a certain virtualizer or
emulator. If possible, drivers originally published by hard-
ware vendors should be used, since using the original driver
also verifies (at least partly) correctness and completeness
in the emulated hardware. Furthermore, by using emulated
standard hardware and their drivers, both the effort and
risk of migrating a virtualized system to an emulated one
is reduced. Contemporary emulators require a specific con-
temporary host system, which is to say that emulators are
normal software components with specific requirements re-
garding their software and (abstract) hardware environment.
However, the guest systems running on emulated hardware
are usually not specifically configured for a certain emulator
(e.g. using original hardware drivers). Hence, migrating an
emulated guest to a new emulator of the same hardware ar-
chitecture, will require little or ideally no adaptation of the
system.

To summarize, using virtualization technology can be a
useful addition to a general emulation strategy, in partic-
ular if performance matters. Even though a virtualization
solution can not be considered a long-term solution, if care-
fully configured (e.g. avoiding paravirtualized drivers) the
effort required to migrate a system to a new virtualizer or
emulator is lowered. Furthermore, having two similar sys-
tems at hand (e.g. VirtualBox for virtualization and QEMU
for emulation) offers the option to pursue a two-track strat-
egy, and in particular allows to practice system migrations
between two virtual hardware stacks.

3.3 Conceptual Layers
Based on the aforementioned structural view and discus-

sion a (minimal) technical description of a digital artefact
can be divided into three conceptual layers:

1. Artefact Description & Configuration This layer con-

Figure 2: Characterization of external dependencies
derived from conceptual layers.

ceptually captures the technical description of the ob-
ject, in particular the technical properties of the arte-
fact itself and its specific (artefact-specific) configura-
tions and settings.

2. Software Environment & Configuration This layer con-
ceptually captures all installed software components
and applications, including the operating system (if
present). Furthermore, it may capture the configu-
ration and settings of individual software components
and the operating system.

3. Hardware Environment This layer conceptually cap-
tures the hardware components used by both upper
layers.

3.4 Characterization of External Dependencies
A digital artefact requires more than an isolated techni-

cal environment (consisting of data and/or extracted disk
images) and a computer system or installation to be ren-
dered. For this reason, external dependencies need to be
determined, characterized and documented.

The three logical layers together describe the technical
environment and characteristics of a digital artefact. In each
layer, individual components may depend on functionality
or data not available within the local setup (direct external
dependencies). Additionally, there may be indirect external
dependencies. For instance, a direct software dependency
originating from the artefact layer may itself have external
dependencies.

From the three conceptual layers we can derive the follow-
ing five types of external dependency:

1. Abstract external dependency: Abstract dependencies
are posed directly by the digital artefact. These de-
pendencies are abstract in that they do not rely ex-
plicitly on a specific software or hardware component.
For instance, an artefact’s performance might depend
on access to some kind of data source stored at an ex-
ternal site, but does not rely on specific software to
retrieve or modify the data (e.g. the data is directly
accessible through the local file system).

2. Direct software-based external dependency: To access
external data and/or functionality the artefact requires
additional software. For instance, a specific client soft-
ware is required to connect to a remote database and
retrieve data.



3. Indirect software-based external dependency: This type
of external dependency is not posed by the artefact di-
rectly but by another of the artefact’s software depen-
dencies. It is therefore called an indirect software de-
pendency. For instance, database client software might
require access to a license server to function.

4. Direct hardware-based external dependency: The digi-
tal artefact requires access to external hardware, such
as direct access to a specific printer.

5. Indirect hardware-based external dependency: The soft-
ware environment of the digital artefact requires ac-
cess to specific hardware, e.g. a software component
requires access to a hardware license dongle to func-
tion.

3.4.1 Peripherals
An important subset of external dependencies are exter-

nal (connected) hardware components, which can be seen as
direct or indirect hardware-based dependencies. A general
characterization of external hardware is beyond the scope
of this paper. Instead, this section will focus on the char-
acterization of the communication between a virtualized or
emulated machine and external hardware, as well as data
protocols used, (i.e. how information is exchanged between
software and external hardware). This is the essential infor-
mation needed when considering the use of emulators to run
an artefact.

