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Abstract

Background

Diabetes mellitus type 2 (T2DM) is associated with oxidative stress which in turn can lead to
DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage
and DNA repair in regard to hyperglycemic state and diabetes duration.

Methods

Female T2DM patients (n = 146) were enrolled in the MIKRODIAB study and allocated in
two groups regarding their glycated hemoglobin (HbA1c) level (HbA1c<7.5%, n = 74;
HbA1c>7.5%, n = 72). In addition, tertiles according to diabetes duration (DD) were created
(DDI =6.94+3.1 y,n=49; DDIl = 13.35+1.1 y, n = 48; DDIIl = 22.90+7.3 y, n = 49). Oxidative
stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and
reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity
of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were
measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole
blood with single cell gel electrophoresis. DNA base excision repair capacity was tested
with the modified comet repair assay. Additionally, MRNA expressions of nine genes related
to base excision repair were analyzed in a subset of 46 matched individuals.

Results

No significant differences in oxidative stress parameters, antioxidant enzyme activities,
damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%,
nor between diabetes duration was found. A significant up-regulation in mMRNA expression
was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we
observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides,
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Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the
hyperglycemic group.

Conclusion

BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. How-
ever, no major disparities regarding oxidative stress, damage to DNA and DNA repair were
present which might be due to good medical treatment with regular health checks in T2DM
patients in Austria.

Introduction

Diabetes mellitus type 2 (T2DM) with its resulting complications is one of the biggest prevent-
able health problems of the 21* century and has developed to a major challenge for the health
system as one of the fastest increasing diseases worldwide [1]. T2DM develops mostly undiag-
nosed in overweight individuals as a result of pancreatic {3-cell dysfunction and impaired glu-
cose tolerance [2, 3]. Untreated, the underlying hyperglycemia leads to a 3-cell failure and an
indispensable need for exogenous insulin supply [4, 5]. Hyperglycemia is usually measured by
the percentage of glycated hemoglobin (HbA1c) from the total amount of blood hemoglobin,
which evolves through a long-term exposure to elevated glucose in the blood stream [6].
Chronic hyperglycemia promotes oxidative stress [7, 8] which represent a major pathophysio-
logical link between progression of T2DM and the onset of severe diabetic complications such
as diabetic foot ulcers, myocardial infarction or cerebrovascular accidents [9]. Especially car-
diovascular events lead to premature mortality in diabetes patients [10]. Furthermore, oxida-
tive stress can trigger damage to DNA which has been linked to enhanced cancer risk [11].
Therefore patients with diabetes mellitus show an increased cancer incidence, with a strong lin-
ear association between HbA 1c levels and gastric-, pancreatic-, colorectal-, breast- and liver
cancer incidence [12, 13].

Damage to DNA does not necessarily lead to severe complications with a phenotypic out-
come. In most cases, DNA repair mechanisms, including base excision repair (BER), nucleotide
excision repair, direct reversal repair, mismatch repair, homologous recombination, non-
homologous end joining and translesion synthesis [14], cope with this damage and maintain
the cells” homeostasis. BER is most efficient in repairing endogenous DNA damage employing
DNA glycosylases, such as mutY DNA glycosylase (MUTYH), nth-like DNA glycosylase 1
(NTHL1I), 8-oxoguanine DNA glycosylase (OGG1) or the nei-like DNA glycosylase 1 (NEILI)
to excise aberrant bases (either purins or pyrimidines). The resulting apurinic-/ apyrimidinic
(AP) sites are recognized by AP endonucleases (APEX1I) initiating repair by cleaving the sugar-
phosphate backbone. Finally, DNA polymerase beta (POLB) fills in the gap and builds a com-
plex with X-ray repair cross-complementing protein 1 (XRCCI) and DNA ligase 3 (LIG3) to
insert the correct complementary base in the AP site [15]. In T2DM the DNA repair system is
reported to be down-regulated [16, 17], while DNA damage [18, 19] and oxidative stress
parameters [20-24] accumulate.

Most of the aforementioned studies compared T2DM to healthy controls. However, within
its progression T2DM is a considerably diverse disease requesting different medical treatment
approaches leading to a broad range of hyperglycemia. Our intention for this cross-sectional
study was therefore not to compare T2DM patients to healthy controls, but rather to compare
well-controlled patients with HbA1¢<7.5% to individuals with HbA1c>7.5% and patients
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with a short diabetes duration (DD) to persons with longer DD, in regard to oxidative stress,
antioxidant enzyme activities, DNA damage and DNA repair.

