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Abstract

When grown in continuous culture, budding yeast cells tend to synchronize their respiratory activity to form a stable
oscillation that percolates throughout cellular physiology and involves the majority of the protein-coding transcriptome.
Oscillations in batch culture and at single cell level support the idea that these dynamics constitute a general growth
principle. The precise molecular mechanisms and biological functions of the oscillation remain elusive. Fourier analysis of
transcriptome time series datasets from two different oscillation periods (0.7 h and 5 h) reveals seven distinct co-expression
clusters common to both systems (34% of all yeast ORF), which consolidate into two superclusters when correlated with a
compilation of 1,327 unrelated transcriptome datasets. These superclusters encode for cell growth and anabolism during
the phase of high, and mitochondrial growth, catabolism and stress response during the phase of low oxygen uptake. The
promoters of each cluster are characterized by different nucleotide contents, promoter nucleosome configurations, and
dependence on ATP-dependent nucleosome remodeling complexes. We show that the ATP:ADP ratio oscillates, compatible
with alternating metabolic activity of the two superclusters and differential feedback on their transcription via activating
(RSC) and repressive (Isw2) types of promoter structure remodeling. We propose a novel feedback mechanism, where the
energetic state of the cell, reflected in the ATP:ADP ratio, gates the transcription of large, but functionally coherent groups
of genes via differential effects of ATP-dependent nucleosome remodeling machineries. Besides providing a mechanistic
hypothesis for the delayed negative feedback that results in the oscillatory phenotype, this mechanism may underpin the
continuous adaptation of growth to environmental conditions.
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Introduction

Stable oscillatory dynamics in continuously grown budding

yeast were first observed almost 60 years ago. The authors

concluded that ‘‘the phenomenon appears to arise from the

inherent feedback in the system coupled with a metabolic lag’’

[1,2], in line with the current paradigm in systems biology where a

‘‘negative feedback with delay’’ [3] is thought to underlie

biochemical oscillators [4,5]. However, the nature of this putative

feedback remains elusive for the case of yeast respiratory

oscillations, partially due to the extent to which they percolate

throughout cellular physiology: many measured metabolites

oscillate, notably central carbon intermediates [6], amino acids

[7,8] nucleotide precursors [8] and a majority of the measured

protein-coding transcriptome [9–12]. The period is strain- and

condition-dependent and ranges between half an hour [13,14] and

several hours [1,15,16]. Each cycle alternates between a phase of

high oxygen uptake (oxidative phase) and a phase of low oxygen

uptake (reductive phase) [17]. Resistance to diverse cellular stress

conditions varies over the cycle [18] and oxidative damage,

measured by lipid peroxidation, was shown to be at maximum

during the oxidative phase [19]. Moreover, S-phase cells are

enriched during a temporal window of each cycle [9,10,15,20]

leading to the hypothesis that the major function of the oscillation

is the partitioning of DNA replication from reactive oxygen species

produced during the oxidative phase [9,21]. However, DNA

replication can occur in the oxidative phase under low glucose

conditions [20] and the oscillation can persist in cultures close to a

non-growing state [12]. Thus, it remains largely unclear whether

the oscillation serves a biological function or is a condition-specific

artefact of the many non-linear feedback systems that regulate

cellular growth [16]. However, evidence of single cell oscillations

[22,23] and coherence of oscillatory processes over several time-

scales [24] indicate that this cycling behavior may well constitute a

general principle of growth.

A range of mechanistic models have been proposed, but none

can accomodate the full range of experimental observations [25].

Previously, we defined a biosynthetic program, where cytoplasmic

ribosomal transcripts were upregulated at the beginning of the

oxidative phase, followed by sequential upregulation of many

transcripts involved in biosynthetic pathways. The end of this

program was characterized by the upregulation of mitochondrial

ribosomal and stress response transcripts during the reductive

phase [9]. Further analysis based on the yeast transcription factor
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network [8] could only give a partial picture of the regulatory

events underlying the oscillation. These analyses were based on a

system that oscillates with a period of 0.7 h. A subsequent

transcriptome experiment from a culture that oscillated at a period

of 5 h (but at comparable culture doubling times of 7–8.5 h)

revealed a similar picture [10], but the exact relation between the

systems remains unclear [26–28]. In this work, we directly

compare these two systems. Recently, a strong correlation of the

oscillatory transcriptome to the ‘‘environmental stress response’’

(ESR), where hundreds of genes are either upregulated or

downregulated upon infliction of a variety of cellular stress

conditions [29,30], had been noted [31]. It was hypothesized that

even in steady-state cultures single cells may still undergo an

oscillatory growth program [23], and that the stress response is in

fact just a culture average signal resulting from a shift in the

relative lengths of the phases of high and low oxygen consumption

in individually oscillating but non-synchronized cells [20]. This

hypothesis has far-reaching consequences for the interpretation of

all previous experimental data taken from steady-state cultures. A

complementary interpretation of the stress response was based on

a refined functional analysis and postulated that it serves to

‘‘balance energetic supply/demand and coordinate growth with

the cell cycle’’ [32]. Both, the stress response and respiratory

oscillations, involve a fast genome-wide remodeling of transcrip-

tion, implying a more general mechanism of gene regulation,

beyond the activity of specific transcription factors with only small

sets of target genes. Unlike so-called house-keeping genes, the

genes that are activated by stress were found to be enriched with

TATA Boxes [33], depend on the SAGA complex (Spt-Ada-

Gcn5-Acetyl transferase) for transcriptional initiation [34] and

have a more ‘‘bendable’’ promoter DNA that is thought to favor

nucleosome binding [35]. Recent genome-wide nucleosome

occupancy data allowed to distinguish four different types of

promoter nucleosome configuration [36], and such differential

nucleosome occupancy and positioning are thought to arise in part

from DNA sequence motifs or more general sequence properties

[37–39] and in part from ‘‘nucleosome remodeling’’, the

enzymatic shifting or ejection of nucleosomes away from

eneregetically favorable sites on DNA [40–43]. Recently, in vivo -

like promoter nucleosome configurations (‘‘positioning, spacing

and occupancy levels’’) were observed in vitro when Adenosine-59-

triphosphate (ATP) was added to a mixture of whole-cell extract

and nucleosomes reconstituted on genomic DNA of budding yeast.

This suggests a major role of ATP-dependent remodeling in the

establishment and maintenance of different types of promoter

nucleosome configurations [43]. ATP is one of the major

intracellular ‘‘currency metabolites’’ that channels chemical

energy from nutrient-catabolic processes into a multitude of

cellular growth and maintenance functions. Such direct links

between central energy metabolism and genome structure,

impacting on gene expression, have recently been implicated also

in mammalian regulatory systems such as the circadian clock [44]

and cancer cell growth [45,46], and are also suspected to play a

major role in eubacterial growth regulation via negative supercoil-

ing and ATP-dependent gyrase [47–51], which by itself was

observed to underlie the genome-wide circadian remodeling of

gene expression in cyanobacteria [52,53].

Thus, a vague line of interrelations exists in literature, from

stress-regulation via sequence properties of promoters to their

differential nucleosome configurations, and from central energy

metabolism to feedback on DNA structure. We reasoned that the

phenomenon of respiratory oscillations could clarify and consol-

idate these various detail observations. We developed a novel

clustering strategy, based on the discrete Fourier transform (DFT)

of raw transcriptome time series taken from the two systems

oscillating at periods of 0.7 h [11] and 5 h [10]. This allowed to

define a temporal sequence of co-expression cohorts common to

both systems and to characterize the differences. This consensus

clustering then served to systematically interrogate a large set of

published experimental data, and interpret the underlying

biological concepts in the context of oscillatory growth dynamics.

The respiratory oscillation transcriptomes untangle the enigmatic

stress response and integrates it with the recent observations of

general gene and promoter structures into a temporally and

functionally coherent growth program. Taken together, a surpris-

ingly simple perspective on global feedback mechanisms of

eukaryotic growth emerges, suggesting that the energetic state of

the cell gates transcription via co-factor dependent chromatin

modifications to express either cell growth and anabolic, or

mitochondrial growth and catabolic gene groups.

Results

Co-expression Cohorts Common to Both Systems
Here we compare two previously published microarray-based

transcriptome time series from cultures oscillating with periods of

0.7 h [11] (Figure 1A) or 5 h [10] (Figure 1B). The two experiments

were performed with different yeast strains (Saccharomyces cerevisiae

IFO 0233 or CEN.PK122) and different media composition (20 or

10 g L21 glucose and 13 or 6.5 mmol L21 H2SO4; see Table S1).

Phenelzine was added at the end of the first cycle of the 0.7 h

system, inducing a period increase from 0.7 h to 1.2 h during the

experiment [11]. The DFT of microarray time series has previously

proven useful in identifying periodic changes in mRNA abundance

[54,55]. Here it allows for a direct comparison of the two

transcriptome time series by a scatter-plot of the phase angles at

the respective phenotypic oscillation periods (indicated by the

dissolved O2 concentration in the culture medium). This phase-

phase plot reveals at least three density peaks (Figure 1D and Text

S1). To further characterize these co-expression cohorts, an apt

model-based clustering algorithm flowClust [56] was used to cluster

selected and scaled DFT components of all transcript time series.

This clustering strategy is very similar to a previously used approach

[57,58] and naturally allows to cluster by the pattern of change of

fluorescence levels, i.e., account for the time series nature of the

datasets. Amplitude scaling and the tailed distribution model of the

clustering algorithm are different from the previous work and serve

to further de-emphasize the only semiquantitative amplitude

information in favor of overall change patterns. Simultaneously,

this strategy allows to avoid a problematic data normalization step,

since the array-to-array noise can be expected in high-frequency

components of the DFT. The Methods section gives all technical

details of data processing and clustering, while in Text S1 we

provide detailed accounts of normalization problems, selection of

DFT components and the choice of the clustering algorithm.

The resulting clusters were sorted by the density peaks of their

phase angles for each dataset. The significance of overlaps between

the two individual clusterings was established by cumulative

hypergeometric distribution tests (Figure S1) and guided the

definition of a temporal sequence of five co-expression clusters

common to both systems: A?AB?B?C/D in the 0.7 h period

and A/AB/B?C?D in the 5 h period oscillation (Figures 1A &

1B). Genes in clusters B.C and B.D are differentially expressed

between the two systems, i.e., similar to clusters A to B in the 0.7 h

cycle and similar to cluster C and D in the 5 h cycle. Each of these 7

consensus clusters comprises 118 to 640 genes (Figure 1C), totaling

&34% of the yeast genome (1,999 of 5,795 yeast protein-coding

genes in our reference genome release). The remaining transcripts
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could be assigned to low-amplitude clusters l.b (815 genes, similar to

cluster B) and cd.n (1,502, similar to cluster C/D), to noisy and/or

non-consensus time series (cd.ab, ab.n, l, n) or were not present on

the microarray (r). Transcript abundance of cluster A genes peaks

when respiratory activity is maximal (0.7 h) or accelerating (5 h).