To (re-)connect external hardware components a physical
machine is required. In the case of an emulated or virtu-
alized computer system, the host system needs to be able
to connect and interact with external hardware components
such as human interface devices (HID) (e.g. mouse and key-
board), printers or other peripherals, e.g. by using a suit-
able connector or a passive (if electrically compatible) or ac-
tive (e.g. analogue-to-digital converter) adapter, to provide
a compatible connection.

Second, the host operating system needs to provide a soft-
ware interface for applications to communicate with exter-
nal hardware. For example, a COM port, the Windows
software-side representation of a serial connection used for
generic peripheral devices such as printers. If external hard-
ware are accessible through the host OS’s interfaces, an em-
ulator (acting as a normal software application) is then able
to use this external hardware.

Finally, the emulator needs to provide a virtual hardware
interface connected to the host’s software interface, visible
to and usable by the guest OS. Through all these layers
integrity of the data protocols, used to communicate be-
tween software within the emulated environment and exter-
nal hardware, needs to be maintained.

Similarly to the previously discussed built-in hardware
components, judging the relevant and controllable risks posed
by an external component on the complete installation should
be focused on its technical interfaces. Fortunately, the num-
ber and type of external technical interfaces is low. Their
types are standardized and mostly use general purpose tech-
nologies (such as USB, serial, parallel etc.). Some older ex-
ternal components and interfaces aren’t supported by em-
ulators anymore, mostly for practical reasons, such as host
systems providing no appropriate connectors (e.g. a mobile
phone or tablet being used as an emulator host has limited
connector options). In these cases, usually an emulated or

simulated option is provided (e.g. a GUI console gamepad
emulation on a touchscreen device).

4. AN EMULATION-BASED PRESERVATION
STRATEGY

In the previous section three conceptual layers describing
the technical characteristics of a digital artefact were identi-
fied. The structural separation of hardware, software envi-
ronment and the digital artefact facilitates the evaluation of
preservation risk factors and strategies without considering
the specificities of all layers.

By choosing a virtualization or emulation strategy the fo-
cus of preservation moves from physical objects (Hardware
Environment layer) to disk images (Software Environment
layer). Hardware will inevitably suffer from technical and
physical decay, and for cost reasons can only be preserved
in individual cases (even then eventually failing). The same
applies to emulators. In contrast, preserved software envi-
ronments don’t change in their hardware requirements over
time and can be considered as constant and stable in their
requirements. The goal of this strategy can be described
as having software environments (disk images) to run any-
where and run forever. Run anywhere translates into making
a complex software installation portable. Most relevant is
to create the most generic software environment possible,
with regards to hardware dependencies, such that a digital
artefact is able to perform outside of its original environ-
ment. Run Forever can only be achieved if the disk images
are maintained over time. For that both the technical in-
terfaces and external dependencies of disk images must be
regularly monitored. This can be done either by referring to
technical documentation, if available, or by performing pe-
riodical tests to assess the functionality of the dependencies.
If an interface’s functionality breaks or an external depen-
dency becomes unavailable, the disk image (respectively its
software environment) or the artefact itself must be adapted
so they can perform again in the changed technical environ-
ment.

For that to be possible, steps must be taken when creat-
ing the disk images to facilitate their longevity. Alongside
this there must be careful planning for their obsolescence, or
the obsolescence of their technical environment, in particular
the emulation or virtualization platform. The first step for
a successful emulation strategy is knowing what information
and resources are available to support this process. Having
the artefact’s source code available (enabling the recreation
of the artefact on a current machine) allows for a higher
technical abstraction level and may also open the door to al-
ternative strategies (e.g. a traditional migration approach).
If source code is not available, creating an emulated ver-
sion of the work may be the only suitable choice. How this
emulated version is then created will depend on whether
the software can be re-installed and if all the required soft-
ware dependencies are available and operational. Hence, for
an emulation-based preservation strategy the artefact’s soft-
ware environment needs to be determined, in particular its
software environment’s composition and the technical inter-
faces to the hardware layer (cf. Section 4.1).

