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Abstract

A general understanding of the complex phenomenon of protein evolution requires the accurate description of the
constraints that define the sub-space of proteins with mutations that do not appreciably reduce the fitness of the organism.
Such constraints can have multiple origins, in this work we present a model for constrained evolutionary trajectories
represented by a Markovian process throughout a set of protein-like structures artificially constructed to be topological
intermediates between the structure of two natural occurring proteins. The number and type of intermediate steps defines
how constrained the total evolutionary process is. By using a coarse-grained representation for the protein structures, we
derive an analytic formulation of the transition rates between each of the intermediate structures. The results indicate that
compact structures with a high number of hydrogen bonds are more probable and have a higher likelihood to arise during
evolution. Knowledge of the transition rates allows for the study of complex evolutionary pathways represented by
trajectories through a set of intermediate structures.
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Introduction

Protein sequence evolution occurs at the genetic level with a

rate that varies from protein to protein, depending upon several

factors such as the processing of the protein in the cell (e.g.

translation time) [1,2], or molecular characteristics specific to each

protein [3–5], as well as from interactions with other proteins

(reviewed in Pal et al [6]). In contrast, the nature and rate of

protein structural evolution is much less well understood. Viksna et

al. [7] presented an estimate of the rate of structural changes based

on the measure of topological distances between proteins

structures. Meyerguz et al. [8] grouped all known proteins into

basins corresponding to the common native structures. From the

collected data the authors have then built a network of sequences

and considered the frequency of ‘‘transition’’ sequences (separated

by a single point mutation from a different basin). Structural

evolution has also been studied in the context of lattice protein

model by Deeds et al. [9], where the structural similarities among

all possible 103346 distinct structures of a 36363 lattice polymer

have been mapped. Other work has concentrated on structural

topologies connected by a relatively small set of structural

evolutionary moves (e.g domain swapping, or duplications)

[3,5,10,11].

In what follows we will introduce a novel theoretical framework

for the characterization of the evolution process between two

target structures that, instead of considering only proteins present

in the Protein Data Bank (PDB) [12], is based on an arbitrary set

of structures constructed via a realistic off-lattice coarse-grained

model. If for a moment we consider the entire evolutionary process

without focusing on a detailed description of the cell physiology,

then the evolutionary process is equivalent to screening a large

number of different sequences under the constraint that only few

structures are acceptable. The total evolutionary path can then be

represented as a sequence of transitions between the allowed

structures (stepping stones). Such stepping stones represent the

possible structures that are still allowed by the selection function

and are not identical to the initial and final target structure. The

number of intermediate structures reflects the degree of restriction

applied to the evolutionary process, hence the larger the number

of stepping stones the more closely the evolutionary process

approximates a free drift in protein space. The total evolutionary

trajectory between two targets is then represented as a path

connecting the stepping stones, where each jump is weighted by its

probability of occurrence. Accordingly the main objective of our

work is to measure the rate of each elementary jump and identify

the analytic dependence of such rates from a small set of structural

differences. Similarly to the recent work of Lobkovsky et al. [4], we

associated to each structure a set of sequences, or ‘‘islands’’, that

can fold into the respective configuration. Each jump should then

only consider trajectories between the islands without considering

intermediate configurations. In other words, we need to sample

the sequences that fold into each stepping stone and then define

the evolutionary rates between the resulting islands. For this

purpose, we will use the ‘‘Caterpillar’’ coarse-grained protein

model recently introduced by Coluzza [13]. In contrast to the

model used by Lobkovsky, the Caterpillar model was able to refold

designed sequences into protein structures taken from the PDB

with a very high accuracy. Moreover the designed sequences had

large similarities with the corresponding wild type sequences, to
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the point that the model was able to refold a wild type protein to its

native structure with remarkable accuracy. Hence, the Caterpillar

model is an ideal tool to study the the restriction imposed on the

sequence space by the constraints of protein structure space

because it is both fast and reproduces protein-like structure and

sequence features.

In what follows we will first describe the model used to represent

the proteins, the method used to construct the intermediate

stepping stones between the target structures, the protein design

method and the theory used to calculate the single jumping rates.

Finally, we will present the results with the analytic dependence of

the elementary evolutionary rates on a small set of physical

parameters, namely the difference in the number of hydrogen

bonds and in the number of total contacts between the residues.