The more frequently sampled dataset from the 0.7 h period (sample

Figure 1. Clustered transcript time course profiles. 0 and 0: overlaid time courses of summarized microarray fluorescence for each yeast gene,
as the log2 of the mean-ratio (log2 (x=�xx)), for the 0.7 h [11] and 5 h [10] period datasets, respectively. The bottom two panels show cluster averages
for consensus and background clusters. The top panel shows the time courses of the dissolved O2 trace (DOT) in the culture medium in percent of the
saturated concentration. Cluster colors and sizes (number of genes in each cluster) are given in the legend in Figure 1C. For clarity of visualization the
time course data was normalized to a reference set that was selected for significant lack of oscillation (see Text S1 for fundamental problems with
normalization of these datasets). Individual time courses for each cluster are plotted in Figure S2. 1D: phase-phase plot comparing the phase-angles
wkc

of all transcripts in the two experiments. The phase angles were shifted such that cluster A phase angles are just above 0u in both datasets.
Mapping back from frequency- to time-domain, we can locate the shifted phase angles of one cycle (0u and 360u) in the time series plot (vertical lines
in Figures 1A and 1B), and use the same mapping in the top and right axes (in gray) of the phase-phase plot. The x- and y-extensions of each point
scale with the transcript’s scaled amplitude akc

in the respective dataset, where the non-consensus clusters (lower case letters) have a smaller initial
size. Dataset S1 provides raw summarized microarray intensities, and the clustering of all analyzed yeast genes.
doi:10.1371/journal.pone.0037906.g001
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resolution: 4 min) reveals a rapid temporal sequence of peaks

A?AB?B (Figure 1A). The transition between the oxidative and

reductive phase coincides with maxima of cluster B/B.C/B.D

(0.7 h) or C/B.C (5 h) transcript abundance. While cluster C time

series are in phase with cluster D in the 0.7 h cycle, their phase angle

density peaks are shifted by Dw~1730(&2:4 h) in the 5 h cycle

(Table S2, Figure 1B). The end of the reductive phase corresponds

to a decrease in abundance of cluster D transcripts and then the

cycle resets. In summary, the DFT-based clustering analysis shows

that there is a defined series of events that occurs in each cycle and

common to both the 0.7 h and the 5 h systems.

A Functionally Coherent Program: Anabolism vs.
Catabolism

We next analyze gene ontology (GO) terms and ‘‘subsystem’’

annotations in a genome-scale metabolic network model [59]

(Table 1, Tables S3 & S4) to identify the cellular processes that are

temporally regulated, and to expand and refine the pictures drawn

previously [8–10]. Large groups of cellular growth machinery (A &

AB: ribosomes of the cytosol, C: ribosomes of the mitochondria)

and architecture (A: nucleolus, B.C & C: mitochondria, D:

peroxisomes, vacuoles) are associated with enrichment in certain

metabolic pathways, which indicate apt shifts of metabolic flux

towards the specific requirements of the respective oscillation

phase. Purine (A) and amino acid synthesis (B) genes are expressed

in time to ‘‘feed’’ the protein translation program of clusters A and

AB. Transcripts encoding for sulfate uptake and methionine

synthesis are associated with cluster A and thus precede the rest of

the amino acid synthetic program. Cluster B.C is enriched with

genes encoding for the DNA replication machinery (S-phase),

apparently at the start of a cell division program that is followed by

M-phase functions enriched in clusters C (spindle and kinetochore)

and D (cytokinesis). Clusters AB, B.C and B.D together comprise

genes encoding for the amphibolic core carbon backbone

(glycolysis/gluconeogenesis, TCA/glyoxylate bypass). Mitochon-

drial regeneration or growth, mediated by ribosomes encoded in

cluster C, and the catabolic genes in cluster D, would then switch

flux around this backbone towards oxidation and energy

generation for the next oxidative phase. Cluster D further is

enriched in genes involved in cell redox homeostasis and response

to stress, which may prepare for the oxidative stress during the

next oxidative phase. In line with their time courses’ similarity to

the main consensus clusters, cluster l.b is enriched with genes

encoding for general transcription, mRNA processing, chromatin

remodelers and cell-cycle functionality required for both G1/S and

G2/M transitions, and cluster cd.n with protein-degradation and

Table 1. Significantly enriched GO terms of consensus clusters.

cluster Cell Structure & Growth Metabolism Cell Division & Life Cycle

A (414) nucleolus (137/175), PolI (14/14), PolIII (14/17),
ribosome biogenesis (171/199) & export
(5/10, LSU: 6/11)

sulfate assimilation (7/10), methionine
BSP (4/6), purine nucleotide
BSP (7/11)

AB (160) cytoplasmic RP (LSU:55/87, SSU: 43/62),
translation (102/270)

glycolysis (4/16), gluconeogenesis
(4/15)

B (135) protein de novo (2/3) & re- (3/9) folding,
actin cap (4/12), plasma membrane
(13/215)

amino acid* BSP (25/43), purine base
BSP (3/5), amino acid transport (3/14),
allantoin CP (5/7), nitrogen
utilization (3/9)

B.C (144) mitochondrion (57/988) glutamate BSP (6/13), citrate MP (3/4),
tricarboxylic acid cycle (8/15), glyoxylate
cycle (2/4), RCC II (2/4), III (4/10) & IV
(3/12), ATP synthesis coupled proton
transport (7/20)

DNA replication (6/24), replication fork
(7/14), lagging strand elongation (7/16),
DNA synthesis during DNA repair (3/3),
mitotic sister chromatid cohesion (9/22)

C (388) mitochondrion (225/988), mito. RP (LSU: 42/44,
SSU: 31/33), translation (88/270), structural
constituent of the cytoskeleton (11/51)

aerobic respiration (23/69), mito. proton-
transporting ATP synthase complex
assembly (3/3), RCC IV assembly (6/9)

septin complex (3/4), spindle (4/10) &
kinetochore microtubule (3/6)

B.D (118) mito. matrix (6/61), peroxisomal
matrix (3/12)

arginine BSP (6/10), proline CP (2/3),
ammonium transport (2/6), siderophore
transport (2/3), heme binding (2/3),
carnitine MP (3/3), propionate MP (3/5),
gluconeogenesis (3/15)

fungal-type cell wall (7/87)

D (640) fungal-type vacuole (26/99), peroxisome (11/27),
cell redox homeostasis (6/11), response to
stress (29/68), protein kinase activity (14/48),
unknown process (188/1313) & function
(266/2049)

vacuolar protein CP (9/12), trehalose
CP (3/3), D-xylose CP (3/4), arabinose
CP (3/4), neg. reg. of gluconeogenesis
(5/9), ethanol MP (3/4), carbohydrate
MP (6/12), glutathione MP (5/8), fatty acid
b-oxidation (6/9), glycogen BSP (5/9),
trehalose BSP (5/7)

cytokinesis, completion of separation (5/
11), fungal-type cell wall (18/87)

Cellular functions and metabolic activities are indicated by gene ontology (GO) categories that are significantly enriched in clusters (pv0:01 in cumulative
hypergeometric distribution tests). GO terms were taken from the SGD genome annotation file and only direct annotations were used, i.e., annotations were not
propagated to their parent terms in the GO structure. Redundant terms were manually filtered and categorized into the three columns of the table. Only consensus
clusters are shown and the rest of clusters are given in Table S3. The full data, all GO terms and p-values for all clusters, are provided as Dataset S2. The numbers in
brackets show the number of genes in the cluster and the total number of genes with the respective annotation. Abbreviations: mito., mitochondrial; neg.reg., negative
regulation; PolI and PolII, DNA-directed RNA polymerase complex I and III, respectively; RP, ribosomal protein; LSU and SSU, large and small ribosomal subunit,
respectively; mito., mitochondrial; RCC, respiratory chain complex; BSP, biosynthetic process; CP, catabolic process; MP, metabolic process; ER, endoplasmatic reticulum.
(*) reported is the sum of all significantly enriched amino acid biosynthetic pathways, i.e., lysine (via aminoadipic acid, 6/8), branched chain (5/7), aromatic (3/5), leucine
(3/5), histidine (4/14), asparagine(glutamate-hydrolyzing, 2/2) and arginine (metabolic process, 2/2).
doi:10.1371/journal.pone.0037906.t001
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autophagy. Taken together, a cell growth and anabolic superclu-

ster (A, AB & B) is expressed in the oxidative (energy-mobilizing)

phase of the cycle, while the reductive phase supercluster (C & D)

encodes for mitochondrial growth and catabolism, i.e. mediates

energy mobilization during the subsequent oxidative phase.

Growth and Stress vs. Cellular Energetics
The functional profiles of the clusters, especially of the two

antiphase clusters A and D, are reminiscent of the environmental

stress response (ESR) to various cellular stress conditions [29,30,32].

This relation had been previously noted [20,31] and is reflected in

sequence motif and binding site enrichments in the promoters of

cluster genes (Table S5, Figure S3 and Datasets S5 & S6), e.g., the

RRPE and PAC motifs in cluster A, and STRE motif and Msn2/

Msn4 binding sites in cluster D [32]. We find highly significant

overlaps of clusters A & AB with gene groups [29,31] downregu-

lated in response to stress and positively correlating with growth rate

and of clusters D & B.D with those upregulated upon stress and

negatively correlating with growth rate (Figures 2A, 2B & S7C). A

statistical analysis of the cluster distributions of transcript levels in a

previously published collection of 1,327 individiual transcriptome

microarray hybridizations [60] confirms a general anti-correlation

in expression between clusters A, AB & B, and clusters D & B.D

(Figure 3A). Cluster C expression is more diverse but overall

correlates positively with cluster D, i.e. Spearman’s correlation of

the normalized rank sums in Figure 3A is r~0:37 (p~4|10{45).

The regulatory antagonism, i.e., when one gene group is

downregulated the other is upregulated, is most apparent between

clusters A and D (r~{0:87, pv10{59) and is further reflected in

strong biases in various measures of expression kinetics, such as

transcriptional frequency, protein level and noise (Figure S7).

