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Abstract

A striking diversity of compound eye size and shape has evolved among insects. The number of ommatidia and their size
are major determinants of the visual sensitivity and acuity of the compound eye. Each ommatidium is composed of eight
photoreceptor cells that facilitate the discrimination of different colours via the expression of various light sensitive
Rhodopsin proteins. It follows that variation in eye size, shape, and opsin composition is likely to directly influence vision.
We analyzed variation in these three traits in D. melanogaster, D. simulans and D. mauritiana. We show that D. mauritiana
generally has larger eyes than its sibling species, which is due to a combination of larger ommatidia and more ommatidia. In
addition, intra- and inter-specific differences in eye size among D. simulans and D. melanogaster strains are mainly caused by
variation in ommatidia number. By applying a geometric morphometrics approach to assess whether the formation of
larger eyes influences other parts of the head capsule, we found that an increase in eye size is associated with a reduction in
the adjacent face cuticle. Our shape analysis also demonstrates that D. mauritiana eyes are specifically enlarged in the dorsal
region. Intriguingly, this dorsal enlargement is associated with enhanced expression of rhodopsin 3 in D. mauritiana. In
summary, our data suggests that the morphology and functional properties of the compound eyes vary considerably within
and among these closely related Drosophila species and may be part of coordinated morphological changes affecting the
head capsule.
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Introduction

Compound eyes are composed of subunits called ommatidia

and the great diversity of eye sizes and shapes among insects [1] is

mainly the result of evolutionary changes in either ommatidia

number (1 in some ant workers to 30000 in dragonflies) or

ommatidia diameter (5–50 mm) [1–3]. These two parameters

significantly influence the optical properties of the compound eye.

The larger the ommatidia diameter the more light can be

captured. However, the higher sensitivity of larger lenses has a

negative impact on the resolution achieved, which is improved

with decreasing diameter [4–8]. Therefore, a compound eye that

is composed of few ommatidia with large lens diameters is highly

sensitive to low light levels but the correspondingly large

interommatidial angles result in low acuity. Conversely, the same

size of eye made up of many smaller ommatidia would have

reduced interommatidial angles and, therefore, could provide

higher acuity. This trade-off between sensitivity and acuity is

further complicated by the fact that the resolution is limited by

diffraction when ommatidia get smaller [9]. Therefore, a vast

number of specializations in insect compound eye composition

have evolved in order to balance these constraints and optimize

vision for specific needs. For example, dorsal-frontal locally

restricted acute zones with large ommatidia and reduced inter-

ommatidial angles that produce increased resolution to optimise

the pursuit and capturing of prey or mating partners have evolved

in several insects [9–13].

Acute zones with larger ommatidia, however, require more

space within the eye, and indeed within the whole head capsule,

resulting in the formation of diverse eye and head shapes. In males

of the common house fly, Musca domestica, the frontal-dorsal acute

zone in each eye, the so-called ‘‘love spots’’ [10,14] are associated

with dorsally enlarged eyes compared to females. A similar sexual

dimorphism in size of the dorsal part of the eye is also observed in

other dipterans [10,15]. Interestingly, the frontal-dorsal enlarge-

ment of male eyes in these flies is associated with a reduction in the
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face cuticle tissue between the eyes suggesting that there may be a

developmental trade-off between retinal and face cuticle tissue

[15]. A negative correlation of retinal field and face size has been

reported previously in both males and females of several Drosophila

species, including D. melanogaster [16–18], and it is in this species

that compound eye development and functional morphology is

best understood [19].

In addition to optical properties like sensitivity and acuity, key

experiments in D. melanogaster have shown that the ability of these

flies to detect different fractions of the light is heterogeneously

distributed throughout the eye [20–23]. Each ommatidial unit

consists of a cluster of eight light sensitive photoreceptor (PR) cells

(R1–R8) and surrounding associated cone and pigment cells that

form the lens and isolate the PR cells from the light coming from

neighbouring ommatidia [19,24]. Depending on their morphology

and functional properties, the PR cells can be subdivided into

outer PRs (R1 to R6) and inner PRs (R7 and R8). The outer PRs

are organized in a chiral trapezoid and in the center of this ring,

the inner PRs are located on top of each other. The PR cells have

extensively folded membranes, the rhabdomeres, containing

various light sensitive Rhodopsin proteins, which prescribe the

functional properties of the PRs [19]. All outer PRs express the

broad range Rhodopsin 1 (Rh1) that enables motion detection and

facilitates vision in dim light [24,25]. The inner PRs enable colour

vision and the detection of polarized light. The expression of

different Rhodopsins in these cells determines the various

ommatidia subtypes. Approximately 30% of all ommatidia are

of the ‘‘pale’’ type and express the UV-sensitive Rhodopsin 3

(Rh3) in R7 and the blue-sensitive Rhodopsin 5 (Rh5) in R8

enabling them to discriminate among short wavelengths. The

remaining 70% ‘‘yellow’’ type ommatidia detect longer wave-

lengths by expressing the UV-sensitive Rhodopsin 4 (Rh4) in R7

and the green-sensitive Rhodopsin 6 (Rh6) in R8. Both ommatidia

types are distributed stochastically in a ‘salt-and-pepper’ pattern

[23,26–32].

In the dorsal portion of the eye further ommatidia subtypes can

be found including a subset of the ‘‘yellow’’ type ommatidia (10%

of all ommatidia), which co-express both UV-sensitive Rhodopsins

Rh3 and Rh4 in R7 [33]. Further UV sensitivity is achieved in the

ommatidia of the dorsal rim area (DRA) where R7 and R8 both

express Rh3 [29,34].

