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Abstract
The giant tubeworm Riftia pachyptila lives in symbiosis with the chemoautotrophic gamma-

proteobacterium Cand. Endoriftia persephone. Symbionts are released back into the envi-

ronment upon host death in high-pressure experiments, while microbial fouling is not

involved in trophosome degradation. Therefore, we examined the antimicrobial effect of the

tubeworm’s trophosome and skin. The growth of all four tested Gram-positive, but only of

one of the tested Gram-negative bacterial strains was inhibited by freshly fixed and degrad-

ing trophosome (incubated up to ten days at either warm or cold temperature), while no

effect on Saccharomyces cerevisiae was observed. The skin did not show antimicrobial

effects. A liquid chromatography-mass spectrometric analysis of the ethanol supernatant of

fixed trophosomes lead to the tentative identification of the phospholipids 1-palmitoleyl-2-

lyso-phosphatidylethanolamine, 2-palmitoleyl-1-lyso-phosphatidylethanolamine and the

free fatty acids palmitoleic, palmitic and oleic acid, which are known to have an antimicrobial

effect. As a result of tissue autolysis, the abundance of the free fatty acids increased with

longer incubation time of trophosome samples. This correlated with an increasing growth

inhibition of Bacillus subtilis and Listeria welshimeri, but not of the other bacterial strains.

Therefore, the free fatty acids produced upon host degradation could be the cause of inhibi-

tion of at least these two bacterial strains.

Introduction
Since the discovery of giant tubeworms at deep-sea hydrothermal vents at the Galapagos Rift
in 1977 [1], the mutualism between the sessile tubeworm Riftia pachyptila (Vestimentifera,
Sibolinidae) (short Riftia) and the sulfur-oxidizing gammaproteobacterial symbiont Cand.
Endoriftia persephone (short Endoriftia) has been one of the most extensively studied deep-sea
symbioses [2]. The metagenome of Endoriftia encodes genes for sulfur oxidation and carbon
fixation, but also genes for the tricarboxylic acid (TCA) cycle, fructose degradation, glycolysis
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as well as a phosphotransferase system and ABC transporters. The latter are indicative of a het-
erotrophic lifestyle that is assumed to play a role outside the host in the absence of sulfide [3].
Also genes for chemotactic abilities, including flagellar proteins, chemotaxis regulators and
motility accessory factors, required for the survival outside the host were detected in the meta-
genome [3, 4].

Endoriftia is located in the trunk of the adult host’s body in a multi-lobule organ, the tro-
phosome, enclosed in host cells, called bacteriocytes [5, 6, 7]. Host bacteriocytes and symbionts
exhibit a coordinated cell cycle with terminal differentiation. Dividing rods in unipotent bac-
teriocytes acting as stem cells are located in the central zone of each lobule and small cocci and
large cocci are located in semi-differentiated bacteriocytes in the median zone, while degrading
large cocci in the terminal bacteriocytes of the peripheral zone enter apoptosis after digesting
the symbionts [8, 9]. Nourishment of the gutless host by the symbiont is through release of
fixed organic carbon [10].

Symbiont acquisition is horizontal in each host generation anew [11]. Symbionts invade the
settled larvae and small juveniles as shown by fluorescence in situ hybridization (FISH) using
three specifically designed symbiont-specific oligonucleotide probes [11]. Environmental sym-
bionts were detected with 16S rRNA-specific PCR and FISH on artificial devices deployed in
tubeworm clumps, next to clumps and far way from clumps on basalt as well as in filtered sea-
water from the pelagial [12].

Recently we could show in experimental high-pressure vessels that Endoriftia actively
escapes dead trophosome tissue and recruits to surfaces upon which it proliferates [13]. The
escape time was determined in a time series of incubations simulating either vent cessation
with cold, ambient deep-sea conditions for half a day to six days or warm, hydrothermal vent
conditions with a sulfide flow-through system for half a day to one day. The disintegration of
the symbiont’s membranes was studied in transmission electron microscopy (TEM). These
experiments revealed that under warm vent conditions most of the symbionts’membranes
were ruptured and the symbionts therefore were unambiguously dead after one day, while sym-
biont decay was decelerated under cold deep-sea conditions with most membranes still intact
after ten days [13].

Numerous studies have shown that no other microbes colonize the trophosome in living
animals apart from Endoriftia [4, 11, 14, 15, 16, 17]. Surprisingly, preliminary FISH using the
symbiont-specific and the bacterial probe mix EUB338 I, II, III, which targets most bacteria
simultaneously on the incubated trophosome pieces revealed no microbial fouling during host
tissue degradation in our escape experiments. Therefore, we investigated whether selected
Gram-positive and Gram-negative bacterial strains, or a fungus were inhibited in growth due
to the presence of trophosome pieces and ethanol supernatants (derived from fixation). The
trophosome samples were either freshly collected (representing the metabolism of living host
and symbionts) or incubated under simulated deep-sea and hydrothermal vent conditions
(representing dead host and living symbionts initially or dead host and dead symbionts at later
time points). Further, we analyzed the chemical composition of the ethanol supernatants of
fixed fresh and incubated trophosome samples with liquid chromatography-mass spectrometry
(LC-MS) and tested whether the abundance of the identified compounds correlates with the
inhibiting effect on the growth of the tested microbes.