The ESR has been proposed to balance cellular energetics by

downregulating costly translation and upregulating catabolic

(energy-mobilizing) programs [32]. Free ATP has been shown to

oscillate [13]. Since cells are growing and total nucleotide levels may

vary, the ATP:ADP ratio provides a better estimate of the energetic

state, and we find that it oscillates between 1.2–2 in the middle of

reductive phase, and 5–5.7 in the oxidative phase (Figure 3B). Thus,

transcript abundance of cluster A genes coincides with high and of

cluster D genes with low energy states, in agreement with the

suspected role of energy limitation in the ESR [32].

A ‘‘Dual Dichotomy’’: Stress-regulated or House-keeping
vs. TATA or TATA-less Genes

Besides a variety of specific transcription factors, general DNA-

structural properties or transcription initiation machineries have

been implicated in differential regulation of large gene classes. In

particular, genes that do not contain a TATA Box code for

‘‘house-keeping’’ genes [33], have a stiff promoter [35] with a

pronounced nucleosome-depleted region (NDR) [36]; their

expression depends on the TFIID-type transcription initiation

machinery [34] and protein levels are less noisy [61]. These genes

are thought to differ in all above features from genes classified as

‘‘stress-regulated’’. The rRNA-processing and mitochondrial

ribosome clusters A and C consist primarily of TFIID-controlled

genes (Figure 2C), while clusters B, B.C, B.D & D are all

significantly enriched in the smaller class of genes under control of

the SAGA transcription initiation complex. Consistent with this,

only 23–29% of cluster A, AB and C genes, but 41–52% of genes

from clusters B, B.C, B.D and D harbor a consensus TATA Box

[33] within 350 nucleotides upstream of their start codons (row

TATA.350 in Figure S3A). Clusters A & C further share a bias

towards low RNA half-lives (Figure S8A), possibly indicating

induced mRNA degradation. The proteins Puf4p and Puf3p

promote mRNA degradation and their binding motifs [62] are

enriched in the 39UTR of clusters A & C, respectively (PUF4p.3p

and PUF3.3p in Figure S3A). The latter enrichment had already

been observed for the 5 h period system [63]. Clusters A & C, but

also the low amplitude background clusters, differ by a low

chromatin regulation score (CRE, Figure S8B), defined by the

expression response to a range of perturbations of chromatin

regulation machineries [64]. All other main clusters, especially

clusters B.D & D, are characterized by high CRE scores (all p-

values ,1024). In summary, our analyses show that the broad

classification of genes into cell growth and energy-mobilizing

superclusters, reflected in a plethora of independent transcriptome

and transcription kinetics datasets (Figures 3A, S7 & S8), is

orthogonal to previously observed promoter-structural categories.

Temporally, clusters A and C, encoding for cytoplasmic and

mitochondrial ribosome biogenesis, lead the anabolic and

catabolic superclusters, respectively. These are exclusively

TFIID-regulated, deprived of TATA Boxes and are targeted by

Puf proteins. Each supercluster then develops to express metabolic

genes, whose promoters are enriched in TATA Boxes and SAGA-

regulation, i.e., clusters B and D.

Differential Chromatin Structure: Broad Gene Classes
Eukaryotic transcription appears to be initiated at NDR [36].

Nucleosome occupancy measurements take a population average,

and nucleosomes that have a stable position in many cells give a

pronounced signal with shorter distances between adjacent

nucleosomes and are often denoted as ‘‘well-positioned’’, while

‘‘fuzzy’’ positioning refers to a shallower signal with longer

distances. Promoters are either found depleted of or occupied by

nucleosomes in a given measurement. Four different types of

promoter nucleosome configurations were distinguished by k-means

clustering of nucleosome profiles around transcription start sites

(TSS) [36], and we find highly significant enrichment of clusters

with these gene types (Figure 2D). This enrichment can also be

clearly seen in a heatmap of nucleosome occupancy data sorted by

cluster genes and aligned at TSS, and in position-dependent

Statistical DNA Profiles (SDP) of the same dataset (Figures 4 & 5A).

Similar patterns can be seen in several other of nucleosome

occupancy datasets [37,40,65] (Figure S12). Cluster A & C are

clearly enriched with genes with wide and narrow NDR,

respectively. Both of these classes have arrays of very well-positioned

nucleosomes upstream and downstream [36]. Cluster AB genes are

strongly depleted of nucleosomes in promoter and downstream

regions, and this may result from the very high transcriptional

frequencies (Figure S7A) of ribosomal protein genes [36]. Such

genes are also significantly enriched in clusters B, B.C & B.D, but at

a low percentage (Figure 2D). The heatmap (Figure 4) and statistical

profiles (Figure 5A) show that these clusters additionally contain

genes with a higher nucleosome occupancy at the promoter, a

property shared with clusters B.D & D. Lastly, clusters B.D & D are

enriched with genes that are characterized by a fuzzy nucleosome

positioning. Thus, a gene classification based solely on the

nucleosome configurations around the TSS distinguishes the

ribosomal clusters A & C, from metabolic clusters B & D.

Moreover, specific properties, such as promoter occupancy,

NDR-size and stability of nucleosome positioning, differentiates

between the anabolic and catabolic superclusters.

Differential Chromatin Dynamics: a Candidate
Mechanism

Nucleosomes can be shifted laterally along the DNA, away from

energetically favorable positions, or evicted completely by ATP-

Chromatin Dynamics during Respiratory Oscillations

PLoS ONE | www.plosone.org 5 June 2012 | Volume 7 | Issue 6 | e37906



Figure 2. Overlap of the consensus clusters with other gene clusterings. Clusters were tested for enrichment in other gene categorizations
by cumulative hypergeometric distribution tests. The text in the fields gives the number of genes in the respective overlap (top line) and the p-values
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dependent nucleosome remodeling machineries. Two opposing effects

of remodeling on transcription have been reported. An ISWI class

remodeler (Isw2) shifts nucleosomes from the coding region into the

promoter NDR and loss of this activity resulted in de-repression of

transcription [40,66]. In contrast, RSC-type remodelers are required

to maintain promoters nucleosome-free and thus transcriptionally

competent [42]. The in vivo binding sites of Isw2 are thought to be

better reflected by the catalytically inactive Isw2(K215R) protein [67],

and these are highly enriched around cluster B.C, B.D & D promoters

(Figure 5B), and knock-out of Isw2 activity results in shifted nucleosome

positions for these clusters [40] (Figure 2E). Significant fractions of

clusters B.D & D genes are also affected by remodeling of the NDR at

the 39 end of the genes (Figure 2F), which is at some loci required to

repress antisense transcription [40,66]. Indeed, antisense transcription

[68] is significantly increased in cluster B.D & D average profiles

(Figure 5E). In contrast to repression by Isw2, activity of the RSC

complex is required to maintain a promoter NDR and transcriptional

competence in many genes. RSC inactivation (by induced intein-

splicing) resulted in the collapse of the promoter NDR in 76 of the 136

tested genes on chromosome III [42]. Within this small subset of the

yeast genome we still find differential enrichment of cluster genes

(Figure S6A), i.e., 8 of 12 cluster A (p~0:15) but only 2 of the 11

cluster D promoters (p~2:9|10{3) are affected. The strongest

enrichment is found for the large low-amplitude cluster l.b (16 of 17

genes, p~3:4|10{5), which shares several properties with cluster A,

e.g., co-regulation in the transcriptome meta-analysis (Figure 3A), a

tendency towards broader NDR and enrichment in TFIID-depen-

dent genes (Figures S4C, S10 & S4D). However, an opposite RSC

enrichment pattern is found in a previous chromatin immunoprecip-

itation (ChIP) dataset for several RSC subunits [69] (Figure S6B).

High-resolution ChIP data [41] showed that Rsc8p (RSC subunit) is

highly enriched in the ribosomal protein genes that comprise cluster

AB, still significantly enriched in clusters B, B.C, B.D & D but not

enriched in clusters A & C (Figure 5C). Mutations of the highly similar

RSC components Rsc3p and Rsc30p have been reported to

differentially affect the expression of ribosomal protein (cluster AB),

and cell wall component and stress response (enriched in clusters B.D

and D, see Table 1) genes [70] (Figures S9A & S9B). Both proteins

bind to DNA and recruit RSC to target sites and their proposed

binding motifs [71] are slightly enriched in both, AB and B.D

promoters, but with low significance (pw0:01, 2.5–4% of genes vs. 1–

2% genome-wide, Figure S3 & Dataset S6). Similarly, the subunit

Rsc9p was found to relocate from genes of clusters AB, B, B.D & D to

genes of clusters C & D upon exposure to H2O2 (all pv0:05, Figures

S9C & S9D) [72]. In summary, Isw2 clearly targets clusters B.D & D,

while RSC affects both anabolic and catabolic gene groups, but likely

with differential outcome or under different conditions.

Nucleosome Configurations vs. Transcriptional States in
Mutants

The dataset provided by Badis et al. [41] compared nucleosome

occupancy and transcript levels in seven temperature-sensitive

mutants of different DNA-binding proteins to their isogenic

control strains, where both cultures were grown at the restrictive

temperature of 37uC. Here we analyze cluster SDP of the relative

signal D~ log2

Imutant

Icontrol
, as provided by the authors, and addition-

ally refer to enrichment of binding motifs or experimental protein

binding sites taken from references [71] and [73] (Table S5, Figure

S3 and Datasets S5 & S6), respectively. The observed effects may

partially be specific and local, i.e., in the vicinity of the DNA-

binding sites of the proteins, or alternatively merely reflect general

stress or a change in growth rate. Moreover, these transcription

factors have been called ‘‘general regulatory factors’’ (GRF) that

act as insulators for ‘‘silenced’’ histone deacetylation domains,

including subtelomeric regions [74], and the mutations may well

have genome-wide effects on chromatin structure.