This approach will not be able to predict the evolutionary process

protein by protein but hopefully will highlight the universal

dependence of the total evolutionary rate on physically measurable

quantities such as the number of locally available structures (the

fewer structures the stronger the constraint) and their spread in

terms of the distribution of jumping probabilities (the larger the

distance the stronger the constraint).

Materials and Methods

Generation of the stepping stones
We consider two naturally occurring protein structures that

represent the endpoints of the evolutionary process. We chose two

proteins of equal length with substantial structural difference, for

this purpose we used the Immunoglobulin Binding Protein (1PGB)

and the chain X of the 50S subunit of a secm-stalled E. Coli

ribosome complex (2GYC) (see Fig. 1). The secondary structure of

the two proteins is represented by a string where each letter

corresponds to a residue and the type of letter indicates if the

amino acids is part of a helix (H), strand (E) or other ({). Thus for

the protein 1PGB we have: {EEEEEEE{{{{EEE

EEEE{{{HHHHHHHHHHHHHHH{{{{EEEEE{{
{{EEEEE{ (a pattern that we will refer to as 1PGB-E1 1PGB-

E2 1PGB-H1 1PGB-E3 1PGB-E4), while 2GYC can be repre-

sented by: EEEEE{{{{{{{{{{HHHHHHHH{{
{{{{{EEEE{{{{{HHHHHHH{{{{EE{{{
(which we will refer to as 2GYC-E1 2GYC-H1 2GYC-E2 2GYC-

H2 2GYC-E3).

In order to generate the stepping stones we constructed

intermediate sequences of secondary structural states according

to the following rules: (i) Secondary structure elements can be

added, deleted, shortened, or lengthened (ii) Secondary structure

elements can be lengthened by converting an adjacent ‘{’ to an

‘E’ or ‘H’. (iii) Secondary structure elements can be shortened by

converting an ending ‘E’ or ‘H’ to an ‘{’. (iv) Helices must be

between 4 and 15 in length. Strands between 2 and 8 in length. (v)

Helices can be added by converting a j{{{{{{j to a

‘{HHHH{’. Strands can be added by converting a j{{{{j
to a ‘{EE{’. (vi) Helices can be deleted by converting a

{HHHH{ to a j{{{{{{j. Strands can be deleted by

converting a ‘{EE{’ to a j{{{{j. (vii) There must always be

at least one unstructured j{j between secondary structure

elements. (viii) The number of Es and Hs must remain between

20 and 45. (ix) The move must change the current structure so that

it more closely matches the final structure.

7 paths of intermediate secondary structure profiles were

created, representing the different parsimonious ways the second-

ary structure of 1PGB could be converted to 2GYC using the

previously described rules. Each path was approximately 50 steps

in length. A brief description of the pathways follows:

1. the disappearance of the three central secondary structure

elements (1PGB-E2, 1PGB-H1, and 1PGB-E3) and their

replacement by three new secondary structures (2GYC-H1,

2GYC-E2, 2GYC-H2),

2. the disappearance of 1PGB-E2, the movement of 1PGB-H1

and 1PGB-E3 to form 2GYC-H1 and 2GYC-E2, and the

creation of 2GYC-H2,

3. the disappearance of 1PGB-E2 and 1PGB-E3, the movement

of 1PGB-H1 to form 2GYC-H1, and the creation of 2GYC-E2

and 2GYC-H2,

4. the disappearance of 1PGB-E2 and 1PGB-H1, the movement

of 1PGB-E3 to form 2GYC-E2, and the creation of 2GYC-H1

and 2GYC-H2,

5. the disappearance of 1PGB-E3, the movement of 1PGB-E2

and 1PGB-H1 to form 2GYC-E2 and 2GYC-H2, and the

creation of 2GYC-H1,

6. the disappearance of 1PGB-E2 and 1PGB-E3, the movement

of 1PGB-H1 to form 2GYC-H2, and the creation of 2GYC-H1

and 2GYC-E2,

7. the disappearance of 1PGB-H1 and 1PGB-E3, the movement

of 1PGB-E2 to form 2GYC-E2, and the creation of 2GYC-H1

and 2GYC-H2.

In all cases the terminal beta strands maintained their identities.

