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Abstract

A recurring methodological problem in the evaluation of the predictive validity of selection
methods is that the values of the criterion variable are available for selected applicants only.
This so-called range restriction problem causes biased population estimates. Correction
methods for direct and indirect range restriction scenarios have widely studied for continuous
criterion variables but not for dichotomous ones. The few existing approaches are inapplicable
because they do not consider the unknown base rate of success. Hence, there is a lack of sci-
entific research on suitable correction methods and the systematic analysis of their accuracies
in the cases of a naturally or artificially dichotomous criterion. We aim to overcome this defi-
ciency by viewing the range restriction problem as a missing data mechanism. We used multi-
ple imputation by chained equations to generate complete criterion data before estimating the
predictive validity and the base rate of success. Monte Carlo simulations were conducted to
investigate the accuracy of the proposed correction in dependence of selection ratio, predic-
tive validity, and base rate of success in an experimental design. In addition, we compared
our proposed missing data approach with Thorndike’s well-known correction formulas that
have only been used in the case of continuous criterion variables so far. The results show that
the missing data approach is more accurate in estimating the predictive validity than Thorn-
dike’s correction formulas. The accuracy of our proposed correction increases as the selec-
tion ratio and the correlation between predictor and criterion increase. Furthermore, the
missing data approach provides a valid estimate of the unknown base rate of success. On the
basis of our findings, we argue for the use of multiple imputation by chained equations in the
evaluation of the predictive validity of selection methods when the criterion is dichotomous.

Introduction

A recurring methodological problem in the evaluation of the predictive validity of selection
methods is that the values of the criterion variable are available only for selected applicants.
This loss of criterion data for non-selected applicants is an inherent effect of selection and is
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known as the range restriction problem [1-5]. The problem occurs, for example, in the evalua-
tion of an admission test in higher education, because data on academic success are only avail-
able for applicants who are admitted to the program. As an effect of the selection, the sample of
selected applicants is not random and therefore not representative of the applicant population.
Consequently, the observed sample correlation is a biased estimate of the population correla-
tion, i.e. of the predictive validity. The correlation between a predictor X and a criterion Y
obtained from the (available) range restricted dataset (i.e., the selected sample) underestimates
the correlation we would obtain from the (not available) unrestricted dataset. Hence, this
biased sample correlation has to be corrected to provide a more valid population estimate.

Correction methods for the range restriction problem have been widely studied for continu-
ous criterion variables [5-17]. However, sociological, medical, and psychological research often
deal with dichotomous criterion variables [18,19]. Dichotomous variables are characterized by
a division of the individuals of a sample or population into two groups. The division can be
based on either a qualitative or a quantitative characteristic. In the former case, the dichoto-
mous variable is labelled as natural, and in the latter case as artificial [20]. For example, in
higher education, the graduation status of a student is naturally dichotomous (‘graduated’ ver-
sus ‘not graduated’). An artificially dichotomous variable is one that has a continuous underly-
ing scale, but has been dichotomized (e.g., ‘high performers’ versus ‘low performers’). The few
existing approaches [21,22] to correct the biased correlation in the case of a dichotomous crite-
rion are inapplicable because they require information about the base rate of success, i.e. the
proportion of successful individuals in the unrestricted dataset. However, this information is
typically not available. Thus, there is a lack in scientific research on suitable correction methods
and their accuracies when the criterion variable is dichotomous.

In the present paper, we aim to overcome this deficiency by viewing the range restriction
problem as a missing data mechanism [14,23]. As there is comprehensive literature on dealing
with missing data, we can draw on a variety of techniques and research results. This potential is
a great advantage of this approach, which has not yet been used to correct for range restriction
with a dichotomous criterion variable [24-26]. We apply this approach to the two most com-
mon selection scenarios in personnel selection and higher education [27]: the direct range
restriction (DRR) scenario and the indirect range restriction (IRR) scenario. In a DRR scenario,
selection is based directly on the predictor variable X, whereas in an IRR scenario, selection is
based on another variable Z.

First of all, we describe the loss of data in the two selection scenarios DRR and IRR, show
which data are used for the correction, and give a brief introduction to Thorndike’s well-
known and widely used correction formulas in the case of a continuous criterion variable.
Next, we provide a brief overview of methods for handling missing data and demonstrate that
the proposed approach, multiple imputation by chained equations, is suitable for correcting for
range restriction in both scenarios involving a dichotomous criterion. Then, we emphasize the
critical role of the base rate of success, which has not been taken into account in previous
approaches. Our proposed missing data approach generates complete data from which the
base rate of success as well as the unbiased predictive validity can be obtained. Finally, we
investigate the accuracy of the proposed correction by conducting Monte Carlo simulations,
which allow for a comparison of the corrected parameters and the unbiased parameters (pre-
dictive validity and base rate of success) in an experimental design.

Direct and indirect range restriction

The most straightforward selection scenario is the direct range restriction (DRR) scenario, or
explicit selection, which is commonly referred to as Thorndike’s Case 2 [4,5]. In a DRR
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scenario, selection is based directly on the predictor variable X and occurs top down. The idea
is that applicants with a higher value of X are more suitable, and thus more likely to have a
higher value in Y. As selection is based on values of X, the range of X is restricted in the selected
sample. For this reason, this methodological problem is called the range restriction problem.
The variable X can be either a score in a single-selection method (e.g., a psychometric test), or a
composite score derived from several selection methods (e.g., a psychometric test and a quanti-
tative interview). For example, in higher education in Austria, prospective students of medicine
are selected based solely on an entrance examination [28-30]. In the case of DRR, values of X
are available for all applicants, whereas values of Y are only available for selected applicants.

The indirect range restriction scenario (IRR) occurs when applicants are selected on the
basis of another variable Z, which is usually correlated with X, Y, or both. The IRR scenario or
incidental selection is commonly referred to as Thorndike’s Case 3 [4,5]. Although selection is
based on Z, the predictive validity of X remains of interest. Suppose a selection procedure con-
sists of a psychometric test and a quantitative interview, and we want to assess the predictive
validity of the psychometric test, the predictor X. For selection, we use the composite score Z
derived from both selection methods. Organizations often use a composite score for selection
and need to know the predictive validity of a single selection method in order to increase the
predictive validity of the whole selection procedure (e.g., by removing or weighting a particular
selection method). In the case of IRR, values of X and Z are available for all applicants, whereas
values of Y are available for selected applicants only.