The mcm1-1 (Figures 6A & S13) and tbf1 (Figure S14) strains

showed a typical ESR transcriptional response, i.e., cluster A, AB

& B are downregulated and clusters B.D & D upregulated. Both

strains show a higher average nucleosome occupancy at the

promoters of all clusters (all �DDw0 just before TSS), but this

increase is significantly lower in the upregulated cluster B.D & D

genes and significantly higher in the downregulated clusters A &

AB. The change of occupancy in clusters B.C & C is similar

between mcm1-1 and tbf1 strains, yet, the transcriptome shows a

differential response, i.e., B.C & C are downregulated in tbf1 but

upregulated in mcm1-1, perhaps reflecting the differences between

the 0.7 h and the 5 h period cycles (Figure 1). Mcm1p binding

sites are slightly enriched in clusters B.C (4% of cluster genes,

p~0:013), and D (3%, p~0:002), and the binding motif of Tbf1p

is enriched in cluster D promoters (21%, p~0:003). The cep3,

abf1-101 and rap1-1 strains (Figures S15, S16, S17) also show a

ESR-like response, but with more subtle features. In cep3, the total

nucleosome occupancy seems increased over the control strain,

indicated by �DDw0 in all clusters over the complete analyzed range,

but the occupancy increase is significantly higher in promoters of

clusters A, AB & C. Clusters B.C & C are uncoupled from the

ESR and downregulated. Cep3p binds to centromers and we find

no enrichment of it’s binding motif in any cluster. In contrast,

Abf1p binding sites are highly enriched in cluster A (11%,

p~3|10{4) and Rap1p in clusters AB (50%, pv10{59,

Figure 5F). Thus, the strong downregulation of cluster A in abf1-

101, and of AB in rap1-1 may in part be related to specific and

local effects of these proteins. In both mutants, nucleosome

occupancy of cluster AB promoters is strongly increased, and we

observe an increase of transcription upstream of the TSS, a

moderate downregulation at the 59 end, most likely stemming

from the introns that are enriched in 59 regions of these ribosomal

protein genes, and strong downregulation 39 of this intronic

region. And lastly, nucleosome occupancy at the promoters of

clusters A & AB is significantly decreased in the rsc3-1 (Figure 6B)

and reb1-212 (Figure S19) strains, but without concurrent increase

in transcript levels, suggesting that these growth clusters are highly

expressed in the control strains. Clusters B, B.C, B.D & D have

increased nucleosome occupancy in rsc3-1. While in the reb1-212

mutant all clusters show a slight global decrease in nucleosome

occupancy just before the TSS (all �DDv0), the decrease is less in

(bottom line). The p-values are further indicated by gray-scale (see legend to the right of each panel). The bottom row gives the total number of
genes in each tested category. Figures S4 & S5 give results for all 14 clusters and Dataset S7 provides the original gene classifications. ‘‘NA’’ indicates
that no classification was available for these genes in the respective dataset. 2A: genes whose expression positively (‘‘up’’) or negatively (‘‘down’’)
correlates with, or does not respond (‘‘unresp.’’) to growth rates in nutrient-limited conditions, data from [31]. 2B: genes which are upregulated (‘‘up’’)
or downregulated (‘‘down’’) in response to a variety of stress conditions, data from [29] via supplementary material of [31]. 2C: dependence on
transcription initiation complexes ‘‘TFIID’’, ‘‘SAGA’’ or ‘‘both’’, from [34]. 2D: genes with fuzzy nucleosome positioning (‘‘fuzzy’’), nucleosome-depleted
promoters (‘‘depleted’’), a large and pronounced NDR (‘‘large NDR’’) or a small but pronounced NDR (‘‘small NDR’’), from [36]. 2E: genes with no
Isw2(K215R) binding but remodeling at promoter NDR (‘‘RMD’’), with Isw2(K215R) binding but no remodeling (‘‘Isw2’’), with Isw2(K215R) binding and
remodeling (‘‘RMD+Isw2’’) or neither binding nor remodeling (‘‘none’’), data from [40]. 2F: as Figure 2E but for the NDR at 39 ends of genes.
doi:10.1371/journal.pone.0037906.g002
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clusters B, B.C, B.D & D. Only the mitochondrial clusters B.C &

C are significantly downregulated in both mutants. In the rsc3-1

strain, clusters B.C, B.D & D all show increased transcription

upstream of the TSS (Figure 6B, middle panel). The signal from

the antisense strand of this mutant is generally lower than in the

control strain (all �DDv0, right of TSS), but the decrease is

significantly less in clusters B.D & D compared to other clusters

(Figure 6B, bottom panel). A unique uncoupling of clusters B.D

and D was observed in the reb1-212 strain where only B.D is

significantly upregulated, coinciding with an unusual signal peak of

the intronic region of cluster AB genes. This may result from

premature transcription termination, indicated also by small peaks

around the TSS of all clusters. In summary, the observed effects

reach well beyond specific promoter binding sites of the tested set

of GRF mutants, implying a stress-response or change of growth

rates in these cell lines, accompanied by genome-wide remodeling

of chromatin structure. The mutant cell lines tested by Badis et al.

[41] thus clearly show, that distinct nucleosome occupancy states

Figure 3. Cluster transcriptome meta-analysis & ATP:ADP ratio. 3A: Relative RNA expression profiles of redox clusters (rows) in a collection
1,327 microarray hybridization datasets [60] (columns). The normalized rank sum Umn indicates a bias of the cluster genes towards upregulation
(1wUmnw&0:6, red to yellow) or downregulation (&0:4vUmnv0, cyan to blue) in the respective experiment. Experiments were sorted into 5
clusters (column numbers) by the SOTA algorithm [104] and plotted in decreasing order (from left to right) of the means of cluster A’s Umn values. The
Dataset S3 gives SOTA assignments, Umn values and p-values from two-sided Mann-Whitney-Wilcoxon tests. 3B: The ATP:ADP ratio was measured
enzymatically every 5 minutes over three cycles of a respiratory oscillation and culture system that corresponds to the 0.7 h period dataset (available
as Dataset S8).
doi:10.1371/journal.pone.0037906.g003
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are indeed associated with transcriptional states akin to the

transcriptional phases observed during synchronized respiratory

cycling of budding yeast cell cultures.

Discussion

In this work, we have identified seven consensus clusters of

genes, whose transcripts show periodic time-series during both, the

0.7 h [11] and the 5 h [10] period respiratory oscillations.

Specifically, clusters A, AB, B, C and D define a common

temporal gene expression program (Figures 1 & 7A). Their

relation to respiratory activity and their functional enrichment

profiles (Tables 1, S3 & S4) support a distinction of two

superclusters. The cell growth supercluster (A?AB?B) is

expressed during the oxidative phase, and the energy-mobilizing

supercluster (C?D) is expressed in the reductive phase. Each

supercluster develops from predominantly TATA-less and TFIID-

controlled genes that encode for ribosome biogenesis (A/AB:

cytoplasmic or C: mitochondrial), to gene groups that are enriched

in TATA Boxes and SAGA-control and encode for metabolic

functions (B: amino acid synthesis or D: catabolism and stress-

response) (Figure 7B).

Figure 4. Nucleosome Occupancy: Heatmap and SDP Construction. A heatmap of nucleosome occupancy data from [36], and construction
of Statistical DNA Profiles (SDP) for the consensus clusters. Top panel: heatmaps of nucleosome occupancy data from a tiling array in 4 bp resolution
[36], around the transcription start sites (TSS) of the 5,176 yeast genes for which a TSS could be derived from a combination of datasets [68,99,100]
(see Methods section & Table S2). Original values (log2 of nucleosomal over genomic DNA signals) varied between –6.25 and 1.66 but were cut at –1.6
and 1.1 for clarity. Genes are sorted by clusters, and within each cluster by their order on the genome, as given by the genome annotation file (SGD,
Feb. 2008). Bottom panel: Statistical DNA Profile (SDP) of nucleosome occupancy data. See Methods for details; in short: an SDP of cluster genes
shows the cluster mean values (y-axis) at nucleotide positions upstream and downstream (x-axis) of the TSS, in bins of (here) 10 bp (basepairs). The
plot symbols reflect the direction of a bias in the distribution of values in m cluster genes compared to the distribution of all (n) other genes at the

given binned position. They were calculated from the relative rank-sums, Umn~
U

mn
, where filled circles indicate a bias towards higher (Umn§0:5),

and open circles a bias towards lower (Umnv0:5) values then the rest of the genome. The plot symbol size scales with the p-value
(* log (p)= log (0:001)) such that the largest symbols represent a significance cutoff at pv0:001 and the smallest a non-significance cutoff at pw0:2.
Figure S10 shows the same for all clusters and example distributions at position bin 210 to 21 of the TSS for clusters A & D.
doi:10.1371/journal.pone.0037906.g004

Figure 5. Statistical DNA profiles (SDP) of nucleosome occupancy, Isw2(K215R) ChIP, Rap1p DIP, Rsc8p ChIP & transcriptome tiling
array datasets. SDP were constructed as desribed for Figure 4. Figure 1C provides a color legend. Only results for consensus clusters are shown
here, see Figure S11 for background clusters. Nucleosome occupancy data from 5A: tiling array dataset in 4 bp resolution [36]; 5B: Isw2(K215R) ChIP-
tiling array data in 5 bp resolution [40]. 5D: transcriptome tiling array data in 8 bp resolution [68] on the sense strand; 5E: same as 5D but for the
signal from the antisense strand. 5C & 5F: data are from [41] with resolution & SDP bin size: 32 bp; 5C: Rsc8-TAP ChIP-chip data in wildtype cells. 5F:
Rap1 DIP-chip data (in vitro ‘‘DNA immunoprecipitation-chip’’ of genomic DNA by Rap1p).
doi:10.1371/journal.pone.0037906.g005
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Clusters C and D are co-expressed in the 0.7 h but anti-phase in

the 5 h system, accompanied by differential regulation of the

amphibolic core carbon backbone of metabolism and DNA

replication machineries in clusters B.C and B.D. These differences

may be due to differential extent of S-phase synchrony (&10% or

&50%) in the two systems. This difference is reflected in

differential association of average cluster C transcript levels in

the transcription factor mutant dataset of [41] (e.g., Figures 6A vs.

S14). Genes encoding for mitochondrial functions, i.e., cluster C,

were switched from wide (cluster A-like) to narrow NDR

configurations, concurrent with the evolution of the respiro-

fermentative lifestyle after a whole genome duplication event [75],

and could also be distinguished in a detailed analysis of stress-

response cohorts [32]. In line with the direct feedback interactions

discussed below, mitochondrial activity, reactive oxygen species or,

more specifically, NAD+-mediated regulation of both chromatin

[76,77] and the flux direction along the core carbon backbone

[78–80] may well play a role for the differential regulation. Further

data on systems with different extent of S-phase synchrony or an

experimental system to reproducibly vary the oscillation periods

will be required to go beyond this only descriptive discussion of the

differences between the two analyzed systems.