Materials and Methods

Ethical statement
The research in this study is in according with the "Good Scientific Practice" of the University
of Vienna. The field studies at the East Pacific Rise open ocean environment were conducted at
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deep-sea hydrothermal vents, which are not a private property. The cruise in 2010 to the East
Pacific Rise was under the responsibility of Ifremer, with the Chief Scientist Francois Lallier.
The cruise in 2011 was under the responsibility of Woods Hole Oceanographic Institute, with
the Chief Scientist Scott Nooner. We further confirm, that the field studies did not involve
endangered or protected species. All specimens collected were treated appropriately and just
used for scientific and research purposes. The minimal amount of specimens needed for the
experiments was collected.

Sample collection and preparation
Riftia pachyptila tubeworms were collected in May 2010 by R/V L’Atalante with the submers-
ible Nautile and in October 2011 by R/V Atlantis and ROV Jason at hydrothermal vents at the
East Pacific Rise. Tubeworms were collected at the end of each dive, transported unpressurized
to the surface within 1.5 h, dissected into trophosome and skin pieces, which were either pre-
pared for the incubations or directly fixed in 100% ethanol or in liquid nitrogen within 15 min.
To follow the degradation process of trophosome over time aboard the ship, 0.4 g (wet weight)
of freshly dissected trophosome (a medium sized worm of 20 g wet weight has 3 g of tropho-
some, [18, 19] was incubated in high-pressure flow-through vessels at 250 bar with 0.2 μm ster-
ile-filtered sea water at 4°C (cold condition) without flow to simulate deep-sea conditions of
bottom water with 175 μmol�L−1 oxygen [20] and about 2–3°C at the basalt surfaces in the
axial summit trough of the EPR [21]. To approximate vent habitat conditions for thriving Rif-
tia [22, 23, 24] and previous maintenance conditions [25], simulated vent conditions (short
warm conditions) were performed at 250 bar and a continuous flow (1 mL�min-1) flow at
22.4 ± 0.6°C, 280 ± 48 μmol�L−1 SH2S [i.e., sum of all forms of dissolved sulfide; short sulfide]
[23] and 107 ± 29 μmol�L−1 oxygen in microporous specimen capsules for one day and up to
ten days [13]. During experiments, the sulfide concentration [23], salinity and temperature
were monitored continuously. As control, trophosome was fixed in 100% ethanol to kill symbi-
onts prior to one day of high-pressure vessels incubation. Incubated trophosome was fixed in
100% ethanol or frozen in liquid nitrogen (S2 Table).