While several previous studies have reported variation in

ommatidia number in species of the D. melanogaster complex

[35,36] that may be indicative of functional differences in vision,

the extent of intra-specific and inter-specific variation in important

traits such as eye morphology and Rhodopsin expression in these

species is not well understood. A more detailed understanding of

the patterns of variation in eye morphology is likely to inform and

encourage studies of the evolutionary processes that produced

them. Therefore we have characterised variation in eye size and

shape, and the corresponding expression of rhodopsins in different

strains of D. melanogaster, D. simulans and D. mauritiana.

We find that D. mauritiana generally has larger eyes than its

sibling species resulting from either larger ommatidia or more

ommatidia in different strains of this species. We also found

extensive differences in eye size among D. melanogaster and D.

simulans strains caused mainly by variation in ommatidia number.

In all three species, we observed that enhanced eye size is generally

established at the expense of adjacent face tissue. Furthermore, the

eyes of D. mauritiana are also dorsally enlarged relative to the other

species and this is associated with enrichment in the expression of

rhodopsin 3, which is predominantly expressed in dorsal specific

ommatidia types. Taken together our results evidence that there is

extensive variation in eye morphology and rhodopsin expression in

Drosophila that could cause differences in vision within and among

these species.

Materials and Methods

Fly culture, dissections and microscopy
The following Drosophila species and strains were used for the

experiments: D. melanogaster (M36 (14021-0231.36, genome stock),

Oregon R (OreR), Zi372 (a gift from John Pool)), D. simulans (y, v, f

(YVF), w501, Kib32) and D. mauritiana (TAM16, MAV1, w2). All

flies were raised on the same standard cornmeal diet at 25uC with

a 12 hours dark/light cycle. Flies for the rhodopsin qPCR

experiments were raised in complete darkness. The density was

controlled during larval development by limiting the content of

each vial to 40 to 50 freshly hatched L1 larvae. The resulting adult

flies of each strain were then pooled from multiple vials, and

analyzed 3 to 7 days after eclosion.

Additional D. simulans and D. mauritiana strains that were raised

at room temperature, but not controlled for larval density were

also surveyed. Information on these strains is available on request.

Flies were decapitated and the heads mounted on sticky tape

facing upwards. A first leg was also removed from all specimens,

and additionally a wing was taken from D. simulans YVF, D.

mauritiana TAM16 and D. melanogaster M36 strains (note that left or

right wings and legs were taken randomly). Legs and wings were

mounted in Hoyer’s medium. All images were recorded using a

Leica DM5500 compound microscope or a Leica M205 stereo

microscope and a DFC300 Camera.

For SEM images, flies were collected in 70% ethanol. After

cutting specimens midway through the thorax, their heads were

dehydrated in a graded ethanol series and critical point dried in

CO2 (Tousimis Samdri-780). The dried samples were mounted on

stubs with one eye oriented upwards next to the corresponding

first leg. Stubs were sputter-coated with gold (Polaron coater) and

SEM images were taken on a Hitachi S3400N.

Measurements
All statistical analyses and graphical outputs for the measure-

ments described below were performed and generated using R

[37].

Head and eye measurements
Head and eye measurements were obtained using two

approaches. First, for D. simulans YVF, D. melanogaster M36 and

D. mauritiana TAM16, we manually measured the whole eye area,

dorsal (D) and ventral (V) eye area, and the face width (FW) with

the Analysis tools of Adobe Photoshop CS5 (Figure 1A). For dorsal

and ventral eye area measurements, the eye was divided along the

dotted line shown in Figure 1A, which intersects the cuticular

bulge dorsal of the antenna. Differences in the ratio of dorsal to

ventral regions of the eye between species were tested using a

Kruskal-Wallis rank test followed by pairwise Wilcoxon rank tests.

Eye area and face size were also extracted from landmark

annotated frontal head pictures of all specimens analyzed. In this

case, eye area was defined as the area enclosed by the polygon that

arises by connecting the landmarks and semi-landmarks around

the eye (see Figure 1A, left eye) or face area. Since whole eye areas

measured manually or extracted from landmarks were highly

correlated (Spearman’s rank correlation: r2 = 0.98, p,2.2610216),

we only report the landmark based eye areas for all strains here.

Eye size is reported as residuals of eye area and tibia length (to

control for body size variation between individuals, see below).

Differences in eye size between strains were tested using ANOVA

followed by Tukey comparisons.

Eye Evolution in Drosophila
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For D. simulans and D. mauritiana strains examined in our

broader survey of additional strains, eye size in five males and five

females for each strain was measured as eye width (see Figure 1A;

head width HW – face width FW = eye width). Note that HW and

FW are defined by the intersection with the dorsal most part of the

antennae (Figure 1A).

Tibia and wing measurements
In order to estimate the body size of the individuals we also

measured the length of tibia of the first leg. In addition, we

analyzed three traits in one wing of each individual of D.

melanogaster M36, D. simulans YVF and D. mauritiana TAM16 flies.