Common to both systems, however, is the antiphase relation of

the two superclusters. This and their anti-correlation in our

transcriptome meta-analysis (Figure 3A) and the correlation with

the ‘‘environmental stress response’’ [20,31] (Figures 2A & 2B)

point to a common regulator with opposing effects on the

expression of the two superclusters. A detailed analysis of the

functional annotations of co-regulated gene groups lead to an

interpretation of the stress response as a general reaction to

energy-limitation, where the costly translation program is down-

regulated and concurrently energy-mobilizing processes are

upregulated [32]. We have previously shown that various

measures of the energetic flux of the cell strongly vary over the

cycle, e.g., the cytochrome oxidation state and mitochondrial

morphology [17]. Anabolism is, however, energetically driven by a

concentration gradient between ATP and ADP. We report here an

oscillation of the ATP:ADP ratio (Figure 3B) that is compatible

with this energetic interpretation of the stress response. When

ATP:ADP is high (&5–6), the growth supercluster is expressed. A

subsequent activity of this growth program, concurrent with low

respiratory activity, would explain the decrease of the ATP:ADP

ratio in the reductive phase (down to &1–2). This phase is

paralleled by increase in expression of catabolic and respiratory

genes whose activity subsequently would replenish ATP in the next

cycle. These consequences of the metabolic activity of the two

superclusters are depicted as positive or negative influence on ATP

in Figure 7C. Could, in turn, the energetic state or specifically the

ATP:ADP ratio directly and differentially feed back on the

expression of the anabolic and catabolic superclusters?

Such a direct feedback between energetic state and gene

expression is known from bacteria, where the ATP:ADP ratio

Figure 6. Changes in nucleosome occupancy and transcription in mcm1-1 and rsc3-1 strains. SDP plots were constructed as described for

Figure 4. Figure 1C provides a color legend. All data are from [41] and were provided (by the original authors) as shown, i.e., D~ log2

Imutant

Icontrol

, where I

are the processed signal intensities from the individual experiments in mutant and isogenic control strains. In all figures, the top panel shows change

of nucleosome occupancy from tiling arrays in 4 bp resolution, the middle and bottom panels show the change in transcriptome tiling array signal in

8 bp resolution from the sense and the antisense strands, respectively. 6A: mcm1-1; 6B: rsc3-1. Results for background clusters are shown in Figures

S13 & S18.
doi:10.1371/journal.pone.0037906.g006
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correlates with the extent of negative supercoiling that is

introduced by ATP-dependent gyrase [47,48] which in turn

differentially affects transcription of the gene encoding for the

gyrase [81] and for anabolic and catabolic enzymes [50]. While in

Escherichia coli the resulting feedback was interpreted in terms of a

homeostatic regulation system, rhythmic changes in DNA

structure were observed over the circadian cycle of the cyanobac-

terium Synechococcus elongatus PCC7942 [52]. Negative supercoiling

is increased during the photosynthetic phase and is required for

transcription from GC-rich genes [53]. In our system, all clusters

are significantly enriched in one of four distinct promoter

nucleosome configurations (Figures 2D & 5A) [36]. Nucleosome

occupancy partially depends on sequence properties, e.g., the GC-

content [38]. Cluster A transcripts are purine-rich and cluster D

genes are GC-rich (Figures 8A & 8B). Thus, the clusters may differ

in sequence-dependent ‘‘default’’ nucleosome configurations or

Figure 7. Summary of results & proposed feedback model. 7A: temporal flow of expression and functional relationships of cluster transcripts
in the 0.7 h system (left to right) and the 5 h system (top to bottom). 7B: summary of observed properties (significant enrichment or biases) of the
main gene clusters. 7C: Potential regulatory interactions of broad cellular functionality via the energetic status of the cell, reflected, e.g., in ATP:ADP
ratios. In the oxidative phase catabolic activity leads to a high ATP synthesis rate. At high ATP:ADP ratios promoters of anabolic genes are active,
potentially mediated by ATP-dependent nucleosome remodeling, which at the same time keeps promoters of catabolic genes in a repressed state.
When respiratory activity suddenly slows down in the reductive phase the activity of the anabolic genes, i.e., amino acid and protein synthesis, leads
to a decrease of the ATP:ADP ratio and the promoters of catabolic genes become active. Diverse cellular stresses may result in a sudden drop in the
cellular ATP:ADP ratio due to the energetic costs of immediate biochemical stress response.
doi:10.1371/journal.pone.0037906.g007
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overall occupancy, which is also reflected in the differential in vitro

occupancy (Figure 8C) [37] and could lay the grounds for

differential regulation. A candidate mechanism is ATP-dependent

nucleosome remodeling, where ATP hydrolysis provides the

mechanical force to generate negative superhelical torque [82]

and break DNA-histone contacts [83]. The addition of ATP to

naked DNA, histones and cell extract allowed the in vitro

reconstitution of in vivo promoter nucleosome configurations,

suggesting a major role of ATP-dependent remodeling in the

establishment and maintenance of different types of promoter

nucleosome configuration [43]. The differential consequences of

promoter nucleosome remodeling by the RSC- and Isw2-types of

remodeling machineries, and their differential association with

cluster genes (Figures 2E, 5B, 5C, S5, S6 & S9) elegantly

complement the proposed feedback model between anabolic and

catabolic pathways (Figure 7C). At high ATP:ADP ratio, RSC

would keep promoters of anabolic genes open and competent for

transcription, while Isw2 would actively repress catabolic gene

promoters. When the ATP:ADP ratio drops both remodelers may

become less active, and gene expression would switch from growth

to catabolic genes. ADP promotes the dissociation of Isw2 from

DNA [84], further supporting a direct influence of the ATP:ADP

ratio. In this scenario, ATP-dependent nucleosome remodeling

literally gates gene expression by opening or closing promoter

regions apt to the current energetic state of the cell. However, the

diverse targets of RSC remain elusive and are difficult to establish

experimentally [42]. Interestingly, the step-length of RSC-medi-

ated remodeling, i.e., the distance over which a given nucleosome

is moved along the DNA in one remodeling cycle, has recently

been observed to depend on the ATP concentration in vitro [85],

which in vivo could lead to differential rotational positioning, and

thus exposure or covering, of regulatory motifs [86] such as the

TATA-Box in the metabolic cohorts B and D of the two

superclusters. Oscillating levels of acetyl-CoA- and SAGA-

dependent histone acetylation have been found to enable rapid

transcription of growth genes (clusters AB, B) in the oxidative

phase, while the SAGA complex binds to stress-regulated genes (D)

during the reductive phase of a &5 h oscillation [87]. Thus, RSC

and SAGA, or ATP-dependent nucleosome remodeling and

acetyl-CoA-dependent histone acetylation, may cooperate [88]

at both anabolic and catabolic gene clusters, and relate the

metabolic state of the cell to an appropriate transcriptional output.

The combined dataset provided by Badis et al. [41] clearly

shows that indeed differential promoter occupancy of the cluster

genes is associated with differential transcript levels (Figures 6 &

S13, S14, S15, S16, S17, S18, S19), where the observed effects

reach well beyond local binding sites of the tested mutants of

DNA-binding proteins. The diverse detail observations in this

dataset point to further processes involved. Upstream non-coding

and antisense transcription around the stress-activated clusters D

and B.D indicate a role of noncoding RNA transcription [89,90],

potentially in transcriptional silencing [40,91,92]. And finally, the

global bias in nucleosome occupancy (�DDNucl.Occ.=0 in all clusters)

or positioning (periodic �DDNucl.Occ. downstream of TSS) in some of

the mutants may point towards genome-wide chromatin re-

arrangements. We interpret this as further strong evidence of

genome-wide chromatin remodeling cycles and complex transcrip-

tional landscapes during the respiratory oscillation.

In summary, our systematic statistical comparison of large data

compendia provide an integrated perspective on the possible

interactions between metabolism, chromatin structure and tran-

scription. Such direct links between central metabolism and

chromatin dynamics have recently been implicated also in

mammalian regulatory systems such as the circadian clock [44]

and cancer [45,46]. Here, we proposed an analogy in prokaryote

systems, i.e., the circadian supercoiling dynamics in cyanobacte-

ria [52,53]. For the case of respiratory oscillation in yeast

continuous culture, we defined a gene expression program

(Figure 7A) that is coherent in both, function and time, and

proposed a first mechanistic interpretation of not only the

oscillatory gene expression common to the 0.7 h and 5 h systems,

but also for the often observed, yet still enigmatic stress response

of transcription (Figure 7C). We expect that ATP-dependent

nucleosome remodeling plays an important role, most likely in

interaction with the co-factor dependences of post-translational

histone modifications [87]. It has recently been proposed that

even in the absence of culture synchrony, individual cells may

always undergo an oscillatory growth program, and that a given

sample merely reflects a mixture of cells that are in either the

reductive or the oxidative phase. An observed stress response

would then just reflect a decreased overall growth rate where

individual cells remain longer in the reductive phase [20]. This

would require a re-interpretation of all previous experiments on

steady-state and batch cultures, including all chromatin-structural

data analyzed herein. Our analysis and interpretations are fully

compatible with this hypothesis. Time series data on chromatin

structure over the respiratory cycle will be required to understand

the dynamics of local and global chromatin and transcription

landscapes. We predict that oscillatory continuous culture will

become an invaluable experimental system for an integrative

mechanistic understanding of both chromatin biology and growth

regulation, since the synchronized culture naturally cycles

between transcription from genes with both, complementary

functions in cellular growth, and differential chromatin structure

and dynamics.

Methods

Automated data collection and preprocessing were handled by

scripts in the Perl programming language. All statistic analyses and

data visualization were performed using the R statistics package,

version 2.11.

Microarray Processing
Time series data from the two microarray experiments were

based on the Yeast_2 (0.7 h period dataset) and the YG_S98 (5 h

period dataset) Affymetrix microarrays. Raw data was obtained

from microarray image files directly (R package affy, without

background or mismatch correction, or normalization), using the

FARMS summarization method [93] (parameters: weight = 0,

m = 0, with ‘‘robust’’ and ‘‘weighted mean settings’’ settings

active). Since several properties of the respiratory oscillation may

lead to a violation of central assumptions underlying common

experimental and computational normalization procedures, raw

data was used for Fourier analysis and clustering. A custom-made

normalization, akin to a previously suggested strategy [94] but

adapted for periodic data, was used only for clarity of visual

display of the average cluster time courses (Figures 1A and 1B).