Fluorescence in situ hybridization and transmission electron microscopy
For fluorescence in situ hybridization (FISH), trophosome from incubation experiments and
fresh trophosome fixed in 100% ethanol was embedded in LR-White Acrylic resin medium-
grade (London Resin Company Ltd.) according to [11]. For transmission electron microscopy
(TEM), fresh and incubated trophosome was fixed in a mixture of 5% glutaraldehyde and 4%
formaldehyde in 0.08 M sodium phosphate buffer and embedded in Low-Viscosity Resin
medium-grade (Agar Scientific). 1 μm semi-thin sections for FISH and 70 nm ultrathin sec-
tions for TEM were cut using a Leica EM UC7 ultramicrotome. FISH on semi-thin section was
performed according to Nussbaumer et al. (2006). Sections were hybridized simultaneously
with the symbiont-specific probe RifTO445 [11] labeled in either FITC or Cy3 and the general
bacterial probe mix EUB338 I, II, III labeled in either Cy3 or FITC (S1 Table). The nonsense
probe NON-388 was used with the same fluorescence label as the probes on each slide of the
treatments separately as negative control. 4',6-Diamidino-2-phenylindole (DAPI) was used as
counterstain. Microscopic analyses were performed with a Zeiss Axio Imager epifluorescence
microscope. For TEM investigations, ultrathin sections were stained with uranyl acetate for 25
min or gadolinium for 15 min and lead citrate for 7 min and analyzed with a Zeiss EM 902
transmission electron microscope.
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Antimicrobial bioassay
Growth inhibition by freshly fixed and incubated trophosome and freshly fixed skin material
was tested for the following organisms: Bacillus subtilis (Firmicutes), grown in lysogeny broth
(LB) at 37°C; Listeria welshimeri (Firmicutes), grown in brain-heart infusion (BHI) at 37°C;
Mycobacterium smegmatis (Actinomycetales), LB at 37°C; Staphylococcus aureus (Firmicutes),
LB at 37°C as representatives of Gram-positive bacteria; Vibrio cholerae (Gammaproteobac-
teria), LB 37°C; Burkolderia cepacia (Betaproteobacteria), LB 37°C; Flavobacterium johnsoniae
(Bacteroidetes), LB 30°C; Escherichia coli (Gammaproteobacteria), LB 37°C as representatives
of Gram-negative bacteria, and the eukaryote Saccharomyces cerevisiae (Saccharomycetaceae),
Yeast Peptone Dextrose (YPD) 30°C. Prior to plating, bacterial cultures were grown over night
to the logarithmic phase and spread equally on plates. To test for growth inhibition of bacterial
strains, 0.08 g frozen skin, 0.08 g freshly fixed or incubated frozen trophosome or trophosome
homogenized in 50 μL 0.1M sodium phosphate buffer (PBS) pH 7.4 was placed on freshly
plated BHI or LB agar medium plates and incubated at the indicated temperature over night.
Each of the experiments was carried out at least twice. Additionally, the ethanol supernatant of
fixed trophosome was evaporated in a Concentrator plus Vacufuge1 (Eppendorf). The residue
was mixed with 20 μL PBS. Filter discs soaked with 10 μL of this solution were used for inhibi-
tion assays as described above. As controls, 1 μL of ampicillin dissolved to different concentra-
tions in PBS (100, 20, 10, 5, and 2 mg/mL) and PBS without antibiotic (vehicle control) were
used on each of the plates. Results were documented photographically and the zone of inhibi-
tion was measured on the photographs. We used three individual plates for each trophosome
piece, incubation experiment and bacterial strain tested. Different tubeworm specimens were
used in each incubation experiment. One plate per bacterial strain was used to test for the
inhibitory effect of freshly fixed skin (S2 Table).

High-performance liquid chromatography—mass spectrometry
To identify the potential antimicrobial compounds in the trophosome, the ethanol supernatant
of the fixed, fresh and incubated trophosome samples and the ethanol supernatant of the skin
were analyzed by high-performance liquid chromatography (HPLC) with charged aerosol
detection (CAD) and HPLC-mass spectrometry (MS). The CAD is a universal detector that
serves to examine relative quantities of the non- and semi-volatile constituents [26]. These
analyses were performed on an UltiMate 3000 RSLC-series system (Dionex/Thermo Fisher Sci-
entific, Germering, Germany) coupled in parallel to a Corona ultra RS charged aerosol detector
(CAD, Dionex/Thermo Fisher Scientific) and an HCT 3D quadrupole ion trap mass spectrom-
eter equipped with an orthogonal ESI source (Bruker Daltonics, Bremen, Germany). Separa-
tion was carried out on an Acclaim 120 C18, 2.1 x 150 mm, 3 μmHPLC column (Dionex/
Thermo Fisher Scientific) using 0.1% aqueous formic acid and acetonitrile as mobile phase A
and B, respectively. Gradient elution started with a 2 min isocratic step with 5% B, followed by
a linear increase to 95% B in 45 min, and finally a column cleaning and re-equilibration step.
The flow rate was 0.5 mL/min and the column oven temperature was set to 25°C. After passing
the DAD, the eluate flow was split 4:1 between the CAD and the MS, respectively. The CAD
nebulizer temperature was 35°C and the ESI ion source was operated as follows: capillary volt-
age: +3.5/-3.7 kV, nebulizer: 26 psi (N2), dry gas flow: 9 L/min (N2), and dry temperature:
340°C. Low-energy collision-induced dissociation (CID) mass spectra were obtained in time-
scheduled experiments using helium as collision gas, an isolation window of Δm/z = 2, and a
fragmentation amplitude of 0.7 V.

To confirm the tentative identifications achieved with the above system, high-resolution
mass spectra were recorded on a maXis HD ESI-Qq-TOF mass spectrometer (Bruker
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Daltonics) that was also connected to an UltiMate 3000 RSLC-series system. The separation of
one typical sample was performed with the above described HPLC method and the following
ESI ion source settings were applied: capillary voltage: ±4.5 kV, nebulizer: 2.0 bar (N2), dry gas
flow: 8.0 L/min (N2), and dry temperature: 200°C. The sum formulas of the detected ions were
determined using Bruker Compass DataAnalysis 4.2 based on the mass accuracy (Δm/z�
2 ppm) and isotopic pattern matching (SmartFormula algorithm). The freshly fixed tropho-
some was analyzed in triplicates from three different specimens. For the incubated tropho-
some, the ethanol supernatant from one experiment and one specimen was analyzed. For the
mass spectrometric analysis we used the ethanol supernatants of three specimens (S2 Table).