The second step consisted of combinatorially generating the

idealised structural Ca models with folds compatible with the

intermediate secondary structure strings and the ‘‘rules’’ of protein

topology (e.g. right-handed beta-alpha-beta connections, no

Figure 1. Schematic representation of the evolutionary process between the protein Immunoglobulin Binding Protein (1PGB) in
blue on the left and the chain X of the 50’s subunit of a secm-stalled E. Coli ribosome complex (2GYC) in red on the right. Between
the two proteins we show a few of the 500 stepping stones generated with our procedure.
doi:10.1371/journal.pone.0034228.g001
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crossing loops, etc.) [14]. This step resulted in around 45,000

structures with 490 distinct fold topologies. A representative model

for each distinct topology was selected and refined into full

backbone models using the procedure from MacDonald et al. [15].

The result was a list of 490 structures, plotted in figure (Fig. 2) by

percentage contacts (where a contact is is counted for any Ca{Ca

distance below 12 A) in common with 1PGB and 2GYC to show

how much of the configurational space separating the two end

points is covered by the stepping stones.

The stepping stone structures were used as targets for sequence

design to generate sequence ‘‘islands’’, each containing a large

number of sequences folding into the appropriate structure. We

describe the design method and the theory that defines the

jumping rates between the islands below.

Sequence Design
There are several ways to design the protein sequences to fold

into a specific backbone conformation. We reported one such

strategy in ref. [16]. In what follows we use a novel version of this

method [13]. The general principle remains unchanged: sequences

are generated by minimizing the energy of the target configura-

tion(s) and, at the same time, by maximizing the number of

possible letter permutations to increase the sequence heterogene-

ity. In the present study we use this scheme to generate the

population of sequences that belong to each island. Once the best

sequences are chosen according to our design scheme, we can

proceed to test if the desired folding properties have been achieved

by folding the sequence to see if it attains the target structure.

Owing to limitations of computational time this test step was only

applied to a small selection of stepping stones and for the starting

and the end structures.

Design Algorithm
In order to obtain well folding proteins for a given stepping

stone we applied the method developed by Coluzza [13] that has

proved to be very effective for the design and refolding of

caterpillar proteins. The basic design moves are single point

mutations. We compute the difference DE between the energy of

the native state for the new sequence compared with the pre-

mutation sequence. As in the conventional Metropolis scheme, the

acceptance of trial moves depends on the ratio of the Boltzmann

weights at temperature T of the new and old states. However, if

this were the only criterion there would be a tendency to generate

homo-polymer chains with a low energy, rather than chains that

fold selectively into the desired target structure. To ensure the

necessary heterogeneity, we impose the following acceptance

criterion

Pacc~ min 1, exp { DE{Ep ln
Nnew

P

Nold
P

� �
=kBT

� �� �
, ð1Þ

where Ep is an arbitrary parameter that plays the role of an energy

scaling factor, and NP is the number of permutations that are possible

for a given set of amino acids. NP is given by the multinomial

expression

Np~
N!

n1!n2!n3!:::
ð2Þ

where N is the total number of monomers and n1,n2 etc are the

number of amino acids of type 1,2,. While sampling the sequence

space with a Monte Carlo scheme, we fix the energy scale factor Ep at

high values. In doing so we generate an heterogeneous composition of

amino acids. In contrast to previous work [4], we used a 20 letter

alphabet since this helps to reduce the degeneracy of the ground state

and so mimic the folding behavior of a real system. During a Monte

Carlo run of several million cycles, a large number of distinct

sequences are generated (*105). In order to increase the sampling we

have applied the Virtual Move Parallel Tempering (VMPT) [17]

sampling method, running the simulation at several design temper-

atures, T~ 0:025,0:05,0:125,0:25,0:5,0:75,1:25,2:5f g. Good se-

quences are expected to be found at lower temperature, much as

Figure 2. Plot of the distribution of stepping stones as a function of the percentage of native like contact (for a Ca{Ca distance
below 12 A) that each structures have in common with either 1PGB or 2GYC.
doi:10.1371/journal.pone.0034228.g002
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proteins have folding temperatures below which they are folded. We

then computed the Shannon entropy per residue Si
P~

P
j pij log pij

for protein G, where i is the residue and j is the residue type, and we

compared the distribution of values of Si
P calculated over a set

designed sequences with the distribution obtained for the the

natural population (PF01053 [18]), for various design temperatures.

We found (see Fig. 3) that the sequence populations generated

for protein G at the design temperature T~0:05 had the closest

variability compared to the corresponding family of natural

sequences. Using the scheme just described we performed a design

simulation for every stepping stone and hence generated a

distribution of folding sequences for each of them. From now on

we will refer to the stepping stones with their corresponding

distribution of folding sequences as ‘‘islands’’. With the islands in

hand a method is now required to characterize the probability of

transition between islands. This method is described in the

following section.