The amount of data loss depends on the selection ratio (SR), which is defined as the ratio of
available places to the number of applicants. The SR ranges between 0 and 1, or between 0%
and 100%. For example, if 200 study places are available and 500 applicants apply for them, the
SR is 200 divided by 500 or 40%. The top 40% of applicants will be selected and 60% will be
unselected. Hence, in this case we have missing values in the criterion variable Y for 60% of the
applicants, but no missing values in X or Z. Fig 1 shows the missing data pattern for a SR of
40% in the cases of DRR and IRR.

In both scenarios, the observed sample correlation between X and Y is smaller than the cor-
relation we would obtain from the unrestricted dataset, i.e. the predictive validity of the selec-
tion method is underestimated. To overcome this problem in the case of a continuous criterion
variable, Thorndike [5] presented formulas to correct the Pearson correlation coefficient for
DRR and IRR. The goal of these correction formulas is to estimate the correlation in the unre-
stricted dataset, which is the best estimate available of the population correlation, based on the
correlation obtained from the restricted dataset. Correction formulas are commonly applied in
predictive validity studies of large-scale testing programs, such as the Graduate Record Exami-
nation (GRE) [31,32], the Scholastic Aptitude Test (SAT) [33,34], and the Graduate Manage-
ment Admission Test (GMAT) [35]. Correction formulas are also applied in other fields, e.g. in
predicting job performance [36], and in evaluating the selection of pilot candidates in the US
Air Force [37].

The formula for correcting for direct range restriction (DRR) presented by Thorndike is:

p — (SX/SX)rXY
VIR

(1)

where pyy is the true or unrestricted correlation coefficient, rxy is the biased Pearson correla-
tion coefficient obtained from the restricted dataset, and sy and Sy are the standard deviations
of X for the restricted and the unrestricted datasets [4]. The formula for correcting for indirect

PLOS ONE | DOI:10.1371/journal.pone.0152330 March 28, 2016 3/21



el e
@ ' PLOS ‘ ONE A Missing Data Approach to Correct for Range Restrictions

»
<
~.<

G
N
<
~<

< <
D oy
Ll O N °
3 3
[&] [&]
Q< Q<
() ()
(] (]
n 0
(<)) ()
g = 3 =
® ®
8 . 8 =
2 (=] 2 (@)]
Q £ 2 £
UE 2 Y| s £
4 g 2| < =

Fig 1. Missing data patterns under range restriction. (a) Direct range restriction scenario (selection on X),
and (b) indirect range restriction scenario (selection on Z). The shaded areas in Y represent the location of
the missing values in the dataset.

doi:10.1371/journal.pone.0152330.g001

range restriction (IRR) is:
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where rxy, 7zx, and rzy are the uncorrected Pearson correlation coefficients obtained from the
restricted dataset, and s and S are the standard deviations of variable Z for the restricted and
the unrestricted dataset [4]. The core term in both correction formulas is the ratio of the stan-
dard deviations of the selection variable (X or Z).

The two formulas require that the assumption of linearity between X and Y as well as the
assumption of homoscedasticity hold. In psychometric literature, it is well documented that
corrected correlations are less biased than uncorrected correlations, even over a wide range of
assumption violations [9,17,38,39]. Correcting for range restriction is recognized as profes-
sional practice because the corrected correlation coefficient is generally the best estimate of the
population validity coefficient [40]. In general, the accuracy of the correction increases as the
selection ratio increases and as the predictive validity increases [41]. Whereas Thorndike’s cor-
rection formulas have been widely studied for continuous criterion variables, they have not
been studied for dichotomous ones. Therefore, we investigate how usable Thorndike’s correc-
tion formulas are in the case of a dichotomous criterion variable. Furthermore, we propose an
approach based on state of the art methods for dealing with missing values that has not yet
been applied in predictive validity studies [23].

Pxy (2)

Range restriction as a missing data mechanism

First, we give a brief overview of missing data mechanisms to locate the range restriction prob-
lem in this line of research. Afterwards, we introduce different methods of handling missing
data and propose an approach for handling missing values in dichotomous dependent vari-
ables. One advantage of viewing the range restriction as a missing data mechanism is that we
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can draw on a variety of techniques and research results in dealing with missing data
[24,25,42]. However, this approach is seldom used with range restriction problems [14].

Rubin [43] describes three mechanisms essential as assumptions in dealing with missing val-
ues. These three mechanisms describe how the probability of a missing value relates to the data
[24]: (1) Missing completely at random (MCAR) means the probability of missing data on Y'is
unrelated to other measured variables and is unrelated to the values of Y itself; (2) Missing at ran-
dom (MAR) means the probability of missing data on Y is related to some other measured vari-
able (or variables) in the analysis model but not to the values of Y itself; and (3) Missing not at
random (MNAR) means the probability of missing data on Y is related to the values of Y itself,
even after controlling for other variables. We consider both selection scenarios to be MAR,
because the probability of missing values on Y depends either on X in the case of DRR, or on Z in
the case of IRR, and not on values of Yitself. In other words, there is no relationship between the
probability of missing values on Y and the values of Y after partialling out other variables. In the
case of a MAR mechanism, we can estimate the missing values based on the observed values [24].

Over the past few decades, methodologists have proposed different techniques for dealing
with missing data. Many of these approaches have enjoyed widespread use, but several of them,
like listwise or pairwise deletion and single imputation techniques (e.g., arithmetic mean impu-
tation, single regression imputation, and single EM imputation) are no longer considered to be
state of the art, because they have potentially serious drawbacks [24]. Listwise and pairwise
deletion require an MCAR mechanism, and produce biased parameter estimates with MAR
and MNAR data. Deletion of incomplete cases can reduce the statistical power dramatically,
even when the data are MCAR. Single imputation techniques also produce biased parameter
estimates with MAR data and attenuate standard errors. Single regression imputation and sin-
gle EM imputation overestimate correlations and attenuate variances and covariances, even
when the data are MCAR, because they impute the data with perfectly correlated scores
[24,44]. In a single regression imputation, all imputed values fall directly on the regression line
and therefore lack variability. In contrast, arithmetic mean imputation attenuates correlations.
Consequently, single imputation techniques are not suitable for many reasons, especially with
regard to estimating correlation coefficients.