Text S1, section S1.1, provides a more detailed discussion of

these problems and the chosen normalization strategy. The files

Yeast_2.na27.annot.csv and yeast2_best_match.txt, as provided

by Affymetrix, were used to map the datasets to the 5,795

protein-coding genes annotated in our reference genome release

(Feb. 2008 SGD release), resulting in 5,571 (0.7 h) and 5,315

(5 h) individual time series. The raw time series data are available

in Dataset S1.
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Figure 8. Nucleotide content & in vitro nucleosome occupancy. Figure 1C provides a color legend. 8A & 8B: local GC- and purine frequencies
were first calculated for each gene and each position in sliding windows (size: 71 nt.), and then SDP were constructed using t-tests for statistics
visualization. Tests were performed without prior binning of values, and instead values are shown only for each 10th nucleotide position for visual
clarity. 8C: in vitro nucleosome reconstitution at low histone levels [37], 1 bp resolution, SDP with bin size 10 bp and Mann-Whitney-Wilcoxon tests.
Background clusters are shown in Figure S20.
doi:10.1371/journal.pone.0037906.g008
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Discrete Fourier Transform (DFT)
A time series of N measurements x~fx0,:::,xN{1g, taken at

equally spaced measurement time points ft0,:::,tN{1g, can be

approximated in frequency-space by applying the Discrete Fourier

Transform (DFT):

Xk~
XN{1

n~0

xne
{2pi

kn

N , k~f0, . . . ,N{1g

where X is a vector of complex numbers representing the

decomposition of the original time series into an offset value (at

k = 0, also known as ‘‘direct current’’ DC in signal processing) and a

series of harmonic oscillations around this offset with periods

Pk~(tN{1{t0)=k. Amplitude Ak and phase angle wk at a given

DFT component k can be calculated as Ak~DXk D=N and

wK~{atan2(Im(Xk),Re(Xk)). The index k corresponds to the

number of full cycles with period Pk in the time series. The two

experiments analyzed here were taken over 4 and 3 full cycles of the

respiratory oscillation, and we define the number kc of phenotypic

cycles (here indicated by dissolved O2 concentration, but in other

scenarios the phenotypic cycle could be the cell division or a circadian

cycle), where kc~4 for the 0.7 h and kc~3 for the 5 h period

dataset. The amplitude Akc
corresponds to previously used measures

of periodicity in mRNA time series [54,55,95]. Additionally, the

phase angle wkc
is a good approximation of the peak time of a given

transcript’s abundance within the cycle.

The microarray fluorescence intensity depends on sequence-

specific hybridization energies. Thus, individual time series are

usually interpreted relative to their mean signal (commonly as the

log2 of the mean-ratio, log2 (x=�xx)). For our purpose, a similar

normalization in the frequency domain proved useful: the scaled

amplitude ak is the amplitude at cycle number k divided by the mean

of amplitudes at all other non-zero cycle numbers (except the ‘‘half-

sampling’’ or Nyquist frequency at N/2), ak~Ak=�AAi=f0,k,N=2g.

Phase angles wkc
, scaled amplitudes akc

and p-values pkc
from a

permutation test (see Text S1 for details) are available in Dataset S1.

DFT-based Clustering
Based on the observed DFT spectra and general considerations of

DFT properties, the cycle numbers ks~f1,3,4,5,8,12g and

ks~f1,2,3,4,6,9g were selected for clustering analysis of the

0.7 h [11] and the 5 h [10] period datasets, respectively. Text S1,

section S1.2, outlines the reasoning underlying our DFT component

selection. The scaled real and imaginary parts of these components

were re-calculated from phase angles wks
and scaled amplitudes aks

.

The model-based clustering algorithm flowClust [56] (with default

parameters of its R library, version 2.6.0; n = 4, l = 1, tol = 1e-5)

was applied to these 2:DksD-dimensional datasets. Text S1, section

S1.3, gives a detailed account on the reasoning behind data

processing and the choice of this algorithm. The algorithm is based

on t-mixture models with a Box-Cox transformation and an

expectation-maximization algorithm handles optimization of the

parameters of the t-distributions and the data transformation (l)

simultaneously [96]. The Box-Cox transformation parameter

remained close to 1 for both datasets, l0:7h~1:004 and

l5h~0:999. The optimal number of clusters in each dataset was

evaluated by the Bayesian Information Criterion, as outlined in the

flowClust publication [56], and by 2-objective plots of variance and

connectivity [97] of the original time series (as the log2 mean ratio),

but the final decision was based on visual inspection of the clustered

raw time series data. The clustering algorithm involves random

partitioning of the data for its initialization procedure and therefore

the final cluster assignments and BIC development depend on the

order of the input data (originating from the order of probes on the

array). Thus the order employed is given in the Dataset 9.0.1 to

ensure full reproducibility.

The two individual clusterings were then sorted by their circular

phase angle density peaks at cycle number kc and re-labeled

accordingly. For convenience, all phase angles wkc
were shifted

before this sorting such that the later cluster A transcripts are just

above 0u in both datasets (Figure 1). This phase shift does not

affect the clustering, since the data is correctly treated as circular.

The significance of overlaps between the two clusterings was

established by cumulative hypergeometric distribution tests and

guided the definition of the final consensus clusters (Figure S1).

This manual step accounted for the higher temporal resolution of

the 0.7 h period dataset (4 min), e.g., the rapid transition from

clusters A to B are well resolved in this dataset but mixed in the

5 h period dataset (25 min sample resolution). The latter dataset

thus served mainly to define a consensus gene set, i.e., to filter

potentially mis-associated outliers of the two individual clusterings

(as an alternative to p-value cut-offs) and to identify gene groups

that are differentially regulated between the two systems, i.e. C vs.

D, B.C and B.D. The original DFT-based clusterings and the final

overlap clustering are available in Dataset S1.

Genome Data Sources
The main gene list and genome sequence underlying this

analysis is based on the Sacchormyces Genome Database (SGD)

[98] release from February 2, 2008, featuring 5,795 bona-fide

protein-coding genes. Outdated gene IDs in analyzed datasets

were updated or removed, and coordinate-based data were

aligned to this genome release by accounting for coordinate

changes (insertions and deletions) between the genome release

underlying the respective dataset and the release used herein, as

defined in the online annotation history at http://yeastgenome.

org/. When a downloaded gene list contained multiple entries for

a given gene (e.g., as a result of the employed microarrays or of

gene merging in the annotation history), the first entry was taken.

Continuous and categorical gene data analyzed in this work is

available in Dataset S7. Coordinate-based datasets, aligned to the

genome in the SGD release from Feb. 2008, are available at

http://www.tbi.univie.ac.at/raim/data/2011/yeast/clusters/

geneData.tar.gz and Table S8 maps data IDs, SDP plot labels and

the original publications. Table S6 gives the URLs where the data

were downloaded from. Table S7 further lists the yeast strains that

were used in the respective studies.

Transcription Start Sites (TSS)
TSS coordinates were collected from three different sources

[68,99,100] and weighted centers of multiple start sites within

windows of 73 nucleotides (ca. half a nucleosome length) were

calculated as consensus positions. Then the site closest to a gene’s

start codon (within –400 nucleotides upstream) was used as the

TSS. Consensus TSS for 5,176 protein coding genes could be

defined (Table S2) and are available in Dataset S7.

Statistical Analyses, Categorical Data
The overlaps between the initial clusterings of the two datasets

as well as the overlap of the final clusters with other gene

classifications were analyzed by cumulative hypergeometric

distribution tests. Given m genes in a certain cluster (e.g.,

m~414 genes in cluster A), we can calculate the probability

p(k) of finding at least k genes of this cluster within the n genes of a
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test category (e.g., k = 68 of n = 240 genes with positive growth rate

correlation, Figure 1) drawn from all N~5,795 protein-coding

genes as p(k)~1{
Pk{1

i~0

m

i

� �
N{m

n{i

� �

N

n

� � . The enrichment E of

the tested category in the given cluster is the ratio of the frequency

in cluster genes over the genomic frequency: E~
k=m

n=N
, where

Ew1 if the cluster has a higher frequency of genes of the tested

category then the total genome.

Statistical Analyses, Numerical Data
A bias of the distribution of numerical data between n genes of a

given cluster and m~N{n genes of the rest of all genes in our

analysis (N~5,795, or less if data was not available for all genes)

was analyzed by two-sided Mann-Whitney-Wilcoxon tests, where

probabilities (p-values) were calculated using the Shift-Algorithm

by Streitberg & Röhmel (see R function wilcox.exact). The

normalized test statistic, Umn~
U

m:n
, where U is the rank sum, was

calculated when the direction and extend of a bias was of interest,

i.e., for Figure 3A and all SDP figures. Umnw0:5 if the tested

cluster tends to higher values then the rest of genes, and Umnv0:5
otherwise. For normally distributed data, i.e., the nucleotide

frequencies in Figure 8, a Welch’s t-test was applied. The t-value

indicates the direction of the bias, i.e., tw0 or tv0 for higher or

lower values in the cluster then in all other genes, respectively.

Functional Analysis
We use a very basic analysis of gene ontology (GO) annotation,

based on cumulative hypergeometric distribution tests of only the

direct annotations given in the SGD genome annotation file,

which contains in total 3107 unique GO terms. We do not take

into account the directed acyclic graph structure of GO, i.e., we do

not propagate annotation terms upwards in this GO structure.

While this approach may miss enriched lower level annotations in

clusters that consist of very well defined genes, e.g., ‘‘amino acid

biosynthesis’’ in cluster B, it avoids to miss higher level GO

annotations, such as the ‘‘unknown’’ categorizations in cluster D.

The full results of the GO analysis are available as Dataset S2.

Statistical DNA Profiles (SDP)
High-resolution data of DNA structure, such as tiling arrays of

protein-bound DNA fragments, local nucleotide content or

positions of small sequence motifs, are often analyzed by aligning

a given group of genes at a specific site, e.g., experimentally

derived transcription start sites (TSS), start or stop codons of the

coding region, and calculating average values at positions

upstream and downstream of this alignment site. The values can

be binned over a range of bases surrounding the given position.

For an SDP this simple approach is extended by visualizing the

results of individual statistic tests, where the distribution of values

of a certain group of genes (a cluster) is compared with the

distribution of values of all other genes of the genome at each

position (or bin). For numerical data Welch’s t-tests are used if the

values are normally distributed and Mann-Whitney-Wilcoxon tests

otherwise. For categorical data cumulative hypergeometric distri-

bution tests could be applied. The symbol type of the individual

data points indicate the direction of the bias, i.e., whether the

respective cluster gene distribution is higher (filled circle) or lower

(empty circle) than the rest of the genes, which can be readily

derived from the t-value of a t-test, the normalized rank sum Umn

of a rank sum test or the enrichment E for categorical data (see

paragraphs on ‘‘Statistical Analysis’’ above). Additionally, the

symbol size scales with the test’s p-value, * log (p)= log (0:001),
such that the largest symbols represent a significance cutoff at

pv0:001 and the smallest a non-significance cutoff at pw0:2.