Statistical analysis
The peak areas of each of the five lipid compounds as obtained by HPLC-CAD analyses of the
ethanol supernatants of freshly fixed and incubated trophosome and of the skin were correlated
to the measured inhibition zone in the assay (S1 Data). To determine correlations between the
lipid compounds and the inhibitory effect of the freshly fixed and incubated trophosome and
freshly fixed skin, Spearman correlation coefficients with significance levels (��� p< 0.001,
�� p< 0.01 and � p< 0.05) were calculated in R.

Results
All bacterial cells in the trophosome of freshly collected animals were simultaneously labeled
with the general EUB probe mix, targeting most bacteria, the symbiont-specific probe, and
DAPI. The results confirmed earlier studies that found no other microbes than Endoriftia liv-
ing in the trophosome [11, 14, 15, 17]. Surprisingly, however, when the trophosome was incu-
bated for up to six days under cold conditions (simulating the deep-sea) and warm conditions
(simulating hydrothermal vents), still no other microbes were found to colonize the decaying
host tissue (Fig 1a–1e), despite the fact that about 103−105 prokaryotes were present in 1 mL of
incubation water as determined by general bacterial probe mix and DAPI counts.

The symbiont-specific and the general EUB probe mix signals were still positive in the tro-
phosome sections obtained after cold incubation for six days (Fig 1c), while there were no
FISH and DAPI signals after six days of warm incubation (Fig 1e, S1 Table). Trophosomes
fixed in ethanol to kill both, host and symbiont, prior to incubations did not show a FISH or
DAPI signal after one day of cold incubation. These findings go hand in hand with symbiont
degradation during experimental incubations [13]. Freshly fixed specimens exhibited intact
symbiont outer, cytoplasmic, and sulfur vesicle membranes in TEM sections (Fig 1f). The
membrane integrity of symbionts decreased with the time of incubation, albeit at different time
scales under cold and warm conditions. After one day or six days of cold incubation as well as
one day of warm incubation, symbiont membranes were still intact (Fig 1g–1i). In contrast,
after six days of warm incubation, the entire symbiont tissue including the membranes was
mostly disintegrated (Fig 1j). Differences in the rate of degradation between the dead host tis-
sue and the symbiont were clearly discernible by TEM, which revealed disintegrated symbio-
some membranes of host origin, but mostly intact symbiont membranes after six days of cold
incubations and after one day of warm incubations. This indicates that the symbionts died dur-
ing the warm incubations between one and six days, while during cold incubations they
remained alive up to six days.

To assess the antimicrobial effect of the trophosome, we performed an antimicrobial assay.
Several bacteria (Vibrio cholerae, Escherichia coli, Burkolderia cepacia) and the fungus Saccha-
romyces cerevisiae were not inhibited in growth in the presence of freshly fixed trophosome
and skin pieces. Freshly fixed trophosome, however, inhibited the growth of the Gram-positive
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Fig 1. Decay of fresh and incubated trophosome over time under cold and warm incubation
conditions. a, f) Fresh trophosome, b, g) one day cold incubated trophosome, c, h) six day cold incubated
trophosome, d, i) one day warm incubated trophosome, e, j) six day warm incubated trophosome. a-e)
Fluorescence in situ hybridization (FISH) on LR-White sections of fresh and incubated trophosome shows a
perfect overlap of signals for the symbiont specific and general bacterial probe mix. Red: EUB I, II, III mix;
green: symbiont probe RifTO445; blue: DAPI; scale bars: 20 μm. f-j) Transmission electron micrographs
(TEM) of fresh and incubated trophosome. A star indicates symbiont presence in the trophosome; black
arrow: symbiont outer and cell membrane; white arrow: host symbiosome membrane; scale bars: 500 nm.

doi:10.1371/journal.pone.0146446.g001
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bacteria Bacillus subtilis, Listeria welshimeri,Mycobacterium smegmatis and Staphylococcus
aureus and the Gram-negative Flavobacterium johnsoniae, assessed by the presence of inhibi-
tion zones of 0.11–3.06 mm in antimicrobial assays (S3 Table). Fig 2 displays the inhibition of
Bacillus subtilis and Listeria welshimeri by the freshly fixed trophosome (Fig 2a and 2g, respec-
tively), by the trophosome after one day of cold incubation (Fig 2b and 2h), after six days of
cold incubation (Fig 2c and 2i), after one day of warm incubation (Fig 2d and 2j) and after six
days of warm incubation (Fig 2e and 2k). Also ethanol supernatant samples (i.e., the ethanol
used to preserve the trophosomes), after evaporation of the solvent and dissolution in phos-
phate buffered saline (PBS), showed the same inhibitory effect on bacterial growth as the tro-
phosome for all samples analyzed, indicating the presence of ethanol-soluble antimicrobial
compounds in the trophosome. The inhibition of bacterial strains varied in relation to incuba-
tion time and conditions (Fig 3, S3 Table). Freshly fixed skin pieces were not inhibiting the
growth of these strains, which is displayed in Fig 2f and 2l for Bacillus subtilis and Listeria wel-
shimeri, respectively.