The two approaches that methodologists currently regard as state of the art [25,26] are (1)
full information maximum likelihood (FIML), and (2) multiple imputation (MI). Neither of
these approaches suffers from the problems mentioned for deletion of incomplete cases and
single imputation techniques. The FIML approach estimates the most plausible parameters of a
statistical model given the data. In other words, the goal is to identify the population parameter
values with the highest probability of producing the data of a certain sample. The population
parameter values are estimated with iterative optimization algorithms (e.g., expectation maxi-
mization algorithm). For a detailed description of likelihood-based approaches, see Little and
Rubin [25], or for a less technical description see Enders [24].

The second state of the art approach to handle missing data problems is multiple imputation
(MI) [24,25,45]. A multiple imputation analysis consists of three distinct steps: the imputation
phase, the analysis phase, and the pooling phase. The imputation phase creates several com-
plete datasets (e.g., m = 20 imputations) based on one dataset with missing values. Each of
these complete datasets contains different plausible estimates of the missing values, but identi-
cal values for the observed data. In the analysis phase, data can be analyzed with conventional
statistical methods, but the analysis has to be performed m times, once for each complete data-
set. The goal of the pooling phase is to combine the m parameter estimates into a single set of
parameter estimates. The pooled parameter estimate is simply the arithmetic average of the m
estimates from the analysis phase [46]. Analyzing multiple datasets and pooling the results
sounds laborious, but modern MI software packages automate this procedure.
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FIML und MI make the same assumptions (MAR and multivariate normality), have similar
statistical properties, and frequently produce equivalent results [24,42]. Despite making the
same assumptions, the two approaches differ in their mathematical background: The mathe-
matical background of FIML is maximum likelihood estimation, whereas MI is based on Bayes-
ian estimation. Therefore, there are important differences between the two approaches. While
FIML maximizes the likelihood function to estimate the parameters without replacing missing
values, MI replaces the missing values before estimating the parameters from the complete
datasets. In contrast to FIML, MI effectively separates the imputation and the analysis phase.
This may yield to different parameter estimates between the two approaches. Typically, in MI
the imputation model includes many variables of the dataset, whereas the analysis model
includes a subset of these variables.

Real data often do not conform to the modeling assumption of multivariate normality. Real
data might be skewed, not negative, or bimodal, to name just a few deviations from normality.
This mismatch between the distribution of the observed and imputed data may adversely affect
the estimates of interest. MI generally tends to be robust against violations of normality
[45,47,48]. Deviations from the normal distribution have a small effect on estimates that rely
on the center of the distribution, like mean or regression coefficients, but may have significant
effects on variances. Demirtas et al. [48] found that MI performs accurately with regard to the
mean structure of skewed or multimodal distributions in large samples (n = 400), even for 75%
missing values.

In the present study, we have to handle missing values in a dichotomous dependent variable.
In light of this, we want to give a conceptual overview of Bayesian multiple imputation using
logistic regression, which is considered to handle dichotomous variables most efficiently.
Imputation of incomplete dichotomous variables is possible under the broad class of general-
ized linear models (GLM) [49]. The logistic regression models the probability that Y; = 1 given
X; and model parameter vector f as [45]:

Pr(Y, = 1[X,, ) = % N

The general idea is to estimate the probability model on the subset of the observed data (i.e.,
the restricted sample), and to impute the missing values with plausible values according to the
fitted probabilities. For example, a probability of .80 means that Y; has a chance of 80% of
becoming 1 and a 20% chance of becoming 0. For a large number of imputations, the percent-
age of datasets in which Y; = 1 tends towards 80%. The Bayesian method draws f from its
respective posterior distributions. The posterior distribution contains the variability of 3 that
needs to be incorporated into the imputations. In Bayesian statistics, Markov chain Monte
Carlo (MCMC) methods are used to find the posterior distribution of the parameters. MCMC
algorithms draw samples from probability distributions based on constructing a Markov chain
that has the desired distribution as its stationary distribution. The state of the chain after a very
large number of steps is then used as a sample of the desired distribution. The quality of this
sample increases with the number of steps. For a mathematical description of the Bayesian
logistic regression imputation model, see Rubin [46].

Currently, MI is generally accepted as the best method for dealing with incomplete data in
many fields [45]. Therefore, we suggest using multiple imputation by chained equations
(MICE) to correct for range restriction in cases of DRR and IRR when the criterion variable is
dichotomous. The proposed missing data approach first replaces the missing values of the cri-
terion variable Y and generates several complete (unrestricted) datasets. Then, the correlation
coefficient can be calculated based on these complete datasets.
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The critical role of the base rate of success

A very important factor to be considered when correcting for range restriction with a dichoto-
mous criterion is the base rate of success (BR) [21]. The BR is the percentage of individuals
who would be successful on the criterion if there were no selection. The BR is calculated by
dividing the number of successful individuals by the number of applicants, and ranges between
0 and 1, or between 0% and 100%. The BR contains unbiased information about the propor-
tions of cases in the categories p (Y = 0; not successful) and g (Y = 1; successful) of a dichoto-
mous criterion variable. For example, if all applicants are admitted to a study program and
60% of them complete this study program successfully, the BR is .6, or 60%.

Unfortunately, in the case of selection, the BR is unknown, as we cannot obtain the percent-
age of unselected applicants able to succeed on the criterion. We can only obtain the success
rate of the selected sample, which is the number of successful individuals divided by the num-
ber of selected applicants. The success rate, however, is a biased estimator for the BR. Assuming
a selection method determines the most suitable applicants, we will obtain a success rate which
is higher than the BR.

Next, we will show how the two proportions p and g constituting the BR affect the magni-
tude of the correlation coefficient between a continuous variable X and a dichotomous variable
Y [50,51]. Two correlation coefficients can be distinguished depending on whether the dichoto-
mous variable is based on a qualitative or on a quantitative characteristic. In the former case,
the dichotomous variable is labelled as natural, and in the latter case as artificial [20]. For a nat-
urally dichotomous variable, the point-biserial correlation coefficient py,, is used [50,51]:

ppo = PP, (@)

where M, and M, are the mean values of the continuous variable X for the group ‘not success-
ful’ (Y = 0) and the group ‘successful’ (Y = 1), and oy is the standard deviation of X. p and

g =1 - p represent the proportions of the two groups ‘not successful’ and ‘successful’. pp,p,
ranges between -1 and +1. Normality of X is an assumption for significance testing, but not for
calculating ppp.