Transition Rate Calculations
The objective is to sample the rate at which an ensemble of

sequences defined by the design procedure with target structure A
will evolve to an equivalent ensemble defined by the design of

structure B. The first thing we observed is that the overlap

between the most probable sequences of A and of B is very small,

independently of the structural differences between A and B. In

other words provided that the structures are not identical the

Hamming distance between the ensemble of folding sequences is

always large and is of the same order of magnitude as the spread

measurable in the distribution of sequences that fold into either

target (*40=56 residues). If the distributions were represented as

spheres in the N-dimensional space of sequences [19–22], then the

design data indicate that where the distributions interpenetrate the

overlap volume is very small. This does not necessarily mean that

the evolutionary process must proceed with very large jumps with

many concurrent mutations, but it means that the folding

sequences that are in ‘‘common’’ (so with small Hamming

distance) between the two distributions are quite rare, hence the

evolutionary rate is highly dependent on the probability of finding

such sequences that are still able to fold but are separated by a

small number of mutations. For this reason we will assume that

neutral evolution inside each island occurs at a higher rate than it

does between islands. It is important to stress that with neutral

evolution we do not mean that all sequences in the island have the

same probability of folding into the target structure, but that such

probability is higher than a threshold which we will define below.

Hence the jumping rate from the island associated with structure

A to B is going to be equal to the rate of accumulating enough

mutations for each sequence of the island of A to become equal to

one of sequences in the island of B, as the evolutionary process will

spontaneously continue towards the optimal sequences of B at a

much faster rate.

In order to measure such a rate we will define a quantity called

the ‘‘committor’’ that is a measure of the status of the evolutionary

process. Once the evolutionary process starting from A reaches a

certain threshold value of the committor we say that that trajectory

is now committed to B or it will spontaneously reach B. An exact

measure of this quantity would involve an extensive sampling of all

possible mutation trajectories that start in each sequences of A and

end in B. However this study would involve too many resources

for the number of islands and the population size that we intend to

treat. Instead we will use a natural definition of the committor for

this problem, and we will define it as the point at which a sequence

goes from having lower total energy in structure A to having lower

energy in B. This choice can be justified as a measure of the

propensity of that sequences to fold into B instead of A because if

we assume that the entropic contribution to the free energy of the

native structure is the same across all stepping stones, then the only

relevant pressure is the energetic contribution. The probability of

observing such a sequence can then be measured using the

Boltzmann distribution function in the space of all possible

proteins (all sequences on all structures).

Once these states are reached we define the trajectory as

committed to evolve towards B, at which point evolution proceeds

spontaneously with a speed that depends on the mutation rate w

Figure 3. Plot of the distribution of the site Shannon entropy SP calculated for the family of natural sequences of 1PGB (PF01053)
in red and for the designed sequences in black.
doi:10.1371/journal.pone.0034228.g003
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which is assumed to be equal among all the evolutionary processes.

The rate of jumping from A to B is

rA?B~
X

s

P(A,s)pA?B ð3Þ

where P(A,s) is the probability of finding the system in a sequence

s and structure A (same for P(B,s)), and pA?B is the transition

function that we define:

pA?B~
1 P(B,s)§P(A,s)

0 P(B,s)vP(A,s)

�
ð4Þ

Hence when pA?B~1 then the evolutionary trajectory is

committed to evolve toward B. All we have to do is to sample

the probability of observing the committed states with respect to all

possible states. A useful way to express the transition function is to

use the Heaviside function h(P(B,s)=P(A,s){1) which is equal to

one when P(B,s)§P(A,s) and zero otherwise. The total rate rA?B

can the be measured by integrating Eq. (3) over all space of the

sequences Next we write the expression of P(A,s) and P(B,s) as

the probability of observing a state with a sequence s and

configuration A and B respectively

P(A,s) ~ e{bE(A,s)Ð Ð
ds’dc e{bE(c,s’)

P(B,s) ~ e{bE(B,s)Ð Ð
ds’dc e{bE(c,s’)

ð5Þ

where E(A,s) and E(B,s) are the energies of structures A and B

for sequence s. Here we used the Caterpillar energy field, sum of

the terms in Eqs. 14 and 15. It is important to notice that the

normalization is done over all possible sequences and structures.