For all antimicrobial bioassays, three different controls were conducted: 1) Ethanol-fixed
samples of trophosome prior incubation (with dead host and dead symbiont) inhibited the
growth of Bacillus subtilis after half a day and one day of incubation under cold, high pressure
conditions, while none of the other strains was inhibited in growth. Additionally, pure ethanol
was tested for inhibition of the growth but did not inhibit any of the strains tested. 2) We tested
whether PBS alone inhibits growth and found no inhibition on any strain, while 3) the PBS
control with ampicillin showed an inhibition of bacterial growth on all strains tested.

Since the ethanol supernatants showed comparable antimicrobial effects to the respective
tissue samples, we analyzed the former by LC-MS to identify the constituents responsible for
this activity. All ethanol supernatants of freshly fixed and incubated trophosome samples
showed an abundant pair of compounds eluting at 28.3 min and 29.0 min (Fig 4a–4d). Based
on the typical fragmentation pattern and the sum formula of C21H42NO7P obtained by high-
resolution mass spectrometry (S1 Data), these two main constituents were identified as lyso-
phosphatidylethanolamines (C16:1), with the first peak most likely being 1-hydroxy-2-palmito-
leyl-sn-glycero-3-phosphoethanolamine (2-palmitoleyl-1-lyso-PE, 1-LPE) and the second
peak most probably corresponding to 1-palmitoleyl-2-hydroxy-sn-glycero-3-phosphoethano-
lamine (1-palmitoleyl-2-lyso-PE, 2-LPE) [27, 28, 29, 30]. In addition, free fatty acids—mainly
palmitoleic acid (C16:1), palmitic acid (C16:0), and oleic acid (C18:1)—were detected in freshly
fixed and incubated trophosome samples (Fig 4a–4c). In contrast, LPEs, palmitoleic acid and
oleic acid were detected only in very low abundance in ethanol supernatants of three freshly
fixed skin samples (Fig 4d).

A comparison of the peak areas of the LPEs and fatty acids, obtained by HPLC-CAD analy-
sis of the ethanol supernatants (Fig 3, S3 Table), between treatments of trophosome tissue
revealed positive correlations between contents of 1-LPE and 2-LPE, between 2-LPE, palmito-
leic acid and oleic acid, and between all three fatty acids (Table 1). Overall, while all five identi-
fied components were already present in the freshly fixed trophosome, their abundance
increased upon incubation. The content of LPEs was higher after cold compared to warm incu-
bation, particularly after one day cold incubation. In contrast, the free fatty acids became highly
abundant upon incubation for six days under warm conditions, whereby the content of mono-
unsaturated fatty acids showed a stronger increase (Figs 3 and 4c, S3 Table).

The peak areas of all three detected fatty acids, namely palmitoleic acid (C16:1), palmitic acid
(C16:0), and oleic acid (C18:1) correlate with the inhibition of Bacillus subtilis and Listeria wel-
shimeri (p< 0.05 for C16:1 and C18:1, p< 0.01 for C16:0) (Table 1). The growth inhibition
induced by freshly fixed trophosomes corresponds to a zone of inhibition of 0.22 mm diameter
for Bacillus subtilis and to 0.37 mm diameter for Listeria welshimeri. The zone of inhibition for

Tubeworm Trophosome Inhibits Bacterial Growth

PLOS ONE | DOI:10.1371/journal.pone.0146446 January 5, 2016 7 / 18



Fig 2. Agar diffusion test for the inhibition of bacterial growth by freshly fixed and gradually degraded
trophosome and freshly fixed skin. Inhibition of growth of a-f) Bacillus subtilis and g-l) Listeria welshimeri
by a, g) freshly fixed trophosome, b, h) one day cold incubated trophosome, c, i) six days cold incubated
trophosome, d, j) one day warm incubated trophosome and e, k) six days warm incubated trophosome. f, l)
No growth inhibition of Bacillus subtilis and Listeria welshimeri by freshly fixed Riftia skin. The inhibition of
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Bacillus subtilis increased to 0.28 mm and 0.80 mm diameter when testing the trophosome
after one day and six days of cold incubation, respectively. In the case of warm incubation, the
zone of inhibition was 0.11 mm after one day, but showed a pronounced increase to 1.67 mm
for six days incubated trophosome. The zone of inhibition for Listeria welshimeri was 0.39 mm
and 1.11 mm for one day and six days cold incubated trophosome, respectively, and was more
pronounced with 0.83 mm and 1.94 mm in one day warm and six days warm incubated tro-
phosome, respectively. In correlation, a low peak area for the free fatty acids corresponding to a
low content in the freshly fixed trophosome, with an increase in peak area for the cold incu-
bated trophosome and a strong increase for the six days warm incubated trophosome, was
found. The skin, which showed very low peak areas for all three fatty acids, was not inhibiting
growth of any of the strains tested (Fig 3, S3 Table).