Materials and Methods

Study population

The cross-sectional human MIKRODIAB study was performed in 2014 at the local Diabetes
Outpatient Clinic (Health Centre South, Austria, Vienna 1100) in cooperation with the Depart-
ment of Nutritional Sciences of the University of Vienna. A total of 154 female patients with
T2DM were recruited during their regular health assessment in respect to the inclusion criteria:
female gender, age above 30 years, oral antidiabetics and/or insulin therapy as medication, con-
stant nutritional behavior, constant physical activity, constant weight for the last 4 weeks, non-
smoking for at least 1 year. Additionally, exclusion criteria of the study were: pregnancy or lac-
tation; change of medication in regard to metabolic parameters within the last 4 weeks; cardio-
vascular damage with NYHA>III; liver disease with three-times higher transaminase values;
chronic kidney disease with serum creatinine>>2 mg/dl; dialysis; HIV positive; history of
chronic alcohol abuse in the last two years; history of cancer, stroke or organ transplantation.
Eight patients did not fulfill these criteria and were excluded from the study population. The
resulting 146 female T2DM volunteers were assigned to two groups in regard to their HbAlc
level (HbA1c<7.5%, n = 74; HbA1c>7.5%, n = 72). In addition, three groups according to dia-
betes duration (DD) were created (DD I =6.94£3.1 y,n =49, DD II =13.35+1.1 y,n =48, DD
III =22.90+7.3 y, n = 49).

The study was approved by the Ethics Committee of the Medical University of Vienna (EK
Nr: 1987/2013) and was performed in accordance to the Declaration of Helsinki. All subjects
gave their written consent. The study has been registered at ClinicalTrials.org (NCT02231736).

Sample collection and blood sample preparation

Fasting blood was sampled by venipuncture at the Diabetes Outpatient Clinic during the next
regular health check of the patients. In total 45 ml EDTA-blood (Vacuette, K2EDTA, Greiner
Bio-one GmbH) and 5 ml whole blood for serum isolation (Vacuette, Z Serum Sep, Greiner
Bio-one GmbH) were collected. For anthropometric assessment, body height (stadiometer:
model 214, Seca), weight (scale: selecta 791, Seca), blood pressure (Boso medicus control,
Bosch + Sohn GmbH), waist circumference and hip circumference were measured at the study
day. Body mass index (BMI) was calculated as kg/m?. Additionally, nutritional behavior,
physical activity, medical history, socio-economic status and life quality were assessed by
questionnaires.

Blood samples were processed immediately. For detection of DNA damage, whole blood ali-
quots (a 100 pl) were gradually frozen to -80°C (CoolCell, Biozym). EDTA-plasma, for analyses
of malondialdehyde (MDA) and oxidized low-density lipoprotein (oxLDL) as well as serum for
measurement of reduced thiols and antioxidant capacity were aliquoted and stored at -80°C.
Serum samples for analysis of oxidized (GSSG) and reduced (GSH) glutathione were treated
with 10% tetraacetic acid before storage as described by Boon et al. [25]. The isolation of
peripheral blood mononuclear cells (PBMC) was performed with density gradient centrifuga-
tion using Leucosep tubes (Greiner Bio-one) as described earlier [26]. For storage, viable
PBMC were resuspended in freezing media, containing fetal bovine serum with 10% dimethyl
sulfoxid, and gradually frozen (CoolCell, Biozym). For detection of DNA BER capacity, 5x10°
PBMC were taken from each participant for extract preparation. The cell pellet was snap frozen
in liquid nitrogen and stored until analyses. PBMC for gene expression analyses were stored in
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RNAlater (Sigma-Aldrich Co.) until RNA isolation. All samples were stored at -80°C until
analyses.

Analyses of biochemical parameters

The biochemical parameters HbAlc, fasting plasma glucose, fasting plasma insulin, C-peptide,
total cholesterol, triglycerides, high-density lipoprotein (HDL)-cholesterol and low-density
lipoprotein (LDL)-cholesterol were measured immediately after blood sampling at the labora-
tory of the Diabetes Outpatient Clinic as described previously [26, 27]. Homeostasis model
assessment of insulin resistance (HOMA-IR) was calculated from fasting plasma glucose and
plasma insulin using HOMA2 calculator version 2.2.3 (Diabetes Trials Unit, University of
Oxford). Framingham risk score was calculated as described earlier [28]

Analyses of oxidative stress parameters

The antioxidant capacity of serum was measured via the ferric reducing ability potential
(FRAP) assay as described by Benzie and Strain [29] in triplicates using trolox as standard.
Absorbance was measured with BMG FLUOstar OPTIMA Microplate Reader (BMG LAB-
TECH GmbH) at 593 nm and results are expressed as trolox equivalents in umol/L.

MDA levels were determined in duplicates in plasma as described earlier [30]. After heating
(60min, 100°C) plasma samples were neutralized with methanol/NaOH, centrifuged (3min,
3000rpm) and MDA was measured with high-performance liquid chromatography (HPLC)
(excitation: A 532nm, emission: A 563nm, LaChrom Merck Hitachi Chromatography System,
Vienna, Austria; HPLC column 125x4 mm, 5 pm; Merck, Vienna, Austria).

GSSG and GSH were analyzed with use of N-Ethylmaleimide and O-phthalaldehyde
according to an adopted method of Hissin and Hilf [31] as described previously [25]. All sam-
ples were analyzed fluorometrically in triplicates with external standards of GSSG and GSH
using BMG FLUOstar OPTIMA Microplate Reader (BMG LABTECH GmbH).

Reduced thiols as a consequence of oxidative reactions can be quantified by spectrophotom-
eter using 5.5°dithiobis 2-nitrobenzoic acid [32], as described by Hawkins et al. [33]. Serum
samples were analyzed in triplicates using GSH as external standard (BMG FLUOstar
OPTIMA Microplate Reader, BMG LABTECH GmbH).

