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1 Introduction
1.1 The result and its history

Let AV denote the ideal of Lebesgue null sets, and M the ideal of meager sets. We
prove (see Theorem 6.2.1) that consistently, several cardinal characteristics of Cichofi’s
Diagram (see Fig. 1) are (simultaneously) different:

R = cov(N) = 0 < non(M) < non(N) < cof (N) < 2%,

Since our model will satisfy 9 = Ry, will also have non(M) = cof(M). The
desired values of the cardinals non(M), non(N), cof (NV), 280 can be chosen quite
arbitrarily, as long as they are ordered as indicated and each satisfies ™0 = «.

A (by now) classical series of theorems [1,4,7—-10, 14—18] proves these (in)equalities
in ZFC and shows that they are the only ones provable. More precisely, all assignments
of the values N and X, to the characteristics in Cichon’s Diagram are consistent, pro-
vided they do not contradict the above (in)equalities. (A complete proof can be found
in [3, chapter 7].)

This does not answer the question whether three (or more) characteristics can be
made simultaneously different. The general expectation is that this should always be
possible, but may require quite complicated forcing methods. We cannot use the two
best understood methods, countable support iterations of proper forcings (as it forces
280 < R,) and, at least for the “right hand side” of the diagram, we cannot use finite
support iterations of ccc forcings in the straightforward way (as it adds lots of Cohen
reals, and thus increases cov(M) to 280).

There are ways to overcome this obstacle. One way would be to first increase
the continuum in a “long” finite support iteration, resulting in cov(M) = 2%, and
then “collapsing” cov(,M) in another “short” finite support iteration. In a much more
sophisticated version of this idea, Mejia [13] recently constructed several models with
many simultaneously different cardinal characteristics in Cichori’s Diagram (building
on work of Brendle [5], Blass-Shelah [6] and Brendle-Fischer [2]).

We take a different approach, completely avoiding finite support, and use something
in between a countable and finite support product (or, a form of iteration with very
“restricted memory”).

This construction avoids Cohen reals, it is in fact w®-bounding, resulting in 0 = 8.
This way we get an independence result “orthogonal” to the ccc/finite-support results
of Mejia.

The fact that our construction is w”-bounding is not incidental, but rather a necessary
consequence of the two features which, in our construction, are needed to guarantee
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Creature forcing and five cardinal characteristics in... 1047

cov(N)—— non(M)—— cof (M) ——— cof (N) ——— 2o

[}]
N ——— add(N)—— add(M) —— cov(M)———non(N)

Fig. 1 Cichoii’s diagram. An arrow between ¢ and v indicates that y < 1. Moreover, max(d, non(M)) =
cof (M) and min(b, cov(M)) = add(M)

properness: a “compact” or “finite splitting” version of pure decision, and fusion
(which together give a strong version of Baumgartner’s Axiom A and in particular
properness and w®-bounding).

We think that our construction can be used for various other independence results
with 0 = N1, but the construction would require considerable remodeling if we want
to use it for similar results with 0 > 8, even more so for b > Rj.

1.2 A very informal overview of the construction

The obvious attempt to prove the theorem would be to find a forcing for each cardinal
characteristic ¢ that increases r but leaves the other characteristics unchanged. More
specifically, find the following forcing notions.

e Qun, adding a new meager set which will contain all old reals.
Adding many such sets will tend to make non(M) large.

e Qup, adding a new measure zero set which will contain all old reals.
Adding many such sets will tend to make non(/\) large.

e Qcp, adding a new measure zero set which is not contained in any old measure
zero set.

Adding many such sets will tend to make cof (\) large.

e Qgx, adding a kind of Sacks real, in the sense that the generic real does not change
any other cardinal characteristic; in particular, every new real is bounded by an
old real, is contained in an old measure zero set, etc.

Adding many such reals will tend to make the continuum large.

For each t € {nm, nn, cn, sk}, our Q; will be a finitely splitting tree forcing; Qp,
will be “lim-inf™ (think of a tree forcing where we require large splitting at every node,
not just infinitely many along every branch; i.e., more like Laver or Cohen than Miller
or Sacks; however note that in contrast to Laver all our forcings are finitely splitting);
the other ones will be “lim-sup” (think of forcings like Sacks or Silver).

We then fix for each ¢ a cardinal «;, and take some kind of product (or, iteration) of
k; many copies of Q;, and hope for the best. Here we arrive at the obvious problem:
which product or iteration will work? As mentioned above, neither a finite support
iteration' nor a countable support iteration will work, and it is not clear why a product

! To avoid giving a wrong impression, our specific forcings Q; will not be ccc, so a finite support iteration
would not work anyway.
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1048 A. Fischer et al.

will not collapse the continuum. So we will introduce a modification of the product
construction.

The paper is divided into two parts. In part 1 we describe the “general” forcing
construction (let us call it the “framework™), in part 2, the “application”, we use the
framework to construct a specific forcing that proves the main theorem.

Part 1: In Sects. 2-5 we present the “framework”. Starting with building blocks (so-
called “subatoms”), we define the forcing Q. This is an instance of creature forcing.
(The standard reference for creature forcing is Rostanowski and Shelah [17], but
our presentation will be self-contained. Our framework is a continuation of [11,12],
where the central requirement to get properness was “decisiveness”. In this paper,
decisiveness does not appear explicitly, but is implicit in the way that the subatoms
are combined to form so-called atoms.)

We fix a set E of indices. (For the application, we will partition E into sets E; of
size k; for t € {nm, nn, cn, sk} as above.) The forcing Q will “live” on the product
E X w, i.e., a condition p € Q will contain for certain (&, n) a “creature” p(&, n), a
finite object that gives some information about the generic filter.

More specifically, there is a countable subset supp(p) € E, and for each & €
supp(p) the condition up to some level ny(&) consists of a so-called trunk (where a
finite initial segment of the generic real y; is already completely determined), and for
all n > ng(£) there is a creature p(&, n), an element of a fixed finite set Ke. », which
gives several (finitely many) possibilities for the corresponding segment of the generic
real y:. We assign a “norm” to the creature, a real number that measures the “number
of passibilities” (or, the amount of freedom that the creature leaves for the generic).
More possibilities means larger norm.

Moreover, for each m there are only finitely many & with ng(¢) < m (i.e., at each
level m there are only finitely many creatures of p). We can then set the norm of p
at m to be the minimum of the norms of p (&, n) over all £ “active” at level m.

A requirement for a p to be a valid condition in Q is that the norms at level m
diverge to infinity for m — oo (i.e., the lim-inf of the norms is infinite).

So far, Q seems to be a lim-inf forcing, but recall that we want to use lim-inf as
well as lim-sup.

So let us redefine Q. We will “cheat” by allowing “gluing”. We declare a subset of
E to be the set E1¢ of “lim-sup indices” (in the application this will be Enp, U Ecp).
Forget the “norm of p atlevel m” and the lim-inf condition above. Instead, we partition
the set of levels w into finite intervals w = Iy U I} U ... (this partition depends on
the condition and can be coarsened when we go to a stronger condition). For such an
interval I, we declare all creatures whose levels belong to [ to constitute a “compound
creature” with a “compound norm”, intuitively computed as follows:

e foreach& € E15 we setnor(p, I, §) to be the maximum of the norms of p(&, m)
withm € I;

e for other £ we take the minimum rather than the maximum; and

e we setnor(p, I) to be the minimum of nor(p, 7, £) for all (finitely many) & active
at some level in /.

The new lim-inf condition is that nor(p, Ix) diverges to infinity with k — oo.
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Creature forcing and five cardinal characteristics in... 1049

While this may give some basic idea about the construction, things really are more
complicated. We will require the well-known “halving” property of creature forcing
(to prove Axiom A). Moreover, the Sacks part, i.e., Qg on the indices Egx C &, does
not fit well into the framework as presented above and requires special treatment. This
will not be very complicated mathematically but will unfortunately make our notation
much more awkward and unpleasant.

A central requirement on our building blocks (subatoms) will be another well-
known property of creature-forcing: “bigness”. This is a kind of Ramsey property
connected to the statement that creatures at alevel m are “much bigger” than everything
that “happened below m”.

Using these requirements, we will show the following.

e (Assuming CH in V) Q is Ny-cc. (Accomplished via a standard A-system argu-
ment.)

e We say that p “essentially decides” a name 7 of an ordinal if there is a level m such
that whenever we increase the trunk of p up to m (for this there are only finitely
many possibilities), we know the value of 7. In other words, knowing the generic
up to m (on some finite set of indices), we also know the value of 7.

e Pure decision and fusion. Given a name 7 of an ordinal and a condition p, we can
strengthen p to a condition ¢ essentially deciding r. Moreover, we can do this in
such a way that p and g agree below a given level & and the norms above this level
do not drop below a given bound. (This is called “pure decision”.)

This in turn implies “fusion” in that we can iterate this strengthening for infinitely
many names Tg, resulting in a common extension g, which essentially decides
each 7y.

(While fusion is an obvious property of the framework, pure decision is the central
result of part 1, and will use the requirements on bigness and halving).

e The usual standard argument then gives continuous reading (every real is a con-
tinuous image of (countably many) generic reals), a strong version of Axiom A,
and thus w®-bounding and properness. (Recall that we have “finite splitting”, i.e.,
essentially deciding implies that there are only finitely many potential values.)

e We also get a Lipschitz variant of continuous reading, “rapid reading”, which
implies that the forcing adds no random reals (and which will be essential for
many of the proofs in part 2).

Part 2: In Sections 6-10 we define the specific forcings Q; (or rather, the building
blocks, i.e., the subatoms, for these forcings) for # € {nm, nn, cn} (the Sacks case is
already dealt with in part 1).

We prove that these subatoms satisfy the bigness requirements of the framework,
and we prove the various parts of the main theorem.

Annotated Contents

Part 1: We present a forcing framework.

Section 2, p. 1050 Starting with building blocks (the so-called subatomic families,
which are black boxes that will be described later) we describe
how to build a forcing Q.
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1050 A. Fischer et al.

Section 3, p. 1062 We give some simple properties of @, including the R;-cc.

Section 4, p. 1069 We impose additional requirements on the subatomic families, and
give an inductive construction that shows how we can choose suit-
able subatomic families so that the requirements are satisfied.

Section 5, p. 1071 Using the additional requirements, we show that Q satisfies
Axiom A, is w®-bounding and has continuous and rapid reading.
This implies 0 = cov(N') = Ry in the generic extension.

Part 2: We give the application.

Section 6, p. 1080 We present the specific forcing. There are four “types” ¢, nm, nn,
cn, and sk, corresponding to non(M), non(N), cof () and the
continuum, respectively. The nm-part will be lim-inf, nn and cn
lim-sup (and sk lim-sup as well, but treated differently). The actual
definitions of the ¢-subatoms (other than Sacks) will be given in
Sects. 7, 8 and 10. For each type ¢ the forcing will contain a “¢-
part” of size k;.

We formulate the main theorem: Q will force each invariant to be
the respective ;.

We show that the Sacks part satisfies a Sacks property, which
implies cof (M) < k¢p, in the generic extension.

Using the fact that only the nm-indices are “lim-inf”, we show that
non(M) < k.

Section 7, p. 1087 We define the nm-subatoms and prove non(M) > kpp.

Section 8, p. 1089 We define the nn-subatoms and prove non(N) > kpp.

Section 9, p. 1091 We mention some simple facts about counting, and use them to
define the counting norm, lognor, for the cn subatoms.

Section 10, p. 1094 We define the cn-subatoms and prove cof (AV) > kcp,. And finally,
we show non(N) < kpn.

2 The definition of the forcing Q
2.1 Subatomic creatures

Definition 2.1.1 Let POSS be a finite set. A subatomic family living on POSS consists
of a finite set K (whose elements are called subatomic creatures, or subatoms, for
short), a quasiorder < on K and functions poss and nor with domain K, satisfying the
following for all x € K:

e poss(x) is a nonempty subset of POSS;
e nor(x) is a nonnegative real number; and
e y < x implies poss(y) € poss(x).

To simplify notation, we further assume:

e if |poss(y)| = 1, then nor(y) < 1; and
e for each x € K and a € poss(x) there is a y < x with poss(y) = {a}. (Such a
subatom will be called a singleton.)
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Notation 2.1.2 Abusing notation, we will just write K for the subatomic family

(K, <, nor, poss). If y < x we will also say that y is “stronger than x” or is “a
successor of x”.

Remark 2.1.3 Our subatomic families will also have the following properties (which
might make the picture clearer, but will not be used in any proof).

e Each subatom x is determined” by poss(x) (i.e., the function poss : K — 2POSS
is injective). In particular nor(x) is determined by poss(x).
e poss(y) C poss(x) implies nor(y) < nor(x).
e y < x iff poss(y) C poss(x).
In the usual way we often identify a natural number n with the set {0, ..., n — 1},

and write m € n for m < n; for example in the following definition.

Definition 2.1.4 Fix a natural number B > 0. We say that a subatom x € K has B-
bigness if for each coloring ¢ : poss(x) — B thereisa y < x such that ¢ | poss(y) is
constant and nor(y) > nor(x) — 1.3 We say that the subatomic family K has B-bigness
if each x € K has B-bigness.

Given a subatom x in a fixed subatomic family K, we have the following facts.

e Ifnor(x) < 1, then x has B-bigness for all B > 0. (Any coloring ¢ : poss(x) — B
will be constant on poss(y) for any singleton y < x.)

e If nor(x) > 2, then x cannot have | poss(x)|-bigness. (The identity function c :
poss(x) — poss(x) is only constant on singleton sets, and any singleton subatom
has norm < nor(x) — 1.)

e If x has B-bigness, then x has B’-bigness for all 1 < B’ < B.

Example 2.1.5 The basic example of a subatomic family with B-bigness is the fol-

lowing “counting norm”. For a fixed finite set POSS, a subatom x is a nonempty subset
of POSS, with poss(x) := x, y < x defined as y C x, and

nor(x) := logp |x]|.
We get a stronger variant of bigness if we divide the norm by B:

1
nor’ (x) 1= ogB—(|x|).
B
Then for each F : poss(x) — B there is a y < x such that F' | poss(y) is constant
and nor’(y) > nor’(x) — 1/B.

2 The analogous statement will not be true for “compound creatures” (cf. Definition 2.5.1) because of the
halving parameters.

3 As only the number of “colors” is of importance, we may consider the codomain of the coloring function
to be any set of cardinality B.
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1052 A. Fischer et al.

Remark 2.1.6 The above example (in the version nor’) is actually used for the
non(M)-subatoms (cf. 7.1.1). The cof(N)-subatoms (cf. Sect. 10.1) still use a
counting norm, i.e., nor(x) only depends on the cardinality of poss(x), but the
relation between | poss(x)| and nor(x) is more complicated. The non(\)-subatoms
(cf. Sect. 8.1) will use a different kind of norm which does not just depend on the
cardinality of poss(x), but also on its structure.

Given a subatomic family with 2-bigness, it is straightforward to construct another
subatomic family with arbitrary bigness by only altering the norm.

Lemma 2.1.7 If Kis a subatomic family with 2-bigness, then given any b > 1 replac-
ing the norm of Kwith nor’ defined by nor’ (x) := nor(x)/p, results in a subatomic family
with 2°-bigness.

Proof Given x € K, and a coloring ¢ : poss(x) — P(b), use the 2-bigness of the
original subatomic family to inductively pick x = xo > x; > - -+ > x; = y so that for
each i < b we have nor(x;11) > nor(x;) — 1 and ¢; [ poss(x;+1) is constant, where
¢i 1 poss(x;) — 2 is defined by c;(a) = 1 iff i € c(a). Then ¢ | poss(y) is constant,
and nor’(y) = nor(y)/p > (mor(x)~b)/p = nor’(x) — 1. O

Remark 2.1.8 Of course, any subatomic family K can be made to have arbitrary bigness
by simply ensuring that all subatoms have norm < 1. The benefit of the method
presented in Lemma 2.1.7 is that the norm of each subatom decreases proportionally
to the logarithm of the desired bigness. As our construction depends on the existence
of subatomic families with “big” bigness and also having subatoms with “large” norm,
the above Lemma gives an indication of how this can be achieved.

2.2 Atomic creatures

We now describe how to combine subatomic families to create so-called atoms. Fix a
natural number J > 0, and fix a parameter £ € w. We will first define the “measure”
of subsets of J with respect to this parameter.

Definition 2.2.1 For A C J, we set

logz(|A[)
¢ 3
A) =
=T
(or0,if A = 9).*
We will later use the following easy observation about the “measure”.

Lemma 2.2.2 Suppose k < ¢, and Ay, ..., Ay are subsets of J. Then there are
pairwise disjoint sets By, . .., By such that B; € A;, and u*(B;) > u‘(A;) — 1 for
alli <k.

4 3o, technically ,ue (A) is defined to be logz(max{|A[,1})/(¢ +1).
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Proof Note that if for some i < k we have that u*(A;) < 1, then simply picking B; :=
¢ will introduce no obstructions. We may then assume that MZ (Aj) > 1 (meaning that
|A;] > 3¢+ foreachi < k. We now inductively construct (k+1)-tuples Al ..., A,’C)
(j < n := kk+1/2 where A? = A; for each i < k, and at stage j < n we handle a
distinct pair (io, il) with i% < i! <k so that

o AN C Al AL = Ak

o ALt c AT |ATTY = 14%)/3; and

i i i i

o Al n Al = 0.
(and Aij—Irl = Alj for all otheri < k). As |A;o| > 3¢+1 it follows by the induction that
|A{0| > 3, and similarly |A{1 | > 3, and so it is possible to partition the intersection
Aly N AY into Y U Z so that [A%\Y| > 14%)/3 and |A’,\Z| > 14 }/3. We may then
take A% i= AL\Y and A/ = A/\Z.