An artificially dichotomous variable is created whenever the values of a continuous variable
are divided into two groups at a specific cut-off point. For example, student performance is
measured on a continuous scale, and students are divided into low’ and ‘high’ performers on
the basis of their performance. In this case, a biserial correlation coefficient py, is the more
appropriate calculation. In the case of an artificially dichotomous variable, p,;, systematically
underestimates the Pearson correlation coefficient which would have been obtained before
dichotomization [41]. py, is related to py, as shown in Formula 5:

Py = ppb@? (5)

where h is the ordinate of the standard normal distribution at the point at which the cut for the
dichotomization was made.

Both py;, and py, depend on the proportions p and q. As p and g become more extreme (e.g.,
.1 and .9), the correlation coefficient becomes smaller. Different values of the BR and the suc-
cess rate result in different values of the correlation coefficients. Hence, p and g as obtained
from the restricted dataset are different from the p and g we would obtain from the unrestricted
dataset. Therefore, using the success rate to estimate the predictive validity results in biased
correlation coefficients.
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Two approaches have been proposed so far to assess the predictive validity of a selection
method when the criterion variable is dichotomous. However, both approaches assume that
the BR is known (e.g., from the literature), or should be assumed. The first approach is to apply
the Taylor-Russell tables for a dichotomous criterion variable [21]. These tables indicate values
of p,, for the combination of the SR, the success rate, and the BR. The value for p,;, can only be
taken from the tables if the values for the other three parameters are known. While the SR and
the success rate are typically known, the BR is not and must be assumed. The second approach
focuses on the effect size Cohen’s d as a measure of the predictive validity in the case of a natu-
rally dichotomous variable, and offers correction formulas for DRR and IRR [22]. The formulas
correct the biased effect size d (obtained from the selected sample) into an unbiased d using the
ratio of the unrestricted standard deviation to the restricted standard deviation, as known from
Thorndike’s correction formulas. Both formulas to calculate the unbiased d require the BR,
which must be known or assumed. However, assuming the BR is an arbitrary approach, and
different assumptions of the BR result in different values of the predictive validity, i.e. different
values of the correlation coefficients.

So far, the scientific literature does not provide any correction method for situations in
which the BR is unknown. However, when correcting for range restriction with a dichotomous
criterion, both the biased success rate and the biased correlation have to be considered. The
proposed missing data approach allows for this, as it generates complete datasets from which
the BR as well as the unrestricted correlation can be obtained. Therefore, the proposed
approach provides an empirical estimation for both the correlation coefficients and the BR
based on the selected sample.

Purposes of this Study

Correction methods for range restriction have been studied almost exclusively for continuous
criterion variables. Therefore, the aim of the present study was to give empirical evidence in an
experimental design on correcting for direct range restriction (DRR) and indirect range restric-
tion (IRR) when the criterion variable is dichotomous.

The first purpose is to compare the two approaches (1) multiple imputation by chained
equations (MICE), and (2) Thorndike’s correction formulas (Formulas 1 & 2) with regard to
the accuracy of the correction of the biased sample correlations.

The second purpose is to investigate the effect of a weak, moderate, and strong relationship
between predictor and criterion on the accuracy of the correction of the biased sample correla-
tions with multiple imputation by chained equations. Studies investigating Thorndike’s correc-
tion formulas have shown that the accuracy of the correction increases as the correlation
between predictor and criterion increases.

The third purpose is to investigate the accuracy of the correction of the biased BR with multi-
ple imputation by chained equations. Previous approaches are less useful when the criterion var-
iable is dichotomous because they do not consider that the success rate is a biased estimate for
the unknown BR. However, the proposed missing data approach allows us to estimate the BR.

The fourth purpose of this study is to investigate the effect of the strength of the correlation
between Z and X on the accuracy of the correction with multiple imputation by chained equa-
tions in an IRR scenario.

Method
Procedure

We conducted Monte Carlo simulations to investigate the two correction approaches: a)
Thorndike’s correction formulas, and b) multiple imputation by chained equations (MICE) in
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an experimental design using the program R Statistics [52]. We wrote four R scripts (see S1-54
Rscripts) in order to conduct the Monte Carlo simulations for the following four conditions: 1.
DRR with an artificially dichotomous criterion variable; 2. DRR with a naturally dichotomous
criterion variable; 3. IRR with an artificially dichotomous criterion variable; and 4. IRR with a
naturally dichotomous criterion variable. The Monte Carlo simulations were conducted with
5,000 iterations for each condition. The procedure for the Monte Carlo simulation consisted of
the following steps.

Step 1—Data simulation. We generated 5,000 unrestricted multivariate datasets (sample
size N = 500) for each condition by varying the correlation coefficient between X and Y from
.10 to .90 and the base rate of success (BR) from 10% to 90%. In the case of IRR, there was a
third variable Z, meaning that we varied not only the correlation coefficient between X and Y
but also the correlations between Z and X, and Z and Y from .10 to .90.

Step 2—Selection. We simulated the selection for nine levels of the selection ratio (SR)
ranging from 10% to 90% with step width 10% (which corresponded to missing values in Y
from 90% to 10%). This yielded 5000 * 9 = 45000 restricted datasets. In the case of DRR,
datasets were sorted in descending order by X; in the case of IRR, in descending order by Z.
We selected those cases with the highest values in X (DRR), and with the highest values in Z
(IRR). The percentage of selected cases depended on the SR. Values of Y for non-selected
cases were deleted (i.e., converted into missing values). The range restricted or selected
samples created in this way were saved into new datasets and were used for applying the
correction.

Step 3—Correction. Both approaches were applied to the range restricted datasets. In the
first approach, Thorndike’s correction formulas for DRR (Eq 1) and IRR (Eq 2) were used to
calculate the estimate of the correlation coefficient between predictor X and criterion Y. In
the second approach, we used multiple imputation by chained equations to generate m = 20
imputed datasets (see subsection Imputation of the missing values). For each imputed dataset,
we calculated the correlation coefficient between X and Y, and the BR. The MI analysis pools
the m = 20 estimates into a single point estimate. Rubin [46] showed that the multiple imputa-
tion point estimate is the arithmetic mean of the m estimates.