Fifteen landmarks, which were placed on vein intersections and

around the wing margin (see Figure S1), were recorded using

ImageJ and a custom plugin [38]. Wing size was then estimated by

calculating the centroid size based on raw landmark coordinates

for each wing using MorphoJ [39]. Since the use of either wing size

or tibia length to account for body size (e.g. residuals of regression

lines between body size and eye area) resulted in the same eye size

pattern between strains and species, we used tibia length as a

proxy for body size consistent with previous studies [40,41] with

the exception of the strains examined separately in our broader

survey (Figure S2), where the residuals of regression lines between

eye width and the distance between the wing landmarks 9 and 13

were calculated (Figure S1).

Ommatidia count and facet surface area measurements
The total number of ommatidia per eye was counted manually

from SEM images of the entire eye from each specimen. Using

these images the centre of the eye was defined by first counting the

number of antero-posterior (a-p) rows of ommatidia and by then

intersecting the centre a-p row (marked red in Figure 2A) with the

centre dorsal-ventral row (marked green in Figure 2A), which

starts and ends in the approximate centre of the a-p rows at the

dorsal and ventral extremes of the eye. The number of a-p and

dorso-ventral (d-v) rows are summarized in Table S2 for D.

melanogaster (M36, Zi735), D. simulans (YVF) and D. mauritiana

(TAM16). For high-magnification (1.5 to 1.6 k) SEM images of the

centre of the eye, the specimen was carefully tilted to minimize

perspective projection distortion. Images of the central ommatidia

were taken in SE mode at a working distance of 11 to 13 mm. For

each eye, the area of each ommatidium from a rosette of seven

(marked yellow in Figure 2A,C) was measured using the ImageJ

polygon selection tool, as illustrated in Figure 2C. The mean area

of seven ommatidia per eye was transformed to mean ommatidia

Figure 1. Eye size variation in different strains of three
Drosophila species. A. Frontal view of a D. melanogaster head. The
fifteen white filled circles represent anatomical landmarks (bristle

insertions, intersections of the outlines of the eyes with the dorsal
margin of the head capsule, dorsal most part of the head capsule
between the paired ocelli) and the grey filled circles represent semi-
landmarks on curves (eye outlines, dorsal outline of the head). The eye
area was defined as the area of the polygon defined by the landmarks
around the eye (see left eye). The dotted line illustrates where the eyes
were separated into a dorsal (D) and ventral (V) portion for manual
measurements of dorsal and ventral eye area. The black arrows
represent linear measurements taken to assess face width (FW) and
head width (HW). B. Eye area variation in three Drosophila species. Eye
area is given as residuals of a regression of eye area in mm2 and tibia
length to account for variation in body size. Females (F) and males (M)
are shown separately for each strain. See also Table S3 for the results of
pair-wise comparisons. C. Scaling relationships for the three species
analyzed. Females and males of all three strains per species were
pooled and log-transformed eye areas were plotted against log-
transformed tibia length. Linear regressions are shown for each species
and the respective regression equation is given. The slope of each
regression corresponds to the allometric coefficient a.
doi:10.1371/journal.pone.0037346.g001

Eye Evolution in Drosophila

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e37346



diameter via diameter~2

ffiffiffiffiffiffiffiffiffi
area

p

r
, thus approaching it as the area

of a circle. Differences in ommatidia diameter between species

were tested for using ANOVA. In addition, the ommatidia size

was estimated for at least five males and five females of D.

melanogaster (M36, Zi735), D. simulans (YVF) and D. mauritiana

(TAM16) by dividing the total eye area (as measured on SEM

pictures of lateral eye views) by the number of ommatidia for the

same specimen (see Table S2). Note that this estimate of

ommatidia size was consistent with the direct measurements of

ommatidia size made in females as described above.

Scaling relationships
To investigate if scaling relationships between eye size and tibia

length change between species we regressed log-transformed eye

area values over log-transformed tibia length measurements for

each species (males and females of all three strains per species

pooled). In the resulting linear equation log EyeAreað Þ~
a � log Tibiað Þzb, the slope a is the allometric coefficient

[42–44]. We then tested for differences between species using an

ANCOVA.

Morphometrics
On frontal images of each head 45 landmarks were digitized

using the software tpsDig2 [45] (Figure 1A). Fifteen landmarks are

homologous anatomical landmarks (white dots in Figure 1A); both

coordinates of these landmarks are determined by the specimens’

anatomy. The remaining 30 landmarks are semi-landmarks on

curves (outlines of the eyes and upper outline of the head; grey dots

in Figure 1A). Semi-landmarks are constrained to lie on the

corresponding curve, but the position along the curve cannot be

located unambiguously. In an iterative algorithm they are thus

allowed to slide along the curve until the bending energy between

each individual and the sample mean form is a minimum [46,47].

Bending energy is a measure of the total amount of local

deformation that is necessary to transform one landmark

configuration into another. Through the sliding process the

semi-landmarks acquire geometrically homologous locations with-

in the sample and can be treated in the same way as the

anatomical landmarks in the subsequent statistical analysis.

All 1168 landmark configurations were superimposed by a

Generalized Procrustes Analysis, standardising for position,

orientation, and overall size of the configurations [48,49]. The

resulting Procrustes shape coordinates thus capture information on

the shape of the landmark configurations only. Overall size of the

landmark configurations is measured as Centroid Size (the square

root of the summed squared distances from each landmark to the

centroid).

The effects of two principal components (PCs) of the within-

population distribution of the shape coordinates reflecting

variation in the orientation of the head (not shown) were removed

by projecting the data into the subspace perpendicular to these two

principal components (this is equivalent to considering only the

subsequent principal components, thus, thereafter here called PC

1 and PC 2). In addition, the resulting landmark configurations

were symmetrised by averaging each configuration with its

relabelled reflection [49–51].