both strains by the trophosome correlates significantly with the peak areas of the free fatty acids from the
HPLC-CAD analysis. Star indicated zone of inhibition, tr: trophosome, sk: skin, scale bars: 1 mm.

doi:10.1371/journal.pone.0146446.g002

Fig 3. a)Measured inhibition zones in mm induced by freshly fixed and incubated (cold and warm)
trophosome samples and freshly fixed skin on Bacillus subtilis, Listeria welshimeri, Flavobacterium
johnsoniae,Mycobacterium smegmatis and Staphylococcus aureus. b) Absolute peak areas of the lipids
2-palmitoleyl-1-lyso-PE (1-LPE), 1-palmitoleyl-2-lyso-PE (2-LPE), palmitoleic acid (C16:1), palmitic acid
(C16:0), and oleic acid (C18:1) obtained by HPLC-CAD analysis of the corresponding ethanol supernatants.
The correlation of the inhibition zone of Bacillus subtilis and Listeria welshimeriwith the peak areas of the
three free fatty acids is highlighted with the colours. sk: skin, tr: trophosome (S3 Table).

doi:10.1371/journal.pone.0146446.g003
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Fig 4. HPLC-CAD chromatograms of the ethanol supernatant after fixation of a) freshly fixed
trophosome, b) trophosome after one day warm incubation, c) trophosome after six days warm
incubation, and d) freshly fixed skin ofRiftia pachyptila. Peaks 1–5were tentatively identified by
HPLC-MS as 2-palmitoleyl-1-lyso-PE (1-LPE), 1-palmitoleyl-2-lyso-PE (2-LPE), palmitoleic acid, palmitic
acid, and oleic acid, respectively.

doi:10.1371/journal.pone.0146446.g004
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No correlation between the content of LPEs and the inhibitory effect on the strains Bacillus
subtilis and Listeria welshimeri was detected. Likewise, no correlation with any lipid com-
pounds and the inhibited bacterial strains Flavobacterium johnsoniae andMycobacterium
smegmatis was found (Table 1, Fig 3, S3 Table).

Discussion
Riftia is one of the fastest growing invertebrates we know of [31]. This requires a metabolically
highly active host supplying the symbiont with molecular carbon dioxide, sulfide, oxygen, and
nitrogen—the latter mainly in the form of nitrate and ammonium—for the symbionts to be
chemoautotrophically active [2, 3, 32]. Fixed carbon not only serves the symbionts’ growth but
also nourishes the gutless host [8, 10, 33].

While this nutritional interplay leads to proliferation rates as high as observed in cancer
cells or wound healing processes [9], at the same time the host controls the population density
of the symbiont in a cell cycle with terminal differentiation. Growth of the trophosome tissue
occurs through stem cells in the center of each lobule and leads to new lobules as well as to the
renewal of bacteriocytes that cycle from the center towards the periphery of each lobule where
apoptosis occurs. Therefore, the trophosome tissue exhibits not only high proliferation rates
but also relatively high apoptosis rates. In addition, symbionts are continuously digested in the
periphery and replaced by dividing symbionts in the center [9].

The detection of relatively high amounts of lysophosphatidylethanolamines and fatty acids
in the trophosome may reflect the high turnover of host and symbiont cells in the trophosome,
with cell death resulting in degradation of tissue and membranes. While LPEs are present in
small quantities in eukaryote and bacterial membranes [27, 34], low free fatty acid concentra-
tions are indicative for low phospholipid breakdown and low enzymatic and lipolytic activity
[35, 36]. During natural degradation of membranes, LPEs and free fatty acids are products of
phospholipid hydrolysis by phospholipases [28].

Differences in amounts of LPEs and fatty acids in the freshly fixed trophosome and freshly
fixed skin of Riftiamay be explained by the different cell kinetics. Renewal of the skin tissue is
accomplished by high proliferation and little apoptosis leading to fast growth [9]. The lack of

Table 1. Spearman correlation coefficients between the peak areas of 2-palmitoleyl-1-lyso-PE (1-LPE), 1-palmitoleyl-2-lyso-PE (2-LPE), palmitoleic
acid (C16:1), palmitic acid (C16:0), and oleic acid (C18:1) and the growth inhibitory effect of freshly fixed and incubated trophosome and skin on
Bacillus subtilis, Listeria welshimeri, Flavobacterium johnsoniae, andMycobacterium smegmatis. Correlations are between 1-LPE and 2-LPE,
between 2-LPE, palmitoleic acid and oleic acid, and between all three fatty acids. The peak areas of all three fatty acids correlate with the inhibition of Bacillus
subtilis and Listeria welshimeri.