Step 4— Analysis of parameter estimates. In order to analyse the accuracy of the correc-
tion, we compared the parameter estimates of both approaches with the true parameters
obtained from the unrestricted dataset. All estimates of the parameters are denoted with the
accent symbol hat, where 7, is the estimate of the biserial correlation coefficient and 7 is
the estimate of the point-biserial correlation coefficient. We calculated the residual of each
parameter estimate. For example, the residual for the point-biserial correlation coefficient was

oo — Ppy> Where pyy, was the true unrestricted correlation coefficient.

When running Monte Carlo simulations, extreme conditions typically cause problems in
statistical analysis. Consequently, marginal conditions have to be defined. The logistic regres-
sion could not be applied when Y was constant. This was particularly likely to be the case when
the BR and the correlation between X and Y were high and the SR was small. Therefore, a mini-
mum variance in Y, or a minimum number of observations with Y =1 (or Y = 0) was a neces-
sary precondition for a valid estimate. We determined that a minimum of five observations in
the two categories (‘successful’ and ‘not successful’) was a sufficient number of observations in
the restricted dataset. This minimum number of observations was based on the rule of thumb
in chi-square statistics for contingency tables. Therefore, we excluded samples that did not
meet this prerequisite.
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Data simulation

We simulated multivariate data for two kinds of dichotomous criterion variables: a) an artifi-
cially dichotomous variable, and b) a naturally dichotomous variable. Both kinds of dichoto-
mous criterion variables were simulated for a DRR and an IRR scenario. Purpose 1 was to
compare the accuracy of the two approaches (Thorndike and MICE) for all possible combina-
tions influencing the accuracy (pxy, pzx> pzv> BR, SR). Therefore, we generated the data using
uniform random values for the correlation coefficients, and for the BR, both varied continu-
ously from .1 to .9. The continuous variation of the factors facilitated the subsequent calcula-
tion of estimates aggregated over all factors and factor levels. On the basis of these aggregated
estimates, the comparison of the two approaches can be displayed more clearly than based a
large number of factor combinations.

a) We generated a bivariate standard normal distribution (DRR) or a trivariate standard
normal distribution (IRR) using the mvrnorm () function of the MASS package [53]. Table 1
shows the design of the intercorrelation matrix for the DRR and IRR scenarios. In order to cre-
ate an artificially dichotomous criterion variable Y, we dichotomized one of the standard nor-
mally distributed variables at a specific cut-off point. The cut-off point corresponded to the BR,
which represented the number of ‘successful” and ‘not successful’ individuals. Values higher
than the cut-off point were coded as 1 (‘successful’); all other values were coded as 0 (‘not suc-
cessful’). For example, a cut-off point at zero (= mean of the standard normal distribution) rep-
resented a BR of 50% (p = q = .50).

b) In the case of a naturally dichotomous criterion, we simulated multivariate data based on
a dichotomous variable (Y) and (for X and Z) a mixture of two univariate normal distributions,
one normal distribution for each of the two criterion groups. This kind of data was used to
develop the Taylor-Russell tables for a dichotomous criterion variable [21]. We followed this
approach to be consistent with the literature on evaluating the predictive validity of a selection
method when the criterion is dichotomous. First, we generated Y with the proportions of ‘suc-
cessful’ and ‘not successful’” individuals based on the BR. Second, we generated two normally
distributed variables (X, and X;; one for each criterion group) with standard deviations of 1,
and a mean difference M, — M. The mixture of X, and X; was the distribution of the continu-
ous variable X. The mean difference is related to the amount of the point-biserial correlation
coefficient p,. The higher the mean difference, the higher p,;, (for constant BR, and constant
standard deviations of X, and X;). For example, when X, and X, are normally distributed
with standard deviations of 1, the mean difference is 1.5, and the BR is 50%. In this example,
the standard deviation of X is 1.25, resulting in a point-biserial correlation coefficient

P = 1.5 -1/.25/1.25 = .60 (see Eq 4). For details on how to calculate ox for a mixture of two

Table 1. Design of the intercorrelation matrix of the correlation coefficients for direct range restriction
(DRR) and indirect range restriction (IRR).

DRR IRR
X Y X Y V4
X 1 'o/fpo X 1 I'o/fob r
Y I'o/fob 1 Y I'o/fo 1 T'o/fob
V4 r I'o/fob 1

X is the predictor variable; Y is the dichotomous criterion variable; Z is the selection variable in the case of
IRR; r, is the biserial correlation coefficient; ry, is the point-biserial correlation coefficient; r is the Pearson
correlation coefficient.

doi:10.1371/journal.pone.0152330.t001
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normal distributions in an analytical way, see Cohen [54]. With this procedure, the data simu-
lation was completed for the DRR scenario. For the IRR scenario, we added the third variable Z
in the same way as X, where Z was correlated with X and with Y. Li and colleagues also used
this three-variable design in their Monte Carlo simulations to estimate the bootstrapped stan-
dard error of the Pearson correlation coefficient of Thorndike’s correction formula for IRR [7].

Imputation of the missing values

We used the R package MICE (multivariate imputation by chained equations; version 2.22
[55]) to implement multiple imputation using fully conditional specification. The MICE pack-
age supports multivariate imputations of continuous data, binary data, unordered categorical
data, and ordered categorical data. The algorithm imputed an incomplete variable by generat-
ing plausible values given other variables in the dataset. For the imputation of the dichotomous
criterion variable, we used a Bayesian logistic regression implemented using the elementary
imputation method 1logreg () of the MICE package. The imputation method logreg ()
was used with default specifications for the prior distributions and the Markov Chain Monte
Carlo simulation (MCMC). Conventional wisdom suggests that multiple imputation analysis
requires about m = 5 imputations [46,47]. This number of imputations was derived solely by
considering the relative efficiency [24,46]. Contrary to this conventional wisdom, simulation
studies show that only analyses based on m = 20 imputations yield comparable power to a max-
imum likelihood analysis and are therefore sufficient for many situations [24,42].

In our simulation study, we investigated samples with a rate of missing values up to 90%
(corresponding to a SR of 10%). Therefore, we conducted a preliminary study to investigate the
impact of the number of imputations on the accuracy of the parameter estimation dependent
on the rate of missing values. We conducted Monte Carlo simulations using m = 5, 20, and 50
imputations for samples with rates of missing values of 70%, 50%, and 30% (N = 500). Table 2
shows the results of the preliminary study that m = 20 imputations provided a more accurate
estimate than only m = 5 imputations. However, increasing the number of imputations beyond
20 provided no relevant improvement in the accuracy of the estimates. Therefore, we used
m = 20 imputations in each simulation.