Quantification of 0xXLDL was performed in duplicates with a customary ELISA kit (ox-LDL/
MDA Adduct, ELISA, Immundiagnostik) according to manufactures’ instructions.

Total F2-Isoprostanes were extracted from plasma and analyzed in duplicates using gas
chromatography tandem mass spectrometry as described previously [34].

Analyses of antioxidant enzyme activities

The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase
(GSH-Px) in erythrocytes were analyzed as reported previously [35-37]. For SOD, the inhibi-
tion of auto-oxidation of pyrogallol which occurs in the presence of superoxide anion was mea-
sured [35]. The activity of CAT was analyzed photometrically by assessing the rate of hydrogen
peroxide degradation [36]. The GSH-Px activity was measured using an indirect coupled assay
and defined as proportion to the oxidation of 1nmol of nicotinamide adenine dinucleotide
phosphate per minute [37]. Antioxidant enzyme activities are presented in units.

Detection of oxidative DNA damage

Oxidative damage to DNA was measured with single cell gel electrophoresis (comet assay).
The comet assay for PBMC was performed adjusted to the method described by Azqueta et al.
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[38] in a 12-minigel format, as described by the same author [39]. The comet assay for whole
blood was performed according to Al-Salmani et al. [40] with slight modifications. Stored
whole blood was thawed quickly, 10 pl whole blood was mixed with 200 pl 1%-agarose solution
and 5 pl were pipetted on the respective spot of the 12-minigel slide. The same procedure was
applied to thawed and washed PBMC samples, whereby 15 ul cell solution with a concentration
of 5x10° cells/mL (in phosphate buffered saline solution) was mixed with 70 ul 1%-agarose
solution and 5 pl were pipetted on the respective spot of the 12-minigel slide. Each sample was
analyzed in duplicates, resulting in 6 different samples per 12-minigel slide. For each 6-sample-
group, 3 slides were necessary for the following treatments: lysis, buffer and formamidopyrimi-
dine—DNA glycosylase (FPG), for PBMC and whole blood respectively. All following steps
were done equally for whole blood and PBMC slides.

Slides were placed in lysis solution (2.5 M NaCl, 0.1 M EDTA, 10 mM Tris base with 1%
Triton X-100, pH 10) for one hour. After lysis, FPG and buffer slides were washed three times
with cold enzyme buffer (40 mM HEPES, 0.1 M KCL, 0.5 mM EDTA, 0.2 mg/mL BSA, pH 8)
before being clamped into slide units (12-Gel Comet Assay Unit™, Severn Biotech Limited).
The units were placed on ice and gels were respectively treated with either 30 uL enzyme buffer
or 30 puL FPG solution (1:3000 dilution; FPG, New England Biolabs GmbH). The units were
hermetically closed, placed in a pre-heated moist box and incubated for 30 min at 37°C. There-
after, all slides were put in cold electrophoresis solution (0.3 M NaOH, 1 mM EDTA, pH>13)
for 20 min unwinding phase, followed by 30 min of electrophoresis (25 V, 300 mA at 4°C). All
slides were washed with phosphate buffered saline solution and distilled water. For drying of
the gels, slides were first placed in 70% ethanol and second in ethanol absolute for 15 min
respectively. Gels were stained with GelRed (PAGE GelRed Nucleic Acid Gel Stain, Biotium).
DNA damage was expressed in % Tail DNA which was quantified using a fluorescence micro-
scope (Nikon) and the imaging software Comet Assay IV (Perceptive Instruments Ltd). For
each sample 100 cells were scored (50 per duplicate) and means were calculated. FPG-sensitive
sites were expressed as net % Tail DNA.

Detection of DNA BER capacity with the comet repair assay

The DNA BER capacity was observed with the comet-based in vitro repair assay described by
Azqueta et al. [41]. Briefly, a substrate was prepared using PBMC from a healthy donor, which
was treated with photosensitizer RO 19-8022 and 5 min light-induction to induce 8-oxogua-
nine in its DNA. A second batch of substrate PBMC was treated the same way excluding RO
19-8022 and therefore served as control. These substrates were the initial substances for the
12-minigel based comet assay approach and embedded in 1%-agarose. After one-hour lysis
treatment the gel-embeded cells of the substrate were incubated with PBMC extract for 30 min
in a moist box at 37°C. For extract preparation the frozen cell pellet of 5x10° PBMC of each
study participant was assimilated in buffer solution as described earlier [41]. After extract incu-
bation, all following comet steps were done as described above for the comet assay, including
unwinding phase, electrophoresis, ethanol desiccation, staining and quantification of DNA
Tails. Repair-related DNA incisions were calculated according to Azqueta et al. [41] and
expressed as % Tail DNA.