Having a (detailed) software environment description al-
lows to focus preservation planning and preservation action
activities on monitoring and managing the technical links
between software and hardware environments. While these



links are stable in the short term, emulators are also sub-
ject to the software life-cycle, and will become technically
obsolete at some point. Then, if new emulation software is
required, a new (emulated) hardware environment needs to
be determined which meets the technical requirements of the
software runtime. If the technical interfaces between hard-
ware and software environment are well documented – as a
vital part of a software environment description, all affected
software environments can be determined, and the search for
new emulators can be guided effectively. If no perfect match
is found, the required adaptations of the affected software
environments can be predicted in an automated way using
this same documentation (cf. Section 4.2).

For the remainder of this section we assume that the arte-
fact itself is either already available as a file or bitstream
or the artefact is part of the disk image. Furthermore, we
assume that the artefact’s significant properties have been
assessed and the artwork is available for verification pur-
poses.

4.1 Acquiring Software Environments
The task of determining an artefact’s software environ-

ment, starts with the analysis of the artefact with the goal
to produce an accessible, performing setup without relying
on the availability of physical hardware components and to
gather enough information to support future preservation
tasks, i.e. ensuring the artefact’s longevity. Depending on
the artefact’s composition, e.g. individual technical compo-
nents present – a binary object, its configuration, possibly
the object’s source code, any kind of documentation and a
reference installation in form of a computer system – dif-
ferent options are available to pursue both goals. Further-
more, the levels of documentation depend on a series of fac-
tors, primarily if the artist and/or the artist’s programmer
has supplied any technical details about the software, and
whether they are available to answer any questions about
the work’s technical makeup, runtime process and system
configuration. In a first step, all components of an arte-
fact are assessed regarding information about the artefact’s
technical dependencies, i.e. software, hardware and external
dependencies and to support the selection of virtual hard-
ware.

4.1.1 Selecting Virtual Hardware
Emulators and virtualizer provide only a limited selec-

tion of supported hardware components. Their capabilities
are best described by a list of supported computer systems
(e.g. x86 ISA PC or Apple Macintosh Performa) and a list
of supported operating systems. Therefore, the most im-
portant information to be documented in the original com-
puter system to be preserved is therefore the general hard-
ware architecture (e.g. CPU type, bus architecture or ROM
type/version), in order to help choosing an appropriate em-
ulator or virtualizer. The choice of an emulator or virtu-
alizer also requires information about the software environ-
ment (e.g. the emulator must support Windows 3.11), as
even if an emulator supports a particular computer system,
it may not support – or support only partially – an ap-
parently compatible operating system. Detailed hardware
information will only rule out incompatible emulated com-
puter platforms. The final decision on a suitable emula-
tor/virtualizer requires that support for both the computer
system and the associated software environment (primarily

operating system support) are assessed.
A further, more detailed comparison between the iden-

tified hardware components and the features of a specific
emulator is useful to estimate up-front the work required to
migrate the machine’s software environment (disk image) to
a new hardware environment. A detailed list of hardware
components installed provides insights on how the operat-
ing system was configured. For example, by comparing a
detailed list of hardware components with a list of the hard-
ware supported by an emulator it is possible to predict if a
software environment (in form of the computer’s disk image)
will boot directly using emulated software. If the system is
able to boot to a certain point (e.g. a simple ’safe’ envi-
ronment with all non-essential hardware features disabled),
built-in operating system tools can be used to adapt the
system to the new, emulated hardware environment. These
adaptations could involve identifying available hardware or
suggesting drivers.

The importance of specific hardware components can only
be assessed using information about the artefact and/or its
software environment. For instance, if the hardware setup
involves a high-end 3D graphics card, its importance to the
whole installation can be judged on how the graphics card
is used: is the performance of the card a key factor or does
the software depend directly (i.e. direct hardware access) or
indirectly (i.e. through an abstraction layer such as DirectX
or OpenGL) on specific hardware features.

The necessity of incorporating software environment in-
formation (to assess the role of hardware components) as
part of a digital artefact’s technical environment highlights
the importance of the technical interfaces between software
and hardware environment. These pose high risks to the
artefact’s functionality.