After these steps, set B; := A7 for each i < k. Itis clear that the B; are pairwise
disjoint (since if 0 < ;'1 < k at some stage j we would have handled this pair,
meaning that A{OH N A{frl =, but B;o C A{OH and B;1 C AZ.JIH). As each A; was
modified at most k times in the inductive construction it follows that | B;| > 14:l/3%, and
so ub(B;) = logs(IBih/(e+1) > logs(14i/3)/(e+1) > logs(1AiD—¢/(e+1) > ut(A;) — 1. O

Suppose now that for each j € J we have a subatomic family K; living on a finite
set POSS ;. We can now define the atoms built from the subatoms.

Definition 2.2.3 e An atomic creature, or atom, a consists of a sequence (x;) ey
where x; is a K;-subatom for all j € J.
e The norm of an atom a = (x;) jey, nor(a), is the maximal r for which there is a
set A C J with uf(A) > r and nor(x;) > r forall j € A. We say that such an A
“witnesses the norm” of a.

So the norm of an atom is large if there is a “large” subset A of J such that all
subatoms in A are “large”.
The following easy fact will be useful later.

Fact 2.2.4 Suppose A C J witnesses the norm of an atom a = (x;) jey, and let b =
(yj) jes be any atom which agrees with a on all indices in A. Then nor(b) > nor(a).
In particular, ifnor(y;) < nor(x;) forall j ¢ A, then nor(b) = nor(a).

2.3 Sacks columns

Given a (finite) tree T, its splitting-size, norgpi (1), is defined as the maximal £ €
such that there is a subset S € T (with the induced order) which is order isomorphic
to the complete binary tree 2=¢ (of height £ with 2¢ many leaves). Equivalently, 2=¢
order-embeds into 7.

Given a finite subset 7 of w and F € 2!, we can identify F with the tree of its
restrictions Tr = FU{n [ n: n € F, n € I} (atree of partial functions from 7 to 2,
ordered by inclusion). We write norgpi (F') for norgp)i (7).

The following establishes a basic combinatorial fact about this norm.
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1054 A. Fischer et al.

Definition and Lemma 2.3.1 There exists a function f with the following properties.

e For each j, n, ¢, whenever (Zf(/ *”’C))j is colored with ¢ colors, there are subsets
Ay, ..., Aj of 2/0n.0) guch that the set Ay x --- x Aj is homogeneous, and
norgpiit(A;) > n for all j.5:0

e f is monotone in each argument.

Proof Wedefine f(j, n, c) recursivelyon j by f(1,n,c) =n-c,and f(j+1,n,c) =
f,n, czj'f(j'"’t)) =n-c27"" Note that f(j,n, 1) = n, and clearly any coloring
7 (2")/ — 1 is constant. We may then assume that ¢ > 1 for the remainder of the
proof.

We first show by induction on c that f (1, n, ¢) is asrequired. Suppose that f (1, n, c)
works for some ¢ > 1, and let 7 : 27©“tD — ¢+ 1bea coloring. For € 2", let
[n] := {v € 2"T¢" . n C v}. Note that norgpiit([n]) = 2" for each n € 2". If there
is an n € 2" such that & [ [] omits one of O, ..., ¢, then 7 | [n] is a coloring with
at most ¢ colors, and so there must be an A C [n] € 27" such that norgyi(A) > n
and 7 [ A is constant.

Otherwise, for each € 2" there is an v, € [n] such that 7 (v,) = 0. It follows that
A = {v, : n € 2"} has splitting size n, and = | A is constantly 0.

Assume that f(j, n, c) satisfies the desired property for some j > 1. Set p :=
f(j,n,c) and g := 2"’ so that fG+1,n¢c) =n-q = f(l,n,q). Suppose
71 (279 cisacoloring. Define T := {n € 29 : | [p, n-q) is constantly 0}.
Since ¢ > 2 it follows that p < n - ¢, and so norgpi((7T) = p. For n € 2"¢ define
ay: T/ — cbymy(n,...,nj) =x(1,...,nj,n). Note that the mapping 1 — m,
is a coloring of 2" by at most ¢2”)’ = ¢ many colors. By the above it follows that
thereisan Aj; 1 € 2"9 andanm™ : T/ — ¢ such that norglit(Aj41) > nandm, = 7*
foreachn € Aji1.

Then as m* is a coloring of T/ by at most ¢ colors, and as norgi(T) = p =
f(j,n,c) by hypothesis for eachi < j thereare A; C T C 27 with norgpit(A;) > n
(for i < j) such that A; x --- x A; is homogeneous for 7*. It then follows that
Ay X ---x Aj X Ajy1 is homogeneous for 7. O

Definition 2.3.2 Suppose that / is anonempty (finite) interval in . By a Sacks column
on I we mean anonempty s C 2/. We say that another Sacks column s on [ is stronger
than s, and write s’ < s, if §' C 5.

We can naturally take products of columns that are stacked above each other.

Definition 2.3.3 Let s; be a Sacks column on an interval /; and let s, be a Sacks
column on an interval I». If min(/;) = max(I;) + 1, then the product s’ = 51 ® 5, is
the Sacks column on I} U I, defined by f € §'iff f [ I} € sy and f | I € s55.

5 As in the case of the bigness of subatoms, only the number of “colors” of our coloring functions is of
importance. Moreover, by the definition of the splitting norm it follows that 71, ..., T are trees each of
splitting size at least f(j,n,c) andw : Ty x --- x Tj — c is a coloring, then there are A; € T; (i < j)
such that norgpjit(A;) > n foreachi and s [ Ay X --- x Aj is constant.

6 1f J = 1 this condition becomes whenever 2/(.m.0) §g colored with ¢ colors there is a homogeneous
subset A of 2/ (1:1:6) guch that norgpi¢ (A) > n.
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Creature forcing and five cardinal characteristics in... 1055

Iterating this, we can take products of finitely many properly stacked’ Sacks
columns.

We now define the norm of a Sacks column s on an interval /. Actually, we define
a family of norms, using two parameters B and m. Later, we will virtually always use
values of B and m determined by min(/); more details will come in Sects. 2.5 and 4.

Definition 2.3.4 norSac (s) > niffn = Qornorgpc(s) > F, B(n) where F,, Bw—w
is defined as follows: F,;/(0) = 1 and F,f n+1) = f(m, an (n), B), where we use
the function f of Deﬁnition 2.3.1.

In other words,
nor’” (s) = max ({n cw: FBn) < norspm(s)} U {0}) . (2.3.5)

The exact definition of this norm will not be important in the rest of the paper; we
will only require the following properties.

Lemma 2.3.6 (1) Ifs, s have the same splitting size, then nor&é’{(s(s’) = norSackS(s).

(2) Ifs’' <s, B’ > Bandm’' > m, then norSackg (s < norgagf(s(s).

(3) norge’lgl’(s(sl ® - ®8,) > norséglis(s,)for alll <i <n.

(4) If I is large (with respect to B and m), then norSaCks(ZI) will be large. More
precisely, given a € w, if |I| > Fnlf (a), then norSaCkS(ZI) > a.

(5) We will later use the following simple (but awkward) consequence. Fix properly

stacked intervals I, 1' and a Sacks column s on I U I'. Then there isan s < s
such that

B.m 1
NOTg, ek (5 ) = min (norSacks (s), norSacks 2% )

and |5 < |27].
(6) (Bigness) Fori < m, fix Sacks columns s; such that norgégf(s(si) >n+ 1.

Then for any “coloring ” function v 2 [];_,, i — B there are Sacks columns

s; < 5; with norSacks (s7) = n such that  is constant on [ [, _,, s'.

Proof For (5), just prune all unnecessary branches. In more detail, note that
NOTplit (21 ) = |I|, and that norgégf(s is determined by the splitting-size norgpli. SO
we have to find § C s with splitting size r := min(norpjic(s), |I|). Obviously we can
find the binary tree 2=" inside s (as a suborder). Extend each of its maximal elements
(uniquely), and take the downwards closure. This gives 5.

(6) follows immediately from Lemma 2.3.1. We have norgpji(s;) > Frf n+1)=
f(m, Frf (n), B); so by the characteristic property of the function f, for any coloring
functionr : [[;_,, 5i — B there are Sacks columns 5/ < 5; with norgpj; (5;) > Fnlf (n)

such that 7 is constant on [ [; ’. So norSaCkS (5 ) > n. O

<m l

7 Sacks columns sy, ..., s, onintervals I, ..., I,,respectively, are called properly stacked if min(/; 4 1) =
max(/;) + 1 foreachi < n.
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Fig. 2 Diagram of the sublevels

at level ¢, with the Sacks (67 Jé — 1)
sublevel (¢, —1) occurring
“before” the subatomic sublevels
«,0), ¢, 1,..., o, Jp—1)

2.4 Setting the stage

We fix for the rest of this paper a nonempty (index) set . We furthermore assume that
E is partitioned into subsets E15, E11, Bk (E15 1S nonempty, but E1 5 and Esx could
be empty). For each & € B, we say that & is of type lim-sup, lim-inf or Sacks if & is an
element of 15, E14, or Egk, respectively. We set Epop-sx := BE1s U E11 = E\ Egk.
Our forcing will “live” on E x w. For (€, £) € E x w we call £ the index and £ the
level.
The “frame” of the forcing will be as follows.

Definition 2.4.1 (1) (For the “Sacks part”.) We fix a sequence (/gx ¢)rew Of prop-
erly stacked intervals in .8 For simplicity we further assume that min (/g ) =
0. Given natural numbers £ < m we set Igk [o.m) = U€<h<m Isxn =
[min(/sy ¢), min(/gsx ,»)). A Sacks column on Igy [¢,) is also called a “Sacks
column between £ and m”.

(2) We fix for each level £ € w some J; € w\{0}. A sublevel is a pair (¢, j) for £ € w
and j € Jy U {—1}. (The sublevel (¢, —1) will be associated with the Sacks part
at level £.) We will usually denote sublevels by u or v.

(3) We say v is below u, or v < u, if v lexicographically precedes u. Note that this
order has order type w.

(4) A sublevel (¢, —1) is called a Sacks sublevel; all other sublevels are called sub-
atomic. Instead of (¢, —1) we will sometimes just write “the sublevel £”, and we
sometimes just write “v is below £” instead of v < (£, —1).

(5) (For the “non-Sacks part”.) For each subatomic sublevel u and index & € Epon-sk
we fix a subatomic family K¢ y living on a finite set POSS¢ y.

(6) For each level £ € w and index & € Epon-sk, €ach sequence (x;) ey, With x; €
Ke u constitutes (as in 2.2.3) an atom a, where we use ¢ as the parameter in wt for
the definition of the norm of the atom (Fig. 2).

To be able to use this frame to construct a reasonable (in particular, proper) forcing,
we will have to add several additional requirements of the following form. The Sacks
intervals Isx ¢ (that “appear” at sublevel £) are “large” with respect to everything that
was constructed in sublevels v below £; and the subatoms at a subatomic sublevel
u have “large” bigness with respect to everything that was constructed at sublevels
v < u. The complete construction with all requirements will be given in Sect. 4.

8 Le., Ik ¢ = [min(/gy ¢), min(Igy ¢4 1)) forall £ € w.
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2.5 Compound creatures

We can now define compound creatures, which are made up from subatomic creatures
and Sacks columns.

Definition 2.5.1 A compound creature ¢ consists of

(1) natural numbers m" < mp;

(2) anonempty, finite’ subset supp of E

(3) foreach & € supp N Egyx a Sacks column ¢(&) between m™ and m"P;

(4) for each & € supp N Epon-sk and each subatomic sublevel u = (¢, j) with
md" < ¢ < m"P a subatom ¢(£, u) € Ke.u; and

(5) foreachm < ¢ < m"P areal number d(£) > 0, called the “halving parameter”
of ¢ at level £).10

We additionally require “modesty”:!!

(6) for each subatomic sublevel u with m9 < u < m" there is at most one
& € supp N Epon-sk such that the subatom ¢(£, u) is not a singleton.

Note that by (4) for each level £ with mI < ¢ < m"P and each £ € supp N Enon-sk
there is a naturally defined atom ¢(§, £) := (c(§, (¢, j))) jeJ,-

We also write m9"(c), m"P(c), supp(c), d(c, h).
We will use the following assumptions (later there will be more; a complete list
will be given in Sect. 4).

Assumption 2.5.2 Let £ € w.

e We fix natural numbers B(£) and maxposs(<£), such that for each k < ¢ we
have B(k) < B(£) and maxposs(<k) < maxposs(<¥). (These parameters will be
defined in Sect. 4.)

e We assume that /sx ¢ is large enough so that there are Sacks trees of large norm.
(More concretely, norngfﬁf (2fsxt) > ¢)

e We assume that J; is large enough such that u“(Jy) is big. (More concretely,
MZ(JZ) > 2E~maxp0ss(<€))'

e We assume that for every & € Epon.cx and j € Jy there is (at least) one subatom
X € Kg’((,j) with nor(x) > 2¢-maxposs(<f)

Using these assumptions, we can now define the norm of a compound creature.

Definition 2.5.3 The norm of a compound creature ¢, nor(c), is defined to be the
minimum of the following values.

9 We could assume without loss of generality that the size of supp is at most m9" This will be shown in
Lemma 3.4.3.

10 One could (without loss of generality, in some sense) restrict the halving parameter to a finite subset of
the reals; then for fixed supp, m™ ;P there are only finitely many compound creatures.

n Again, without this requirement, the resulting forcing poset would be equivalent.
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(1) The “width norm”:

mdn(c)

NOTwidth (SUPP(c)) == ——————.
| supp(c)|
(2) Foreach & € supp(c) N Egx the “Sacks norm” at index &:

NOFSacks (¢(6)) 1= nor2 ™M™ (¢(g))

(with m9" := m9"(¢)) as defined in 2.3.5.
(3) Foreach & € supp(c) N Epon-sk the “lim-sup norm” at index &:

NOTjimsup (¢, &) := max(nor(c(§, h)) : mi < h < m"™).

(4) For each m4"(¢c) < h < m"P(c) the “lim-inf norm” at level /:

p cQ dn lo N —d c, h
norﬁlr;)i(rpl);)ss(<m )(C, h) = g2( ( dn)) ’
maxposs(<mdmt)

where N := min{nor(c(¢, h)) : & € supp(c) N Eq3).121

(So for both norjjmsup and norjmint We use the norms of atoms c(&, &); recall that
the level 4 of this atom is used in Definition 2.2.3 of nor(c(&, /)), more specifically,
w" is used to measure the size of subsets of Jj,.)

Remark 2.5.4 As supp(c) is nonempty, the width norm (and thus nor(c) as well) is at
most m92(c).

The assumptions imply the following.

Lemma 2.5.5 Fix2 < m% < m" and supp C & with |supp| < m™ and suppN Egy,
supp N E1i, supp N E1s all nonempty. Then there is a compound creature ¢ with
mI(¢) = mI, m"P(c) = m"°, supp(c) = supp such that nor(c) = noryid (SUPp).

Proof We can first use for all subatoms and Sacks columns the “large” ones guaranteed
by the assumptions. However, this will in general not satisfy modesty. So we just apply
Lemma 2.2.2 at each m" < ¢ < m"P, resulting (for each ¢) in disjoint sets Ag cJy
for & € suppN Enon-sk. We keep the large subatoms at the sublevels in A, and choose
arbitrary singleton subatoms at other sublevels. Now we have a compound creature,
whose norm is the minimum of the following:

e the width norm;

12° A usual, if the logarithm results in a negative number, or if we apply the logarithm to a negative
. . maxposs(<mdm)
number, we instead define the resulting norm to be 0. So really we mean nory, .- (c,h) =
logp (max(1,N—d(c,h))
maxposs(<md“)

13 The reason for the logarithm, and the use of the halving parameters, will become clear only in Sect. 5.2.
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o the (unchanged) Sacks norms, which are > mdn > NOT width (SUPP);

o the lim-sup norms, noting that all atoms at level £ have norm > 2¢maxposs(<t) _ 1 >
2n1d"-maxposs(<rnd“) _
and

e the lim-inf norms, which drop by an even smaller amount, due to the logarithm.

1 > norwig (Supp), so all lim-sup norms drop by at most 1;

m}

Fact 2.5.6 Let ¢ be a compound creature and u < supp(c) suchthatuNEgx, uN E14,
uNE1g are allnonempty. Then the naturally defined ¢ | u is again a compound creature
with norm at least nor(c).

Definition 2.5.7 A compound creature 9 is “purely stronger” than ¢, if ¢ and 0 have
the same mI, m"P, the same halving parameters, the same supp; and if for each
& € supp N Egx the Sacks column 9(§) is stronger than ¢(£) and for each subatomic
sublevel u that appears in ¢ and £ € supp N Epon-sk the subatom (&, u) is stronger
than ¢(&, u). (In other words, the only difference between ¢ and ? occurs at the Sacks
columns and the subatoms, where they become stronger.)

For r > 0 we say that 0 is “r-purely stronger” than ¢, if additionally nor(d) >
nor(c) — r.

To show that our forcing has the R;-cc, we will use the following property.

Lemma 2.5.8 Fix two compound creatures ¢| and ¢ with same m® and m* and

the same halving parameters, with disjoint supports, and such that nor(cy), nor(cz) >
x. Then there exists a compound creature d with same m% and m"® and support
supp(c1) Usupp(cz) such that nor(0) > 5 — 1 and d | supp(c;) is purely stronger than
¢ fori =1,2.

More generally, the same is true if ¢c1 and ¢y are not necessarily disjoint, but identical
on the intersection u := supp(cy) N supp(cz), i.e., ¢; [ u =c2 | u.