Analysis of parameter estimates

For our purpose of investigating the accuracy of the correction methods, we calculated the
residual of each parameter estimate (Step 4 of the procedure). Accuracy is defined as the close-
ness of the estimated value to the true value of the parameter being estimated [56]. If the
residual of a parameter estimate is close to zero, a correction method provides a very good esti-
mation of the true parameter obtained from the unrestricted dataset. The concept of accuracy
encompasses both precision (random error) and trueness (bias or systematic error), and there-
fore provides important quantitative information about the goodness of the correction. We
used the root mean square error (RMSE) as a measure of precision, and the mean error (ME)

as a measure of trueness. Let 0 be the parameter estimate and 0 the true parameter, then the

RMSE = \/%Z; (0, -0y, (6)

and the
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Table 2. Results of the preliminary study: Root mean square errors of the correlation estimates using m =5, 20, and 50 imputations for 70%, 50%,
and 30% missing values (DRR scenario, N = 500, 1000 iterations).

A A
ry rop
70% 50% 30% 70% 50% 30%
5 .163 118 .075 112 .082 .049
20 161 (-.002) 106 (-.012) 067 (-.008) 105 (-.007) 073 (-.009) .044 (-.005)
50 158 (-.003) 104 (-.002) 070 (.003) 1106 (.001) .070 (-.003) 042 (-.002)

F, is the estimate of the biserial correlation coefficient, 7 , is the estimate of the point-biserial correlation coefficient, m is the number of imputations.

pb

Values in brackets show the change in the RMSE as a result of the additional imputations.

doi:10.1371/journal.pone.0152330.1002

The RMSE provides information about the probability that a correction is close to the true
value. A small RMSE represents a small random error, i.e. a correction with high precision.
The ME is the sample arithmetic mean of the residuals. An estimate is biased if the ME is dif-
ferent from zero. A positive ME represents an overestimation, and a negative ME represents an
underestimation of the true parameter value.

We used F-ratio tests to compare Thorndike’s correction formulas with our proposed miss-
ing data approach in terms of the precision of the two estimates 7, and 7. The F-ratio com-
pares the mean square errors (MSEs), i.e. the variances of the residuals of the two approaches.
For example, an F-ratio of 1 means that both correction methods have equal precision, while
an F-ratio of 2 means that one correction method is twice as precise as the other one.

In order to investigate the effect of the strength of the relationship between predictor X and
criterion Y (Purpose 2) and between selection variable Z and predictor X (Purpose 4) on the
accuracy of the correction with multiple imputation by chained equations, we partitioned the
true correlation coefficients obtained from the unrestricted dataset into three levels: a weak
relationship (from .10 to < .40), a moderate relationship (from .40 to < .70), and a strong rela-
tionship (from .70 to .90). We compared the RMSEs of these three levels in order to demon-
strate how the strength of the relationship between predictor and criterion affected the
precision of the estimation.

Results

Figs 2-6 show the root mean square errors (RMSEs) of the estimated parameters in depen-
dence of the selection ratio (SR). As an overall effect, the accuracy (trueness and precision) of
all estimates gradually improved as the SR increased from .1 to .9, i.e. as the loss of criterion
data decreased from 90% to 10%. For each purpose, except Purpose 4 that explicitly refers to an
IRR scenario, we first display the results for the DRR scenario and then the results for the IRR
scenario.

Purpose 1—Comparison of the two approaches

The first purpose was to compare the correction with multiple imputation by chained equa-
tions (MICE) with Thorndike’s correction formulas with regard to the accuracy of the correla-
tion estimates.

DRR scenario: Table 3 summarizes the mean errors (MEs) as a measure of the trueness of
the predictive validity. The results show that both approaches underestimate the unrestricted
correlation at SR of .1 (90% missing values). The underestimation at SR = .1 is larger when
correcting with MICE than when correcting with Thorndike’s formula (MICE about -.10;
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Fig 2. Direct range restriction (DRR): Root mean square error (RMSE) of the estimates of the
predictive validity (*, and 'r‘p,,). 7, is the estimate of the biserial correlation coefficient for an artificially
dichotomous criterion variable, and Ppb is the estimate of the point-biserial correlation coefficient for a
naturally dichotomous criterion variable.

doi:10.1371/journal.pone.0152330.g002

Thorndike about -.05). For SRs beyond .2, the estimates for both kinds of criterion variables
are less biased when correcting with MICE. Next, we compared the RMSEs of 7, (naturally
dichotomous criterion variable) and 7, (artificially dichotomous criterion variable) when cor-
recting with MICE and with Thorndike’s correction formula for DRR (Eq 1). In the case of 7,,
the F-ratios range from 1.14 to 2.25 (all ps < .001), except at SR = .3 and SR = .4 (F-ratios 1.03
and 1.00). In the case of 7, the F-ratios range from 2.08 to 10.3 (all ps < .001), as shown in
Table 4. Thus, the correction with MICE is more precise than the correction with Thorndike’s
formula (Eq 1) for both kinds of dichotomous criterion variables. The difference in the extent

.30
- @ =MICE } artificially
o5 — @ —Thorndike J dichotomous
ot —¥— MICE } naturally
N . —%— Thorndike J dichotomous
n
2 .
o

selection ratio (SR)

Fig 3. Indirect range restriction (IRR): Root mean square error (RMSE) of the estimates of the
predictive validity (?b and ’r‘pb). ?b is the estimate of the biserial correlation coefficient for an artificially
dichotomous criterion variable, and 'r‘p,, is the estimate of the point-biserial correlation coefficient for a
naturally dichotomous criterion variable.

doi:10.1371/journal.pone.0152330.g003
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Fig 4. Direct range restriction (DRR): Effects of a weak, moderate, and strong predictive validity on
the root mean square error (RMSE) of the estimates of the predictive validity (*, and 'r‘pb). P, isthe
estimate of the biserial correlation coefficient for an artificially dichotomous criterion variable, and Ppb is the
estimate of the point-biserial correlation coefficient for a naturally dichotomous criterion variable.

doi:10.1371/journal.pone.0152330.g004

of precision between the two approaches is higher for a naturally dichotomous criterion vari-
able than for an artificially dichotomous criterion variable. Fig 2 shows the RMSEs of both cor-
relation estimates (7, and 7 ;) for our proposed correction with multiple imputation by
chained equations (MICE) and for the correction with Thorndike’s formula (Eq 1).