Note that this is different from either the probability of a sequence

given a structure, or vice versa the probability of a structure given

a sequence. The total rates can be then written combining Eq. (5)

and Eq. (3) (see Information S1) and integrating over all sequences

of A and B respectively.

rA?B ~

Ð
e{bE(A,s)h {E(B,s)zE(A,s)½ �ds

Z

rB?A ~

Ð
e{bE(B,s)h {E(A,s)zE(B,s)½ �ds

Z

ð6Þ

Where Z~
Ð Ð

ds’dc e{bE(c,s’) is the normalization constant and

is the partition function of the (c,s) space. Eq. 6 cannot be directly

computed because the integral Z must be calculated measuring all

possible sequences over all possible structures. On the other hand

the rate constant RA?B and RB?A are obtained by dividing Eq. (6)

by the probability of observing structure A and structure B
respectively

RA?B ~

Ð
e{bE(A,s)h {E(B,s)zE(A,s)½ �ds

Z

ZÐ
e{bE(A,s)

~vh DEAB½ �wA

RB?A ~

Ð
e{bE(B,s)h {E(A,s)zE(B,s)½ �ds

Z

ZÐ
e{bE(B,s)

~vh DEBA½ �wB

ð7Þ

where the brackets v . . . wA and v . . . wB are ensemble

averages, and indicate the average over the sequences weighted

with the Boltzmann distribution. It is important to notice that if

two structures are very different then we cannot guarantee that all

the contributions to the average will come from sequences that fold

either into A or B. However, such sequences will have a lower

Boltzmann weight compared to the sequences that fold into A or

B. Hence, the number of non zero contributions will produce a

small rate, equivalent to a forbidden jump.

Rate Constant Calculation
We now have the final form of the rate constants, and it can be

calculated by performing a Monte-Carlo simulation where we

sample the sequences that have higher probability of being in B
averaged in the ensemble of the sequences that fold into A.

However the contribution of h function is non zero only for

sequences with an energy in B lower than in A, and because it is

rare to have sequences with a low energy in both structures, the

average will most frequently be close to zero. If instead we bias

towards B, then

RA?B~vh DEAB½ �wA~
vebEBh DEAB½ �wAB

vebEBwAB

ð8Þ

where the ensemble average v . . . wAB is performed with the

product of the Boltzmann weights of A and B which results in an

average over an effective system defined by the sum EAzEB, and

v . . . wA~v . . . ebEBwAB=vebEBwAB. This is the natural

ensemble to sample the sequences that contribute most to the

average in Eq. (7) because the point at which the two distributions

cross each other is in the overlapping region between A and B. For

this reason we will perform the average in Eq. (7) in the AB
ensemble. Alternatively the sampling imposed by Eq. 8 can be

interpreted as a simulation in the ensemble of sequences that fold

into structure A but in the presence of a bias towards sequences

that fold into structure B. While the sampling goes back and forth

in the joint ensemble of sequences that either fold in A or B Eq. 8

computes the fraction of sequences that have a preference to fold

in structure B. Now because we have reduced all the equations to

quantities that we can calculate in the AB ensemble all we have to

do is to perform a single simulation for each A, B pair and

compute the the rate from Eq. (8). In the supplementary material

we derive the Metropolis acceptance rule for sampling the

ensemble AB. Each rate is then sampled by applying the design

procedure described above to the joined AzB ensemble for each

A, B pair with the following acceptance rule

Pacc~ min 1, exp { DEAzB{Ep ln
Nnew

P

Nold
P

� �
=kBT

� �� �
: ð9Þ

Such an acceptance rule also guarantees that we do not include

homopolymers sequences in the rate calculations that with their

large enthalpic weight might significantly alter the results towards

non-physical solutions.

Folding
In order to characterize the equilibrium configuration of each

sequence, we compute the free energy F as a function of several

order parameters. We will describe each case separately later in

the manuscript, but they will be all similar to the following

example: if QN is an order parameter, then to compute F QNð Þ, we

used the following relation:

F QNð Þ~{kT ln P QNð Þ½ �, ð10Þ

where F QNð Þ is the free energy of the state with order parameter

Generalized Protein Structure Evolution
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QN and P QNð Þ denotes a (normalized) histogram of the number of

sampled conformations with order parameter QN . In practice, a

direct (brute force) calculation of this histogram is not efficient, as

the system tends to be trapped in local minima, especially at low

temperatures. To solve this problem, we incorporated the Monte

Carlo sampling approach of ref. [23] in the parallel-tempering

algorithm of refs. [16,24]. This scheme is very efficient in sampling

both high and low free-energy states. A more detailed description

of the algorithm can be found in Ref. [17].