Proof Let ?' be the “union” of ¢; and ¢,, which is defined in the obvious Way.14

As 0’ may not satisfy the modesty requirement (6) of Definition 2.5.1, we apply the
procedure from the first part of the proof of Lemma 2.5.5 to ensure that the resulting
object 0 does. Then 0 is a compound creature with norm > 5 — 1. (The factor % comes

from doubling the size of the support, which decreases the width norm.) O

2.6 The elements (conditions) of the forcing poset Q

Definition 2.6.1 ¢ is the weakest condition. Any other condition p consists of w”,
(p(h))pewr and tP such that the following are satisfied.

e w” C w is infinite.
e Foreach h € w”, p(h) is a compound creature whose m9" is &, and whose m"P is
the w’ -successor of /.

14 1n particular supp(d’) = supp(cq) U supp(cp), and the Sacks columns and subatoms of ?’ at index
& € supp(?’) are exactly those from either ¢ or ¢y, depending on whether & € supp(c;) or & € supp(cp).
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For h < h"inw”, supp(p(h)) < supp(p(h')),
limp, ey (nor(p(h))) = oo.
We set supp(p) := |, cwr SUpp(p(h)) (a nonempty countable subset of E).
For & € supp(p), we define trklg? (&) (the “trunk length” at &) to be the minimal
h such that & € supp(p(h)).
The “trunk” #7 is a function which assigns
- toeach £ € supp(p) N Egk and £ < trklg? (&) an element of 2/sk.¢;
— toeach & € supp(p) N Enon-sk and subatomic sublevel u below trklg? (£) an
element of POSSg¢ y.

Note that Assumption 2.5.2 guarantees that Q is nonempty (cf. Lemma 2.5.5).

Notation 2.6.2 Given p € Q, h € wP and £ which is > & and less than the w”-
successor of 7, and a sublevel u = (¢, j) we use the following notations.

supp(p, w) = supp(p, £) := supp(p(h)).

d(p,?) :=d(p(h), £) (the halving parameter of p at level ¢).

For & € Epon-sk N supp(p,u) and j # —1 we set p(&,u) := p(h)(&,u), the
subatom located at index & and sublevel u.

e For & € Eqx Nsupp(p(h)) we set p(&, h) := p(h)(&), the Sacks column at index
& starting at level & (note that we require & € wP”).

2.7 The set of possibilities

We will now define the “possibilities” of a condition p, which give information about
the possible value of the generic objects ys and which we will use to define the order
of the forcing. The possibilities of a condition p come from three sources, informally
described below.

e The trunk 77, where there is a unique possibility.

e The subatoms p(&, u) (each with a set of possibilities, poss(p (€, u))).

e The Sacks columns p(&, h) (which we interpret as a set of possible branches)
which “live” between h € w” and the w”-successor it of h. The possibilities of
the whole Sacks column have to be counted as belonging to the sublevel (7, —1),
i.e., we have to list them before the subatomic sublevel (%, 0), even though their
domain reaches up to just below ™.

This property of the Sacks columns will make our notation quite awkward. As a
consequence, the following section has the worst ratio of mathematical contents
to notational awkwardness. Things will improve later on. We promise.

We first (in 2.7.1) describe a way to define the set of possibilities separately for
each & € supp(p); all possibilities then are the product over the &-possibilities.

Then (in 2.7.2) we will describe a variant in which possibilities at a sublevel u are
defined, and all possibilities are a product over the u-possibilities.

Both versions result in the same set of possibilities (up to an awkward but canonical
bijection; see Fact 2.7.3). The first version is more useful in formulating things such
as “a stronger condition has as smaller set of possibilities”, whereas the second is the
notion that will actually be used later in proofs.
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Definition 2.7.1 Fix a condition p and an index & € supp(p).

e If £ € Epon-sk, then for each subatomic sublevel u = (¢, j) we define the set
poss(p, &, =u) to be either the singleton {t” (&, u)} (if £ < trklg? (§)), or poss(x)
for the subatom x := p(&, u) (if £ > trklg” (£)). (In either case poss(p, &, =u) C
POSS¢ u.)

We set poss(p, &, <u) := [[{poss(p, &, =V) : v < u is a subatomic sublevel}.

e If & € Egx and u = (m, j) is a sublevel, we set £ to be either m (if j = —1 and
m € wP), or the least number > m in {0, ..., trklg” (§) — 1} U w”, (otherwise).
We then define poss(p, &, <u) to be the set of all functions n € 2[0min(Usk.e)
compatible!’ with the trunk and the Sacks columns of p at £.

e We set poss(p, <u) to be ]_[sesupp(p) poss(p, &, <u).

e Recall that we identify £ with the sublevel (£, —1), so we can write poss(p, <)
instead of poss(p, <(€, —1)).

Note that each possibility below u restricted to the non-Sacks part can be seen as a
“rectangle” with width supp(p) N Epon-sk and height u; whereas the restriction to the
Sacks part is a rectangle with height in w” (which is generally above u). So together
this gives an “L-shaped” domain. Only in case u = (¢, —1) for £ € w” do we get a
more pleasant overall rectangular shape.

In the following alternative definition we ignore a part of p whichis “trivial” because
we have no freedom/choice left. More specifically, we ignore the trunk and singleton
subatoms (but not singleton Sacks columns). Also, we do not first concentrate on some
fixed index &, but directly define poss’(p, =u) for certain sublevels u.

Definition 2.7.2 We define the set sblvls(p) of “active” sublevels of p by case dis-
tinction, and then for each u € sblvls(p) we define the object poss’(p, =u).

e Ifu = (¢, —1) is a Sacks sublevel, then u € sblvls(p) iff £ € w”. In this case we
set S := supp(p, £) N Egx # @, define p(u) to be the sequence (p(§, £))ges of
these Sacks columns, and set poss’(p, =u) to be the product of this sequence.

e If u = (¢, j) is a subatomic sublevel, then u € sblvls(p) iff £ > min(w”) and
if there is a non-singleton subatom at sublevel u, say at index &. In this case
according to the modesty condition (6) of Definition 2.5.1 this is the only non-
singleton subatom at u. We call £ the “active index” at u, set p(u) := p(§, u) (the
“active subatom”) and define poss’(p, =u) := poss(p(u)).

So sblvls(p) is a subset (and thus suborder) of the set of all sublevels, also of order
type w. We set poss’(p, <u) := [[{poss'(p, =v) : v < u, v € sblvls(p)}.

The definition of the following bijection ¢ is easy to see/understand, but very awk-
ward to formulate precisely, and hence left as an exercise.

Fact 2.7.3 There is a natural/canonical correspondence ¢ : poss(p, <u) —
poss’(p, <u). Given an n € poss(p, <w), we first omit from n all the “trivial” infor-
mation contained in the trunk and in the singleton subatoms, and then “relabel” the
resulting sequence (instead of a sequence indexed by elements of & we wish to have
one indexed by elements of sblvls(p)).

15 In more detail, for each & < € an element of {0, ..., tklgP (&) — 1} UwP if h < tklgP (€), then
nllsxn = tP (&€, h), and otherwise 1 | Isk,[h.h’) € p(&, h), where h' is the wP-successor of h.
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Later in this paper we will not distinguish between poss and poss’; actually, we will
mostly use poss’, and often use the following trivial observation.

Fact 2.7.4 Forv < u in sblvls(p),
poss’(p, <u) = poss’'(p, <v) x poss’(p, =v) x poss'(p, >V),

where we set poss'(p, >V) := Hv’esblvls(p),v<v’<ll poss(p, =v').
poss’(p, =v) is a product of Sacks columns if v is Sacks, otherwise it is poss(x) for
the active subatom at v.

2.8 The order of the forcing

Definition 2.8.1 A condition ¢ is stronger than p, written ¢ < p, iff the following
conditions hold.

(1) w1 Cwl.

(2)  supp(p) N supp(q(h)) = supp(p(h)) for each h € w4 .1

(3) The trunk 79 of g extends the trunk 77 of p and is “compatible” with p in the
sense that for each & € supp(p) the singleton poss(q, &, <trklg?(£)) is a subset
of poss(p, &, <trklg?(£)).!7 (Le., the subatoms and Sacks columns of p that
disappeared have become part of the trunk of ¢ which is compatible with the
respective possibilities of p.)

(4) If& e supp(p) N Enon-sk and u is a subatomic sublevel above trklg? (§), then
the subatom ¢ (&, u) is stronger than p(§, u).

(5) If&é e supp(p)NEsk and h € w? such that i > trklg? (), then the Sacks column
q (&, h) is stronger than (i.e., a subset of) the product of the Sacks columns p (&, £)
for ¢ e wP, h < £ < ht, where h' is the w?-successor of 4.

(6) The halving parameters do not decrease; i.e., d(q,£) > d(p,¢) forall £ € w
with £ > min(w?).

3 Some simple properties of Q
3.1 Increasing the trunk

We now introduce an obvious way to strengthen a condition: increase the trunk.

Definition 3.1.1 Given £ € w” and n € poss(p, <), we define p A n to be the
condition g resulting from replacing the compound creatures below ¢ with the trunk 7.
More formally, w? := wP\¢, g (k) := p(k) forall k € w?, t9(¢,u) := n(&, u) for each
& € supp(p) N Eqon-sk and each subatomic u < £, and t9(&, h) = n(&) | Isk,p for
each & € supp(p) N Esx and each h < .

16 This condition in particular implies that supp(q (h)) 2 supp(p(h)) for each h € w4, that trklg? (§) =
min{¢ € w? : ¢ > trklgP (¢)} for each & € supp(p), and that 19 is defined on a larger domain than 7.

17 Equivalently, for any € poss(q, < min(w?)), the restriction of  to supp(p) is in poss(p, < min(w?)).
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The definition of the order yields the following simple consequences.
Fact3.1.2 Fix p €e Qand £ € wP.

e Forn € poss(p, <€), p An < p.

e {pAn:neposs(p, <L)} is predense below p.

e In particular, assuming that p and q are conditions that above some £ have
the same w and the same compound creatures,'® and that poss(g, <f1) <
poss(p, <f1), then g <* p.19

We can define a variant of A, which works for any sublevel (not only those Sacks
sublevels u = (¢, —1) with £ € wP).

Definition 3.1.3 Given n € poss(p, <u), we define p A n as the condition g obtained
by replacing the according parts of p with the singleton subatoms (or singleton Sacks
columns) given by 1. More formally, the only possible differences between p and ¢
are that for each subatomic sublevel v < u and each & € supp(p, v) N Epon-sk the
subatomic creature ¢ (&, v) is the singleton subatom {5 (&, v)}, and for each £ € w”
strictly below u and each £ € supp(p, £) N Egx the Sacks column p(§, ¢) is the
singleton {1n(§) | Isk ¢ ¢+)}, where £ is the w”-successor of £.

We can now define the generic sequence added by the forcing. (Note that the generic
filter will generally not be determined by this sequence, due to additional information
given by w and the halving parameters.)

Definition 3.1.4 For £ € Epon-sk, let ys be (the name for)
{(u, @) : u a subatomic sublevel and (3p € G) (&, u) = a}.

For § € Egyx, we set yg to be

P& 02 peG. £ <ukigh@)).

Fact 3.1.5 Let u be a sublevel.

Forn € poss(p, <u), p A n < p.

Ift e wl,u= (¢, —1)andn € poss(p, <f),then phn <* pAnand pAn < p An.
{p A n: neposs(p, <u)}is predense below p.

p A nand p A n' are incompatible if ', n € poss(p, <u) are distinct.

p A n forces that y extends 0, i.e., that yg extends n(§) for all & € supp(p).

In particular, p forces that y extends tP.

n € poss(p, <u) iff p does not force that n is incompatible with the generic
reals y.

18 More formally, £; € wP, wP\£; = w?\€1, and p(h) = q(h) for all h € wP\¢;. Note that this implies
supp(p) = supp(q).

19 Here, g <* p means that g forces that p belongs to the generic filter. Equivalently, every r < g is
compatible with p.

20 For the direction “right to left”, which we will not need in this paper, we of course have to assume that
n has the right “format”, i.e., n = né’esupp(p) n(&) and each 1 (&) has the appropriate length/domain.
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e Forn € poss(p, <u), pl- “yextendsn < p AneG.”
e Q forces that y is “defined everywhere”; i.e., ys € 2¢ for all £ € EBgx, and
yp(u) € POSS¢ y is defined for all § € Enon-sx and every subatomic sublevel u.

—

Proof of the last item. Given a condition p and £ € E, we have to show that we can
findag < p with& € supp(g). This is shown just as Lemma 2.5.8, using at £ the large
Sacks columns/subatoms guaranteed by 2.5.2. Then “increasing the trunk” shows that
Ye (n) is defined for all n. O

Note that we can use the equivalent poss’ (defined in 2.7.2) instead of poss. Formally,
we could use the bijection : of 2.7.3 and set p Ay := pAt~! () forn’ € poss'(p, <I)
(and p A ' := p A1 (%) for /€ poss’(p, <u)). But what we really mean is that
for some " € poss’ we can define p A n’ (p A n') in the obvious and natural way;
and this results in the same object as when using p A n (p A n) for the n € poss that
corresponds to 1’ (i.e., for n = =1 (1)).

3.2 The set of possibilities of stronger conditions

If ¢ < p, then poss(g, <u) is “morally” a subset of poss(p, <u) for any u.
If we just consider a sublevel (¢, —1) for £ € w? then this is literally true:

Assume that ¢ < p, & € supp(p) and £ € w?. Then poss(q, &, <€) C
poss(p, &, <f).

In the general case it is more cumbersome to make this explicit for the Sacks part.
However, we will only need the following.

Lemma 3.2.1 Given q < p and n € poss(q, <u) there is a unique ' € poss(p, <u)
suchthatg An < p A7

Proof Uniqueness follows from the fact that p A n" and p A n” are incompatible for
distinct ', n” in poss(p, <u).

We define n’(§) separately for each & € supp(p). For &€ € Epon.sx We just use
7' (&) :== n(&). So assume & € Egy. Let k be the smallest element of w” above u.

e If u is below trklg” (¢) (and therefore also below trklg?(&£)), then again we set
n'(€) :==n().

e If uis above trklg” (&) but below trklg? (), then we extend n(£) up to k with the
values given by the trunk 79. This gives n/(&).

e If u is above trklg? (&) > trklg? (&), then 5’ (&) is the restriction of n(§) to k.

O

Remark 3.2.2 Note that ¢ < p does not imply sblvls(g) C sblvls(p), as a previously
“inactive” sublevel of p can become active in ¢ (with active index outside of supp(p),
of course). Also, u can be an active subatomic sublevel in both p and ¢, but with
different active indices. The “old” active subatom at £ can shrink to a singleton in g,
while ¢ gains a new index with an active subatom (outside of supp(p)). Because of
this, it is even more cumbersome to formulate an exact version of “stronger conditions
have fewer possibilities” for poss’ than it is for poss.
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3.3 8, chain condition
Lemma 3.3.1 Assuming CH, Q is R;-cc.

Proof Assume that A = {p; : i € ¥y} is a set of conditions. By thinning out A (only
using CH and the A-system lemma for families of countable sets), we may assume
that there is a countable set A C E such that for p # g in A the following hold:

o wl =wi;

e d(p,0) =d(q, ) for all £ > min(w”);

e A = supp(p) Nsupp(g), and, moreover, supp(p, £) N A = supp(q, £) N A for all
£ € wP; and

e p and g are identical on A, i.e., for each £ € w” the compound creatures p(£) and
q (€) are identical on the intersection, as in Lemma 2.5.8; and the trunks agree on
A, ie., tP (&, £) is the same as 19 (&, £) foreach & € AN Egx and £ < h(§), and
analogously for the subatomic sublevels.

As in Lemma 2.5.8 we can (for each p,gq € A and £ € wP) find a compound
creature 0(£) “stronger than” both p(€) and ¢ (£). These creatures (together with the
union of the trunks) form a condition stronger than both p and ¢g. Hence A is not an
antichain. O

3.4 Pruned conditions

Let p be a condition. All compound creatures p(€) above some £y will have norm at
least 1. Note that by the definition of nory;qg, this implies that | supp(p, £)| < £.

The norm of a compound creature ¢ is at most m9" (where we set m := m9(c)).

Bm™),m®™ 51y dn
We assumed that norg, ;. (27skm™) is at least m“". Let s be any Sacks column

in ¢. By Lemma 2.3.6(5) (using I := Igy ,m and I = Loy pmdn g1 pmury)s there is

~ . ~ dny ,,dn | . dny . dn
an § C s with |5 < 2/sxn® and norg;;'f(s (&) > min(mdn, norgifg'(s 7 (8)). So

when we replace s by 5 in ¢, the norm of the compound creature does not change.
Furthermore, if we replace all Sacks columns in ¢ with appropriate stengthenings, the
resulting compound creature 0 will be O-purely stronger than c.

This leads us to the following definitions.

dn

Definition 3.4.1 We call a Sacks column s between £ and n Sacks-pruned if |s| <
2Msktl A compound creature is Sacks-pruned if all its Sacks columns are. A condition
q is Sacks-pruned if q(h) is Sacks-pruned for all 4 € w?. A condition p is pruned if
it is Sacks-pruned and all compound creatures p(h) have norm bigger than 1.

Definition 3.4.2 A condition ¢ is purely stronger (r-purely stronger) than p, if w? =
wP, 19 = tP, and g (£) is purely stronger (r-purely stronger) than p(€) for all £ € w9.
(Note that this implies g < p.)

21" See Definition 2.5.7.
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For every condition p there is a Sacks-pruned condition g which is O-purely stronger
than p. Given p € QQ Sacks-pruned, £ € w” sufficiently large, and 1 € poss(p, <),
the condition ¢ = p A 1 < p is pruned.

In particular, we have the following.

Fact 3.4.3 e If p is pruned, then | supp(p(h))| < h for all h € wP.
e The set of pruned conditions in Q is dense.

3.5 Gluing

So far we have increased trunks to strengthen conditions, as well as taking disjoint
unions and pure strengthenings. This subsection introduces two more methods of
strengthening conditions.

Definition 3.5.1 A compound creature 0 is the result of increasing the halving param-
eters in ¢, if 0 and ¢ are identical except that for each mi < ¢ < m" we may have
d®, ) > d(c,0).