B. subtilis L. welshimeri F. johnsoniae M. smegmatis 1-LPE 2-LPE C16:1 C16:0

L. welshimeri 0.83*

F. johnsoniae 0.51 0.34

M. smegmatis -0.21 -0.09 0.07

1-LPE 0.49 0.49 -0.37 -0.09

2-LPE 0.71 0.60 -0.14 -0.27 0.94**

C16:1 0.89* 0.83* 0.34 -0.39 0.66 0.83*

C16:0 0.94** 0.94** 0.34 -0.27 0.60 0.77 0.94**

C18:1 0.89* 0.83* 0.34 -0.39 0.66 0.83* 1.00*** 0.94**

Significance levels are:

*** p < 0.001,

** p < 0.01 and

* p < 0.05.

doi:10.1371/journal.pone.0146446.t001
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symbionts in the skin as well as little host cell death consequently results in low amounts of
LPEs and fatty acids detected in the skin.

The lipid composition of Riftia detected in this study is very similar to the lipid composition
of the close relative Ridgeia piscesae with the fatty acids C16:0, C16:1 and C18:1 (found in tropho-
some and plume in Ridgeia) and it is characteristic for a bacteria-based diet of these hydrother-
mal vent invertebrates [37, 38]. The two sulfur-oxidizing bacterial markers C16:1 and C18:1

occur in high amount in the skin and plume of Riftia and are indicative that the nutrition of
Riftia is based on the translocation of fixed carbon from thiotrophic bacteria to the host [35,
39] Relatively high levels of phospholipids and also sterols point to a membrane structure func-
tion in both tubeworm species rather than to a role as energy reserve [35], being consistent
with a relative constant food source through thiotrophic bacteria [40]. Furthermore, no other
LPEs (e.g., C16:0, C18:0, C18:1) than C16:1-LPEs were detected in the trophosome of Riftia, which
might point to a special lipid composition in the trophosome or the presence of specific
enzymes, which exclusively produce the LPEs found.

Importantly, the five lipid compounds analyzed in this study do not represent the full range
of trophosome’s lipid composition, since only the least lipophilic ones are detectable with the
employed HPLC method. A more comprehensive analysis of the lipid composition, including
sterols and triacylglycerols, was shown for Riftia in [35] and for the gutless siboglinid Oligobra-
chia mashikoi in [41]. Nevertheless, all fatty acids found in the Riftia trophosome in this study,
as well as phosphatidylethanolamines, are also present in the Oligobrachia mashikoi tropho-
some [41]. This beardworm also harbors sulfur-oxidizing symbionts but in a very simple, two-
layered trophosome with few symbionts only [42, 43, 44]. The lipid composition of the tropho-
some was similar to the lipid composition in the skin of Oligobrachia mashikoi [41], which
might be explained by the lower symbiont content in the trophosome compared to the one in
Riftia.

We performed our experiments to investigate the escape of the symbiont from dead host
trophosome tissue. We found that the symbiont was alive for about one day but died between
day one and day six under warm vent conditions (Fig 1). In contrast, little signs of symbiont
death were detected within six days of incubations under cold conditions. Decomposition of
eukaryotic tissue through autolysis, the self-digestion by endogenous enzymes, begins within
minutes after the death without bacterial influence [45, 46]. Accumulation of waste products
with cell and lysosomal membrane disintegration, results in the release of enzymes (proteotylic,
lipolytic, glycolytic) into the cytoplasm and subsequently in the breakdown of e.g., lipids [45,
47, 48]. The cell membrane releases nutrients, including fatty acids, as an energy and food
source for bacteria and thus facilitates putrefaction [45, 48]. Bacterial decomposition of tissue
with an increase in autolysis and putrefaction [48] was shown for tissue stored at 30°C, while
refrigeration decelerated these processes [49].

Our ultrastructural analysis allows us to formulate a hypothesis on symbiont viability in the
course of host degradation, i.e., in relation to LPEs and fatty acid concentration and in compar-
ison to autolytic processes studied in forensic science (Fig 5): 1) Initially, host death results in
degradation of host membranes and should theoretically increase the concentration of LPEs
and free fatty acids. However, due to host death, digestion of symbionts also ceases. We
hypothesize that the in situmembrane degradation of symbionts under production of LPEs
and fatty acids quantitatively exceeds the degradation of host membranes upon host death, and
therefore these compounds decrease after one day of cold and warm incubations as well as
after six days of cold incubations. 2) Upon symbiont death between day one and day six of
warm incubations, not only the remaining host undergoes autolysis, but also the symbionts.
Therefore LPEs and fatty acid concentrations increase.
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It has been long known that no other microbes except Endoriftia live in the trophosome of
adult tubeworms [4, 14, 15, 16, 17]. To our surprise, however, no microbes were found to colo-
nize dead trophosome tissue under warm as well as cold conditions for up to six days despite
the fact that plenty of marine prokaryotes were present in our incubation water.