Results

Folding and Design
Before calculating the the rates according to the Eqs. (8) we

tested that the artificially generated structures used as stepping

stones were designable and that the designed proteins could refold

to the target structure. As a test of the complete set of stepping-

stones was computationally unfeasible, we only considered three

candidates (1PGB,2GYC-X and one of the generated stepping

stones) from the list of stepping stones and tested the refolding

properties of the sequences obtained with the design algorithm.

Our approach was to take one of sequences generated for a target

structure and then perform a Metropolis Monte-Carlo simulation

in the configurational space of the protein chain. During the

simulation we measured the root mean square distance (RMSD)

(detailed description in the appendix) between the instantaneous

configuration and the target native state. From the histogram (see

Fig. S1 and [13] for 1PGB) of the observed values of RMSD we

generated a free energy profile that demonstrated that the

configurations closer to the native states (within v2A RMSD

distance) were the most stable, hence we concluded that the

protein was able to fold correctly. It is important to stress that in

addition to the present test cases, the Caterpillar model correctly

refolded all the 9 test proteins [13], out of which we used 8

designed and one natural sequence.

Rates
The next step in our study is to perform the design of the set of

stepping stones. During the design simulation we sample the rate

constants according to the Eqs. (8) using the Metropolis scheme

described in the method section. Our objective is to correlate these

rates with some variables measures that describe the structural

difference between each pair of stepping stone. From the rates

described by equation (7) it is evident that there is a strong

dependence on the difference in energy between two structures for

each sequence, hence in order to capture the fundamental

structural differences between each stepping stone pair it is natural

to select quantities such as the total hydrogen bond energy HA of

structure A and HB for structure B, and the total number of

residue contacts QA in structure A and the number QB of contacts

in B. Another educated guess that we can make is that because the

committor is a function only of the energy difference, we can

expect the rate to behave similarly, this is also verified by

distribution of the rates plotted as a function of the difference in

the hydrogen bond energy HB{HA and the difference in the

number of contacts QB{QA (Fig. (4)), if we remember that the

plot is in log scale then the surface follows a step like function very

similar to one that represents the committor function h. This

indicates that the jumps follow an on/off transition process and

also that we can extract a universal function that relates the rates

with the difference in hydrogen bonds DH~HB{HA and in the

number of contacts DQ~QB{QA in the following way for the

rates:

ln RA?B(HA,HB,QA,QB)~A2 ln
1

1zeA0(A1DH{DQ)

� �
, ð11Þ

where the values for A0, A1, and A2 have been obtained by fitting

to the simulation data. We have listed the final values for the

parameters in Table 1. In Fig. (4) we plot the logarithm of the

measured rates and the corresponding fitted rates surfaces from

Eq. 11. The small errors over the parameter values of the plot

show that there is good agreement between the predicted profile

and the simulation data. This demonstrates the validity of our

prediction of universal dependence of the rates on the structural

variables.

So far we have only considered the dependence of the rate

constants on two structural parameters that cannot represent the

total difference between two proteins. In particular we are missing

information regarding how many contacts are in common

between the pair of proteins. This information must play a role

in the rate, as even for two proteins with the same number of

hydrogen bonds and the same number of total contacts, we expect

that the differences in the topology will make the population of

sequences quite separate in energy. In other words if there are not

many common contacts it is difficult to optimize two structures at

the same time. A common measure of the similarity between two

structures is the number of common native contacts QN . The

dependence of the rate constants from QN must not alter the

detailed balance condition that we verified in the appendix

(Section Detailed Balance). The condition of detailed balance

requires that for each pair of stepping stones the ratio between the

i?j and j?i rate constants is equal to the ratio between the

probabilities of observing the two structures, hence the ratio

cannot depend on a quantity that cannot be factorized out. The

simplest function is then the one resulting from the addition to the

functions in Eq. (11) of a new term ln R(QN ). In order to maintain

detailed balance, the new term must be symmetric under inversion

of i with j. In order to determine the form of ln R(QN ) we plotted

Figure 4. Plot of the logarithm of the rate constants ln RA?B

sampled according to Eq. 8 as a function of the differences DH
and DQ of the Hydrogen bond energy and of the number of
total contacts respectively. The simulations data are fitted with the
function RA?B(DH,DQ) from Eq. 11. The points falls quite nicely on the
surface indicating that the simple form of the rate in Eq. 11 captures the
major trend of the simulation points. It is important to stress that for
equally compact structures with the same number of hydrogen bonds
the rate may still be influenced by important structural differences not
included in this fit.
doi:10.1371/journal.pone.0034228.g004
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the rate constants in Fig. (5) as a function of the number of