Analogously, we define a condition g to be the result of increasing the halving
parameters in p. (Again, this implies ¢ < p.)

Definition 3.5.2 We call a finite sequence of compound creatures ¢y, . . ., ¢, properly
stacked if m"(¢;) = m(¢;11) and supp(c;) < supp(c;41) for each i < n. Given
such a sequence, we can glue it together to get the new creature 0 = glue(cy, ..., ¢;)
with the following description.

o mi(@) = m¥(¢y) and m"P(d) = m"P(c,) (i.e., vertically the creature lives on the
union of the levels of the old creatures).

e supp(0) = supp(cy) (i.e., the rectangle-shape of the new creature is the result
of taking the union of the old rectangles and cutting off the stuff that sticks out
horizontally beyond the base).

e For& e supp(0) N Epon-sk and subatomic sublevels u between mdn (0) and m"P(0),
the subatom 0(&, u) is ¢; (£, u) for the appropriate i.

e For & € supp(d) N Egk, the Sacks column 0(£) is defined as the product ¢; (§) ®
Qe (8).

By the definition of the norm (see 2.5.3), the monotonicity of B and maxposs (Assump-

tion 2.5.2) and Lemma 2.3.6(2),(3) we get

nor(glue(cy, ..., ¢,;)) = min(nor(cy), ..., nor(c,)).

This gives another way to strengthen a condition p: shrinking the set w.

Definition 3.5.3 Given a condition p and an infinite subset U of w” such that
min(U) = min(w”), we say that g results from gluing p along U if
o wl =U,
o forh e wi,if h = hy < hy < --- < h, enumerates the elements of w” that
are > h and less than the w?-successor of /, then the compound creature g (k) is

glue(p(hy), ..., p(hy)); and
e the new parts of the trunk are compatible with p.
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Note that g is not uniquely determined by p and U, as in general there are many choices
to increase the trunk (in the last item). Of course, any such resulting ¢ is stronger
than p.

We have now seen five specific ways to strengthen a condition. Actually, every
q < p can be obtained from p by a combination of these methods. (We will not use
the following fact, nor the subsequent remark, in the rest of the paper.)

Fact 3.5.4 For p,q € Q, g < p iff there are p1, p2, p3 and p4 such that:

(1) p1 results from increasing the trunk in p, i.e., p; = p A n for some n €
poss(p, < min(w?)) (in fact, for the unique n which is extended by t4);

(2)  p2 < pi results from gluing py along w4, as above.

(3)  p3 is purely stronger than p;

(4) p4 < p3 results from increasing halving parameters; and

(5) q isthe naturally defined “disjoint union” of p4 and some condition p’ which has
the same w and halving parameters as py4, supp(p’) is disjoint from supp(p4),
and which jointly satisfies “modesty” with pa.

Remark 3.5.5 e Every g obtained by the above construction is stronger than p,
provided it is a condition. Note that constructions (1), (2) and (5) always result in
conditions (for (5), this is the same argument as in 2.5.8), whereas constructions
(3) and (4) will generally decrease the norms of the compound creatures in an
uncontrolled fashion. So to get a condition, we have to make sure that the norms
of the new compound creatures still converge to infinity. Also, to be able to find a
suitable p’ in (5), we should make enough room for modesty in (3) (Fig. 3).

e Theorderis notentirely irrelevant, as gluing (2) has to be done before pure strength-
ening (3), since glued Sacks columns always have the form of products, whereas
generally the Sacks columns in g will not be of this form.

We will later use the following specific gluing construction.

Lemma 3.5.6 Assume that ¢, ..., ¢, is a properly stacked sequence of compound
creatures, n > 0, and nor(¢;) > M for all i < n. Pick for eachi < n some compound
creatures 0;, purely stronger than ¢;, such that 0; and ¢; agree on the lim-inf part (but
0; could consist of singletons on the lim-sup and the Sacks part). Set 0,, = ¢;. Then
glue(®, ..., 0,) has norm > M as well.

Proof The lim-sup norm and the Sacks-norms will be large because nor(d,) =
nor(c,) > M. The lim-inf norm will be large because we did not change anything on
the lim-inf part. O

3.6 Projections and complete subforcings

Lemma 3.6.1 Assume that 215 € &' C 2.22 Let Qg C Q consist of all p € Q with
supp(p) € E'. Then Q= is a complete subforcing of Q, and the restriction map is a
projection on an open dense subset.

22 If we do not assume &' D E1; we get problems with the lim-inf norm when we combine the increased
halving parameters of ¢’ with the lim-inf creatures in py.
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h3 h3 \_/—l—\

~—— [ 7}
= N

supp(p) supp(q)
(a) (b)

Miﬁ W[ ———

ha
hi
ho hO
supp(q) supp(q)
(c) d)

Fig.3 a A schematic diagram of a condition p of the forcing. The /; indicate an increasing enumeration of
wP , while the shaded region represents the domain of the trunk function #”. b A condition ¢ = p An, where
n € poss(p, <hy). In particular, all of the compound creatures above level 4, have been left unchanged,
and the level below /7 the condition ¢ consists entirely of trunk, with values determined by 7. ¢ A condition
¢ obtained from p by gluing the pairs of compound creatures p(hq), p(h1) and p(hy), p(h3). Note that
trklg? () = hy for any 5 € supp(p) with trklg? (n) = h (and similarly if trklg?” (n) = h3). d A condition
¢ obtained as the “disjoint union” of p and another condition (represented to the left of the dotted line) with
the same w and the same halving parameters at each level as p

Of course, Qg will satisfy all the properties that we will prove generally for Q (as
Qg is defined just like Q, only with a different underlying index set).

Proof The dense set D is the set of all conditions p with supp(p) N E1; # @. Fix
p € D,set p’ := p | &, and assume that ¢’ < p’ is in Q. It is enough to show that
q’ is compatible with p. To do this we will construct g < p such thatq’ =¢q | &’.
Set p1 := p | (E\E&). Increase the trunk of p; to min(w?), glue along wi', and
increase the halving parameters to match those of ¢’ to get a condition g; < p; with
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wil =i B Letting g be the disjoint union of ¢; and ¢’, it follows that g is a condition
of Q, and clearly ¢ | E' = ¢'. O

4 An inductive construction of Q

We will now review the “framework” from Definition 2.4.1, finally giving all the
assumptions (including the previous Assumption 2.5.2) that are required to make the
forcing proper.

In the following construction, we have the freedom to choose the following (as long
as the assumptions are satisfied).

e E = E15UEq; UEgk, as in Definition 2.4.1.

e Natural numbers H (<u) (for each sublevel u) such that H is increasing.
Remark. The function H gives us the possibility to impose additional demands on
the bigness B (as given in (4.0.2), below). It is not needed to get properness and
w®-bounding, but will be used later®* in our specific constructions.

e For each & € Ejon-sk and each subatomic sublevel u the subatomic family K
living on some finite set POSS¢ .

The other parameters are determined by the construction.

e Natural numbers maxposs(<u) for each sublevel u.
This will turn out to be an upper bound to the cardinality of poss(p, <u) for any
pruned condition p.

e For each sublevel u, we set

B(ll) — 2H(<u)-maxposs(<u) (4_0_2)

(and we set B((0, —1)) := 2). B(u) is the bigness required for the subatoms (or
Sacks columns) at u.

e The Sacks intervals /sx ¢ and subatomic index sets J¢, for each £ € w, as in
Definition 2.4.1.

Note that, as usual, for a Sacks sublevel u = (£, —1) we may write B({) for B(u). We
similarly use maxposs(<¥¢) and H(</).

By induction of ¢ we now make the following definitions and requirements. (We
also set the “initial values” maxposs(<(0, —1)) := 1 and Isx,—1 = {—1}.)

Basic Construction (x1) We require that H (<¢) > maxposs(<¥?) + £ + 2.

(*2) The Sacks sublevel. We let Iy ¢ be the interval starting at max(/gx ¢—1) + 1 and

.. . B(0),€ i1,
of minimal size such that norg, .. (2's%¢) > £.

This gives us “bigness” in the form of Lemma 2.3.6(6) for B := B({).

23 As supp(p1) N E1; = ¥ it follows that increasing the halving parameters does not affect the norms of
the compound creatures, and therefore ¢ is a condition of Q.

24 Hereisa very informal description of how H will be used. The basic requirement is that at each sublevel
u we have bigness (namely B(u)) which is large with respect to everything that happened below. However,
the notion of “large with respect to” will slightly depend on the actual construction that increases the relevant
cardinal characteristic. The parameter H will allow us to accommodate these different interpretations. The
function H will be used as a parameter when defining “rapid reading” in Definition 5.1.1.
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(*3) We set maxposs(< (¥, 0)) := maxposs(<¥) - 2Msk.elt,
(54) We set Jp 1= 3EHD2m0NE0 g0 €7,y — pe-maxposs(<0) 25
(x5) The subatomic sublevels. By induction on j € J, we now deal with the sublevel
u=(( ).
(a) Foreach& € Epon-sk, we require that K¢  is a subatomic family living on
some finite set POSS¢ y.
(b) For each & € Ejon-sk, We require that there is a subatom x € K¢, with
norm at least 2¢maxposs(<t)
(c) Foreach & € Epon-sk, we require that Kg y is B(u)-big.
(d) We require that there is a uniform bound M (u) = max({| POSSgu|: & €
Enon-sk})- Then we set, for v the successor sublevel of u,

maxposs(<v) := maxposs(<u) - M(u)“‘l.

(In particular this defines maxposs(<(£ + 1, —1)) ifu = (¢, J, — 1).)

The assumptions guarantee that the previous Assumption 2.5.2 is satisfied (in par-
ticular that there are compound creatures with norm m", and that Q # ).

By induction, we immediately get the following (which is the reason for the name
“maxposs”).

Fact 4.0.3 Let p be pruned. Then | poss(p, <u)| < maxposs(<u) for u € sblvls(p).
In particular, | poss(p, <h)| < maxposs(<h) for h € wP.

The following shows that each p(u) is B(u)-big.

Fact 4.0.4 Let p be a pruned condition, and let u be an active sublevel of p (which
can be Sacks or subatomic).

Then whenever F : poss'(p, =u) — B(u) is a coloring, there is a strengthening
qg() of p(u) (i.e., either g(n) is a subatom stronger than p(u), or g(0) is a sequence
of Sacks columns such that each one is stronger than the according column in p(u))
such that the subatomic norm (or, each Sacks norm) decreases by at most 1 and such
that F | poss’(g ()20 is constant.

As B(u) is much larger than maxposs(<u), we also get a version of “compound
bigness” (we will not directly use the following version, but we will use similar
constructions). First note that a function G : poss’'(p, <u) — H(<u) may be
interpreted as F : poss'(p, =u) — H(<u)! for ¥ := poss'(p, <u) (cf. 2.7.4).
As |poss’(p, <u)| < maxposs(<u), and B(u) is big with respect to maxposs(<u)
and H (<u), we can use the previous item and strengthen p(u) to make G independent
of the possibilities at u.

25 4t is defined in 2.2.1.

26 Here poss’ (g (u)) is either poss(g(w)) if u is a subatomic sublevel, or the product of the Sacks columns
from ¢ (u) if u is a Sacks sublevel.
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Iterating this downwards we get the following.
Fact 4.0.5 Let p be pruned, and let v < u be active sublevels of p.

o IfG : poss'(p, <u) — H(<V) is a coloring, then we can strengthen the p(u’) fo
q(’) for v < v’ < w, decreasing all subatomic/Sacks norms (and therefore also
all compound norms) by at most 1, such that G restricted to poss' (q, <u) only
depends on poss'(q, <V).

o In particular, if G : poss'(p, <u) — 2, then we can strengthen p to q as above
such that G | poss'(q, <u) is constant.

5 Properness, ®“-bounding and rapid reading
5.1 Bigness, rapid reading from continuous reading

(Remark: This section is the straight-forward modification of [12, Lemma 1.13].)

Definition 5.1.1 e Let 7 be the name of an ordinal. We say that 7 is decided below
the sublevel u (with respect to the condition p), if p A n decides the value of 7 for
all n € poss(p, <u); in other words, there is a function R : poss(p, <u) — Ord
such that p A n IF T = R(n) for all n € poss(p, <u).

e We also write “t is decided < u”’; and we write “t is decided < u” for the obvious
concept (i.e., “t is decided < v”, where v is the successor sublevel of u).

e p essentially decides t, if there is some sublevel u such that 7 is decided below u.

e Let r be the name of an w-sequence of ordinals. We say that a condition p contin-
uously reads r, if all r(m) are essentially decided by p.

e p rapidly reads r € 2¢, if, for each sublevel u, r | H(<u) is decided below u.

e Let Zp € E. We say that p “reads r continuously only using indices in E¢” if

p reads r continuously and moreover (using the relevant functions R mentioned
above) the value of R(n) depends only on 1 | E.
In other words: For every n there exists a sublevel u such that p A n decides the
value of r(n) for all n € poss(p, <u), and whenevern [ Eo =1’ | Eo,then p A n
and p A n’ agree on the value of r(n).

e We define the notion “reads r rapidly only using indices in E¢” similarly.

e Instead of “only using indices in E\ E;” we also write “not using indices in E;”.

Note that for X D Ej;, areal r is read continuously from X iff it exists in the
Qx-extension (cf. 3.6.1).

Remark 5.1.2 For afixed condition p, the possibilities (at all sublevels) form an infinite
tree in the obvious way. The set of branches T, of this tree carries a natural topology.
p continuously reads 7 iff there is a continuous function F on T), in the ground model
such that p forces T = F (), where F is the canonical extension of F.

In our case, the tree is finitely splitting, so T, is compact, and continuous is the
same as uniformly continuous. (Note that the definition above really uses a uniform
notion of continuity.)

Rapid reading corresponds to a form of Lipschitz continuity.
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Lemma 5.1.3 (1) If p continuously (or: rapidly) reads r and g < p with supp(q) 2
supp(p), then q continuously (or: rapidly) reads r. The same holds if we add
“only using Eo” or: “not using 1".

(2) Ifg <* p, and T is a name of an ordinal essentially decided by p, then also q
essentially decides t.

Proof (1) Intuitively, this is clear: If ¢ < p and n € poss(g, <u) then n morally is
an element of poss(p, <u),andg A n < p A n.
The formal proof uses Lemma 3.2.1.
(2)  p forces that 7 is decided by a finite case distinction; so g forces the same.
O

Lemma 5.1.4 [nV, let k be max(Ro, |Eo|)™0. Then in the extension, there are at most
k many reals which are continuously read only using®’ indices in E.

Proof This is the usual “nice names” argument: Given p continuously reading r. We
can define the obvious name r’ continuously read by p’ = p | Ey, such that p forces
r = r’. There are at most ¥ many countable subsets of E, and therefore only ¥ many
conditions p’ with supp(p’) € Eg. Given such a condition p’, there are only 280 many
ways to continuously read a real (with respect to p’). O

We will first show that we can “densely” get from continuous reading to rapid
reading. Later we will show that “densely” we can continuously read reals. Both
proofs are the obvious modifications of the corresponding proofs in [12].

Lemma 5.1.5 Assume that p continuously readsr € 2%, then thereisaq < p rapidly
reading r.
The same is true if we add “only using E¢”.

Proof Without loss of generality we can assume that p is pruned (use Lemmas 3.4.3
and 5.1.3).
For a sublevel u, we set

v9 (u) is the maximal sublevel such that r | H(<v%(u)) is decided below u,
(5.1.6)

dec dec

The function v°*“ is nondecreasing; and continuous reading implies that v°*¢ is an
unbounded function on the sublevels; but v4¢® can generally grow very slowly. (p
“rapidly reads 7’ would mean that v9°°(u) > u for all u.)

For all sublevels v < u we set

xy :=r | (H(<min(v, v%(u)))) (which is by definition decided below u).
(5.1.7)
There are at most
2H(<v) (5.1.8)

many possibilities for x¥/, as H ((< min(v, vieu)))) < H(<v).

27 More formally: reals r such that there is a p € G and a name r such that p continuously reads r only
using E( and such that G evaluates r to r.
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1: For now, fix a Sacks sublevel u = (¢, —1) with £ € w”.

We will define (or rather: pick) by downwards induction on u’ € sblvis(p),u’ < u,
objects 0y, which are either a sequence of Sacks columns (if u’ is Sacks) or a subatom;
and functions .

la: For u' = u, we set oy = p(u), i.e., the sequence of Sacks columns of level
£. We let ¢} be the function with domain poss(p, <u) which assigns to each n €
poss(p, <u) the corresponding value of x}.

In other words: p A n forces that x3] = ¥ (1) for each € poss(p, <u).

1b: We continue the induction on u’. For now, we write 9" := 0%}, ¢’ := ¥¥, and

x' = xy.

o Ifu’is subatomic, then we choose for d’ a subatom stronger than the active subatom
p("), with nor(?") > nor(p(u’)) — 1.

e Otherwise, i.e., if u' = (£, —1) is Sacks with £’ € w”, set S := supp(p, &) N
Esx # @. Then 0’ is a sequence (S/E)ges of Sacks columns such that 5/5 C pE )
and norSacks(5é) > norsacks(p (€, £)) — 1 foreach & € S.

e ' is a function with domain poss(p, <u’) such that

modulo (v : w' < v < u), each n € poss(p, <u’) decides x’ to be

. (5.1.9)

by which we mean:

p A n forces the following: If the generic y is compatible with 0% for
each sublevel v € sblvls(p) withu’ < v < u, then x" = /().

How can we find such o', ¥'?

Let u” be the smallest element of sblvls(p) above u'. By induction we already
know that /" := 4, is a function with domain poss(p, <u”) such that modulo
(v:u” <v <u)eachn € poss(p, <u”) decides x” := xJl, to be " ().