We analysed the pattern of differences between sex-specific

population mean shapes by a principal component analysis (PCA)

of the adjusted shape coordinates. We visualized shape differences

by thin-plate spline (TPS) deformation grids and quantified the

amount of differences in terms of Procrustes Distance [52]. The

statistical significance of group mean differences was estimated by

permutation tests based on 10000 random permutations [53].

All morphometric and associated statistical analyses were

carried out in Mathematica 8.0.

Quantitative real-time PCR (qPCR)
For the qPCR we used females of D. melanogaster OreR, D.

simulans Kib32 and D. mauritiana TAM16. Flies raised as described

above were collected 3 to 5 days after eclosion and placed in 15 ml

tubes at 280uC. Approximately 100 to 200 flies were decapitated

by vigorously shaking the tubes and subsequently the heads were

separated from the other body parts with no. 25 and no. 40 brass

sieves [54]. We extracted RNA from those heads with standard

kits (RNeasy, Qiagen) and the reverse transcription was carried

out with the First Strand cDNA synthesis Kit and the Oligo(dT)18

Primer (Fermentas). The quantity and quality of the extracted

RNA and the synthesized cDNA was controlled by concentration

measurements using the fluorescent dye based Qubit technology

(Invitrogen). cDNA synthesis and qPCR was performed with the

same amount of RNA and cDNA, respectively, for each of the

three species.

Primers for qPCR were designed to amplify short 60 to 75 bp

fragments for each of the seven rhodopsin (rh) genes. Additionally,

the primers were designed to span exon-exon boundaries to

Figure 2. Ommatidia number and ommatidia diameter in three
Drosophila species. A. SEM micrograph of the right eye of a female D.
simulans fly. The central a-p row is marked in red, the central d-v row is
marked in green and the central ommatidia are marked in yellow.
Anterior is to the right. B. Total ommatidia number per eye. Box plots
illustrate the distribution of ommatidia numbers of five females per
strain. C. A rosette of seven central ommatidia. Colour markings
correspond to those in A. The red-dotted hexagon around ommatidium
5 is shown as an example of how the surface area of a single
ommatidium was determined. D. Central ommatidia diameter (mean of
seven central facets per specimen) based on ommatidium surface area.
Box plots depict five females per strain.
doi:10.1371/journal.pone.0037346.g002
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prevent the amplification of potential genomic DNA contamina-

tion (exception: rh3 and rh7). For all rh genes except rh6 the same

assay was used for all three species. Due to a single nucleotide

difference in the most conserved region of the three rh6 sequences,

three individual assays were used.

qPCR reactions based on the EvaGreen dye (Solis BioDyne)

were performed twice for three independent cDNA samples for

each opsin and species to account for variation in cDNA synthesis

and well-to-well differences. Non-template controls (cDNA syn-

thesis without RNA template) and RT- controls (cDNA synthesis

reactions where the Reverse Transcriptase was replaced by water)

were performed as negative controls. For each cDNA template

and assay a standard curve with 3 serial dilutions covering a 64-

fold range was defined to calculate template specific PCR

efficiencies (E) [55]. We determined the critical cycle number

(ct) for 10 to 12 replicates for each opsin and species from which

the respective expression level was calculated: Ti~ 1zEið Þcti . We

first calculated relative expression levels for each rhodopsin gene as a

fraction of the sum of total rhodopsin expression [55–58]:

Ti

Tall

~

1

1zEið Þcti

P 1

1zEið Þcti

:

Since rh1 is expressed in R1 to R6 of all ommatidia and expression

level represents approximately 74% of all seven opsins in both D.

melanogaster and D. mauritiana, we related the expression levels of

rh2-rh7 to rh1 (Ti/Trh1) for the analysis. Note that we were not able

to detect the expression of D. simulans Kib32 rh5 unambiguously,

hence we omitted this opsin from the analysis.

The data from this study has been deposited in the Dryad

Repository: http://dx.doi.org/10.5061/dryad.q8758

Results

Eye size variation in the D. melanogaster species
subgroup

To survey eye size in D. melanogaster, D. simulans and D.

mauritiana, we measured eye area in three strains of each of these

three species (Figure 1A). Overall body size differences between

strains and sexes were accounted for by normalizing eye

measurements by the length of the tibia of the first leg.

We found that the D. mauritiana strains TAM16 and MAV1

have larger eyes than all D. melanogaster and D. simulans strains

surveyed (Figure 1B, Table S1; one-way ANOVA:

F(17,597) = 168.37, p,0.0001). A broader survey of eye width

variation using additional D. mauritiana and D. simulans strains

further indicates that D. mauritiana tends to have larger eyes (Figure

S2). However, we did find an exception to this pattern because the

white-eyed strain of D. mauritiana has significantly smaller eyes than

the other strains of D. mauritiana and falls within the range of eye

areas of the other two species (Figure 1B, Table S1).

We found that D. melanogaster M36 and OreR have the smallest

eyes among the strains surveyed, however the African strain of this

species (Zi372) exhibits eye areas comparable to those of the D.

simulans strains (Figure 1B, Table S1; D. melanogaster females of

M36 and OreR are not significantly different). In contrast to the

variation observed among strains of D. mauritiana and D.

melanogaster, the D. simulans strains Kib32, w501 and YVF did

not differ significantly (Figure 1B, Table S1), although our broader

survey of additional strains does suggest that there is also

considerable eye size variation in this species (Figure S2).