common contacts QN and the function ln RA<B(HA,HB,QA,QB)
that describes the dependence of the rate constants as a function of

the hydrogen bond energy difference and the difference in the

total number of contacts. The plot shows that the data have a

linear profile along ln RA<B(HA,HB,QA,QB), which supports our

assumption for the factorization of the contribution of QN . Hence

we considered the following expression for ln R(QN ):

ln R(QN )~B2 ln
1

1ze{B0(B1{QN )

� �
: ð12Þ

where again the parameters B0 B1 and B2 were obtained through

a fit of the data in Fig. (5). The expression of ln R(QN ) in eq. (12),

is similar to the sigmoidal function used for

ln RA<B(HA,HB,QA,QB). This is not a surprising result, consid-

ering the correct function must be close to the maximum rate 1
when the two proteins are very similar (QN*1).

An important property of the rate constants is that at

equilibrium they must satisfy the system of equations characteristic

of the underlying Markov model. In practice the following set of

equations must be satisfied for each pair i and j

Pipij~PjpjiP
Pi~1

: ð13Þ

where Pi and Pj are the equilibrium probabilities. According to

the expression of the rate constant that we fitted on the data (Eq.

(11)) the ratio of the rate constants (or the difference between the

logarithms) should give an expression that is factorisable into two

functions that will depend only on the properties of i and j. We can

easily obtain the general solution to the system of equations (13) by

expressing the probabilities Pi in the following form:

Pi~
e{A2 A0 (A1 Hi{Qi )P

e{A2 A0 (A1 Hi{Qi )
ð14Þ

in the appendix it is demonstrated explicitly that this form solves

the system of equations in eq. (13). To further prove the validity of

this construction we performed an independent fit of the logarithm

of the ratio of the i?j and j?i rate constants calculated for each i

and j. If our theory is correct the data should be optimally fitted by

a plane g(x,y)~{a(b x{y) where a~A2 A0, b~A1, and

x~Hj{Hi and y~Qj{Qi. In Fig. (6) we plot the ratio fitted

with the function g(x,y), the points fall nicely on the plane and the

optimized values of a~0:75+0:01 and b~7:28+0:12 are equal

to the expected values to within the experimental error.

Now that we have an analytic expression for the rate constants

and the equilibrium probabilities we can consider a generalized

system where we consider many more stepping stones than the one

we used to explicitly compute the rate constants. This has two

advantages: one is of course the minimal computational cost and

the second is that it is now possible to solve the master equation of

the evolutionary process that we modelled and extract the time

dependent probability of reaching any state in the network with a

given initial condition.

As we said in the methods section the rates from Eq. (6) cannot

be calculated directly but we can instead obtained a measure

relative to the the probability of observing one of the structures. If

we consider as reference the probability of observing the reference

structure A we can write

ri?j~Pi Ri?j~PA
RA?i

Ri?A

Ri?j ð15Þ

where we used the fact that the i?j and j?i rate are equal (see

Information S1 for formal proof), and P(A,s) is the probability of

observing structure A with all possible sequences. So the procedure

consists in a simple rescale of the data obtained with the

calculations of the rate constants between each stepping stone.

In Fig. (7) we plot the ratio between the i?j and j?i rates

calculated using the expression in eq. (15), as expected the ratio is

peaked at 1 because of the detailed balance condition. Higher

accuracy can be acquired with longer simulations to obtain better

measures of the rate constants. However this precision is beyond

the scope of this work.

Discussion

In this work we have addressed the problem of understanding

how the rate of appearance of novel protein structures depends on

the various factors that constrain the evolutionary process. We

have generalized the problem by modelling an evolutionary

trajectory with a path that connects a set of structures. The

ensemble of structures, or stepping stones, defines the degree of

Table 1. Values of the parameters in Eq. 11 and 12 used to fit
the rates calculated with our simulations.