Let /4 (1) be the restriction of ¥" (1) to H (< min(u’, vieem))), ie., ¥, maps each
n € poss(p, <u”) to arestriction of x”, which is a potential value for x’.

We can write?8 ¥{ as a function A x B — C, for A := poss(p, <u’),
B = poss(p, =u’) and C is the set of possible values of x’, which has, according
to (5.1.8), size < 2H(<W) Thjs defines a function from B to C A aset of cardinality
< pmaxposs(<u’)-H (<“,); so according to (4.0.2) and Fact 4.0.4 we can use bigness at
sublevel u’ to find d’ such that y; does not depend on sublevel w'. This naturally
defines ¥'.

2: We perform this downwards induction from each Sacks sublevel u of p. So this
defines for each v < u in sblvls(p) the objects ?y and ', satisfying (which is just
5.1.9):

28 ¢f.2.74.

@ Springer



1074 A. Fischer et al.

modulo (v : v <V’ < u), each n € poss(p, <v) decides x¥ to be

. (5.1.10)

Also, the norms of each Sacks column and subatom drop by at most 1.
3: Note that for a given v, there are only finitely many possibilities for 0% and ¥'. So
by Konig’s Lemma there is a sequence (03, ¥y )vesblvis(p) Such that

for each sublevel v’ there is an u > v’ such that 9}, = 9}, and
v =Yy forall v/ < v'. G111y
v

4: We now construct g by replacing the subatoms and Sacks columns in p at sublevel v
with 9} (for each v € sblvls(p)). So g has the same w as p, the same supports, the
same halving parameters and the same trunk; and all norms decrease by at most 1.
We claim that g rapidly reads r, i.e., we claim that each n € poss(g, <v) decides
r | H(<v).

5: Pick a v/ > v such that v4¢(v/) > v. According to the definition (5.1.6), this
means that r | H(<v) is decided below v'. Then pick u > v’ as in (5.1.11). Recall
(from (5.1.10)) that x¥' is decided below v by 1//“,’ modulo the sequence (3}, : v <
v/ < u). Recall that v¢(v/) > v and u > v’. So min(v¥*¢(u), v) = v, therefore
x¥ =r | H(<v). And, since Vdec(v) > v, x¥ is decided already (by the original
condition p) below v'. So we can omit the assumption that the generic is compatible
with 9, for any v < u” < u and still correctly compute xy with ¢¥ modulo
@y v=u" <Vv).

In particular, ¥y = ¥ correctly computes xy = r | H(<v) modulo g (since g
contains 0y, = 07, for each u” < v'.) O

5.2 Halving and unhalving

We will now, for the first and only time in this paper, make use of the halving parameter.
We will show how to “halve” a condition ¢ to half(g), and then “unhalve” any r <
half (¢q) with “positive norms” to some s <* ¢ with “large norms”. This fact will only
be used in the next section, to show pure decision.

We repeat the definition of the lim-inf norm from 2.5.3:

maxposs(<m i) Ing(N;f —d(c, h))
) h =
PO limin ©h) maxposs(<mdn)
for N;, := min{nor(c(§, h)) : & € supp N E11}.

If we increase d := d(c, h) to

Nf—d Nf+d
2 2 7

d :=d+ (5.2.1)

then the resulting lim-inf norm (hence also the compound norm) decreases by at most

1/maxposs(<md").
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Definition 5.2.2 Given acompound creature ¢, we set half (¢) to be the same compound
creature as ¢, except that we replace each halving parameter d () by the d’ () described
above.

So nor(half(¢)) > nor(c) — 1/maxposs(<mi").

Similarly, given a condition p and a level i € wP, we set half(p, >h) to be the
same as p, except that all compound creatures p(€) for £ > h are halved (and nothing
changes below h).

The point of halving is the following: Assume that the norms in g are “large” and
that » < half(g) has norms that are just > 0. Then there is an “unhalved version” of
r,an s < g, such that the norms in s are “large” and still s <* r.

In more detail:

Lemma 5.2.3 (Unhalving) Fix

e MR,
e a condition q,
e h € w? such that nor(q(£)) > M forall £ > h in w4,
e a condition r < half(q, >h) such that min(w") = h and nor(r(£)) > 0 for all £
inw.
Then there is an s such that
(1) s=gq.
(2)  h = min(w*).
(3) Writing hy for the successor of h inw®, we have nor(s, £) > M forall £ > hy in
w’.
(4) supp(s, h) = supp(q, h).
(5) Above hy, s is the same as r, i.e.:
e Forl > hy: £ ew iff¢ € w', and for such € we have s(£) = r(£).
o The trunks agree above h.
e So in particular, supp(s) = supp(r), and the norms do not change above h
(hence are > M ).
(6) mnor(s,h) > M — 1/maxposs(<h).
(7) poss(s, <hy) C poss(r, <hy).

Note that (5) and (7) implies s <* r (by 3.1.2). So (by 5.1.3), if r essentially decides
a name 7, then so does s.

Proof First fix hy € w" bigger than & such that nor(r(€)) > M for all £ > hg. Let h
be the w"-successor of Ag.

We set w* := {h} Uw \hy. The trunk 7° will extend ¢" (and will contain some
additional information in the “area” [k, h1) x (supp(r, ho)\ supp(q, h))).

For £ > hyinw*, we set s(£) := r ().

We set 0¢g := glue(r(h), ..., r(ho)), and choose arbitrary r-compatible elements
for the new parts of the trunk #°. We then let 91 be the restriction of 0¢ to supp(q, i)
(again, choosing r-compatible elements for the new parts of the trunk 7*).

Now we construct d from 0; by replacing each halving parameter d°! (k) by d9 (k)
(forall h <k <h1). We set s(h) =0. This completes the construction of the condition s.

It is straightforward to check that the requirements are satisfied. We will show
nor(s(h)) = nor(0) > M — 1/maxposs(<h):
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The norm of 0 is the minimum of several subnorms:

e The width norm, which is > M, as supp(?) = supp(q, &) and nor(q(h)) > M.
e The Sacks norms of the Sacks columns 0(§) = r(§,h) ® --- ® r(&, ho) for
& € supp(?) N Egk:
NOrSacks () = norgans ' V(&) = norgu " (r &, ho))

> nor 00 (1, hg)) = norsaers (&, ho)) = M,

by 2.3.6.
e The lim-sup norms: norjimsup (0, ) > NOrtimsup (' (ho), &) > M.
e So it remains to deal with the lim-inf norm.

So we have to show that for z < ¢ < hy,

0 _
g (Ng —d 8) L 5oy

maxposs(<h)(07 E) _ > i
maxposs(<h) maxposs(<h)

liminf

nor

where N? := min{nor(0(&, £)) : & € supp(®) N E1i}.

Recall d’(€) as defined in (5.2.1). These are the halving parameters used in half(g),
and since r < half(g) we know that d” (£) > d’(£) (where d” are the halving param-
eters used in 7).

Let m € w" correspond to £ (i.e., m < £ and /£ less than the w’ -successor of m). As
nor(r(m)) > 0, we know that

logy (N — d"(£))
maxposs(<h)

maxposs(<m) maxposs(<h)
0 < noryb¢ (r(m), €) < nor ks (r(m), £) <

for N as above.?’

Fix any & € supp(g,h) N E1;. Let k € w? correspond to £ (as above), and set
¢ = q (k). The inequality above gives 0 < log, (nor(0(¢, &§)) — d" (£)), which implies

o N§ —d?(6)
nor(d(¢,£)) > d"(£) = d'(£) = d¥(¢) + —
Sonor(0(¢, &) —d9(€) > w for all £, and so
maxposs(<h) maxposs(<h) 1
NOTpine (0 €) Z norpe™ = (e, ) — maxposs(<h)
1
- ma{(p(}ss(<k) 0) —
= N%liminf & maxposs(<h)
> M — ;
- maxposs(<h)

O

29 The last < holds since r(m) contains the same subatoms as 9 (on the common support; however the
support of r(m) may be larger, therefore the last inequality is not necessarily an equality).

@ Springer



Creature forcing and five cardinal characteristics in... 1077

5.3 Halving and pure decision

(Remark: This section is a straightforward modification of [12, Lemma 1.17].)

Lemma 5.3.1 Suppose that t is a name for an element of V, that po € Q, that
Mgy € wPY and ny > 1 are such that nor(po(h)) > no + 2 for all h € wP°\My. Then
there is a condition q such that:

® g = po.

e g essentially decides .

e Below My, q and pg are identical,>® i.e.: w? N Mo = wP® N Mo and q(h) = po(h)

Sforall h € wl N M.
e nor(q(h)) > ng forall h € wi\ M.

Proof We may assume that pg is pruned. Our proof will consist of several steps:
1. Using halving; the mini-steps.

Suppose that we are given p € Q, M € w”, and n > 1 such that nor(p(h)) > n
for all 1 € wP\ M. We show how to construct an extension of p, denoted r(p, M, n).

First enumerate poss(p, <M) as (', ..., n™). Note that m < maxposs(<M).
Setting p = p, we inductively construct conditions p', ..., p™ and the auxiliary
conditions p!, ..., p™ so that for each k < m the following holds:

(1) pFt1is p* where we replace everything below M (and in supp(p)) with n**1,

Remarks:
e By (3) below, we will get min(wﬁkH) =M.
o If k = 0, then p' is just p A n'. But for k > 0, n**+! will not be in
poss(p¥, <M), so we cannot use the notation p¥+! = pk A pk+1,
e Note that generally supp(p*) will be larger than supp(p), so we do not
replace the whole trunk below M by n**!, but just the part in supp(p).
2) p! < p*F1. Note that we do not have pyy1 < px, for trivial reasons: their
trunks are incompatible.
(3) minw?” ") = M.
Remarks:
e Soby strengthening p*+!
min(w).
e Note that we do not assume that kaH = wpk \M, i.e., generally the w-sets
will become thinner due to gluing.
@) supp(p“*!, M) = supp(p. M).
e Remark: This only holds at level M: Generally, supp(p**!) will be larger
than supp(p").

(5) nor(pFtl ) > n — oo forall h € wP T\ M.
(6) One of the following two cases holds:
o (decide) pk‘H essentially decides 7.
e (halve) pt! = half (5%, >M).
More explicitly: If the deciding case is possible, then we use it. Only if it is not
possible, we halve.

to pk+1 , we do notincrease the overall trunk-length

30 supp(g) can be larger than supp(p), so below M there will be new parts of the trunk 79.
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We then define r = r(p, M, n) as follows: Below M, r is identical to p; and above
(including) M, r is identical to p™ (the last one of the p* constructed above). In more
detail:

oew =W NM)U (me\M); i.e., below M the levels of r are the ones of p; and
above (including) M the levels of r are the ones of p™.

e r(h)=ph) forallh e w N M,;

e r(h) = p"(h) forall h € w'\M,;

e This determines the domain of ¢ ; and we set " to be 7" restricted to this domain.

r =r(p, M, n) has the following properties:

ereQ,r<p.

e nor(r(£)) >n—1forall £ > M inw".

e If n € poss(r, <M) and if there is a s < r A n such that s (5.3.2)
essentially decides t, min(w*) = M and nor(s(¢)) > O for all
£ > M inw’, then r A 1 essentially decides 7.

Proof of (5.3.2) n extends some ¥t € poss(p, <M);sos < r Ay < pttl <
p*T1. All we have to show is that p¥*! was constructed using the “decide” case.
Assume towards a contradiction that the “halve” case was used. Then s is stronger
than half (5!, > M), so we can unhalve it (using Lemma 5.2.3) to get some s’ < p~ !
with large norm such that s’ <* s, showing that we could have used the “decide” case
after all. This ends the proof of (5.3.2). O

2. Iterations of the mini-steps; the condition q.

Given po, My, no as in the statement of the Lemma, we inductively construct con-
ditions py and natural numbers My for k > 1. Given p; and My, our construction of
Pik+1 and My 1 is as follows: Choose My € wPk bigger than My such that

nor(px(h)) > k 4+ no + 3 forall h € wP\ My 1.

Then set p,/<+] = r(pk, Mk41, k + no + 3), and construct pi4;1 by gluing together
everything between (including) My and (excluding) My .

The sequence of conditions (pg)ren converges to a condition of @QQ, which we
will denote by ¢g. Note that r < ¢ implies that w" is a subset of (w”° N M) U
{My, My, M3, ...} (as we have glued everything between each M; and M;1).

It is clear that ¢ < po, and that nor(g, h) > ng + 1 for all h € w7\ M.

We will later show that g essentially decides t (thus proving the lemma).

The following property will be central:

Assume that n € poss(qg, <M;) for some £ € w,and r < g A 7
essentially decides T and min(w") = M, and each r(m) has norm
> 1 foreachm € w".

Then g A n essentially decides 7.

(5.3.3)
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Proof of (5.3.3): n (or rather: a restriction of n to supp(p)) was considered as a
possible trunk nk‘H in the “mini-step” when constructing r(pe—1, My, £ + ng + 2).
So we can use (5.3.2). This ends the proof of (5.3.3).

3. Using bigness to thin out q to prove essentially deciding.

We now repeat the construction of the proof of Lemma 5.1.5, but this time we do not
homogenize on the potential values of some x, but rather on whether g A 1 essentially
decides T or not.

For now, fix a sublevel u = (¢, —1) above (M, —1) with £ € w?.

e We set 0}) to be the collection of Sacks columns g (u). We set By to be the set of
n € poss(g, <u) such that g A n essentially decides 7.

e By downwards induction onu’ € sblvls(g), (Mp, —1) < u’ < u, we construct Dﬁ,
and B} such that the following is satisfied:

— 0y is a strengthening of the subatom (or: collection of Sacks columns) g(u’),
the norm decreases by at most 1.

— (Homogeneity) By, is a subset of poss(g, <u’), such that for each n € B,
and each v € poss(a ) n"v € BY w1> and analogously for each n €
poss(g, <u’)\ By, and each v € poss(dy,), n~v & By Wl

(Just as in the case of rapid reading, we can find these objects using bigness:
Assume that u” is the sblvls(g)-successor of u’; by induction there is a function
F which maps each n € poss(g, <u” to {€ B, ¢ B}; we thin out g(u’) to 9}, such
that for each v € poss(g, <u’) each extension of v compatible with o}, has the
same F-value F*(v); this in turn defines B,.)

e Assume that v < u as above, that 7 € poss(g, <v), that g A i essentially decides T
and that " € poss(g, <u) extends 7. Then trivially ¢ A 1’ also essentially decides

7. So we get:
If g A n essentially decides t for € poss(q, <v), then n € BY for (5.3.4)
any u > V.
e We now show the converse:
Whenever n € B, for some sublevel u’ of the form (M, —1) < u (53.5)

for some €', then ¢ A 1 essentially decides z.

(Equivalently: g A n essentially decides t,as g An =* g An.) Proof: We can modify
¢ to a stronger condition r using 7 as trunk and using 03, for allu’ < u” < u.
Any n’ € poss(r, <u) is in BY, so g A n’ =* r A n’ essentially decides 7. So r
essentially decides t. Also, each compound creature in r has norm > 1, so we can
use (5.3.3). This ends the proof of (5.3.5).

e So to show that g essentially decides t, it is enough to show that for all n €
poss(g, <(My, —1)) there is a u such that € B(M

e Asinthe rapid readmg case, we choose an “infinite branch” (0F, BY). Le.: for each

v/ there is au > v’ such that (0%, BY) = (9%, By) for each v < v'. This defines a

condition q1 <q.

e To show that g essentially decides , it is enough to show n € BEkMo,— 1 for all
n € poss(q, <Mo) = poss(q1, <(Mo. —1)).
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So fix such an 5. Find any r < g1 A n deciding . Without loss of generality,
min(w") = M, for some ¢, and each compound creature in r has norm at least 1.
Let n’ > n be the trunk of r (restricted to supp(g) and My). According to (5.3.3),
q A 1’ essentially decides z.

Pick some u > (M,, —1) such that (0%, BY) = (0}, By) foreach v < (M, —1).
According to (5.3.4), n’ € Bj. By homogeneity, € BEkMo,fl)' So according
to (5.3.5), g A n essentially decides 7. O

5.4 Properness, ®*“-bounding, rapid reading, no randoms

A standard argument now gives the following:

Theorem 5.4.1 Q satisfies (the finite/w®-bounding version of) Baumgartner’s AxiomA,
in particular it is proper and w®-bounding and (assuming CH in the ground model)
preserves all cofinalities. Also, Q rapidly reads every r € 2%.

Proof We already know that we can rapidly read each real if we can continuously read
1t.

We define g <,, p as: ¢ < p and there is an h € w?, h > n, such that ¢ and p are
identical below % and nor(g(¢)) > n for all £ > h.

It is clear that any sequence pg >0 p1 >1 p2 >2 ... hasalimit; and Lemma 5.3.1
shows that for any name t of an ordinal, n € w and p € Q, thereis a g <, p such
that modulo g there are only finitely many possibilities for 7. O

Rapid reading gives us:

Lemma 5.4.2 Every new real is contained in a ground model null set, i.e., no random
reals are added. So assuming CH in the ground model, we will have cov(N) = Ry in
the extension.

Proof Let r be the name of an element of 2 and p a condition. Let g < p rapidly read
r.Soforall ¢ € w?,r | H(<{) isdetermined by each 1 € poss(q, <£). Hence, the set
Az of possibilities for r | H(<¢) has size at most maxposs(<£) < H(<t) < 2"/,
So AZ has “relative size” < 1/¢, and the sequence (AZ)gew defines (in the ground
model) the null set

N={se2?: (Vtewl)s | H(<() € A}}.
And g forces thatr € N. O
6 The specific forcing and the main theorem

6.1 The forcing

Recall that E is partitioned into B¢k, E11 and E15. We now further partition E1 ¢ into
Enn and Eqp. So every &€ € E has one of the following four types:
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type sk (Sacks) for & € Eqx,

type cn (cofinality null) for & € Eqp,

type nn (non null) for & € Enp, and

type nm (non meager) for § € E1;. So nm is the only lim-inf type.