IRR scenario: As shown in Table 3, MICE underestimates the unrestricted correlation for
both kinds of criterion variables at SR = .1. However, this bias tends to be smaller for the IRR
scenario than for the DRR scenario. With regard to the precision of the estimates, Fig 3 shows
that the correlation estimates are more precise for our proposed correction with MICE than for
the correction with Thorndike’s formula. The course of the lines is similar to the DRR scenario.

.30
ceoe@ees Weak
artificially
- @ —moder
.25 oderate } dichotomous
—— strong
20 D 0 Weak t !
. naturally
. - -
& moderate } dichotomous
S A5~ —¥— strong
o

A 2 3 4 5 .6 7 .8 9
selection ratio (SR)

Fig 5. Indirect range restriction (IRR): Effects of a weak, moderate, and strong predictive validity on
the root mean square error (RMSE) of the estimates of the predictive validity (7, and 7,,,). 7, is the
estimate of the biserial correlation coefficient for an artificially dichotomous criterion variable, and ?pb is the
estimate of the point-biserial correlation coefficient for a naturally dichotomous criterion variable.

doi:10.1371/journal.pone.0152330.g005
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Fig 6. Indirect range restriction (IRR): Effects of a weak, moderate, and strong relationship between
predictor X and selection variable Z on the root mean square error (RMSE) of the estimates of the
predictive validity (*, and 'r‘pb). P, is the estimate of the biserial correlation coefficient for an artificially

dichotomous criterion variable, and ?pb is the estimate of the point-biserial correlation coefficient for a
naturally dichotomous criterion variable.

doi:10.1371/journal.pone.0152330.g006

Table 3. Mean errors (ME) of the correlation estimates.

Selection ratio (SR)

A 2 3 4 5 .6 7 .8 .9
DRR, artificially dichotomous MICE -12 -.05 -.02 <.01 <.01 <.01 <.01 <.01 <.01
Thorndike -.06 -.05 -.05 -.04 -.04 -.03 -.03 -.02 <.01
DRR, naturally dichotomous MICE -.09 -.04 -.02 -.01 <.01 <.01 <.01 <.01 <.01
Thorndike -.05 -.05 -.05 -.05 -.04 -.03 -.02 -.01 <.01
IRR, artificially dichotomous MICE -.08 -.03 -.01 <.01 <.01 <.01 <.01 <.01 <.01
Thorndike -.04 -.02 -.02 -.01 -.01 -.01 <.01 <.01 <.01
IRR, naturally dichotomous MICE -.07 -.03 -.02 -.01 <.01 <.01 <.01 <.01 <.01
Thorndike -.01 -.03 -.04 -.04 -.03 -.03 -.02 -.01 <.01

7, is the estimate of the biserial correlation coefficient, 7 , is the estimate point-biserial correlation coefficient.

2 ' pb

doi:10.1371/journal.pone.0152330.t003

Table 4. F-ratio of the correlation estimates when correcting with multiple imputation by chained equations and Thorndike’s formulas.

Selection ratio (SR)

A 2 3 4 .5 .6 7 .8 9
DRR, artificially dichotomous 2.23*%* 1.23** 1.03 1.00 1.14** 1.27** 1.66** 1.95%* 2.25%*
DRR, naturally dichotomous 3.46%* 2.08** 2.25%* 2.87%* 4.24%* 5.22%* 6.71%* 9.19%* 10.3**
IRR, artificially dichotomous 1.72%* 1.46** 1.34%* 1.42%* 1.48%* 1.69%* 1.95%* 2.40%* 2.72%*
IRR, naturally dichotomous 2.41%* 2.68** 3.62%* 5.02%* 6.76%* 8.29%* 10.4%* 12.4%* 12.3**

7, is the estimate of the biserial correlation coefficient, 7, is the estimate point-biserial correlation coefficient, F-ratio is calculated by the mean square

error (MSE) of the estimate using Thorndike’s formula divided by the MSE of the estimate using MICE, ** p < .001.

doi:10.1371/journal.pone.0152330.t004
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The differences in the RMSEs between MICE and Thorndike’s formula are larger for 7, than
for 7, , as shown in Table 4. The F-ratios for 7, range from 1.34 to 2.72 (all ps < .001), and for
7, from 2.41 to 12.4 (all ps <.001).

Purpose 2—The effect of the strength of the relationship (X, Y)

The second purpose was to investigate the effect of the strength of the relationship between
predictor X and criterion Y on the accuracy of the correction with MICE. Therefore, we investi-
gated the effect of a weak, moderate, and strong relationship between X and Y on the precision
of the correction with MICE.

DRR scenario: Fig 4 shows that the precision of 7, and 7, increases (RMSEs decrease) when
the strength of the correlation in the unrestricted dataset increases. In Fig 4, we excluded the
value of 7, for the condition of SR =.1 combined with a strong relationship between X and Y,
because for this case only three restricted datasets met the prerequisite.

IRR scenario: Similar to the DRR scenario, the precision of the estimated correlation coeffi-
cient for naturally and artificially dichotomous criterion variables increases when the strength
of the relationship between X and Y increases, as shown in Fig 5.

Purpose 3—Correcting the biased base rate of success (BR)

The third purpose was to investigate the accuracy of the correction of the biased BR with
MICE. Table 5 summarizes the MEs and the RMSEs of the estimate of the base rate of success
(BR) for the two scenarios and both kinds of criterion variables.

DRR scenario: The mean errors in Table 5 show an overestimation of the base rate of success
(+.07) at an SR of .1 for both kinds of criterion variables. This effect is contrary to the correla-
tion estimates, which underestimate the unrestricted correlation. For SRs beyond .2, the esti-
mates are not biased. In the same manner as for the estimation of the correlation coefficients,
the RMSEs of BR decreases as the selection ratio increases (from .157 to .007 for an artificially
dichotomous criterion variable and from .154 to .005 for a naturally dichotomous one).

IRR scenario: The results for the IRR scenario are similar to the DRR scenario. The MEs
show an overestimation of the base rate of success only at an SR of .1 and the precision of BR
increases as the selection ratio decreases.

Table 5. Accuracy of the estimate of the base rate of success when correcting via multiple imputation by chained equations (MICE).