Gene expression analyses

For gene expression analyses, a subset of 46 participants was created. Twenty-three T2DM
females with an HbA1c<7.5% were matched according to age, medication and smoking history
to twenty-three T2DM females with HbA1c>7.5%.
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RNA was extracted from PBMC using a commercially available extraction Kit (ReliaPrep™
RNA Cell Miniprep System, Promega GmbH), quantified (Nanodrop 2000, Thermo Fisher Sci-
entific) and stored at -80°C. Transcription into cDNA was performed with a customary kit
according to manufactures’ instructions (QuantiTect™ Reverse Transcription Kit, Qiagen).
Quality of RNA and cDNA was checked on a random basis using gel-electrophoresis. For gene
expression analyses, quantitative real-time polymerase chain reaction (QPCR) was performed
using SYBR green-based gene expression assay (SYBR™ Select Master Mix, Applied Biosys-
tems™, Thermo Fisher Scientific) on a 384-well QuantStudio™ 6 Flex Real-Time PCR System
(Applied Biosystems™, Thermo Fisher Scientific). Primers of nine candidate genes, connected
to BER of DNA, and four housekeeping genes (glyceraldehydes-3-phosphate dehydrogenase,
GAPDH; hypoxanthine phosphoribosyltransferase 1, HPRTI; beta-2-microglobulin, B2M;
Actin beta, ACTB) were designed via NCBI Primer Blast, ordered at Sigma-Aldrich and pre-
tested in terms of sequence quality (Table 1). All samples were analyzed on one plate for each
gene of interest to minimize inter-plate variations. All results were evaluated as one experi-
ment, including a common threshold using data analysis software for qPCR (Thermo Fisher
Cloud, Thermo Fisher Scientific). M-score analyses of housekeeping genes (GAPDH, ACTB,
HPRT, B2M) were done using geNorm calculation within the Thermo Fisher Cloud qPCR
analysis software resulting in GAPDH exclusion. The geometric mean of the cycle of threshold
value of ACTB, HPRT, B2M was used as reference gene for calculating the relative quantifica-
tion with the Livak Method [42]. To obtain fold changes of gene expression patients with
HbA1c<7.5% served as control to their respectively matched patients with HbAlc>7.5%.

Table 1. Primer sequences for gene expression analyses.

Gene symbol Gene ID Primer sequence bp Product bp

APEX1 328 Forward: CGGACAAGGAAGGGTACAGT F 20 83
Reverse: CTCCTCATCGCCTATGCCGTA R 21

LIG3 3980 Forward: AGAGCGAGTCCAGGTGCATA F 20 88
Reverse: GTGGGCCACCTTGTGAGGAA R 20

MUTYH 4595 Forward: TCCACCGCCATGAAAAAGGT F 20 77
Reverse: TGGGACCTTTTGGAACCCATA R 21

NEIL1 79661 Forward: GACAGAGTGGAGGACGCTTT F 20 91
Reverse: GCTGGGTTGCAGTCCTCTTA R 20

NTHL1 4913 Forward: CAGACAGATGATGCCACGCT F 20 70
Reverse: TGTATTTCACCTTGCTCCTCCA R22

OGG1 4968 Forward: CCGAGCCATCCTGGAAGAAC F 20 129
Reverse: CAGATGCAGTCAGCCACCTTG R 21

PARP1 142 Forward: CCACACACAATGCGTATGACT F 21 113
Reverse: CCACAGCAATCTTCGGTTATGA R 22

POLB 5423 Forward: AAAAGTGGATTCTGAATACATTGCTA F 26 123
Reverse: GGCTGTTTGGTTGATTCTGAAG R 22

XRCC1 7515 Forward: AAGAAGACCCCCAGCAAACC F 20 77
Reverse: CGAGTTGGAGCTGGCAATTT R 20

ACTB 60 Forward: TGGCACCCAGCACAATGAA F19 183
Reverse: AGTCATAGTCCGCCTAGAAGCA R22

B2M 567 Forward: CACCCCCACTGAAAAAGATGAG F22 106
Reverse: CCTCCATGATGCTGCTTACATG R 22

HPRT1 3251 Forward: TGCTTTCCTTGGTCAGGCAG F 20 110
Reverse: TTCARATCCAACAAAGTCTGGC R 22

doi:10.1371/journal.pone.0162082.t001

PLOS ONE | DOI:10.1371/journal.pone.0162082 September 6,2016

6/17



@’PLOS ‘ ONE

Oxidative Stress, DNA Damage, DNA Repair and Diabetes Mellitus Type 2

Statistical analyses

All statistical analyses were performed with SPSS Statistics software version 22 (International
Business Machines Corporation, IBM). Normal distribution was analyzed with Kolmogorov-
Smirnov test. Differences between the groups (HbA1c<7.5% vs. HbAlc>7.5%) were tested
with t-test for independent variables or Mann-Whitney-U test for nonparametric variables.
Pairwise comparisons between multiple groups were analyzed with one-way analysis of vari-
ance (Anova) with Bonferroni adjustment and adjustment of covariates (ANCOVA) if neces-
sary. If normal distribution was not given, the Kruskal-Wallis test was used. Correlations were
analyzed with Pearson’s correlation coefficient or Spearman correlation for nonparametric var-
iables. Fold-changes of gene expression were tested with one-sample t-test against “1” or Wil-
coxon test against “1” if normal distribution was not present. Significance was assumed at
p<0.05.