4.1.2 Workflows
To provide a runtime environment for a digital artefact,

any emulation-based preservation strategy is likely to result
at some point in managing a set of software environments or
virtual disk images containing instances thereof. Disk im-
ages may contain the digital artefact (or parts of it), or might
be prepared separately from the digital artefact, which is
held on separate virtual media (or similar) and to be used
with this disk image. Three different workflows/strategies
can be applied to the task of image acquisition, depending
on practical options and requirements, as well as on infor-
mation available about the artefact and environment. Fig. 3
illustrates the software environment acquisition process.

Generalization: If the original computer system is avail-
able, images of physical media (e.g. a hard disk) can be
made. To make these useable in an emulation environment
and to facilitate the long-term management of disk images,
as a first step it is necessary to generalise the technical inter-
faces between hardware and the lowest software layer (typ-
ically the OS, respectively OS hardware drivers and config-
uration). In case of disk images originating from physical
media, generalisation is part of migrating a software envi-
ronment from physical hardware to virtual/emulated hard-
ware. Generalising means that any specific drivers (for in-
stance, from a disk image made from a physical computer)
are replaced with drivers supported by the virtualization or
emulation platforms in use. Hardware dependencies should
be systematically determined and all necessary adaptations
kept to a minimum when migrating to virtual / emulated



hardware, e.g. to maintain the environment’s authenticity.
As part of this process, the choice of emulated hardware

and drivers should be consistent, so that for each combina-
tion of OS and hardware platform always the same (emu-
lated) hardware component is used. This means that for
each emulated hardware platform and all associated soft-
ware environments there is only a limited number of tech-
nical interfaces to be maintained and monitored, and this
consequently means that the same migration strategy can
be applied to different software environments. For exam-
ple, ten different physical computers may use ten different
video cards, which may each use different drivers with the
same functions. By generalising the disk images created
from these computers the number of drivers needed for that
video card can be reduced, so that instead of ten different
drivers only one is needed, and later on only one may need
to be replaced (if necessary at all) for migration to another
emulator.

As a result the generalisation workflow produces a disk im-
age to be used with a contemporary emulator. Additionally,
external and hardware dependencies are uncovered by run-
ning the artefact and its software setup in a different virtual
environment. In particular, the image’s technical interfaces
can be documented by running on well understood virtual
hardware. To ensure that the significant properties are not
affected the initial process of image generalisation should be
performed during or after image acquisition, and preferably
a comparison between the original and generalised systems
should be made.

Rebuilding A second workflow is necessary if either no
computer system was available to be imaged or – in order to
reduce future preservation risks – a secondary set of software
environments (disk images) are desired.

Ideally the configuration of a software environment is known,
i.e. available as (machine readable) metadata, such that the
software environment can be rebuilt if necessary. If the soft-
ware environment is not known, an artefact’s dependencies
may be determined by using its original environment as a
reference (e.g. the artist’s original computer). This refer-
ence environment can be analyzed and the artwork can be
isolated from its original environment to be rendered in an-
other technically compatible environment. Either using doc-
umentation derived from a reference setup or systematically
determined software dependencies (e.g. using tools for ana-
lyzing an artefact’s technical format or its runtime behav-
ior [4]), a suitable software rendering environment can be
remodeled by re-installing and re-configuring an artefact’s
software environment in an emulated environment.

When re-building environments, a consistent configura-
tion of an operating system is built. For efficiency reasons,
a specific operating system on a specific hardware platform
is only installed once, any more sophisticated software envi-
ronments are derived from these base images. Also in this
case the initial choice of the system’s configuration matters,
as it will affect the preservation options of all derived en-
vironments. The choices on a software environment’s hard-
ware components could be based on emulator support (do
other emulators/virtualizers, in particular open source, sup-
port this hardware component?), the popularity of the de-
vice while in production and available driver support. If a
popular and tested open source implementation of this hard-
ware component is available, it seems more likely that fu-
ture emulators will resort to that implementation instead of

Figure 3: Acquiring software environments

implementing a historic hardware component from its spec-
ifications. The same applies for the availability of drivers: if
a hardware component has been successfully used in emula-
tors even after the component was out of production, it is
highly likely that archived versions of drivers of these hard-
ware components remain available.