A0 0:0048+1e{5

A1 7:22+0:12

A2 151+1

B0 20:5+0:8

B1 0:499+0:004

B2 222+9

doi:10.1371/journal.pone.0034228.t001

Figure 5. Rate constants plotted as a function of the number of
common contacts QN and the previously fitted expression of
the rate constants RA<B (see Eq. (11)). The profile shows a clear
linear dependence of the rate constants from ln RA<B indicating that
the assumption that it is sufficient to add a function ln R(QN ) is
reasonable. Although we do not have a wide range of values for QN the
data seems to fall on a sigmoidal function (eq. (12)) similarly to the fit in
Fig. (11).
doi:10.1371/journal.pone.0034228.g005
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constraint under which the evolutionary process occurs. The total

evolutionary rate is then determined by the rate of the jumps

among the stepping stones. We then considered a test case in

which we took two structures from the PDB and generated a large

number of stepping stones between the two. From this set we

measured the jumping rates between each pair of stepping stones.

Finally, on the data we fitted the analytic dependence of the jump

rate from simple structural difference between each stepping-

stone, namely the difference in the number of hydrogen bonds and

the number of inter-residues contacts (Eq. 11). In particular, this

expression demonstrates that it is much easier to jump towards a

compact structure with many hydrogen bonds than evolve towards

a configuration that is either compact with few hydrogen bonds or

non-compact with many hydrogen bonds. The simple form of the

rate is a remarkable result, if one considers the complexity of the

problem and the variety of structural differences between the

stepping stones. Moreover, the expression for the rate respects the

condition of detailed balance making it the perfect tool to define a

Markovian process for evolution that can be numerically studied

without the need of an expensive design of a large set of protein

structures. A result that comes out naturally from our analysis is

the probability of occurrence of a structure defined by Eq. 14,

which can also be interpreted as the designability of a protein

structure. We obtain the novel result that the designability of a

protein does not depend just on how compact it is but, mainly on

the optimization of both the number of hydrogen bonds and the

number of contacts between the residues. Eq. 14 demonstrates that

the higher the number of hydrogen bonds and residue contacts in

Figure 6. Consistency test for the fitted expression of the rate constants. (a) fit of the log of the ratio between the i?j and j?i rate
constants of the difference in the Hydrogen bond HB{HA contribution and the number of total contacts QB{QA the perfect plane fit indicates that
our expression and the data do verify the detailed balance condition. (b) Correlation plot between the final expression of the rate constants as a
function of DH DQ and QN and the compute rates. The data follow a clear linear profile with a correlation coefficient of 1.
doi:10.1371/journal.pone.0034228.g006

Figure 7. Distribution of the ratio between the the i?j and j?i rates. The distribution is strongly peaked at one indicating that two rates are
equal in the simulation error.
doi:10.1371/journal.pone.0034228.g007
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a protein structure, the higher the probability of observing such a

structure. However, because of the highly directional nature of the

hydrogen bonds, is not always possible to increase at the same time

the number of H-Bonds and the compactness. Hence, we predict

that the protein configurational space does not have a single

optimal structure but more probably an ensemble of equally

designable structures. The results presented in this work have been

obtained with a coarse grained model to represent the proteins.

We chose the ‘‘Caterpillar’’ model because it allows for the design

of realistic protein structures and does not require huge

computational facilities. Of course, the model has limitations in

offering a realistic representation of real proteins. In particular, we

did not include explicit interaction with the solvent, and the

accuracy in the refolding of real sequences still need extensive

testing and improvement. However, we believe that the method-

ology here presented can be extended to any protein coarse-

grained representation. Hence, an important extension of this

work will be to consider more realistic models, provided that the

resulting proteins are designable and the designed sequences refold

to the respective the target structures.

Supporting Information

Figure S1 Free energies F (DRMSD) kBT of the designed
sequences as a function of the root mean square
distance (DRMSD) from their target structures for two
test cases that we considered in this work: (a) the chain
X of the 50S subunit of a secm-stalled E. Coli ribosome
complex (PDB ID 2GYC) and (b) the model protein 172.
The free energy is shown for two temperatures, the first slightly

below the folding temperature TF and the second above. At low

temperatures, for all the target structures that we considered we

found the minima of F to be around 1.5 A (corresponding to

*2:4{2:8 Å RMSD), indicating that the designed proteins are

folded correctly on their targets.

(TIFF)

Information S1 In this appendix we derive the expres-
sion for he rates in Eqs. 6, we demonstrate that they
obey detailed balance, and we show how to use a
metropolis Monte Carlo method to measure the rates.
Finally we give details about the model and the biasing technique

used to improve the sampling.

(PDF)
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