Results
Characteristics of study population

In total 146 T2DM female patients with a mean age of 67.5 (min: 40.0/ max: 86.0) years and a
mean BMI of 35.0 (18.9/ 61.2) kg/m? completed the study. On average, the patients have been
diagnosed with T2DM for 14.4 (0.1/54.0) years and had a mean HbA1c level of 7.8 (5.9/16.3)
%. Out of the 146 subjects, 60 patients received insulin therapy, while 86 patients got other oral
antidiabetics or injectables including Metformin, Sulphonylurea, Glinides, Glitazones, Alpha-
glucosidase inhibitors, DPP-4 inhibitors, and SGLT?2 inhibitors. 60.9% of the participants took
medications for altering lipid metabolism and 81.5% antihypertensives. Diabetes complications
affecting eyes, kidneys, gum, neural, cardiovascular system as well as chronic inflammation
were reported by 44.5% of all patients.

Differences between HbA1c groups in anthropometrics and clinical
biochemistry

Patients with HbA1¢c<7.5% (n = 74) had a mean HbA1c of 6.86+0.5% (meanz+standard devia-
tion). A significant difference in HbA ¢ level was found in comparison to the 72 patients repre-
senting the HbA1c>7.5% group with 8.69+1.3%. Neither age distribution between the groups
with 68.7+9.8 years in the low vs 66.2+10.0 years in the high HbA1c group, nor the DD with 13.6
+8.8 years in the low vs 15.2+7.1 years in the high HbA1lc group differed significantly (Table 2).
Anthropometric parameters such as BMI and systolic blood pressure were significantly higher in
patients with higher HbA1c. In contrast, waist-to-hip ratio and diastolic blood pressure did not
differ between the groups. Highly significant disparities between the HbA 1c groups were found
in lipid parameters, resulting in higher total cholesterol (p<0.05), LDL-cholesterol, triglyceride
and lower HDL-cholesterol values (p<0.01), and a higher LDL/HDL-cholesterol ratio (p<0.001)
in the high HbAlc group (Table 2). Additionally, significant correlation between HbAlc and
total cholesterol (r = 0.328, p<0.001), LDL-cholesterol (r = 0.336, p<0.001), triglycerides
(r=0.251, p<0.001) and HDL-cholesterol (r = -217, p<0.01) were found. Furthermore, the Fra-
mingham risk score was higher in patients with HbA1c>7.5% compared to the low HbAlc
group (p<0.01).

Differences between HbA1c groups in oxidative stress parameters,
antioxidant enzyme activities, DNA damage and BER capacity

In contrast to anthropometric data and lipid metabolism, no differences between the HbAlc
groups were found in parameters concerning oxidative stress, antioxidant enzyme activities,
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Table 2. Differences between HbA1c groups in age, anthropometric parameters and clinical biochemistry.

HbA1¢<7.5% HbA1c>7.5%
Mean + SD Mean * SD p-value'

n 74 72

Metformin therapy [%] 81.1 73.6

Insulin therapy [%] 28.4 54.2

Other antidiabetic medication* [%] 71.6 73.6

Diabetes complication® [%] 46.0 43.0

Age [years] 68.66 + 10 66.22+ 10 .138
BMI [kg/m?] 33.69+7.5 36.41+7.5 .030
WHR 0.88+0.0 0.89+0.1 .308
HbA1c [%] 6.86+0.5 8.69+1.3 .000
Fasting plasma glucose [mmol/L] 7.93+1.7 10.08 +2.0 .000
Diabetes duration [years] 13.59+8.8 15.24 +7.1 219
Fasting insulin [pmol/L] 114.3+94 141.3+155 204
C-peptide [nmol/L] 1.03+0.5 1.02+0.7 .907
HOMA-IR 297+26 219%1.5 .067
Blood pressure systolic [mmHg] 137.7+20 145.6 +19 .014
Blood pressure diastolic [mmHg] 81.74 + 11 82.74+10 578
Total cholesterol [mmol/L] 415+0.6 447 +1.0 .019
HDL-cholesterol [mmol/L] 145104 1.28+0.3 .005
LDL-cholesterol [mmol/L] 2.03+0.6 2.34+0.8 .005
LDL/HDL-cholesterol 1.49+0.5 1.90+0.7 .000
Triglycerides [mmol/L] 1.48+0.8 2.03+1.8 .011
Framingham risk score [%] 11.63+5.9 14.77+7.3 .008

' differences between groups were analyzed with t-test for independent variables or Mann Whitney U test for nonparametric variables;

* including: Sulphonylurea, Glinides, Glitazones, Alpha-glucosidase inhibitors, DPP-4 inhibitors, SGLT2 inhibitors;

* Diabetes complication according to medical history including: eye, kidney, gum, neural, chronic inflammation and cardiovascular system
HbA1c, glycated hemoglobin; BMI, body mass index; WHR, waist-to-hip-ratio; SD, standard deviation

doi:10.1371/journal.pone.0162082.1002

DNA damage or DNA BER capacity (Table 3). Oxidative stress marker such as FRAP, MDA,
oxLDL, reduced thiols, GSSG/GSH or F2-Isoprostane were not different between T2DM
patients with high or low HbAlc. Similar results were found for the antioxidant enzyme activi-
ties of SOD, CAT and GSH-Px. In addition, no distinctions were found in comet assay analyses
of PBMC and whole blood including strand breaks and FPG-sensitive sites. The DNA BER
capacity in T2DM patients with HbA1c<7.5% was 12.34+3.5% Tail DNA which was not differ-
ent from the hyperglycemic T2DM patients with a DNA BER capacity of 11.84+3.8% Tail
DNA (Table 3). The results remained unchanged when BMI was considered as covariate in the
statistical model. In addition, no correlations between oxidative stress parameters, antioxidant
enzyme activities, DNA damage and BER capacity with BMI were observed (data not shown).