Let k; be the size of &;.

In the inductive construction of @ in Sect. 4, several assumptions are made in the
subatom stages u. We will satisfy those assumptions in the following way:

For each type ¢t € {cn, nn, nm} we assume that we have a family of subatomic
families K} , indexed by a parameter b, such that for each b € w, K}, is a sub-
atomic family living on some POSS;’ p satisfying b-bigness. Actually, we will require
a stronger variant of b-bigness such that we can find an homogeneous successor sub-
atom while decreasing the norm not by 1 but by at most 1/b. L.e., we require:

For x € K;’h and F : poss(x) — b there is a y < x such that 6.1.1)
nor(y) > nor(x) — /b and F | poss(y) is constant. o

Additionally we require that
there is at least one subatom in K; , with norm > b. (6.1.2)
Then we set for each subatomic sublevel u = (¢, j)

b(m) :=B) - (b(v)+ 1) +1, (6.1.3)
where v is the largest31 subatomic sublevel smaller than u. So the sequence b(u) is
strictly (actually: very quickly) increasing. According to the definition 4.0.2 of B(u),
we also get:

Lemma 6.1.4 b(u) > 2 - maxposs(<u),
and even b(u) > 2(number of sublevels below u)-maxposs(<u).

Then we set (for all £ € &)

K%"u = K;,b(u) .

This way we automatically satisfy requirements (b) and (c) of item (x5) on
page 1070. And since there are only four, i.e., finitely many, types, there is auto-
matically a bound M on | POSS; y | as required in (d).

Strong bigness gives us the following property:

Lemma 6.1.5 Let I be a finite set of subatomic sublevels (and thus I is naturally
ordered). Let v be the minimum of 1. For each u € [ let &, € non-sk and xy a
subatom in Kg, . Let F : Huel poss(xy) — b(V). Then there are yy, < xy with
nor(yy) > nor(xy) — /() and such that F | [, c; poss(yu) is constant.

31 Tfuis (0, 0), the smallest of all subatomic sublevels, we just set b(u) := B(u). By the way, it would be
enough to set b(u) := B(u), as this sequence would be increasing sufficiently fast, but this would require
two extra lines of calculations.
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Proof We construct y, by downwards induction on u € I: Let u’ be the max-
imum of I, then F can be written as function from poss(xy) to b(v)?, where
P = ]_[uE N} poss(xy). As | P| is less than the number of sublevels below u’ times
maxposs(<u’), we get | P| < b(u’), and thus can use strong bigness to get yy < Xy'.

Now continue by induction. O

The families K;’ , that we will actually use are described in Sect. 10 for r = cn,
Sect. 8 for t = nn, and Sect. 7 for t = nm.

In addition, we will define there for each K;,b a number H'(¢t,=b), and in the
inductive construction, we define H as follows:

Definition H(<(0, —1)) := 3.Ifu = (¢, j) is a sublevel with immediate predecessor
u/, we define H(<u) = H(<u’) in cases by:

e ForaSackssublevelu(i.e., j = —1), H(<{) = H(<u) := 24+£+maxposs(<¥{)+
H(<uw) +max({H'(t,=b(")) : t € {nm, nn, cn}}).

e For j = 0: H(<u) := 1 + H(<u') + max({sx ¢)-

e For j > 0, H(<u) := 1+ H(<u’) + max{H'(t,=b(u’)) : t € {nm, nn, cn}}).

So in particular, if p rapidly reads r, then for all # € {nm, nn, cn} and all subatomic
sublevels u
r | H'(t, =u) is decided < b(u). (6.1.6)

Note that once we fix the parametrized subatomic families K;’ , and H'(z, =b) (and
the cardinalities k), we have specified everything required to construct Q, and Q will
satisfy Baumgartner’s Axiom A, will be w®-bounding, and, assuming CH, will have
the Ry-cc. We also get rapid reading.

6.2 The main theorem

We will show:

Theorem 6.2.1 Assume (in V) CH, knp < knn < Ken < Ksk and ICINO = K for
t € {nm, nn, cn, sk}. Then there is a forcing Q which forces

(1) coviN) =0 =Ry,

(2) non(M) = cof (M) = knp,
(3) HOH(N) = Knn,

(4) COf(N) = Kcn,

(5) 2™ = kg

Moreover, Q preserves all cardinals and all cofinalities.

As mentioned above, we fix disjoint index sets &; (¢ € {sk, cn, nn, nm}) of respec-
tive sizes «;, and we construct Q as described above. Then the following points are
obvious or have already been shown:

(1) 0 = Ry, since Q is w®”-bounding. And it was already shown in Lemma 5.4.2 that
no random reals are added, so cov(N) = Rj.
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(5) If @ # B € Egxk, then the generic reals at o« and § are forced to be different, so
we have at least kg many reals. Every real in the extension is read continuously,
so by Lemma 5.1.4 there are at most K;ﬂ = Kgx many reals.

(e) The “moreover” part is clear because QQ satisfies Baumgartner’s Axiom A and has
the Nj-cc.

In the rest of the paper, we will describe the families K t’ , and H'(t, =b) and prove
the remaining parts of the main theorem:

(2) In ZFC, max(d, non(M)) = cof (M). And non(M) < kpny is shown in 6.4.1,
and > in 7.3.2.

(3) non(N) < kppn is shown in 10.5.2; and > in 8.3.2.

(4) cof (N) < kep is shown in 6.3.4; and > in 10.4.2.

6.3 The Sacks part: cof (N) < ken

We will show that every null set added by Q is contained in a null set which is already
added by the non-Sacks part.

We will first show that the quotient Q/Qz,,, ., (in other words: the extension from
the universe obtained not using the Sacks coordinates to the full generic extension)
has the Sacks property.

Recall that the Sacks property states (or, depending on the definition, is equivalent
to): Every function in »® in the extension is caught by an (n + 2)-slalom from the
ground model. (I.e., there is a function S : @ — [w]=? in the ground model with
[IS(m)| <n+2,and f(n) € S(n) forall n.)

The Laver property is similar, but only applies to functions f in the extension which
are bounded by a ground model function.

We get

Lemma 6.3.1 (1) Laver property is equivalent to:

Whenever r € 2% is in the extension and G : v — o in the ground model,
then there is in the ground model a tree T (without terminal nodes) such that
rel[Tland|T | 26| < n 42 for all n.

(2) The Sacks property is equivalent to the conjunction of Laver property and w®-
bounding.

(3) If an extension has the Sacks property, then any new null set is contained in an
old null set.

Proof For the well known (2) and (3) see, e.g., [3, Theorem 2.3.12]. For (1), we only
show how to get the Laver property (which is enough for this paper, and the other
direction is similarly easy).

Suppose that g : @ — wis given. Enumerate {(n, m) : m < g(n)}in lexicographic
order as (n;, m;). Define a function G : w — w by

G(n) =min{i :n; >n}=n+1+3,_, gk).
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(For convenience we will think of G(—1) = 0.) Note that according to the enumeration
given above, every function r : @ — 2 determines a subset of [[,_,(g(n) + 1) by
{(n;, m;) : r(i) = 1}. Accordingly, certain functions r induce a function bounded by
g: those functions r such that given any n there is a unique m < g(n) such that (n, m)
is in the subset determined by r as described above. (Equivalently, for each n there is
aunique G(n — 1) <i < G(n) such that r(i) = 1.) Given such an r, by val(r, n) we
denote m; where G(n — 1) <i < G(n) is such that r (i) = 1.

Note that given any function f bounded by g there is a unique functionry : @ — 2
(which determines a function bounded by g as described above) such that val(r 7, n) =
f(n) for all n.

Suppose that f is a name for a function bounded by the ground model function g.
Letry bea name for the function w — 2 as described above, and let T be the tree
guaranteed to exist by the assumption (using the function G defined from g above). We
may assume that all branches x of 7' determine a function bounded by g as described
above. Now define a slalom S by S(n) = {val(x,n) : x € [T]}. It is clear that S
catches f. O

We now prove our version of the Laver property for the quotient. As the whole
forcing is w®”-bounding, this implies the Sacks property.

Lemma 6.3.2 (1) Assume that p is a condition, r € 2° a name and G : ® — w is
in V. Then there is a ¢ < p and a name T C 2<% (of a tree without terminal
nodes) such that: q continuously reads T not using any Sacks indices; q forces
relTl;and |T | 2°™| < n+ 2 forall n.

(2) Therefore the quotient Q/Qg, . ., has the Laver property (and thus the Sacks
property).

Proof If G1(n) < Ga(n) for all n, and T witnesses the conclusion of the lemma for
G», then T also witnesses the lemma for G1. So we may without loss of generality
increase the function G whenever this is convenient.

We can assume that p rapidly reads r, i.e., poss(p, <n) determines r | H(<n) for
alln € wP.

We can then assume that there is a strictly increasing function G’ such that G'(n) €
w? and G(n) = H(<G'(n)) for all n (as we can increase G).

Also, to simplify notation, we can assume that w” = {G’(0), G'(1), ...}. (Other-
wise, just glue.)

So each n € poss(p, <G'(n)) determines a value for r | G(n), which we call
R™*(n). We view n as a pair (9sk, non-sk) for n;, :== n | &, for t € {non-sk, sk}.
Accordingly we write R” (sk, Mnon-sk)- If we fix nsk, then R (nsx, —) can be viewed
as a name (for an element of 26®™) which does not depend on the Sacks part, in
the following way: If there is a npon-sk compatible with the generic filter such that
(Msks Mhon-sk) = 1 € poss(p, <G’(n)), then the value is R"(n) (and otherwise @,
say).

Below we will construct ¢ < p by gluing and by strengthening Sacks columns (and
we will leave the support, the subatoms and the halving parameters unchanged).

Assume we have such a ¢, and assume that G’(mg) < G’'(m) are consecutive
elements of w?. Note that G'(mg) < G'(mg+1) < --- < G'(m1 — 1) < G'(my) are
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consecutive elements of w”. Fix n € poss(q, <G’'(m)) and my < £ < m;. Then n
extends a unique element of poss(g, <G'(£)), which we call nz. We can then restrict
n® to the Sacks part: ngk =7 | Egr.

Note:

° ngk is n restricted to the Sacks part and to “height G'(€)”, i.e.,

1t =1 1 Bex x (1 + max(Iax.6/(0)-

e g A n forces that the name Rt (nik, —) (which does not depend on the Sacks part)

is evaluated to r | G(€).

e So g forces that r | G(€) is an element of

ey
@
3

T = (R (nly, —) : n € poss(q, <G'(m1))},

a name not depending on the Sacks part.

So it is enough to show that there are few nék, ie.,

|Se| < £+ 2 for Sy := {ngk : n € poss(q, <G'(m)))). (*¢)

We will now by induction on n:

construct /,,, where w? will be the set {G’(hg), G'(h1), ...};
construct g below G'(hy,),
and show that (x¢) holds for all £ < h,,.

We set hg = 0; so G’ (hg) = min(w”) and g below G’ (h0) has to be identical to p.

And (xp) holds, as Sy is a singleton.

Assume we have already constructed &, and g below G’(h,), satisfying (x¢) for

L <h,.

ey

@

Forany I and s C 2!, we write nor’gacks(s) for norgefg(;(h”))’(;/(h”)(s), see 2.3.5.

(Le., the Sacks norm that would be assigned to a Sacks column starting at G’ (h;,)
which has the same norgpji; as 5.) Let X := supp(p, G'(h,)) N Egy, the set of
Sacks indices active at the current level. Let s be minimal such that norg, . (2°) >
n, and define A’ by

B o= (h, +1)-251% (6.3.3)

Finally, let #,4+1 be minimal such that for all £ € X there is an £(§) with
h' < £(§) < hpy1 and norg,, (p(&, G'(£()))) = n. (We can find such £(£),
as even nors,eks (p (&, G'(£))) diverges to infinity.)

G'(hy) < G'(hy +1) < -+ < G'(hyy1 — 1) < G'(hp41) are consecutive
elements of w”. We glue p between G'(h,) and G’ (h,+1 — 1), so G'(h,) and
G’ (h,,11) will be consecutive elements of w?.

We now define the compound creature ¢(G’(h,)), a pure strengthening of
the compound creature glue(p(G'(hy)), ..., p(G'(h,11 — 1))): The subatoms
are unchanged. So we just have to specify for each & € supp(p, h,) N Esk
the new Sacks column g (&, h,) < p(&,G' (hy) ® -+ ® p(&, G'(hyy1 — 1))
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as follows: Recall that there is one £(§) such that A’ < £(§) < h,.; and
norg, (P&, G'(€(£)))) = n. Choose a singleton subset of p(&, G'(m)) for all
m # £(£), and at m = £(£) pick a subtree of p(§, G'(m)) which is isomorphic
to 2* (in the sense that each branch has s splitting points).

By the definition of s, we have norsycks(q (€, 7,)) > n, and therefore
nor(g(h,)) > min(n, nor(p(hy), ...,nor(p(h,+1 — 1)))). So in particular the
g we get after the induction will be an element of Q.

(3) As we choose singletons below G’ ('), |Sp,| = |Sp,+1] = -+ = |Sp—1l|. By
induction, [Sy,| < A, + 2; s0 (*¢) holds for £ < h’. For each b’ < € < hy4q,
we added at each £ € X at most once at most 2° many possibilities. So [S¢| <
(hy +1)-251%1 < £ 42, by (6.3.3). o

By Lemma 6.3.1(3), we conclude:

Corollary 6.3.4 (1) If N is the name of a null set and p a condition, then there is a
q < p and some name of a null set N’ not depending on any Sacks indices such
that q forces N € N'.

(2)  Q forces cof(N) < ken.

6.4 Lim-inf and lim-sup: non(M) < knn

The following does not require any knowledge about the particular subatoms used in
the forcing construction, the only relevant fact is that the nm indices are the only ones
that use a lim-inf construction.

Lemma 6.4.1 Q forces non(M) < kpp.

Proof We claim that the set of all reals that can be read continuously from nm-indices
is not meager. This set has size < kny, by Lemma 5.1.4.

Let M be a name for a meager set. We can find names 7,, C 2= for nowhere dense
trees such that M = | J,,.,,[T,,] is forced. We want to show that we can continuously
read areal r ¢ M using only the nm-indices.

As Qis w®-bounding and 7, is nowhere dense, there is in V a function f,, : ® - @
such that for each v € 2 there is a v’ € 2/ extending v and not in T,,.

We fix some p € Q forcing the above, and assume that p is pruned and continuously
reads 7, for each n. We will construct (in V) a g < p and an r continuously read by
g only using nm indices, such that g forces r ¢ M.

Assume we have already constructed g below some k,, € w?, and that we already
have some 4, € wandaname £, for an element of 2hn that is decided by poss(q, <kn) |
Enm. (The real r will be the union of the £,,.) We also assume that is already guaranteed
that £, isnotin To U --- U T,_1).

Enumerate poss(q, <k,) as ng, ..., nk—1-

Set k0 := k,, h¥ := h,, fo := {,, and we define ¢ below k9 to be q. By induction
onr € K we now deal with 7,: Assume we are given a name £ for an element of
21" that is decided by poss(q’, <k”) | Epm, and that we have constructed g’ below
k" € wP, in a way that between kY and k" on the non-nm indices, all subatoms and
Sacks columns in g’ are singletons.
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Set W1 := f,(h"). Choose k"+! € w” bigger than k" and large enough to deter-
mine X := T, | K"*!. Le., there is a function F from poss(p, <k'T!) to potential
values of X. We now define ¢’ between k" and k" T!: The nm-subatoms are unchanged
(i.e., the ones of p), for the other subatoms and Sacks columns, we choose arbi-
trary singletons. A v € poss(p, <k’ t1) consists of: the part below k" called A, then
non-nm-part above k" called B, and the nm-part above k" called C. So we can write
X = F(A, B, C). If we assume that the generic chooses 7, (i.e., A = n,) and then fol-
lows the singleton values of ¢ on the non-nm-part (which determines B to be some By),
then X can be written as nm-name. More formally: We can define X’ as F (5, By, —),
which is a nm-name and forced by ¢ to be X.

Also, we know that p forces that there is an element £ € 2hr+1 which extends £"
(which by induction is already determined by the nm-part of 1,) and which is not in X.
So (in V) we can pick for all choices of C an ¢/(C) € P \F(;, By, C) extending
£". Then ¢'+! = ¢(—) is a nm-name determined below k" !, and ¢ forces that ¢"+!
extends ", and g A 7, forces that £"+! ¢ T,,.

We repeat the construction for all » € K, and set €,,41 := X, hpt1 := KX and set
ky+1 to be the w”-successor of kX, where we use the Sacks columns and subatoms of
p between kK and ky+1. We now glue the condition between &, and k. This results
in a condition that still has “large” norm, as described in Lemma 3.5.6. O

7 The nm part
7.1 The subatomic creatures for type nm

We now describe the subatomic family K[ , used at nm-indices (depending on the
parameter b).

Definition 7.1.1 (1) Fix a finite index set / C w which is large enough so that
item (4) below is satisfied. For notational simplicity, we assume that / is disjoint
to all intervals already used.3>

(2) POSSump :=2".

(3) A subatomic creature x is just a nonempty subset of 2/, where we set poss(x) :=
x and

1
nor(x) := A log, (| poss(x)]).

(4) We require nor(POSS) > b [thus satisfying (6.1.2)].
(5) We set H'(nm, b) := 2max(D)+1,

Clearly, the norm satisfies strong b-bigness (i.e., satisfies the requirement (6.1.1)).