The process of manually rebuilding an artefact’s rendering
environment can also be used to create verified and machine
readable technical metadata. Machine readable installation
information (e.g. what type of software is installed), and
more importantly the environment’s configuration, may be
created in an automated way during a structured software
environment rebuilding workflow [12].

Pre-built Environments In some cases a complete com-
puter system is not available, i.e. only the (binary) artefact
is available without a reference runtime or setup. In this case
an alternative is the use of pre-built software environments.
These environments resemble typical computer systems of
a certain period, e.g. a typical MS Windows 98 installation
equipped with popular software, utilities and libraries. In
this case a suitable pre-built environment needs to be iden-
tified for a given digital artefact and, if necessary, adapted
to the artefact’s specific requirements. Similar to re-built
environments, this approach results in a well documented



Figure 4: Maintaining software environments

and well understood (base) environment, shared among a
set of similar digital artefacts.

4.2 Maintenance and long-term Preservation
The outcome of a software environment acquisition work-

flow is a disk image (representing an instance of a soft-
ware environment). Even though the technical file format
of the resulting disk image is identical in all strategies (usu-
ally a virtual hard-disk, bootable by an emulator) different
workflows must be followed for maintenance and long-term
preservation. The actual available preservation actions will
depend on information about the content and configuration
of the disk images, in particular its technical dependencies,
rather than on their file format. In order to maintain a
software environment’s run forever property, its technical
dependencies require monitoring, particularly:

• monitoring of software components used, including avail-
ability of licenses and external dependencies;

• monitoring of existing and emerging emulation and vir-
tualization technologies for continued support of iden-
tified technical interfaces;

• monitoring of external dependencies.

Through monitoring technical dependencies, the identifi-
cation of an imminent risk of obsolescence may indicate the
need to migrate a disk image. This strategy then becomes
very similar to the one applied to simpler digital objects such
as spreadsheets or word processor files. In general, to imple-
ment a migration strategy, objects are monitored regarding
their technical support (and therefore proximity to techni-
cal obsolescence) and migrated to a new, more sustainable or
current format if required. Ideally all the significant proper-
ties of these objects’ are preserved in the process. These in-
terfaces may break if an emulator drops support for specific
hardware (e.g. emulator upgrade) or if an emulator becomes
unavailable. In the case of digital disk images, the significant
properties to be addressed by a migration strategy usually
relate to the technical interfaces identified. The function-
ality of technical interfaces can be documented, monitored
and tested automatically, at least to certain extent. For in-
stance, the software-side (or driver) of a technical interface

to a sound card can be verified through a generic test (i.e.
that sound is produced for different formats and configura-
tions). If the test is successful then it is highly likely that
any digital artefact using the same interface is also able to
produce sound output. However, a general assessment of
the emulator’s functionality, in particular the equivalence of
original and emulated CPU, is a much harder task [1]. Fur-
thermore, computational performance features such as the
rendered frame rate of graphics after processing, disk I/O
performance, synchronous video and audio or even interac-
tivity (for example, the latency between a user input event
such as a mouse click and the system’s visible reaction),
would all need to be verified.

4.2.1 Preservation Risks
There are several levels of documentation possible for all

three monitoring activities, depending on the choices made
acquiring the software environment.

The highest level of risk for emulation exists when there
is only limited knowledge about the software environment,
its composition and configuration as well as hardware de-
pendencies, i.e. technical interfaces. If, due to limited in-
formation about technical dependencies, an a-priori risk as-
sessment is not possible, a future migration strategy may
fall back to trial-and-error. Furthermore, there is a risk of
an incomplete monitoring process, potentially missing obso-
lescence indicators. Similarly, there is a high risk of failing
to rebuild the software environment if the software envi-
ronment’s composition and configuration is unknown. To
reverse engineer an environment it is essential to have both
a good knowledge of the computer system and installable
software packages. Over time both these factors tend to de-
crease and as a consequence risk increases significantly over
time. If there are resources available for technical analysis,
documentation and collection software packages at acqui-
sition, then long-term preservation risk can lowered more
efficiently. This is particularly relevant for hardware de-
pendencies and the configuration of the operating system,
for instance a complete list of all the drivers installed and
description of the hardware configuration used. With this
information at hand an a priori assessment of technical mi-
gration risks becomes possible, as necessary drivers can be
collected in advance and potential alternatives considered.