Differences between DD in oxidative stress parameters, antioxidant
enzyme activities, DNA damage and BER capacity

The distribution of DD within the patients differed substantially from newly diagnosed to a
maximum of 54.0 years. Within the DD tertiles (DD I = 6.94+3.1 y, n =49, DD II = 13.35+1.1
y, n =48, DD III = 22.90+7.3 y, n = 49), there was a significant increase in age with rising DD.
In addition, differences in HbAlc between DD I and DD III (p = 0.008) and a trend between
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Table 3. Differences between HbA1c groups in DNA damage, BER capacity, oxidative stress parameters and antioxidant enzyme activities.

HbA1¢c<7.5% (n=74) HbA1¢>7.5% (n=72)
Mean * SD Mean + SD p-value’

DNA damage (PBMC)
Strand breaks [% Tail DNA] 6.36+ 3.0 6.36 +3.8 .998
FPG-sensitive sites [% Tail DNA] 450+3.0 461127 .820
DNA damage (whole blood)
Strand breaks [% Tail DNA] 8.09+5.3 8.77+5.3 437
FPG-sensitive sites [% Tail DNA] 5.82+5.0 5.59+4.0 .759
DNA repair
repair capacity [% Tail DNA] 12.34+3.5 11.84+3.8 417
Oxidative stress marker
FRAP [pmol/L] 359.5+127 391.9+228 .290
Malondialdehyde [umol/L] 1.02+0.4 1.06+0.4 594
reduced thiols [umol/L] 532.4 £ 92 512.7+87 .185
GSSG [umol/L] 950+1.5 9.60+1.6 721
GSH [umol/L] 13.89+2.2 137722 .746
GSSG/GSH 0.70+£0.2 0.71+0.2 .744
oxLDL [ng/ml] 151.8 £ 149 156.1 £ 202 .844
F2-Isoprostane [pg/ml] 209.0+95 211.7+90 615
Enzymes
SOD [IU/g Hb] 1674 + 295 1667 + 255 .701
CAT [IU/g Hb] 16.87+4.6 17.48+3.8 382
GSH-Px [IU/g Hb] 34.14+6.5 35.31+7.6 318

' differences between groups were analyzed with t-test for independent variables or Mann-Whitney-U test for nonparametric variables

HbA1c, glycated hemoglobin; FRAP, ferric reducing ability potential; GSSG, oxidized glutathione; GSH, reduced glutathione; oxLDL, oxidized low-density
lipoprotein; SOD, superoxide dismutase; CAT, catalase; GSH-Px, glutathione peroxidase

doi:10.1371/journal.pone.0162082.t003

DD II and DD III (p = 0.062) were present. However, no differences were found in most oxida-
tive stress parameters, antioxidant enzyme activities, DNA damage and BER capacity between
the three DD groups (Table 4). Only F2-Isoprostane was significantly different between the
DD groups with a slight increase between DD I and DD II (p = 0.054). However, it was not
seen any longer after age-adjustment. Other results remained unchanged when age was taken
as covariate in the statistical model.

Gene expression of BER enzymes

To gain a further insight into DNA repair capacity, mRNA expression of nine enzymes
involved in BER was measured in a subset of 46 matched (according to age, medication and
smoking history) T2DM patients with either high or low HbA1c (cut off 7.5%) (Table 1). A sig-
nificant up-regulation was found in APEX1 (fold change: 0.30, p = 0.018), LIG3 (fold-change:
0.31, p = 0.016) and XRCCI (fold-change: 0.28, p = 0.02) in patients with higher HbAlc com-
pared to their matched partners with lower HbA1lc (Fig 1a). In addition, a strong correlation
between XRCCI and LIG3 (r = 0.668, p = 0.000) and APEXI (r = 0.709, p = 0.000) was
observed. Other genes involved in BER including MUTYH, NEILI1, NTHLI, OGGI, POLB and
poly(ADP-ribose) polymerase 1 (PARPI) did not result in fold-change differences in high vs.
low HbA1c groups (Fig 1a). However, regarding the huge distribution of fold-changes within
the 23 matched pairs, some patients showed a high up-regulation of BER genes (Fig 1b).
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Table 4. Differences between DD groups in DNA damage, BER capacity, oxidative stress parameters and antioxidant enzyme activities.