Given the eye size differences we observed among D.

melanogaster, D. simulans and D. mauritiana, we next investigated

the scaling relationships between eye size and body size as

represented by tibia length [42–44,59–61]. We found that the

larger eyes of D. mauritiana are associated with a positive allometry

(hyperallometry) (allometric coefficient: a= 1.86, Fig 1C). In

contrast, eye size exhibits negative allometry in D. simulans and

D. melanogaster with allometric coefficients of a= 0.65 and 0.76,

respectively (Figure 1C). While the main differences between the

linear scaling relationships of D. simulans and D. melanogaster is their

intercept (D. simulans: 7.37; D. melanogaster: 6.53), the linear

correlation of eye area and body size in D. mauritiana is mainly

characterized by a difference in the slope (allometric coefficient)

compared to the other two species (Figure 1C). An ANCOVA for

the whole dataset ((between-subject factor: species (D. melanogaster,

D. simulans, D. mauritiana); covariate: body size (log(tibia))) reveals

main effects of species (F(2,612) = 313.92; p,0.0001), body size

(F(1,612) = 158.09; p,0.0001) and a significant interaction

between body size and species (F(2,612) = 18.33; p,0.0001).

ANCOVA analyses for species pairs shows that the slopes for D.

melanogaster and D. simulans (interaction between species and body

size: F(1,421) = 0.2; p = 0.66) are not significantly different, while

the slopes between D. melanogaster and D. mauritiana (interaction

between species and body size: F(1,422) = 24.00; p,0.0001) and D.

simulans and D. mauritiana (interaction between species and body

size: F(1,381) = 37.34; p,0.0001) are significantly different.

Therefore, the larger eyes of D. mauritiana are associated with

changes in the scaling relationships of body parts between this

species and D. simulans and D. melanogaster.

Our analysis of eye size variation also revealed a consistent

pattern of sexual dimorphism across all species with females

having significantly larger eyes than males even after correcting for

the larger body size of females (Figure 1B, Table S1).

Variation in eye size is due to variation in ommatidia
number and ommatidia size

Differences in the overall size of compound eyes can be caused

by variation in the number and/or size of the ommatidia, and,

therefore, we measured these parameters in females of several

strains of D. melanogaster, D. simulans and D. mauritiana for which we

surveyed eye area (Figure 2A,C).

D. mauritiana TAM16, the strain with the largest eye area in our

survey, has on average 954 (624) ommatidia in each eye

(Figure 2B), which is surprisingly slightly fewer than both D.

mauritiana MAV1 (1004632) and D. simulans YVF (983646), which

have smaller eyes than those of D. mauritiana TAM16 (Figure 2B).

However, central ommatidia size in D. mauritiana TAM16 is

significantly larger than in D. simulans YVF (one-way ANOVA:

F(5,23) = 4.66; p = 0.004) (Figure 2C,D), showing that the eye size

differences between these two strains of D. mauritiana and D.

simulans are mainly a consequence of ommatidia size differences.

Ommatidia size between the two D. mauritiana strains, TAM16 and

MAV1, is not significantly different, while TAM16 has signifi-

cantly larger ommatidia than the D. mauritiana w2 strain.

The differences in eye size between D. melanogaster and D.

simulans, and among different strains of these two species, appears

to be mostly due to ommatidia number (Figure 2B), rather than

ommatidia size variation (Figure 2D). For example, ommatidia

size is similar between D. melanogaster strains M36 and Zi372, but

the latter has on average 117 more ommatidia in each eye and

therefore larger eyes overall (Figure 1B, 2B,D).

Interestingly, differences in the total number of ommatidia

between large and small eyes among all strains and species results
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from differences in the number of rows along both the a-p and d-v

axes (Table S2).

To further explore whether the sexual dimorphism in eye size

that we observed is caused by differences in either ommatidia

number or size, we counted the number of ommatidia and

estimated their size in both males and females of D. melanogaster

(M36, Zi735), D. simulans (YVF) and D. mauritiana (TAM16) (Table

S2). This data clearly illustrates that females possess more and

larger ommatidia than males (Table S2), suggesting that differ-

ences in both traits underlie the observed sexual dimorphism in

eye area.

Analysis of relative head proportions using geometric
morphometrics

We next investigated whether differences in eye size among D.

melanogaster, D. simulans and D. mauritiana were associated with other

changes in the head of these flies resulting in differences in

proportions of head structures or shape differences. To do this we

used a geometric morphometrics approach based on 45 landmarks

and semi-landmarks. After correcting for head posture, the first

two principal components (PCs) of the strain- and sex-specific

average shapes were visualized in a scatter plot (Figure 3A). PC 1

and PC 2 account for 89% of landmark variation between these

average configurations.