32 This is a bit fuzzy, but it does not matter how we interpret it. More specifically, we could use any of
the following: “disjoint to all / that are associated to smaller parameter values b’ < b”, or: “disjoint to all
I that have actually been used in type nm for some K¢ ”; and since H ’(nm, =b) is larger than max([),
it would also follow from: “the minimum of / is bigger than H(<u’), where u’ is the predecessor of the
current sublevel”.
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Note 7.1.2 We just used the simplest possible norm here. It turns out that the details
of the definition of this norm are not relevant, as long as the norm has bigness. Later
in Sect. 11 we will use a different norm to get a different constellation of cardinal
characteristics.

7.2 The generic object

Recall that (according to Sect. 6.1) when constructing the forcing at subatomic sub-
levels u, we use for all § € Eny the subatomic family Ke y = K[ ) living on some
interval 7, which we will call Iy y.

Fix o of type nm. Recall that the generic object y, assigns to each subatomic
sublevel u the element of POSS,, y chosen by the generic filter.

We define the name M, of a meager set as follows:

Areal r € 2% is in M, iff for all but finitely many levels ¢ there is a

subatomic sublevel u = (¢, j) such that r | Innu # Ya (u). (7.2.1)
If p rapidly reads r, then according to (6.1.6) and 7.1.1(5),

r | Inmu is decided < u. (7.2.2)
Also, since b(u) > maxposs(<u), we get:

If the norm of a nm-subatom x at sublevel u is at least 1, then (7.2.3)

| poss(x)| > maxposs(<u).

(Recall Note 7.1.2: This is true whenever the norm has bigness.)

7.3 non(M) > Kkpn

Lemma 7.3.1 Letr be a name of a real, p a condition that rapidly reads r not using>3
a € Enm. Then p forces thatr € M.

Proof It is enough to prove that some ¢ < p forces that r € M, : Assume that p does
not force r € M,, then some p’ < p forces the negation; p’ still rapidly reads r not
using «, so if we know that there is a g < p’ as claimed, we get a contradiction.

We can assume that p is pruned and that @ € supp(p). We will construct a ¢
purely stronger than p (in particular with the same w, halving parameters, and trunk).
Actually, we will only strengthen one subatom at index « for each level 47 > min(w?”).

For all # > min(w”) (not necessarily in w”), there are several j € Jj such that
nor(x) > 1 for the subatom x = p(«, (k, j)). For each such h we pick exactly one
subatomic sublevel u(h) = (h, j), with x (k) the according subatom.

According to (7.2.2), r | Inm u is decided < u and therefore even below u (since o
is the active index at sublevel u; according to modesty no other index can be active; and

33 of.5.1.1.
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r does not depend on «). Therefore there are at most maxposs(<u) many possibilities
forr | Inmu. According to (7.2.3) there has to be at least one element s of poss(x (4))
which differs from all of these possibilities. So we can in ¢ replace the subatom x (/)
with the singleton {s}. Then the norms in g will still be large. (If A C Jj;, witnesses
the large norjimins of p, then A\{j} for u(h) = (h, j) witnesses that the norjipinr of g
decreases only slightly.)

So g is constructed by strengthening each x (4) in this way. Clearly g < p is still
a valid condition, and forces r € My, as r | Inm, ,u)) disagrees with y, for all
h > min(w?”). - O

Corollary 7.3.2 Q forces non(M) > kpp.

Proof Assume that kny > R (otherwise there is nothing to show). Fix a condition p
and K < kny and names (r;); ¢, of reals. It is enough to show that there is an ¢ € Epp
such that p forces that {r; : i € «} is a subset of the meager set M.

For each i fix a maximal antichain A; below p such that each a € A; rapidly reads
ri. Due to ¥s-cc, and since kpy > N1 and kpp > k, we can find an index o € Epp
not appearing in the support of any condition in any A;. According to the previous
lemma, every element a € A; (and hence also p itself) forces that r; € M. m]

8 The nn part
8.1 The subatomic creatures for type nn

We describe the subatomic families K[ , , depending on a parameter b.

Definition 8.1.1 (1) Fix an interval I large enough such that (4) is satisfied (and
in particular |I| > b). As in the nm subatoms, we assume that this interval [ is
disjoint to all intervals previously chosen.

(2) The basic set of all possibilities, POSS, consists of all subsets X of 27 with
relative size 1 — 1/2°:

POSS :={x c 2/ : |X| =1 —1/2%12).

(3) A subatom C = poss(C) is a subset of POSS, where we set

1
nor(C) := Zlogb(noro(C)), where
norg(C) :=min{|Y|: Y C 2!, (VX € poss(C)) X NY # #}.
(4) We require nor(POSS) > b [thus satisfying (6.1.2)].
(5) Weset H' (nn, =b) := max(l) + 1.

Note that nor( of the subatom with full possibility set is approximately 21/ /28 In
particular, for large / the norm gets large, i.e., we can satisfy (4).

Lemma 8.1.2 (1) The subatomic family has strong b-bigness (i.e., satisfies the
requirement (6.1.1)).
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(2)  Given E C 2! and a subatom C, then the subatom C' with possibilities {H €
poss(C) : H N E = @} satisfies norg(C’) > norg(C) — |E|.

(3) From the above it follows that: If |E| < »""©/a, then nor(C’) > nor(C) —
log, (2).

Proof (1): Fix F : poss(C) — b. Let C; be the subatom with F' | poss(C;) = i for
all i € b. Assume that all C; have norg at most r, witnesses by X; C 2! Then U X
witnesses that norg(C) < b - r. So nor(C) < log,(b-r)/p < 1/b + max(nor(C;)). So
there is at least one i with nor(C;) > nor(C) — 1/b, as required.

(2): Assume Y witnesses norg(C’), then Y U E witnesses norg(C).

3):

pnor(©) _ norg(C)" ([ noro(C) /e
2 2 N 2b

1 1/b /b 1
[(1 - 2_b> -noro(C)bi| - (1 - 2—1,) norg (€)

8.2 The generic object

The following paragraph is just as in the nm case 7.2:

According to Sect. 6.1, when constructing the forcing at subatomic sublevels u, we
use for all £ € Eny, the subatomic family Kg y = K;m’ b(u) living on some interval 7,
which we temporarily call I, y. Also, if p rapidly reads r, then r | Iy y is decided
below < u.

Fix o of type nn. Recall that the generic object y, assigns to each subatomic
sublevel u the element Ry, of POSS, , chosen by the generic filter. So Ry y is a
subset of 2/mnu of relative size (1 — 1/26W).

Note that b(u) is strictly monotone [cf. (6.1.3)], and hence [ |
1/2P@W)y > 0. Therefore

u subatomic sublevel (1 —
{(xe€2?:Vu: x| Innu € Rau}
is positive, and
{x €2?:V®a: x | Inpu € Rau}
has measure one. Therefore
Ny :={x€2: 3% : x [ Innu ¢ Rou} (8.2.1)

is a null set. (Here, u ranges over all subatomic sublevels.)
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8.3 non(\\) > kpnp

Lemma 8.3.1 Let p € Q rapidly read r € 2% not using « € Enn. Then p forces
r € Ng.

Proof Asin7.3.1,itis enough to find a g < p forcing r € Ny ; and we assume that p
is pruned and that o € supp(p).

We construct g purely stronger than p by induction, only modifying subatoms at
index « (and decreasing their subatom norms by at most 1):

Pick a subatomic sublevel u (higher than any sublevel previously considered) where
«a is active with the subatom C “living” on [ := Iy 4.

r | I isdecided < u and therefore even below u (as r is read from p not using o¢; and
due to modesty « is the only index active at sublevel u). So the set E of possibilities for
r | I has size at most maxposs(<u), and we can remove them all from the subatom at
C while decreasing the norm by at most 1, according to Lemma 8.1.2(2) and (6.1.4).

Repeat this for infinitely many sublevels u. O

Just as in 7.3.2, this implies:
Corollary 8.3.2 Q forces non(N) > kpp.

9 Some simple facts about counting

We now list some simple combinatorial properties that will be used for the definitions
and proofs in the cn-part.

9.1 Large families of positive sets have positive intersection, nor”

Lemma 9.1.1 For$ € (0, 1) and £ € w there are M (8, £) € w and " (8, £) > 0 such
that: Whenever we have a probability space 2 and a family (A; : i < M) of sets of

measure > §, we can find a subfamily of £ many sets whose intersection has measure
at least (8, ).

Proof By straightforward counting.’*
We write xp for the characteristic function of B. Assume we have M many sets
A;, and set X C 2 to contain all points that lie in at least £ many of the A;. Then

a-Ms/ZxAi < (X) - M+ @ @\X) - (€~ 1) < u(X) - M+,
ieM

and w(X) > 8§ — ¢/m. So if we set

£
M >2—,
)

34 Originally we used a stronger statement for which we only had a more complicated proof. We are grateful
to William B. Johnson for pointing out in http://mathoverflow.net/q/108380 that the statement in the current
form has the obvious straightforward proof.
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then there are at least §/2 many points in X. We can assign to each point x € X a subset
M, of M (of size at least £) by

ieM,iff x € A;.

This partitions X into at most 2 many sets; and at least one of the pieces has to have
size at least

)
N
8, 0) = ——.
g '(8,0) Y

O

Let us set FbO = 1 and Fb”+] = M(1/b, F;'). We can use this notion to define a
norm on natural numbers:

Definition 9.1.2 For m > 0: nor})(m) > n iff m > F}'.

So we get the following:

Fix a measure space 2 and a sequence (7;);c4 of sets of measure >
1/p. Then thereisasubset B C A suchthatnorg(lBl) > nor2(|A|)—1 9.1.3)
and ();cz T; has measure > " (b, |A]).

Note that without loss of generality the function ¢ satisfies: £”(8, £1) > &"(8, £2)
whenever ¢, > ¢1 > 0. We write down the following trivial consequence of (9.1.3)
for later reference:

Assume that A is a subset of some finite set POSS. Fix a measure
space €2 and a sequence (7;);ca of sets of measure > 1/». Then there
is a subset B C A such that norg(lBl) > nor2(|A|) —1and ﬂieB T;
has measure > & (1/5, | POSS |).

9.1.4)

9.2 Most large subsets do not cover a half-sized set

Let Q be the set of subsets of some finite set A € w of relative size 1 — € (for
0 < € < 1/4). (Since A € w, we can write A for the cardinality |A].) L.e.: x € Q
implies x € A and |x| = A - (1 — €). We can assume A > l/e and that A - € is an
integer.

Let T C A be of relative size > 1/2, i.e., |T| > 4/2. Let Q7 be the elements of 2
that cover 7, i.e., x € QT iffx € Qand T C x.

We will use the following easy fact from combinatorics:

Fact 9.2.1 For any natural number k > 2, the quotient

tends to infinity with N — o0.
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Proof This can be checked with Stirling’s approximation formula, or with the follow-
ing elementary estimate: From

AV b
Va’ b : u S a S a_
b! b b!

we get
2Nk Nk
Nz.< N ) > 2Nk —N)V and N!-(N> < (NK)",

and hence

2Nk N
G Lo (1)
RO

m}

Lemma 9.2.2 Fix b > 2 and a finite set I with |I| > b. Let POSS be the family of
subsets of 2! of relative size 1 — 1/20. For m € w we define nor; , (m) := Lm/(%:;l,)J.

Then:
(1) Forany T C 2! of at least relative size 1/2 and for any C C POSS there is a
subset D € C withnor} ,(|D[) = nor; ,(IC|) — Land T ¢ x for all x € D.
(2) If I is chosen sufficiently large (with respect to b), then nor?b (POSS) is large.

Proof (1) Itisenough to show thisin case T has exactly size 2!/I=! . If x € C\ D, then
I]—-1
the set 2/ \x has size 2171=b and is a subset of 21\T. So there are at most (g:ll,b)
possibilities for 27\ x, hence (by definition of nor?b) we get nor~ (C\D) < 1.
From the implication

x<yand [x —y] <1 = [x]—|y] <1

we get nor; , (C) —nor; (D) < 1.
(2) Note that the cardinality of POSS is equal to (,3 ). Using Fact 9.2.1 with
1] _
N := 2117t and k := 2/~ we get that (2\21|7b)/(§‘|ﬂ_,],) is large for large I.
O

9.3 Providing bigness

In this section, we write log to denote log,.

Apart from unimportant rounding effects, log of nor™ satisfies 2-bigness (and the
same for nor""). Instead of thinking about such effects, we just define for any norm a
2-big version. Actually, we define a 2-big version of the combinations of two norms
(of course, any finite number of norms can be combined in this way):
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Definition 9.3.1 Assume thatnory, nor; : @ — w are weakly increasing and converge
to infinity.

Then we define lognor = lognor(nory, nory) : @ — w as follows: By induction on
m, we define lognor(x) > m by the conjunction of the following clauses:

e nori(x) > m and norp(x) > m.

e lognor([3]) =m — 1.

e If y e wandi € {1, 2} satisfies nor; (y) > nor;(x) — 1, then lognor(y) > m — 1.
We set lognor(x) := lognor(nor”, nor™).
Lemma 9.3.2 Let lognor = lognor(nory, nor).

e lognor(x) is a well-defined natural number for all x, i.e., there is a maximal m
such that lognor(x) > m holds.

lognor is weakly increasing and diverges to infinity.

lognor has 2-bigness: If F : m — 2 is a coloring function and lognor(m) = n,
then there is some ¢ € 2 such that lognor(F_l(c)) >n—1.

So if we define nory(x) as lognor(x)

[log(b)]
Ifnor; (y) > nor;(x) — 1 for some i € {1, 2}, then lognor(y) > lognor(x) — 1.

then nory, will be b-big.

Proof “Well-defined” follows from lognor(x) < nor; (x).

Monotonicity follows from the monotonicity of nor; and nors.

We now prove that by induction on m that there are only finitely many x with
lognor(x) < m. For m = 0 this is obvious, as all x satisfy lognor(x) > 0. Form > 0:
lognor(x) < m iff either norj(x) < m or nory(x) < m or lognor(L%‘J) <m—1or
there is some y and somei € {1, 2} withnor;(y) > nor; (x)—1 andlognor(y) < m—1;
for each case there are only finitely many possibilities.

2-bigness and the last item follow directly from the definition. b-bigness is
Lemma 2.1.7. O

10 The cn part
10.1 The subatomic creatures for type cn

We now describe the subatomic families K, , used for the cn-indices.

Definition 10.1.1 (1) Fix an interval / which is large enough to satisfy (4). In par-
ticular, |7| > b. Again, we assume that this interval is disjoint to all intervals
previously chosen.

(2) The basic set of all possibilities and the set of subatoms is the same as in the
nn-case 8.1.1 (but the norm will be different). So POSS consists of all subsets
X of 2! with relative size 1 — 1/2°:

POSS = {X 2! : |X| = (1 —1/2%121)).
(3) A subatom C is a subset of POSS, with poss(C) := C, and

lognor (nor}, nor;,)(|C|)

nor(C) := omin() . p2

@ Springer



Creature forcing and five cardinal characteristics in... 1095

(4) We require nor(POSS) > b [thus satisfying (6.1.2)].

ol1|
(5) We set H'(cn,=b) := max(H), H]) for Hj := 2Gil-0) and H| =
1/eN(1/5,| POSS |), where ¢ is defined in 9.1.1.

Note that H'(cn, =b) > |K’cn’b| (this is what we need H|; for).

Recall that lognor satisfies 2-bigness, so after dividing by b (actually, [log,(b)] - b
would be sufficient) we get strong b-bigness [i.e., the norm satisfies the require-
ment (6.1.1)].

Note that (in contrast to the nn case) this norm is a counting norm, i.e., nor(C)
only depends on |C|, not on the “structure” of C.

10.2 The generic object

Just as in the nn-case, we set Inn u to be the I used for K;m b(u)> and we define N,

analogously to the nn-case.®

As before, N, is a name for a null set, and a real r is in N, iff there are infinitely
many sublevels u such that 7 | Iop 4 is not in the possibility X of K’Cn,u = Kg.u that
is chosen by the generic filter.

This time, the purpose of &V, is not to cover all reals not depending on «, but rather
to avoid being covered by any null set not depending on «.

Lemma 10.2.1 Fix a subatomic sublevel u, an index @ € E.n, and a subatom C €
K. . =K

cn,u

(1) Given T C 2%nu of relative size > 1/2 we can strengthen C to D, decreasing
the norm by at most /2 pw) such that T ¢ X for all X € POSS(D).

(2) Fix a probability space 2 and a function F that maps every X € poss(C) to
F(X) C Q of measure > 1/b). Then we can strengthen C to D, decreasing
the norm by at most 1/2m"b(w) such that [\ cposs(py F(X) has measure at least
1/bu+1). Here, u 4 1 denotes the smallest subatomic sublevel above u.

Proof This is an immediate consequences of (9.1.4), 9.2.2 and 9.3.2, just note that

b(u+1) > H'(cn, =b)) > 1/e"(/bw),| POSS |).

]
Again, let u 4 1 denote the smallest subatomic sublevel above u. Then
b(u+1) > H'(cn, =b(w)) > Ken pwl-
In other words,
The cardinality of Kcn p(u) is less than b(u + 1). (10.2.2)

35 of course, generally /cnu # Inn,u, S0 Ny for @ € Enn lives on a different domain than Ng for
B € Ecn-
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10.3 Names for null sets

Let T C 2= be a tree (without terminal nodes) of measure 1/2. (Such trees correspond
bijectively to closed sets of measure 1/2.) Then the set

Np =2\ Jir +1T1: r e Q). (10.3.1)

is a null set (closed under rational translations). Conversely, for every null set N there
issuch a T with N C Np.

The relative measure of s in T (for s € 2", n € w) is defined as w([T] N [s]) - 2".
For completeness, we say that the relative measure of s is O if s ¢ 7. (Analogously, we
can define the relative measure of a node s in a finite tree 7 C 2="* with no terminal
nodes of height < m.) Note the following easy consequence of the Lebesgue density
theorem:

Fact 10.3.2 IfT is a tree without terminal nodes, s € T has positive relative measure,
and § < 1, then there is at > s with relative measure > 8. (And for all levels above
the level of t, there is an extensiont’” > t which also has relative measure > §.)