DDI DDII DD Il
(n=49) (n=48) (n=49)
Mean + SD Mean +SD Mean + SD p-value’
Diabetes duration [years] 6.94 +3.1% 13.35+1.1° 22.90+7.3° .000
Age [years] 63.02+10.22 67.69 + 9.5° 71.67 +8.2°¢ .000
HbA1c [%)] 7.65+1.7% 7.54 +0.9%° 811+1.1° .007
DNA damage (PBMC)
Strand breaks [% Tail DNA] 6.65+2.9 5.73+2.6 6.68+4.4 226
FPG-sensitive sites [% Tail DNA] 4.03+2.6 455+2.6 5.09+3.3 .189
DNA damage (whole blood)
Strand breaks [% Tail DNA] 7.70+5.6 8.72+5.1 8.87 5.1 262
FPG-sensitive sites [% Tail DNA] 6.28+5.3 6.34+4.7 4.51+3.1 .167
DNA repair
repair capacity [% Tail DNA] 1225+3.3 11.65+3.8 12.37 £ 3.9 514
Oxidative stress marker
FRAP [umol/L] 358.0 £ 129 370.3+128 398.0 + 262 .844
Malondialdehyde [umol/L] 1.05+04 1.06+0.5 0.99+0.4 .794
reduced thiols [umol/L] 520.5+ 92 522.4 +88 525.0 + 90 970
GSSG [umol/L] 9.46+14 9.51+1.6 9.67+1.6 .789
GSH [pymol/L] 14.20+2.0 13.82+2.5 13.47+2.0 .186
oxLDL [ng/ml] 152.8 + 152 161.2 £ 226 147.2 £ 138 .905
F2-Isoprostane [pg/ml] 181.4+77 226.0 £ 95 223.9+99 .031
Enzymes
SOD [IU/g Hb] 1692 + 265 1662 + 236 1658 + 322 .788
CAT [IU/g Hb] 1747 +4.7 17.46+4.3 16.59+3.5 493
GSH-Px [IU/g Hb] 36.01+7.2 34.19+7.3 33.94+6.7 .289

! differences between groups were analyzed with one-way Anova with pairwise comparisons or Kruskal-Wallis test with pairwise comparisons for

nonparametric variables;

abecindicate differences between groups

HbA1c, glycated hemoglobin; FRAP, ferric reducing ability potential; GSSG, oxidized glutathione; GSH, reduced glutathione; oxLDL, oxidized low-density
lipoprotein; SOD, superoxide dismutase; CAT, catalase; GSH-Px, glutathione peroxidase

doi:10.1371/journal.pone.0162082.1004

Discussion

The present study with 146 female T2DM patients, with HbA1c levels either <7.5% or >7.5%
and three different DD groups did not show major differences in oxidative stress parameters,
antioxidant enzyme activities, DNA damage or DNA repair. Therefore our results do not con-
firm the assumption that oxidative stress and its resulting damage to DNA are increasing with
T2DM progression. Most previous studies compared healthy individuals to T2DM patients
and could detect induced oxidative stress in T2DM, represented through decreased FRAP-,
GSH- and reduced thiols levels, whereas MDA, oxLDL, GSSG and F2-Isoprostanes were
increased [20-24, 43, 44]. Additionally, strong linear association to HbA1c was reported for
MDA, GSH and oxLDL [20, 45]. However, the correlation analyses (data not shown) in our
study population did not show any significant associations between HbAlc and oxidative
markers. Regarding antioxidant enzyme activities of SOD, CAT, GSH-Px, we could not detect
any differences between the HbAlc groups. SOD and CAT activity was previously shown to be
increased in T2DM compared to healthy controls [20, 43, 46, 47], while GSH-Px was decreased
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Fig 1. Fold changes of mRNA expression of DNA BER enzymes. T2DM patients with HbA1¢c>7.5%
(n=23) in relation to matched T2DM patients with HbA1c<7.5% (n = 23). For each pair, results were
normalized to the HbA1c<7.5% expression. Matching was according to age, medication and smoking history.
Significance was assumed at p<0.05 and tested with one-sample t-test against “1” or Wilcoxon test against
“1” if normal distribution was not assumed. (a) Fold-changes presented as bar plots showing mean and
standard deviation. (b) Distribution of fold changes. Each point represents a matching pair (n = 23).

doi:10.1371/journal.pone.0162082.g001
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[20, 47]. However, evidence is not sound as some studies could not detect any differences
between T2DM and healthy controls in these enzymes [46, 47].

Regarding the progression of the disease over time, no differences in oxidative stress mark-
ers could be found between the DD tertiles. Nakhjavani et al. [48] showed that newly diagnosed
T2DM patients without any treatment had lower oxLDL levels compared to T2DM patients
with a DD>5y. In the present study newly diagnosed patients are rare and all patients were
under medical treatment. It can be assumed that despite the different glycemic states and large
distribution in DD within the study population, the good medical treatment and regular bian-
nual medical observations protect against major redox deregulation within the patients.