Figure 3. Eye and head shape differences between three Drosophila species. A. Principal component (PC) scores of the strain- and sex-
specific average shapes after correcting for head posture. The male and female averages of each strain are connected by a line (D. melanogaster
strains: solid red, D. simulans strains: dashed green line, D. mauritiana strains: dotted blue). The deformation grids represent the deformations from
the mean shape to the positive and negative ends of the corresponding PC axis, amplified by a factor of 2. B. Deformation grids showing shape
differences between the three species means, amplified by a factor of 2. Left panel: D. mauritiana compared to D. melanogaster. Middle panel: D.
simulans compared to D. mauritiana. Right panel: D. melanogaster compared to D. simulans. Arrowheads indicate the position of the ventral bristles.
C. Eye shape variation in the dorsal region of the retinal field of D. mauritiana compared to D. melanogaster depicted by vectors of relative landmark
displacement. Relatively long vectors in the dorsal portion that point towards the median-dorsal region of the head are highlighted in red). D. Box
plot of the ratio of dorsal eye area (D) and ventral eye area (V). The areas were measured manually in ten males and ten females of the three strains.
doi:10.1371/journal.pone.0037346.g003
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The TPS deformation grids show that PC 1 reflects differences

in the size of the eyes relative to the size of the face (eye-to-face)

ratio and the different strains cluster according to their species

along this PC (Figure 3A). To further quantify this pattern we

extracted face and eye measurements for flies from all nine strains

from the landmarks. Strains with small eye areas have the smallest

eye-to-face ratio and vice versa (Table S3). For example, D.

melanogaster OreR, which has the smallest eye area, exhibits the

smallest eye-to-face ratio, while D. mauritiana TAM16, which has

the largest eyes has the largest eye-to-face ratio (Table S3).

Furthermore when we compared the eye-to-face ratio across the

three species, D. mauritiana generally has the largest eyes relative to

the face, although D. mauritiana w2 is more clearly separated from

D. simulans by PC 1 than by just eye-to-face ratio alone (Table S3).

D. melanogaster strain Zi372 is clearly different from the other two

D. melanogaster strains in terms of eye-to-face ratio (Figure 3A and

Table S3) consistent with the larger eye area of this African strain

compared to the two other strains of D. melanogaster used in our

study (Figure 1B).

These descriptions of relative eye and face size from our

morphometric analysis were corroborated by manual measure-

ments of face width and eye area in females of one strain per

species (D. mauritiana: TAM16, D. melanogaster: M36, D. simulans:

YVF) (see black arrow in Figure 1A for FW measurement). The

eye area divided by the squared value of the face width shows that

D. mauritiana TAM16 has the largest eye-to-face ratio (0.7460.035)

while D. melanogaster M36 (0.4560.032) and D. simulans YVF

(0.5760.049) possess much smaller ratios (all ratios are signifi-

cantly different; one-way ANOVA: F(2,145) = 779.88, p,0.0001).

Note that these observed differences in eye-to-face ratios are not

only due to variation in eye size, since the face width is significantly

reduced in D. mauritiana compared to D. simulans and D. melanogaster

(Figure S3; ANOVA: F(2,145) = 80.33, p,0.0001).

PC 2 reflects differences along the d-v axis of the face. The main

variation concerns the width of the dorsal and most prominently

the ventral face region (see TPS deformation grids at the y-axis in

Figure 3A). While neither species nor strains cluster along PC 2,

this PC mainly explains shape differences between females and

males found in all strains of all three species (PC 2 in Figure 3A).

For these frontal images, males and females mainly differ in the

relative size (eye-to-face ratio, see also Table S3), the shape, and

the orientation of the eyes. The most obvious difference, however,

is evident along the d-v axis in the face region. While females have

wide ventral face regions, male ventral faces are much narrower as

shown by more laterally located ventral bristles in females (PC 2 in

Figure 3A). A permutation test confirms that male and female

mean shapes differ significantly within each strain (p,0.0001 for

all 9 tests).

The differences between the three species averages in full shape

space are summarized in Figure 3B. Besides the eye-to-face ratio,

D. melanogaster also differs from the other two species by more

ventrally displaced bristles (see black arrowheads in Figure 3B). A

permutation test confirms that mean shapes differ significantly

between strains (p,0.0002 for all 36 pair-wise tests except for

Kib32/YVF which is not significant).

Finally our analysis of different head proportions also revealed

that D. mauritiana eyes are not uniformly larger than the eyes of the

other two species but that the dorsal portion of the D. mauritiana

eye in particular is larger compared to the eyes of D. simulans (not

shown) and D. melanogaster (Figure 3C). Manual area measurements

also show that the dorsal region of the eye is significantly larger in

D. mauritiana than D. simulans (pairwise Wilcoxon rank test: W = 74,

p = 0.00042) or D. melanogaster (pairwise Wilcoxon rank test:

W = 55, p,0.0001) (Figure 3D). A Kruskal-Wallis rank test

applied to the whole dataset also shows significant differences

between mean ranks of d-v ratios (X2 = 18.138, df = 2,

p = 0.00012).

Dorsal enlargement of D. mauritiana eyes is associated
with an increase in the expression of rhodopsin3

Given the differences we have found in eye size and shape, we

next analyzed the expression of all seven rhodopsin genes at the

mRNA level using quantitative real-time PCR.

rh1 is expressed in all outer photoreceptor cells (R1–6)

(Figure 4A), and as expected exhibits the highest expression level

in all three species (not shown). For D. melanogaster, it is expected

that rh4 and rh6 are both highly expressed because they are co-

expressed in ‘‘yellow’’ and dorsal ‘‘yellow’’ ommatidia types, which

contribute to approximately 70% of the whole eye (Figure 4A)