The lowest risk level is achieved when complete documen-
tation is available about the enclosed software environment
and its hardware dependencies, such that the environment
can be rebuilt from scratch if necessary. In this case a preser-
vation strategy does not solely depend on the acquired disk
image (i.e. a single, ”fixed” setup), as multiple strategies can
be applied simultaneously. The same applies to disk images
which are specifically built for preservation purposes. These
images were already built within a virtualized / emulated
environment, so reducing migration risk, as information on
the images’ content and configuration is – assuming a (semi-
)automated documentation process – readily available and
the installation procedures easily reproducible. The effort
required for maintenance, however, may differ. This is due
to different creation processes and creation goals.

Images based on documented system requirements and in-
stallation instructions replicate an existing system as closely
as possible. Depending on the granularity of the available
documentation, there may be slight variations and alter-
ations to the original system specification, for example, to



cope with external dependencies and/or different hardware
options in the virtual machine. A further migration of these
images to a new platform may require an individualized
strategy, as their similarity to the original system should be
maintained. In contrast, images with software installations
reduced to an artwork’s essential software components are
more resilient to technological change, as wider variations
and adaptations are acceptable, as long as the artefact can
be rendered, i.e. its significant properties remain intact. In
both cases, re-produced images are able to share a common
technological base, e.g. share a operating system installation
and configuration as well as relying on the same technical in-
terfaces. Through a shared technological base preservation
risks can be shared among similar artefacts and collecting
institutions.

In general, for artefacts or software environments interact-
ing directly with hardware, there is a higher risk of an em-
ulation strategy failing, in particular if they rely on custom
built or modified hardware components. Even if they rely on
widely used hardware, not every feature (and possible quirk)
of real physical hardware components may be emulated ac-
curately. Furthermore, emulators may have bugs or behave
differently compared to the original systems. In contrast,
artefacts relying on operating systems to interact with emu-
lated hardware are more likely to be successfully re-enacted
using emulation, as emulator implementations usually try
to cover the feature-set of popular hardware (and drivers)
and/or the behaviour of a popular operating system.

4.2.2 External Dependencies
The management of external dependencies requires a dif-

ferent set of strategies, as external dependencies are techni-
cally and conceptually more diverse than hardware found in
computer systems and there is usually no drop-in replace-
ment available. Due to the diversity of external dependen-
cies, only abstract workflows are presented.

The first, and usually most efficient strategy is internalisa-
tion of external dependencies, such that they become either
a part of the digital artefact or its software environment.
In general, there are two types of dependencies which can
be internalized, abstract data dependencies and functional
dependencies. A simple example for a data dependency is
an artefact accessing data which is externally stored. An
internalisation option is to copy/mirror the data and make
it locally accessible, such that it becomes a part of the arte-
fact. In general, this option is applicable for abstract data
dependencies, with data being accessed or served through
standard protocols, e.g. protocols directly supported by the
OS. Most of the times, modifications to the object and some-
time even to the software environment can be avoided. In
some cases, however, changes have to be made, e.g. to point
to the new location of the data (which is in particular prob-
lematic if the digital artefact used hard-coded URIs and the
artefact can not be changed).