Our inhibition experiments support previous findings of antimicrobial effects of free fatty
acids, however, also revealed that: 1) Some microbes, like Vibrio cholerae, Escherichia coli, Bur-
kolderia cepacia and the eukaryote Saccharomyces cerevisiae were not inhibited by the tropho-
some tissue nor by the dried residue of ethanol supernatants after their fixation, 2) The bacteria
Flavobacterium johnsoniae,Mycobacterium smegmatis and Staphylococcus aureus were inhib-
ited in growth. However, no correlation between growth inhibition and abundance of LPEs or
fatty acids could be detected. Thus, there is currently no indication how this inhibition was
accomplished and further analyses need to be carried out. 3) Inhibition efficacy against Bacillus
subtilis and Listeria welshimeri correlated with the abundance of the detected fatty acids. This
indicates that the antimicrobial activity against these two bacterial strains might be indeed due

Fig 5. Symbiont viability in the course of host degradation. In fresh specimens, the host and symbiont are alive and the trophosome and skin samples
represent the lipid composition of the holobiont. Upon host death, i.e., after trophosome incubation for one day of cold and warm incubations and after six
days of cold incubations in our experiments, symbiont digestion ceases. The in situmembrane degradation of symbionts quantitatively exceeds the
degradation of host membranes upon host death, and therefore LPEs and fatty acids decrease. Symbiont and remaining host autolysis between day one and
day six of warm incubations results in an increase of the concentration of free fatty acids. Red: host alive; pink: symbiont alive; dark green: host dead; light
green: symbiont dead.

doi:10.1371/journal.pone.0146446.g005
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to the amount and nature of fatty acids produced in the course of initially host degradation
alone and later host and symbiont degradation.

Overall, these antimicrobial effects upon host death may support Endoriftia to escape the
dead host. Due to their amphiphilic properties, lysophospholipids have an antifouling effect,
which can prevent biofilm formation [50] and potentially bacterial overgrowth on sessile tube-
worms. In general, LPEs and fatty acids are known to have antimicrobial effects. While an anti-
microbial and antifungal effect of 1-LPE (C16:1) is described in the housefly larvaeMusca
domestica [28], the antimicrobial and antifungal effect of fatty acids was shown in several stud-
ies [51, 52, 53, 54] The lysophospholipid-dependent mechanism for selective inhibition mainly
of Gram-positive and not of Gram-negative bacteria is supposed to be mediated through an
inhibitory effect on bacterial K+-transport systems [55]. Free fatty acids target the cell mem-
brane and are responsible for the disruption of the electron transport chain [56, 57, 58]. Further
they also influence the oxidative phosphorylation and therefore interfere with the cellular
energy production [59, 60]. Gram-negative bacteria are generally more resistant to medium-
and long-chain fatty acids and their derivatives than Gram-positive strains due to their cell
wall lipopolysaccharides preventing lipids to accumulate in cell membrane and subsequently to
enter the cell [51, 52, 61, 62, 63]. The growth of the Gram-positive bacteria Staphylococcus
aureus, Carnobacterium piscicola, Lactobacillus curvatus, and Lactobacillus sake was inhibited
by palmitoleic acid, while palmitic acid and oleic acid did not have any effect on these and sev-
eral other bacterial strains, including the Gram-negative bacteria Brochothrix thermosphacta,
Pseudomonas fluorescens and Serratia liquefaciens [51, 53]. These results go hand in hand with
the results of this study, where the majority of Gram-positive bacteria was inhibited, while the
only Gram-negative bacterium that was inhibited in growth by trophosome was Flavobacter-
ium johnsoniae.

As no or only few other microbes colonize dead host tissue, Endoriftia faces less or no com-
petition during this critical process. Therefore, the lipid compounds detected in our study,
which are likely derived from natural tissue autolysis, might support the release of symbionts
into the ambient environment upon host death. Further, the symbiont is no longer actively
supplied with any nutrients for carbon fixation from the host after its death. The symbiont
might still potentially receive sulfide from tissue degradation and is able to fix carbon as long as
oxygen is not depleted. Further, it might be speculated that under these conditions Endoriftia
switches to a heterotrophic lifestyle and feeds on the dead host until it escapes. Post mortem
processes in eukaryotes include also putrefaction with bacterial hydrolysis of triglycerides
resulting in a mixture of free fatty acids [64, 65]. Whether Endoriftia plays an active role in the
decomposition of the trophosome remains to be studied.
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et al., 2006) is specific for the 16S rRNA of the Riftia pachyptila, Tevnia jerichonana and Oasi-
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