[26,27,30]. We found similar relative expression levels for those

two rhodopsins in D. melanogaster and D. mauritiana (Figure 4B,C; rh4/

rh6 = 1.18 and 0.96 for D. melanogaster and D. mauritiana,

respectively). Interestingly, the co-expression of these two rhodopsins

seems to be uncoupled in D. simulans because we found relatively

higher expression levels of rh6 than rh4 (Figure 4B,C; rh4/

Figure 4. rhodopsin expression among Drosophila species. A.
Schematic representation of four different ommatidia subtypes in D.
melanogaster [73]. The six outer photoreceptors (R 1–6) express
rhodopsin 1 (grey, rh1) and the inner photoreceptors (R7 on top of
R8) express subtype-specific combinations of rhodopsin genes. DRA =
dorsal rim area ommatidia. B. Schematic representation of the
quantitative real-time PCR results for rh3, rh4 and rh6. The respective
portion of each bar represents the relative expression as shown in C.
Therefore, the sum of percentages in each column is not comparable
between species. C. Comprehensive summary of quantitative real-time
PCR results. Mean percentages based on 10 to 12 replicate
measurements are given relative to rh1 expression. Standard deviation
is given in brackets. Note that we were not able to detect expression of
D. simulans rh5 (n.d.). rh2 is specifically expressed in the dorsal ocelli [85]
and the function of rh7 is unknown.
doi:10.1371/journal.pone.0037346.g004
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rh6 = 0.37 for D. simulans). In D. melanogaster, rh3, which is

predominantly expressed in pale and in dorsal-specific ommatidia

types (dorsal ‘‘yellow’’ types and dorsal rim ommatidia), should be

more abundant than rh5 whose expression is restricted to 30%

‘‘pale’’ type ommatidia [26,27,29,30,33,34]. This expectation is

met in D. melanogaster since rh3 expression exceeds the levels of rh5

(Figure 4B, C) and, moreover, both mRNAs are less abundant

than rh1, rh4 and rh6 (Figure 4B,C).

Strikingly rh3 expression is greatly enhanced in D. mauritiana

compared to the other two species (Figure 4B,C). High expression

of rh3 in D. mauritiana could be explained by the higher expression

of rh5 in this species (Figure 4B,C) indicating an enrichment of

‘‘pale’’ ommatidia types (co-expressing rh3 and rh5) or that there

an enrichment of dorsal-specific ommatidia types in this species.

Discussion

Inter-specific and intra-specific variation in eye size in
Drosophila

We have found extensive variation in eye size within and among

three closely related Drosophila species. D. mauritiana generally tends

to have larger eyes than its sister species D. melanogaster and D.

simulans as a consequence of increases in either ommatidia number

as previously reported by Hammerle and Ferrus (2003) [35] and/

or ommatidia size. We did detect variation in both of these traits

among D. mauritiana strains suggesting that there is intra-specific

variation in these traits in this species. For example, the finding

that D. mauritiana is capable of producing larger eyes than D.

melanogaster as a consequence of larger ommatidia in the case of

TAM16, but more ommatidia in MAV1 shows that eye size

differences can be the result of changes in various different traits

within the eye. Indeed, we found a white-eyed mutant strain of this

species with eyes more similar in size to those of D. simulans strains.

Therefore, the large eyes of D. mauritiana may overlap with the

range of eye sizes observed in D. simulans, for which our broader

survey suggests extensive intra-specific variation in eye size

(Figure 1B, S2).

The large variation in eye size among D. melanogaster strains

mainly owes to differences in ommatidia number. The most

recently collected African strain of D. melanogaster (Zi372) clearly

has larger eyes than either OreR and M36, which is consistent

with evidence showing that the longer flies live in captivity the

smaller their eyes and body size become, probably due to relaxed

selection on vision [36]. This may also be a possible explanation

for the small eyes of the D. mauritiana w2 strain. However, it cannot

be excluded that the loss of function of the white gene might

interfere with normal eye development because in recent years

several new functions of this ABC-transporter protein have been

found including an involvement in cyclic GMP transport [62]

courtship behaviour [63,64] and in learning an memory [65,66].

The formation of larger eyes based on larger ommatidia

observed in some strains of D. mauritiana suggests that their vision

might be specialized to achieve higher sensitivity at the expense of

acuity [9]. A similar trend has been reported for nocturnal bee and

crepuscular butterfly species, which form larger eyes due to larger

facets compared to diurnal species [13,67]. In addition, the dorsal

enlargement of D. mauritiana eyes may indicate that D. mauritiana

has a locally specialized zone in the dorsal-frontal portion of the

eye field, and although this remains to be tested, our measure-

ments of rhodopsin expression suggests a dorsal specialization based

on specific ommatidia types (see below). Intriguingly, such

specializations in vision are often correlated with adaptation to a

given sensory niche [13,67–70], but little is known regarding the

relationship between vision and environment in Drosophila.

Evolution and development of head capsule proportions
Differences in eye size between strains and species are part of

more global differences in the whole head: flies that have larger

eyes have narrower faces and vice versa, both in terms of absolute

size and relative size. This is most strikingly illustrated by PC 1

(Figure 3A), which clearly separates all strains by their species

including D. mauritiana white-, which does not have particularly

large eyes.

A negative correlation between eye width and face width has

previously been reported in D. melanogaster and between the two

cactophilic sibling species Drosophila buzzatii and Drosophila koepferae

[16,18]. Since the eyes and face cuticle both develop from the eye

antennal disc [17], it has been suggested that changes in the

relative proportions of these tissues represent a developmental

trade-off mediated by differences in the morphogens wingless (wg)

and decapentaplegic (dpp) that are expressed in the anterior and

posterior region of the eye-antennal disc [15,71]. These changes in

the Drosophila head may be analogous to those in horned beetles,

where exaggerated development of cephalic horns results in the

reduction of the eyes [72]. However, it remains possible that the

differences in the eye and face size of Drosophila are evolving

independently and have a different genetic basis. For example, the

reduction of the face in some blowflies is not associated with an

increase in overall eye size [14], and in stalk-eyed flies the distance

between the eyes appears to be subject to sexual selection [73].