Smaller clusters often are less significant at the same average value

as a larger cluster. We thus plot clusters in order of decreasing size

(number of genes) to avoid hiding smaller plot symbols behind

those of larger clusters.

The SDP de-emphasize regions where a cluster’s distribution

does not deviate (significantly) from the rest of the genome which

increases the plot clarity and allows to inspect multiple clusters in

one plot. On the other hand, an SDP allows to directly compare a

given clusters’ average profile with the genomic average. For

example, when applied to the periodic nucleosome occupancy

data, an SDP indicates whether a given nucleosome is shifted

upstream or downstream in the tested gene group compared to

the average configuration in rest of the genome, or can reveal

the relative regularity of nucleosome positioning in a cluster. The

Figure S10A compares such an SDP (bottom panel) with the

occupancy of individual genes visualized in a heatmap (top panel),

and Figures S10B & S10C show the full distributions for clusters A

and D at a given coordinate.

A large archive of all data underlying the SDP plots is available

at http://www.tbi.univie.ac.at/raim/data/2011/yeast/clusters/

geneData.tar.gz and and Table S8 maps data IDs, SDP plot

labels and the original publications.

DNA Sequence Motifs and Protein:DNA Binding Data
A collection of DNA binding motifs, either as position weight

matrices (PWM) taken from [71] or as IUPAC consensus

sequences from diverse sources (Dataset S4), was used to search

for motif occurrence upstream and downstream of genes. For

position weight matrices, a simple cut-off at 80% of the maximum

score of the given PWM was used. The search range was 500

nucleotides either upstream of the START or downstream of the

STOP codon of the respective gene. Except for motifs called

‘‘TATA.350’’ (between START and 2350; a commonly used

range for TATA Box discovery) and ‘‘TATA.500’’ (between 2351

and 2500). A search range downstream of the STOP codon is

indicated by the suffix ‘‘.3p’’.

Experimental transcription factor binding sites were taken from

[73], using the set without any conservation constraints and at a p-

value cutoff of pv0:005, and a search range between 2600 and

+100 nucleotides of the START codon (the array employed by the

original authors featured only promoter probes). Additionally a

binary classification of binding data for Rap1, Sir2, Sir3, and Sir4

proteins from [101] was used (indicated by the suffix ‘‘.lieb01’’),

where the original authors distinguished binding to coding, intron

or intergenic sequences; here, the latter two are indicated by

prefixes ‘‘in’’ and ‘‘ig’’/‘‘ig2’’, respectively. The percentage of

cluster genes containing a given site or motif, and enrichment E

over the genomic fraction are plotted in Figure 11. To test for

significance of enrichment, cumulative hypergeometric distribu-

tion tests were applied and all motifs and sites with a p-value

pv0:01 are shown in Table S5. All values, enrichments and p-

values are given in Datasets S5 & S6.

Strain, Culture Techniques, ADP and ATP Measurement
The strain used for this study was Saccharomyces cerevisiae IFO

0233. All cultures conditions were the same as described in the

supporting methods of [8]. Unless otherwise stated all chemicals

were supplied by Wako Pure Chemicals Industries. Metabolites

were extracted by mixing culture (1 mL) with perchloric acid
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(0.150 mL, 60%) and TRIS-HCl (333 mM; 0.450 mL; pH 7.4)

(adapted from [102]) in a 1.5 mL tube. Tubes were incubated for

1 h at 0uC on a rotary mixer (5 rpm). The extraction was halted

by neutralizing using 10 N KOH. The samples were then

centrifuged at 12,0006g for 5 min at 0uC. Aliquots of samples

(0.1 mL) were stored at 280uC until analysis. Standards of ADP

or ATP (0.01–10 mM) were prepared by adding 1 mL of standard

with perchloric acid (0.150 mL, 60%, Wako Pure Chemicals

Industries) and EDTA (200 mM; 0.450 mL) in a 1.5 mL tube.

Tubes were incubated for 1 h at 0uC on a rotary mixer (5 rpm).

Standards were then neutralized using 10 N KOH. The samples

were then centrifuged at 12,0006g for 10 min at 0uC. Aliquots of

standards (0.1 mL) were stored at 280uC until analysis. ADP was

first converted to ATP enzymatically (adapted from [103]). Briefly

an aliquot (0.1 mL) or ADP standard was mixed with 50 mL

reaction buffer. Reaction buffer comprised of 50 mM phosphoe-

nol pyruvate, 100 mM TRIS-HCl (pH7.4), 35 mM KCl, 6 mM

MgCl2 and 150 IU/mL pyruvate kinase. The reactions were

incubated at room temperature for 1 h. ATP samples and

standards were treated in a similar way except the reaction buffer

did not contain 50 mM phosphoenol pyruvate. This yielded two

sample sets one consisting of native ATP and one consisting of

native ATP + ADP converted into ATP from the enzymatic

conversion. [ATP] and [ADP+ATP] in mM were then measured

using a luciferase assay kit (Kinsiro) as per manufacturer’s

instructions. Measurements were carried out in black 96-well

microplates (promega) using a Luminescence Microplate Reader

(SpectraMax M5e, Molecular Devices). ATP:ADP ratios were

calculated thus:

ATP : ADP~
½ATP�

½ATPzADP�{½ATP�

The measured ATP:ADP ratios and the dissolved O2 concen-

tration during the measurement are available in Dataset S8.

Supporting Information

Figure S1 Overlap table of the two individual cluster-
ings. 8 & 8: Individual flowClust clusterings of microarray

fluorescence time series (shown is the log-ratio of raw data) from

the 0.7 h (8) and 5 h (8) systems, after sorting by (phase-shifted)

circular density peaks of the phase angles wkc
and re-labeling. The

y-axis labels give the cluster assignments and the number of genes

in each cluster. The thick and thin colored lines are the cluster

mean and upper and lower quartiles, respectively, and gray lines

are individual transcript time series. 8: Overlap table of the two

individual sorted and re-labeled clusterings. For this plot, non-

oscillatory clusters (pkc
w0:1 in w25% of cluster genes) were

additionally moved to the end, just before the not-on-array clusters

‘‘r’’, i. e., cluster 4 in the 0.7 h system, while clusters 7 & 8 in the

5 h system did not require this step. The first row in each field

gives the final cluster assignments used in this work, the middle

row gives the number of genes in each field, and the bottom row

gives the p-value from cumulative hypergeometric distribution

tests. The p-values are additionally indicated by the gray-scale of

the fields (see legend on the right axis). All clusterings are available

in Dataset S1.

(TIFF)

Figure S2 Normalized cluster time courses. Individual

cluster time courses. Individual time courses of microarray

fluorescence (as log2 of the mean-ratio) of the final overlap

clusters. The thick and thin colored lines are the cluster mean and

upper and lower quantiles, respectively, and gray lines are

individual transcript time series. S2A: 0.7 h period system [11]

and S2B: 5 h period system [10]. Normalization was performed

with ‘‘least-oscillating’’ gene sets as normalization reference, see

Text S1 for details. The raw data is available in Dataset S1.

(TIFF)

Figure S3 Transcription factor binding sites and mo-
tifs. Transcription factor motifs (10) and experimental binding

sites (10), counts per cluster. Motifs and binding sites were

obtained as described in the Methods section of the main article.

Numbers give the percentage of cluster genes which have at least

one occurrence of the given motif or protein binding (suffix ‘‘.3p’’

indicates occurrence downstream of the STOP codon). The

enrichment E (see Methods) is color-coded, with a cut-off at E§2.

Rows were ordered by clustering the E values with hclust [105].

Table S5 lists all cluster motif/site combinations with a p-value

pv0:01 in cumulative hypergeometric distribution tests and

Datasets S5 & S6 provide all results. For binding sites and motifs

associated with a specific proteins, the cluster assignments of the

respective transcripts are shown as row colors.

(TIFF)

Figure S4 Overlap of the consensus clusters with
promoter classes, and stress & growth rate response
genes. As Figures 2A–2D of the main article, but for all clusters.

All data are available in Dataset S7.

(TIFF)

Figure S5 Isw2-bound and affected genes. As Figures 2E &

2F of the main article but for all clusters. All data are available in

Dataset S7.

(TIFF)

Figure S6 RSC-bound and -affected promoter classes.
S6A: promoters on chromosome III were ‘‘affected’’ or ‘‘unaffect-

ed’’ (or not analyzed, ‘‘NA’’) upon inactivation (by induced intein-

splicing) of Sth1, the catalytic component of the RSC complex,

from [42]. S6B: genes bound by the RSC complex defined via a

‘‘combined p-value’’ calculated from several complex components

in [69], ‘‘TRUE’’: pv0:01 and ‘‘FALSE’’: p§0:01. All data are

available in Dataset S7.

(TIFF)

Figure S7 Transcriptional frequency, noise & growth-
rate. Statistical biases that distinguish anabolic from catabolic

superclusters. Cluster distributions are shown as bean-plots [106].

S7A: transcriptional frequencies, data from [107]; S7B: numbers

of proteins per cell, data from [108]; S7D: transcriptional noise,

data from [61]; S7C: correlation of expression with growth rates in

nutrient-limiting conditions, data from [31]. Two-sided Wilcoxon

rank-sum tests were applied to compare the distribution of n values

in each cluster to the m values of all other genes. The number of

cluster genes (n) for which a value was available in the given

dataset is shown in the bottom row, and the total number of

available values (m + n) is shown on the right y-axis. The dotted

and solid lines show the total and cluster medians, respectively.

The resulting p-values are shown above each plot and the text

color indicates whether the cluster distribution is higher (black) or

lower (red) then the distribution of the respective rest of the

genome. All data are available in Dataset S7.

(TIFF)

Figure S8 mRNA half-lives and Chromatin Regulation
Scores. Statistical biases that distinguish ribosomal from

metabolic superclusters. Same as Fig. S7 but for S8A: RNA

half-lives, data from [109]; and S8B: chromatin-regulation score
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(CRE), data from [64]. Axis annotations as described for Fig. S7.

All data are available in Dataset S7.

(TIFF)

Figure S9 Expression in rsc3-2 and rsc30D strains and
Rsc9p location. Change of transcript levels in strains carrying the

rsc3-1 3-2 (16) and rsc30D (16) mutations; data from [70]. Rsc9p

binding in untreated (16 and H2O2-treated cells, from [72]. Axis

annotations as described for Fig. S7. All data are available in Dataset

S7.

(TIFF)

Figure S10 Nucleosome Occupancy: Heatmap and SDP
construction. S10A: as Figure 4 of the main article, but for all

clusters. Figures S10B and S10C show distrubtions and test results

for the bin between positions -10 and -1 (from the TSS) for clusters

A and D, respectively. The ‘‘relative W’’ value corresponds to Umn.