DRR, artificially dichotomous ME
RMSE
DRR, naturally dichotomous ME
RMSE
IRR, artificially dichotomous ME
RMSE
IRR, naturally dichotomous ME
RMSE

Selection ratio (SR)

A 2 3 4 .5 .6 g .8 9
.07 .01 <.01 <.01 <.01 <.01 <.01 <.01 <.01
157 120 .090 .066 .047 .034 .022 .014 .007
.07 .02 <.01 <.01 <.01 <.01 <.01 <.01 <.01
154 11 .081 .059 .040 .028 .018 .011 .005
.07 .01 <.01 <.01 <.01 <.01 <.01 <.01 <.01
151 113 .084 .061 .045 .031 .020 .012 .006
.08 .02 <.01 <.01 <.01 <.01 <.01 <.01 <.01
142 .108 .078 .054 .037 .026 .016 .010 .005

DRR is the direct range restriction, IRR is the indirect range restriction, ME is the mean error, and RMSE is the root mean square error.

doi:10.1371/journal.pone.0152330.t005
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Purpose 4—The effect of the strength of the relationship (Z, X)

The fourth purpose of this study was to investigate the effect of the strength of the relationship
between Z and X on the accuracy of the correction with MICE in an IRR scenario. Therefore,
we investigated the effect of a weak, moderate, and strong relationship between the selection
variable Z and the predictor variable X on the precision of the correction with MICE. The
results in Fig 6 show that the precision of the estimates increases (RMSEs decrease) when the
relationship between Z and X decreases.

Discussion

A recurring methodological problem in the evaluation of the predictive validity of selection
methods is the loss of data for the criterion variable. This so-called range restriction problem
results in biased population estimates because the observed sample (the selected sample) is not
representative of the population of interest (the applicant population). Hence, these biased esti-
mates have to be corrected. However, researchers have almost exclusively focused on correc-
tion in the case of a continuous criterion variable. Therefore, our aim was to propose an
approach for correcting for range restriction when the criterion variable is dichotomous. We
applied this approach to the two most common selection scenarios in personnel selection and
higher education: a direct range restriction scenario (DRR) and an indirect range restriction
scenario (IRR). We investigated two kinds of dichotomous criterion variables: artificially and
naturally dichotomous criterion variables.

The proposed approach correcting for range restriction is to view the selection as a missing
data mechanism. We used multiple imputation by chained equations (MICE), which is a
state-of-the-art method for dealing with missing data. We pointed out the importance of the
unknown base rate of success, which has to be considered when correcting for range restriction
in the case of a dichotomous criterion. The proposed approach corrects for range restriction by
replacing the missing values of the criterion variable before estimating the predictive validity
and the BR at the same time.

We investigated the accuracy of the proposed correction by conducting Monte Carlo simu-
lations, which allowed us to compare the parameter estimates with the true parameters in an
experimental design. In the present simulation study, we varied several factors (correlations,
base rate of success, and selection ratio) over a wide range in order to examine the accuracy of
the correction for a variety of possible datasets.

We compared our proposed missing data approach with Thorndike's formulas (established
for a continuous criterion) in terms of the accuracy of the parameter estimates. The Monte
Carlo simulations show that our proposed approach performs effectively in both the DRR sce-
nario and the IRR scenario. The correction of the biased predictive validity with MICE is more
precise than the correction with Thorndike’s formulas. Furthermore, we were able to show
that the missing data approach provides a valid estimate of the base rate of success that has not
been considered in the scientific literature. On the basis of our findings, we argue for the use of
multiple imputation by chained equations in the evaluation of the predictive validity of selec-
tion methods when the criterion is dichotomous. To our knowledge, the proposed correction
for range restriction using multiple imputation by chained equations is the first approach that
provides a proper correction for the biased predictive validity when the criterion variable is
dichotomous. The missing data approach facilitates the correction of the biased correlation
coefficient as well as of the unknown base rate of success.

Some limitations of our study should be mentioned that open the field for further research.
In the simulation study, we used a small data matrix of two variables in the DRR scenario
and of three variables in the IRR scenario [7]. As in simulation studies, it is often difficult to
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generate multivariate random correlated datasets, especially for multivariate non-normal dis-
tributions. Further research should examine the effect of a data matrix with more variables on
the accuracy of the correction. In the present study, we investigated the accuracy of the correc-
tion for one sample size. However, one important research question with regard to the multiple
imputation by chained equations approach is how small the total sample size as well as the
restricted sample size can be for a precise and unbiased correction. We recommend investigat-
ing these limitations in further studies.

The IRR scenario assumes that the selection variable Z is measured. In this case, the missing
data mechanism is MAR (ignorable selection process, [3]), and therefore we can use a multiple
imputation technique. However, in cases of incidental selections, Z is sometimes either partially
measured or unmeasured. For example, this is the case when selection is based on an unquanti-
fied subjective judgment, or in the case of self-selection, when individuals remove themselves
from a sample for reasons that are not measured. In such cases, the missing data mechanism is
missing not at random (MNAR, non-ignorable selection process). In statistics, this methodo-
logical problem is known as sample selection bias [3]. Traditional range restriction corrections
yield unsatisfactory estimates of rxy when the selection process is non-ignorable [3,39]. A cor-
rection procedure for selection bias for a continuous dependent variable has been developed in
the field of economics [57,58]. Muthén and Hsu [59] presented a latent variable model. In
cases of non-ignorable selection, further studies should examine the accuracy of this latent
variable model for a dichotomous criterion using weighted least squares means and variance
adjusted (WLSMV). As another approach, MICE can also be used to correct for MNAR data
[55].

Some recommendations for practitioners and organizations can be derived from our
research. Sometimes, test data from applicants who were not selected are discarded are not
available in later validity studies. However, discarding applicants’ test data leads to a needless
loss of information regarding the predictive validity of selection methods. Therefore, we rec-
ommend that organizations store the data in an anonymized form for future evaluations of the
predictive validity. Although our approach is applicable for data with up to 90% missing values,
we urge caution in the interpretation of the estimates when missing values exceed 70%.

In summary, the results from the simulation study show that the proposed correction with
multiple imputation by chained equations is effective in correcting for DRR and IRR scenarios
when the criterion variable is dichotomous. Therefore, the approach presented in this paper
seems to be promising in terms of overcoming recurring range restriction problems in the eval-
uation of the predictive validity of selection methods.
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