For pure functional external dependencies, e.g. a computa-
tion is made by an external machine and the artefact requires
the result to perform or a software dependency requires ex-
ternal functionality, such as a license server, or mixed func-
tional and data dependencies (e.g. data is served through a
specific protocol, which requires additional software support
such as databases), can be internalized, if the (server) ma-
chine is available and suitable for emulation. The internal-
ized machine can then be treated as a dependent, secondary

artefact, emulated and connect to the primary artefact.
A second strategy to deal with external dependencies is

making technical dependencies abstract. Through abstrac-
tion the risks of failing or obsolete components to the whole
setup can be reduced. The main goal is to abstract techni-
cal requirements, such that equivalent replacements can be
identified and applied. For instance, a problematic software
dependency with a dependency on a license server may be
exchanged with a less problematic one, e.g. a software prod-
uct providing the same technical features for a given digital
file format but does not rely on a external functionality. This
strategy should be included in preservation planning activ-
ities, as it may not always yield into direct useable results,
but prepares the ground for future preservation actions.

Finally, emulation and simulation can be pursued, if other
strategies fail or are not applicable. This strategy requires
broadening the scope of emulation to include interfaces and
behaviour of external components. For instance, if an arte-
fact relies on the availability of a video-portal accessed through
a dedicated web-service protocol, the protocol interface may
be simulated and either translated to a newer protocol ver-
sion to retrieve content or the whole service is simulated
using e.g. recorded or archived content. An example of
emulated web services in the domain of research data man-
agement is provided by Miska et al [11]. A similar strategy
can be applied to external hardware and hardware protocols.

5. CONCLUSION
The first step for the preservation of a software-based art-

work is a technical analysis of the hardware and software
setup required for its display. This analysis provides the ba-
sis for a description, which can be broken down into three
conceptual layers: artefact descriptions and configuration;
software environment and configuration; and hardware en-
vironment Assessing preservation options for each of these
layers individually, provides a differentiated view on techno-
logical risk and potential mitigation options, and helps to
make a changing technological environment more manage-
able.

The higher the degree to which an artefact can be ab-
stracted from its technical environment, the more options for
preservation actions remain. If an artefact can be re-built
for different technical environments, its software, hardware
and external dependencies may substituted (e.g. by chang-
ing the code or the artefact’s setup). An artefact’s software
environment is of particular interest as it usually connects
digital objects with hardware. If the software environment
is known in its composition and configuration, the environ-
ment can, if necessary, be rebuilt in order to mitigate risk
(e.g. substituting problematic dependencies). Furthermore,
it becomes possible to consolidate disk images by, for exam-
ple, building on a common base system consisting of operat-
ing system and a unified hardware configuration. Breaking
down the technical characterization to a (common) set of
technical interfaces shared among many artefacts of a simi-
lar type makes it possible to focus monitoring and technical
migration work. If technical interfaces break, disk images
may be migrated to a new (virtual) technical environment.
Ideally, a migration path is only developed once and applied
to all suitable artefacts.

In this paper we have presented an approach which, in-
stead of looking at work-specific properties, focuses on the
digital artefact’s technical dependencies. If emulators were



able to perfectly reproduce out-dated hardware components,
this technical perspective would be sufficient – at least con-
cerning any computational aspects of the artwork. In prac-
tice however, emulators are far from perfect in this respect,
such that a manual verification of an emulated result is indis-
pensable. For this reason, the proposed migration method
relies heavily on the ability to verify the performance of a
digital artwork in a new technical environment. For digital
artworks any kind of automated testing of technical proper-
ties has its limitations. Software-based artworks have a sec-
ond, mostly conceptual layer of significant properties, which
cannot be tested in an automated way and require a spe-
cialist’s assessment (for example, qualities of the artefact’s
behavior). Still, a structured and (partly) automated ver-
ification of an emulation’s (technical) performance charac-
teristics remains one of the most important open challenges
when implementing an emulation-based preservation strat-
egy.

Furthermore, the technical approach presented requires a
wider supporting framework. Primarily, a dedicated soft-
ware archive is necessary (which includes management of li-
censes) to help ensure that a given software environment can
be rebuilt. Additionally, it is useful to maintain a testbed
of typical environments and common technical interfaces to
be tested on newly released emulators. In contrast to test-
ing an artwork’s work-specific significant properties, these
activities, and in particular the technical infrastructure, can
be shared and re-used not only for sets of similar artworks
but also among different institutions.