Intriguingly, we also found that in all surveyed Drosophila strains

females have relatively larger eyes, containing more and larger

ommatidia, and wider faces than males, as previously reported for

D. melanogaster [74], again suggesting a decoupling of developmen-

tal programs for these two tissues.

Therefore, the observed variation in eye and face size could be

due to coupled developmental changes or independent evolution

of these tissues. Can these two developmental scenarios be

distinguished using our dataset? It has been proposed that scaling

relationships allow inferences about the developmental mechanism

underlying a given trait [60,61,75]. For example, differences in the

slope of linear relationships between body size and the trait of

interest could be the result of differences in starting conditions

before organ growth commences. Differences in the y-intercept of

linear relationships with constant slopes might hint at different

proliferation rates during the growth phase of the given organ

[60]. We find that the enlarged eyes of D. mauritiana are positively

allometric, whereas the eyes are negatively allometric in D.

melanogaster and D. simulans (Fig. 1C). The differences in the slope

could suggest that during the early subdivision of the eye-antennal

disc more cells are allocated to the retinal field than to the

presumptive face tissue in D. mauritiana as compared to D.

melanogaster or D. simulans [15]. Thus, upon proliferation, the eye-

antennal disc of D. mauritiana would produce more cells with a

retinal fate relative to face cuticle in the adult. However, this is

likely to be overly simplistic since the eye size differences we have

observed are a consequence of changes in both ommatidia size and

ommatidia number along both the a-p and d-v axes, suggesting

that multiple developmental mechanisms are involved.

Evolution of rhodopsin expression
In addition to changes in eye size and shape, we also found

differences in the relative expression of rhodopsin genes between D.

mauritiana, D. melanogaster and D. simulans.

We found enhanced rh3 and rh5 expression in D. mauritiana

compared to D. melanogaster, suggesting an enrichment of ‘‘pale’’

ommatidia in D. mauritiana eyes. However, the formation of more

‘‘pale’’ ommatidia alone does not account for the high rh3

expression in D. mauritiana eyes. This suggests that D. mauritiana
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might contain more dorsal-specific ommatidia types and is

consistent with our observation that the eyes of D. mauritiana are

enlarged dorsally compared to those of the other species.

These possibly coordinated differences in the eyes of D.

mauritiana have potentially interesting implications for the vision

of this species. An enrichment of dorsal ‘‘yellow’’ ommatidia that

co-express rh3 and rh4 in the R7 cell would result in increased

sensitivity to UV light used for navigation [33]. More monochro-

mic DRA ommatidia on the other hand would provide higher

light sensitivity and polarized light detection [76–79]. However,

our finding that D. mauritiana tends to have larger overall eye size

suggests a need for increased light sensitivity perhaps due to a

more crepuscular life style.

Although the stochastic distribution of ‘‘yellow’’ and ‘‘pale’’ type

ommatidia is conserved in other dipterans like blowflies and

houseflies [22,80], the fact that dorsal ‘‘yellow’’ ommatidia are

able to co-express different rhodopsins in R7 implies there is a

level of plasticity. It has recently been shown that ‘‘yellow’’ R8 PRs

in the dorsal portion of the eye retain the capability to co-express

Rh5 and Rh6 when reared in complete darkness [81]. This

suggests that the visual system is flexible enough to allow the rapid

adaptation to changing environments by new visual properties.

Given the co-expression of rh4 in R7 and rh6 in R8 in D.

melanogaster ‘‘yellow’’ and dorsal ‘‘yellow’’ ommatidia subtypes

[26,27,30,33], the observed uncoupled activity of those two

rhodopsin genes in D. simulans may suggest that the ommatidia

sub-type composition has also changed in this species. In fact,

atypical coupling of Rh3 and Rh6 occurs in ,6% of all ommatidia

in wild type compound eyes without a restriction to the dorsal

portion of the eye field [27,33,82–84].

Conclusions
We have found extensive intra- and inter-specific variation in

eye morphology among three Drosophila species, which are part of

more large-scale differences in head tissue proportions, and in

some cases are associated with changes in rhodopsin expression, and

therefore, relative populations of ommatidia subtypes. Mapping

the genetic basis of these differences represents an excellent

opportunity to better understand the evolutionary changes in the

development and function of this complex organ, and contribute

to explaining the great diversity in compound eyes among insects.
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Figure S1 Overview of wing landmarks. D. melanogaster
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different parameters of wing size.
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Figure S2 Eye size variation in different strains of D.
simulans and D. mauritiana. Variation in eye width in

several strains of D. simulans and D. mauritiana. Eye width is

reported as residuals of a regression of eye width and wing length

to account for variation in body size. Each strain is represented by

five males and five females.

(TIF)

Figure S3 Face width variation in three Drosophila
species. Variation in face width (FW in Figure 1A) in D.

melanogaster M36, D. simulans YVF and D. mauritiana TAM16. Face

width is given as residuals of a regression of face width and tibia

length to account for variation in body size. Each strain is

represented by 40 to 65 females.

(TIF)

Table S1 Pair-wise comparisons of eye size variation defined as

multiple comparisons of means (Tukey comparisons).

(DOC)

Table S2 Summary of mean number of ommatidia (ommatidia),
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