(TIFF)

Figure S11 Statistical DNA profiles (SDP) of nucleosome
occupancy, Isw2(K215R) ChIP, Rap1p DIP, Rsc8p ChIP
& transcriptome tiling array datasets. Same as Figure 5 of

the main article, but for background clusters.

(TIFF)

Figure S12 Statistical DNA profiles (SDP) of additional
nucleosome occupancy datasets. SDP were constructed as

described for Figure 4 of the main article, but for additional

nucleosome occupancy datasets. The left panels show main and

the right panels show background clusters. S12A: tiling-array data

in 5 bp resolution [40]; S12B: sequencing-based data in 1 bp

resolution [65]; S12C: sequencing-based data in 1 bp resolution

from cells grown on galactose [37].

(TIFF)

Figure S13 Changes in nucleosome occupancy and
transcription in the mcm1-1 strain. Same as Figure 6A of

the main article but for all clusters.

(TIFF)

Figure S14 Changes in nucleosome occupancy and
transcription in the tbf1 strain. Same as Figure 6 of the

main article but for all clusters and data from the tbf1 strain.

(TIFF)

Figure S15 Changes in nucleosome occupancy and
transcription in the cep3 strain. Same as Figure 6 of the

main article but for all clusters and data from the cep3 strain.

(TIFF)

Figure S16 Changes in nucleosome occupancy and
transcription in the abf1-101 strain. Same as Figure 6 of

the main article but for all clusters and data from the abf1-101 strain.

(TIFF)

Figure S17 Changes in nucleosome occupancy and
transcription in the rap1-1 strain. Same as Figure 6 of the

main article but for all clusters and data from the rap1-1 strain.

(TIFF)

Figure S18 Changes in nucleosome occupancy and
transcription in the rsc3-1 strain. Same as Figure 5 of the

main article but for all clusters.

(TIFF)

Figure S19 Changes in nucleosome occupancy and
transcription in the reb1-212 strain. Same as Figure 6 of

the main article but for all clusters and data from the reb1-212 strain.

(TIFF)

Figure S20 Nucleotide content & in vitro nucleosome occu-
pancy. As Figure 8 of the main article but for background clusters.

(TIFF)

Table S1 Strains and culture conditions used for the
respiratory oscillation datasets.

(PDF)

Table S2 Cluster size, TSS fraction and phase angle
density peaks. Cluster size, TSS fraction and phase angle density

peaks. Number of genes in each cluster, fraction of cluster genes for

which TSS could be found (see Methods section ‘‘Transcription

Start Sites’’), circular density peaks of cluster gene phase angles, and

peak time (time of experiment, with the first sample as origin time 0)

in the first cycle, estimated from phase angle density peaks and the

cycle periods (42 min and 300 min, respectively).

(PDF)

Table S3 Significantly enriched GO terms of back-
ground clusters. Functional analysis of background Clusters.

Same as Table 1 of the main article (see there for abbreviations),

but for background clusters. Results for all GO terms and clusters

are provided as Dataset S2.

(PDF)

Table S4 Significantly enriched metabolic subsystems of
clusters. Metabolic activities of clusters. Metabolic pathway or

subsystem annotations for each gene were derived from a full-scale

reconstruction of the metabolic network of baker’s yeast [59]. The

‘‘SUBSYSTEM’’ annotation was only available in the first version

v1.0 of the network. Cumulative hypergeometric distribution tests

were performed as described for GO analysis, and only significantly

enriched subsystems are shown (pv0:01). The number of genes

(cluster/total) and p-values (‘‘p’’) for enrichment are given in brackets.

(PDF)

Table S5 Enriched transcription factor binding sites
and motifs. Enriched transcription factor binding sites and

motifs. The presence of experimental protein binding sites (left)

and DNA sequence motifs (right) in promoters and 39UTRs were

establishedd as described in the Methods section of the main

article. Only significantly enriched sites/motifs (pv0:01 in

cumulative hypergeometric distribution tests) are shown. The

numbers in brackets show the number of genes in the cluster and

the total number of genes with one or more occurrences of the

given motif or site in the promoter region or downstream of 39ends

(indicated by suffix ‘‘.3p’’). The full set of tested bindings sites and

motifs are shown in Figure S3 and provided as Datasets S5 & S6.

(PDF)

Table S6 Data sources: URLs from which the original
data was downloaded. Data Sources. The URLs from which the

analyzed data was originally downloaded. If the links are not active

anymore, the data can be obtained from the authors on request.

(PDF)

Table S7 Saccharomyces cerevisiae strains used in
analyzed datasets. Strain information for all datasets used in

this study, derived from original publications.

(PDF)

Table S8 Coordinate-based Data for SDP Plots. This

table maps y-axis labels of SDP plots to a data ID used in the

underlying data collection. This collection is provided as a big

archive file (295 MB) at http://www.tbi.univie.ac.at/raim/data/

2011/yeast/clusters/geneData.tar.gz. Each file in the archive

corresponds to one SDP. The rows are all genes for which a TSS

could be defined (see Methods of the main paper), and the
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columns give values for each position from 21500 upstream to

+1500 downstream of the TSS (+1). TSS were aligned to the

genome in the SGD release from Feb. 2008. The main results

and underlying data of this paper are made available in CSV

format (comma-separated values) at http://www.tbi.univie.ac.at/

raim/data/2011/yeast/clusters/. In the following, the content of

each file (column headers are in quotes) is described in detail:

(PDF)

Dataset S1 Time Courses and Clusterings: tuliCoar-
se.results.csv. This file contains for each protein-coding yeast

gene in our reference genome release:

N Yeast gene identifier (‘‘ID’’), ‘‘name’’ and SGD identifier

(‘‘SGD ID’’);

N The ‘‘Overlap Clustering’’ analyzed in this work;

N The ‘‘Order’’ of the probe sets in the the data structure after

parsing the microarray image files with the R affy package. This is

required for reproduction of clustering with flowClust;

N Raw time series data (identified by the names of the

underlying. CEL image files);

N Oscillation characteristics at the phenotypic cycle numbers kc,

i.e., wkc
(‘‘phase angle’’), Akc

(‘‘amplitude’’), akc
(‘‘scaled ampli-

tude’’) and pkc
(‘‘p-value’’ of periodicity);

N Individual DFT-based clusterings of the two time series

datasets (‘‘clusters’’);

where column name prefixes ‘‘li06_’’ identify data based on the

0.7 h period dataset [11] and ‘‘tu05_’’ data based on the 5 h

period dataset [10].

(CSV)

Dataset S2 GO Analysis: tuliCoarse.GO.results.csv. A list

of all 3,107 GO terms found in our reference genome annotation,

including their definition (‘‘description’’), the ‘‘total’’ number of

genes annotated with the respective term, the ‘‘number’’ of genes in

all clusters, and the ‘‘p-value’’ for all clusters (from cumulative

hypergeometric distribution tests, see Methods).

(CSV)

Dataset S3 Meta-Transcriptome Analysis: tuliCoarse.-
transcriptome.results.csv. A list of 1,327 transcriptome

(microarray) experiments, including PubMed ID (‘‘PMID’’), a

short experiment description (‘‘Condition Name’’), an experiment

‘‘index’’, all exactly as provided by the original publication of this

data collection [60], and the SOTA-based clustering used for

column-sorting in Figure 3A of the main article (‘‘SOTA cluster’’),

and for all clusters the scaled rank-sum Umn (‘‘U/(m*n)’’) and a ‘‘p-

value’’ derived from two-sided Wilcoxon tests, comparing the

distribution of cluster genes with the respective rest of the genome.

(CSV)

Dataset S4 IUPAC Motifs: iupac.motifs.csv. A list of

consensus DNA motifs in IUPAC format with an ‘‘ID’’, as used in

Table S5 and Figure S3A (see Methods section of the main article),

the IUPAC ‘‘SEQUENCE PATTERN’’, and a ‘‘DESCRIP-

TION’’, including PubMed IDs of the original publications where

the motifs were taken from.

(CSV)

Dataset S5 Protein Binding Analysis: tuliCoarse.ChI-
P.results.csv. A list of all 135 protein binding sites in promoter

regions from experiments in [73] (‘‘macisaac06.5.1’’ in column

‘‘SOURCE’’) and [101] (‘‘lieb01.rap_sir’’) as used for Table S5

and Figure S3B. The column ‘‘total’’ gives the total number of

genes in our reference genome annotation bound by the given

protein as described in the Methods section of the main article,

and columns ‘‘number’’ and ‘‘p-value’’ give the number of genes

in the cluster and the p-value for enrichment in cumulative

hypergeometric distribution tests.

(CSV)

Dataset S6 Sequence Motif Analysis: tuliCoarse.mo-
tifs.results.csv. A list of all 146 DNA motifs found in promoter

regions. The motifs were either given as a position weight matrix

[71] (‘‘zhu09.pwms’’ in column ‘‘SOURCE’’) or as consensus

motifs in IUPAC motifs from diverse sources (‘‘IUPAC.motifs’’,

see results file ‘‘iupac.motifs.csv’’ for definition and sources) as used

for Table S5 and Figure S3A. The column ‘‘total’’ gives the total

number of genes in our reference genome annotation harboring

one or more instances of a given motif as described in the Methods

section of the main article, and columns ‘‘number’’ and ‘‘p-value’’

give the number of genes in the cluster and the p-value for

enrichment in cumulative hypergeometric distribution tests.

(CSV)

Dataset S7 Categorical and Numerical Gene Data:
gene.data.csv. This file contains published data on yeast genes

collected from various sources. The table below gives the column ID

used, a short description and the source of the data set. Note, that

Table 7 gives the URLs where the data were downloaded from. All

original source data is also available from the authors on request.

(CSV)

Dataset S8 ATP:ADP Measurement: atp_adp.re-
sults.csv. Column ‘‘time, minutes’’ gives the experiment time

in minutes, starting with 0’ at the first taken sample, column

‘‘dissolved O2, %’’ gives the measured dissolved oxygen

concentration in percent of the saturation concentration, and

column ‘‘ATP/ADP’’ gives the ratio, calculated as described in the

Methods section of the main article.

(CSV)

Text S1 Text S1 outlines problems with global micro-
array normalization and the choice of a ‘‘least-oscillat-
ing set’’ of genes as an alternative normalization
reference (S1.1), the choice of DFT components for
clustering (S1.2) and a general reasoning behind our
clustering approach and the chosen algorithm (S1.3).
(PDF)
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