6. ACKNOWLEDGEMENTS
This project has received support from the European Union’s
Seventh Framework Programme for research, technological
development and demonstration under grant agreement num-
ber 601138 – PERICLES.

7. REFERENCES
[1] N. Amit, D. Tsafrir, A. Schuster, A. Ayoub, and

E. Shlomo. Virtual cpu validation. In Proceedings of
the 25th Symposium on Operating Systems Principles,
SOSP ’15, pages 311–327, New York, NY, USA, 2015.
ACM.

[2] G. Brown. Developing virtual cd-rom collections: The
voyager company publications. International Journal
of Digital Curation, 7(2):3–22, 2012.

[3] M. Casad, O. Y. Rieger, and D. Alexander. Enduring
access to rich media content: Understanding use and
usability requirements. D-Lib Magazine, 21(9/10),
2015.

[4] F. Corubolo, A. Eggers, A. Hasan, M. Hedges,
S. Waddington, and J. Ludwig. A pragmatic approach
to significant environment information collection to
support object reuse. In iPRES 2014 proceedings,
2014.

[5] D. Espenschied, K. Rechert, I. Valizada, D. von
Suchodoletz, and N. Russler. Large-Scale Curation
and Presentation of CD-ROM Art. In iPres 2013 10th
International Conference on Preservation of Digital
Objects. Biblioteca Nacional de Portugal, 2013.

[6] C. Jones. Seeing double: Emulation in theory and
practice. the erl king case study. In Electronic Media
Group, Annual Meeting of the American Institute for

Conservation of Historic and Artistic Works. Variable
Media Network, Solomon R. Guggenheim Museum,
pages 516–526, 2004.

[7] G. Knight and M. Pennock. Data without meaning:
Establishing the significant properties of digital
research. International Journal of Digital Curation,
4(1), 2008.

[8] P. Laurenson. Old Media, New Media? Significant
Difference and the Conservation of Software Based
Art. New Collecting: Exhibiting and Audiences after
New Media Art. Ashgate, 2014.

[9] T. Lurk. Virtualisation as conservation measure. In
Archiving Conference, volume 2008, pages 221–225.
Society for Imaging Science and Technology, 2008.

[10] G. S. C. Mahadev Satyanarayanan, B. Gilbert,
Y. Abe, J. Harkes, D. Ryan, E. Linke, and
K. Webster. One-click time travel. Technical report,
Technical report, Computer Science, Carnegie Mellon
University, 2015.

[11] T. Miksa, R. Mayer, and A. Rauber. Ensuring
sustainability of web services dependent processes. Int.
J. Comput. Sci. Eng., 10(1/2):70–81, Jan. 2015.

[12] K. Rechert, I. Valizada, and D. von Suchodoletz.
Future-proof preservation of complex software
environments. In Proceedings of the 9th International
Conference on Preservation of Digital Objects
(iPRES2012), pages 179–183. University of Toronto
Faculty of Information, 2012.

[13] K. Rechert, I. Valizada, D. von Suchodoletz, and
J. Latocha. bwFLA – A Functional Approach to
Digital Preservation. PIK – Praxis der
Informationsverarbeitung und Kommunikation,
35(4):259–267, 2012.

[14] R. Rinehart. The straw that broke the museum’s
back? collecting and preserving digital media art
works for the next century. SWITCH: Online Journal
of New Media.
http://switch.sjsu.edu/web/v6n1/articlea.htm, 2002.

[15] R. Rinehart. Nailing down bits: Digital art and
intellectual property. Canadian Heritage Information
Network (CHIN), 2006.

[16] D. S. Rosenthal. Emulation & virtualization as
preservation strategies.
https://mellon.org/resources/news/articles/emulation-
virtualization-preservation-strategies/,
2015.

[17] J. Rothenberg. Ensuring the longevity of digital
documents. Scientific American, 272(1), 1995.

[18] R. Russell. Virtio: Towards a de-facto standard for
virtual i/o devices. ACM SIGOPS Operating Systems
Review, 42(5):95–103, 2008.

[19] G. Wijers. To emulate or not. Inside Installations.
Theory and Practice in the Care of Complex Artworks,
pages 81–89, 2011.