Increased oxidative stress and its resulting reactive oxygen species are some of the leading
causes for accumulation of DNA damage [11]. Because of the lacking connection between
hyperglycemia and induced oxidative stress, it is not surprising that DNA damage parameters
did not differ between T2DM patients with HbA1¢<7.5% or >7.5%. Additionally, published
data about DNA damage in T2DM are also inconsistent and while some studies reported a
clear increase in DNA damage in T2DM patient vs. healthy controls [18, 19] other studies
could not detect any differences [26, 49]. To our knowledge there are only few other studies
who analyzed DNA damage in T2DM with either low or high HbA1lc. Xavier et al. [50]
detected higher damage to DNA in hyperglycemic (HbA1c>7%) T2DM patients compared to
non-hyperglycemic (HbA1c<7%) T2DM individuals using the comet assay in PBMC. Another
study found higher FPG-sensitive sites in poorly-controlled T2DM with higher HbAlc com-
pared to well-controlled individuals [51]. Furthermore, a strong direct correlation between
DNA damage and HbA1c was found in 427 T2DM patients in the study of Choi et al. [52].
However, these studies did not analyze oxidative stress parameters to connect detected DNA
damage to its possible origin. Regarding DD, no differences concerning comet assay results
were found in the present study. Similar results are shown in a study on 72 Mexican T2DM
individuals, with similar age and DD distribution to the present study, where Ibarra-Costilla
et al. [49] were not able to detect differences in DNA damage depending on DD.

A lack of increased DNA damage could also be explained by an improved DNA repair
capacity. However, BER capacity measured by the comet repair assay did not result in differ-
ences between the HbAlc groups. A closer look into gene expression analysis of nine involved
BER genes of 46 matched T2DM patients revealed a statistically significant up-regulation of
APEX1, LIG3 and XRCCI of T2DM with higher HbAlc. LIG3 and XRCCI build a protein com-
plex during BER [53]. In addition, XRCCI interacts with other BER involved proteins, includ-
ing APEX1, POLB and OGG1, and is therefore involved in almost every step of BER [54]. Due
to their common interaction, it was not surprising that XRCCI and LIG3, as well as APEX1
showed similar expression behavior and a strong correlation. DNA repair capacity in T2DM
patients compared to healthy controls is reported to be lower [16, 18] and gene expression
analyses by microarray showed down-regulation of DNA repair genes in T2DM individuals
[17]. Interestingly, we found that APEX1, LIG3 and XRCCI transcription is induced in T2DM
patients with higher HbAlc resulting a 30% up-regulation compared to their matched T2DM
with low HbAlc. A very recent study by Xavier et al. [50] also found induced gene expression
in T2DM with higher HbAlc compared to T2DM with lower HbAlc in an entire gene set rep-
resenting DNA repair in their study using microarray analysis. They explained it as a compen-
satory mechanism to higher DNA damage in their high-HbA1c group [50]. In the present
study no difference was found in DNA damage between high- or low-hyperglycemic patients
but we still observed an increased mRNA expression in three important BER related genes.
However, as the up-regulation was only 30%, even if statistically significant, it might not neces-
sarily lead to a meaningful biological outcome. Further studies focusing on protein levels and
functional assays to evaluate the BER capacity of T2DM are needed to completely understand

PLOS ONE | DOI:10.1371/journal.pone.0162082 September 6,2016 12/17



@’PLOS ‘ ONE

Oxidative Stress, DNA Damage, DNA Repair and Diabetes Mellitus Type 2

the connection of hyperglycemia and DNA repair and its influences on secondary diabetes
complications.

Although our main parameters of interest did not reveal major outcomes, there was a differ-
ence in biochemical parameters between patients with higher HbA1c to well-controlled
patients with lower HbA1c, especially regarding blood lipid parameters and blood pressure.
We found higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Fra-
mingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in hyperglycemic
patients with HbA1c>7.5%. These parameters are all known risk factors for cardiovascular
events which still is one of the leading causes of death in T2DM [10]. Given the fact that 60.9%
of the patients took medical treatment concerning blood lipid regulation and 81.5% against
hypertension, the remaining differences are alarming and could result in an earlier diabetes-
related death in the high HbAlc group.

Several points might be considered as a drawback of the study. First, the exclusion of male
gender which was due to an intended homogenous study population. Men and women differ
in regard to metabolic pathways and insulin sensitivity [55] and have different hormonal sta-
tuses which might have led to different outcomes in the parameters tested. Learned from a
recent study females are easier to recruit, since they are more reliable and dedicated [26].
Therefore, it was a conscious decision to exclude male gender to create a study population
which was as homogenous as possible and mainly differed in HbAlc and DD. Second, the nar-
row distribution of the HbA1c values could be regarded critically. All of the patients were
under medical treatment concerning blood glucose management and regular medical observa-
tions, not allowing major discrepancies between the HbA1lc groups. Third, the regular medical
treatment of the subjects was not only focused on hyperglycemia but in many cases also against
hypertension, hyperlipidemia and other metabolic imbalances. Regarding the mechanism of
action, not only Metformin but also Statins have been discussed previously to act in an antioxi-
dative manner with DNA-damage-protecting properties [56-58]. Thus, they could be regarded
as confounding factors in the assessment of oxidative stress, antioxidant enzyme activities,
DNA damage and DNA repair in medically controlled individuals with T2DM. However, it
also reflects the positive situation in an industrialized western country such as Austria where
the health system offers regular blood glucose controls and individually optimized medical
treatment for T2DM patients.
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