By removing nodes with relative measure 0, the measure of 7' does not change. We
give such trees a name:

Definition 10.3.3 7 is a pruned-1/2 tree, if T € 2<% has measure 1/2 and has no nodes
of relative measure zero (and in particular no terminal nodes).

Note that each null set is contained in N7 for some pruned-1/2 7. So instead of
investigating arbitrary names for null sets, we will consider names T for pruned-1/2
trees.

Note that there are fewer than 22" many possibilities for the level &2 of T'. So we
can “code” T by areal r € 2 such that T | h is determined by r | 220

Assume that p rapidly reads this r. Then 7' [ (max(/cn,u) + 1) is determined < u
[according to (6.1.6) and 10.1.1(5)].

We will describe this situation by “p rapidly reads 7.

10.4 cof (N) > ken

Lemma 10.4.1 Let p € Q rapidly read the pruned-1/2 tree T not using the index
o € Ecn. Then p forces that Ny is not a subset of N, i.e.’0 thereis somes € NoN[T].

Proof We can assume that p is pruned and that « € supp(p). It is enough to find a
name r € 2“ and a g < p forcing r € N, N[T']. For this, we will inductively modity
p at infinitely many sublevels u (resulting in the 1-purely stronger q):

Let u be a subatomic sublevel (above all the sublevels that we have already mod-
ified), where « is the active index with subatom C of norm at least 10, living on the
interval I := Icn y-

36 a5 Ny is closed under rational translates.
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The finite tree 7’/ := T | max(/) + 1| is determined < w, and even < u, as T
does not depend on « (as usual, note that due to modesty « is the only active index at
sublevel u). In particular the set ¥ of potential values of 7’ has size < maxposs(<u).

We now enumerate all 7* € ¥ and t € T* N 2™"() with relative measure (in 7*)
at least 1/2. There are at most maxposs(<u) x 2™"/) many such pairs (7%, 1).

Starting with C° := C, we iteratively use Lemma 10.2.1(1) to strengthen the
subatom C” to some C”*! such that for the current (T*, ¢) and all X € poss(C"*!)
there is some ¢’ € 2/\ X such that t~¢' € T*.

So in the end we get a subatom D < C of norm > nor(C) — 1 such that for all
(T*,t) and X € poss(D) there is some ' € 2/\ X witht~t' € T*.

In this way, we modify infinitely many sublevels u, resulting in a condition ¢ < p.

Now work in the forcing extension, where ¢ is in the generic filter. We can now
construct by induction an element r of N, N[T'] (i.e., r [ Icn,u 18 nOtin the generically
chosen X at index « and sublevel u, for infinitely many sublevels u.)

Assume we already have r [ n € T for some n. Since T has no nodes of relative
norm O, thereisah’ > nandant’ € T N o extending r | n with relative measure
> 1/2 (see 10.3.2). Pick a sublevel u such that: min(/) =: h > h' for I := I.pu,
and u was considered in our construction of g. There is still some ¢ € 2 extending
r [ n of relative measure 1/2. Set T7* := T | max (/) + 1. Note that in our construction
of ¢, when considering u, we dealt with the pair (7%, t), and thus made sure for
all X € poss(g(a,u)) (so in particular for the one actually chosen by the generic
filter) there is some ' € 2/ such that t~¢' € T* and ' ¢ X. So we can just set
r|max/l :=t"t. O

Corollary 10.4.2 Q forces that cof (N) > kcp.

Proof This is very similar to the proof of 7.3.2: Assume that there is a 8] < k¥ < kcp
and a p forcing that (Iyi*) i 18 a basis of null sets. As described above, we can assume
thateach N;* = Ny, for some pruned-1/2 tree T; of measure 1/2. Foreachi, fix a maximal
antichain A; below p of conditions rapidly reading 7;. The set X := U, ¢, 4ea, SUPP(q)
has size «, so there is an @ € Ecn\X. Eacha € A; rapidly reads 7; not using . So by
the preceding lemma, Ny, ¢ Nr, is forced by a (and therefore by p, as A; is predense
below p). i O

10.5 non(\N) < knn

We want to show that the set X of reals that are added by (or more precisely: rapidly
read from) the nm and nn parts (i.e., not depending on the cn and Sacks parts) is not
null.

Let Qg,,,. be the set of conditions p with supp(p) N Egx = @. Recall that
according to Lemma 3.6.1, Qg,,, ., is a complete subforcing of Q (and satisfies w®-
bounding, rapid reading, etc). We have seen in 6.3 that the quotient of Q and Qg .,
satisfies the Sacks property, and in particular that every null set N in the Q-extension
is contained in a null-set N’ 2 N in the intermediate Qg,, ., -extension.
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So it is enough to show that X is still non-null in the Qg,,, ., -extension; in other
words, we can in the rest of the paper ignore the Sacks indices altogether (i.e., work
in Qg,, x> or in other words assume that Egx = ¥).

We have seen that the sets of the form Nt for pruned-1/2 trees T form a basis of
null sets; so we just have to show the following:

Lemma 10.5.1 Let T* be a pruned-1/2 tree rapidly read by p. Then thereisaq < p
continuously reading some r € 2% not using the cn part, such that q forces r € [T*].
(As described above, the Sacks part is not used at all.)

Asr € [T*]implies r ¢ N7+, and r only depends on the nm and nn parts, we get:
Corollary 10.5.2 Q forces non(N) < knn.

To prove Lemma 10.5.1 we will use:

Lemma 10.5.3 Let T be a tree of positive measure and fix € > 0. Then for all
sufficiently large m € w there are many fat nodes in T N 2™, by which we mean:

w([ T8y =271 — ) for at least |[T1N2"] - (1 — €) many s € T N 2™.

Proof Write u for the measure of [T']. Note that |7N2"|-27" decreases and converges
to u. Hence from some m on, we have

T N2" 27" — pue? < p. (10.5.4)

Let [ be the number of fat nodes at level m, and s = |T N2"| — [ the number of non-fat
nodes. We want to show [ > 2" - (1 — €).
Clearly,

p<l- 27" 45271 —€)=|T N2"]- 27" — 2 ™ge. (10.5.5)

Combining (10.5.4) and (10.5.5), we get |T N2™|. 27" — e < [T N2"|.27" —
27"se,andhence s <2"pu-e€. Asl+s =|TN2"| >2"pu,wegetl >2"u-(1—¢),
as required. O

Proof of Lemma 10.5.1 We can assume that p is pruned. By induction on n € w, we
construct:

(a) ky € w.

(b) A condition g, < p with k,, € w?" such that nor(g,, k') > n + 6 for all ¥’ > k,
in wén .

(c) We will additionally require: ¢,+1 < qn; gn+1 is identical to g,, below k,,, and has
norms > n between k, and k1.
(Therefore there is a limit condition ¢,, stronger than each g;,,.)

(d) in € wand aname s, for an element of 7N 2in such that qn decides s, below &,
not using any cn-indices.
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(e) We additionally require that i, is “not too large” with respect to k,, more partic-
ularly:

202 < p((ky, 0)).

((ky, 0) is the the smallest subatomic sublevel above &, .) (As b is strictly monotone,
it suffices to have k,, > 2in12))

(f) We additionally require: i,4+1 > i,, and s, is forced (by g,+1) to extend s,,.
S0 goo Will force that the union of the s, will be the required branch through 7%,
proving the Lemma.

(g) We will also construct a name 7,,, which is (forced by g, to be) a subtree of T*
with stem s, and relative measure > 1/2 (i.e., u([T,]) > 1/2- 2~n), which is read
continuously by ¢, not using any cn-indices below k,,.%’

We set ip := 0, 5o := () and Ty = T*. We choose ko such that the norms of the
compound creatures in p are > 6 above ko and set g to be p where we increase the
trunk to kg. So Tp does not depend on any cn-indices below kg (as below kg there is
only trunk and thus a unique possibility).

So assume we already have the objects mentioned above for some n (i.e., k, ¢y,
in, s, and T},). For notational simplicity we refer to them without the subscript n, i.e.,
we set k := k, etc. We will now construct the objects for n + 1.

(1)  We choose k* so large that for each & € supp(q(k)) N E1g there is an atom
qn (&, £) of norm > n + 2 for some ¢ between k and k*.

(2) Ttisforced that Lemma 10.5.3 holds for T and for € := 1/maxposs(<k*)-maxposs(<k).
So we get a name m for a level where there are many fat nodes. Using
Lemma 5.3.1, we strengthen ¢ to ¢!, not changing anything below k* and keep-
ing all norms > n + 4, such that we can find (in V) some m > i which is forced
by q1 to be > m. Note that Lemma 10.5.3 is forced to hold for this m > m as
well, i.e., there is a name of a “large” set L € 2" of “fat” nodes.

This m will be our i,,41. S0 i,4+1 > iy is satisfied.

(3)  So can further strengthen ¢ to ¢ not changing anything below k* and keeping
all norms > n + 2 such that L € 2™ is essentially decided, i.e., decided below
some level k** > k*. Since we already assumed that T is read continuously, we
can assume that q2 also decides 7' N 2" below k**. Also, we can assume that all
norms of compound creatures in g2 above (including) k** are > n + 7, and that
S 2m+2.

This k** will be k,+1. Note that this ensures item (e) for n + 1.

(4) L is forced to be a subset of T N 2™ of relative size > (1 — €), and both
L and T N 2™ are decided below k**. Also, T N 2" does not depend on the
cn-part below k. Therefore, we can construct a name L’ C L that also does
not depend on such coordinates, and such that L’ € T N 2™ has relative size
> (1 — € - maxposs(<k)) > 1/2.

37 1e.: For all € there is a k and a function defined on poss(gn, <k) giving the value of 7, N 2¢ such that
the value is the same for 1, " € poss(gy, <k) that differ only on the cn-part below k;.
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Proof: Each 1 € poss(g2, k**) determines objects L, S, (where q° A forces
“Ly = Land S, =T N2""). We call n1, 2 equivalent if they differ only on
the cn-part below k (which implies §,, = §,,). Clearly, each equivalence class
has size at most maxposs(<k). For an equivalence class [n], we set LE,]] =
ﬂn/eln] L,y. So the map assigning 1 to LEn] defines a name (not depending on
the cn-part below k) of a subset of S, of relative size > 1/2.

Recall that T is forced to have stem s € 2/ and measure > 1/2 - 277, so the
cardinality of T N 2™ is forced to be > 2”"~i~! and thus the cardinality of L’ is
forced to be > 2m_i_1(1/2) = pm=i=2 o 2" Ib((k,0)), according to item (e).

To summarize:

e T'N2" and its subset L are decided by ¢ below k**, not using the cn-part
below k.

e We set Q2 = 2. (As a finite set, it carries the uniform probability measure.)
L’ as subset of Q is forced to have measure > 1/b((k,0)).

e ¢’ forces that each s € L' satisfies u([T11]) = 27" (1 — e).

(5) Now we glue g2 between k and k**, and replace all lim-sup subatoms between
k* and k** with singletons (not changing the lim-inf subatoms, nor anything
between k and k*), resulting in ¢* and the compound creature * = ¢* (k) (with
mI (%) = k, m"P(d*) = k** and supp(d*) = supp(q, k)). So above k**, g* is
identical to ¢2, and below k* it is identical to g.

Note that nor(2*) > n + 2: Gluing results in a norm at least the minimum of
the norms of the glued creatures; and replacing lim-sup subatoms above k* with
singletons does not drop the norm below n + 2 as we made sure that there are
large subatoms between k and k*.

We will in the following find a strengthening 0** of 0* with nor (9**) > nor(0*)—
2 > n and we will set g, 4+ to be ¢* where we replace 0* with 9**. Then items (b)
and (c) will be satisfied for n + 1.

(6) Recall that ¢g* decides both L' and T N 2™ below &**, not using the cn-part
below k. Note that poss(g™, <k**) is isomorphic to X x ¥ x Z, for

e X :=poss(q*, <k) = poss(g, <k),

e Y are the possibilities of 9* between k and k*, and

e Z are the possibilities of 9* between k* and k** (which we can restrict to the
lim-inf part, as there are only singletons in the lim-sup-part).

(7) Fixav € Z. We will now perform an induction on the (subatomic) sublevels u
between k and k*, starting with the lowest one, (k, 0). We assume that we have
arrived in this construction at sublevel u with the active subatom C, and that we
already have constructed the following:

e The (final) subatoms for all sublevels v below u (and above k), with subatom-
norm at most 2 smaller than the norms of the original subatoms (i.e., those
in 0%).

o (Preliminary) subatoms for all sublevels u’ above (including) u (and below
k*), where the norm of the subatom at u’ has been reduced from the original
one by at most K/bw’), where K is the number of steps already performed in
the current induction (i.e., K is the number of subatomic sublevels between
k and u). So our current C is one of these “preliminary subatoms”.
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e A function F" that maps each possibility n € X x Y to a subset F"(n) of
2™ such that for all n
— FY(n) is forced to be a subset of L’ by the condition g* modulo the
fixed v € Z, modulo n and modulo the already constructed subatoms
(the final ones as well as the preliminary ones).?®
— FY(n) C 2™ is of relative size > 1/b(u).
— F"(n) does not depend on any cn-indices below u.
The first sublevel, (k, 0), is clear: there are no sublevels below where we have
to define final subatoms, the preliminary subatoms above are just the original
ones, and F%9 is just given by the name L'.
Now we perform the inductive step. If our subatom C is not of cn-type, we do
nothing®® and go to the next step. So let us assume that the current (preliminary)
C is of cn-type.
Let Y~ be Y restricted to the sublevels below u, and YT to the ones above.
Every* n € X x Y can be written as (n~, n% nt) forn™ € X x Y~, n* €
poss(C) and n* e Y.
When we fix some = € X x Y~ and n™ € YT, the function F" reduces to
a function F7 7" that maps poss(C) to subsets of 2™ of relative size > 1/b().
So we can use Lemma 10.2.1(2) and strengthen C to D(n~, n™) decreasing the
norm by at most !/6(u) such that

_ -t
F'(n™ %) = N F"w
peposs(D(n~,nT))

is a set of measure > 1/p(u+1).

For fixed n™ € Y™, we can iterate this strengthening for all n~ € X x ¥ ~: From
D to some D := D(n~, n"), then from D to D(5'~, nT) for the next '~ etc.,
resulting in a D(n™) with norm reduced by at most maxposs(<w)/p(u) < 1.

Note that there are less than b(u + 1) many possibilities for D(n™), cf (10.2.2).
Finally we can use bigness of the Y -part, as stated in Lemma 6.1.5, to find
successor subatoms at all sublevels above u, resulting in a new set of possibilities
Yt C Y7 such that for each n € Yt we get the same D := D(n"). This D
will be the (final) subatom at our current level u.

We can now define

F** = () FG .unh).
peposs(D)

As above, this is a set of measure > 1/bu+1), does not depend on the cn-part
< u, and it is forced (modulo D) to be a subset of L'.

38 See (5.1.9) for a definition of “modulo”. If 7 is not a compatible with the currently constructed (final
and preliminary) subatoms, then F"(n) is irrelevant.

39 Slightly more formally: we make the current preliminary subatom final, and set F' utl._ pu

40 We are concerned only about the 7 still are compatible with the currently constructed preliminary/final
subatoms.
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®)

©))

(10)

We have now chosen the new final subatom D, the new preliminary subatoms
and FU+! in a way that we can perform the next step of the iteration.

We perform the whole inductive construction of (7) for every v € Z indepen-
dently (i.e., we start at the original 9* for each v € Z).

So for every v we get a different sequence D (v) of subatoms between k and k*.
Using bigness (again as in Lemma 6.1.5), we can thin out the subatoms between
k* and k**, resulting in Z’ C Z, such that for each v € Z’ we get the same
sequence D(v) =: D which finally defines the compound creature ** stronger
than 0*.

We set g,+1 to be ¢* with 0* strengthened to 0**, and we set i, := m and
kn+l = k**,

Now work modulo ¢, +1. So the final function F of the induction in (7) gives us
aname for asubset L” C L C 2™ of positive relative size (in 2™), and the name
L” does not depend on any cn indices: Not on any below k, since we started with
the name L’ which did not depend on such subatoms; not on any between k and
k*, as we removed this dependence sublevel by sublevel during the induction;
and not on any cn subatoms between k* and k**, as cn indices are of lim-sup
type, and we have only singleton subatoms for the lim-sup part between k* and
k**.

So we can pick a non-cn-name s, for an arbitrary (the leftmost, say) element
of L.

qn+1 forces that s, 4 is in L, i.e., a “fat” node, more specifically: T’ := ~,,[
has a measure greater than 12;ms

The tree T is read continuously by ¢, and therefore also by ¢,,+1. In particular,
for each £ > m the finite tree 77 N 2¢ is decided below some ¢'. For n €
poss(gni1, <t') let T4" be the according value of 77 N 2¢ (a subset of 2¢ with
at least 2¢ - 12;,6 elements). We call n and n’ equivalent if they differ only on the
cn part below k**. Each equivalence class has size < maxposs(<k*), as there
are only singleton values in the lim-sup part between £* and k**. We assign
to each equivalence class [n] the tree Tt .= ﬂﬂ,e[n] 767" Then T4 has

“nm’g# (and of course does not depend on the cn-part
below k**). So the family 7% defines a continuous name for a tree T, ;| not

depending on the cn-part below k** with root s,4; and measure > 1/27t! as
required. O

Sn+1]

size at least 2¢ -

11 Switching nm and nn

It turns out that the same proof can be used for the following variant of Theorem 6.2.1,
where the order of kn, and «np, is reversed:

Theorem 11.0.6 Assume (in V) CH, knn < Knm < Ken < Kgk and K,RO = Ky for
t € {nm, nn, cn, sk}. Then there is a forcing Q which forces

(1)
(2)
(3)

cov(N) =0 =&y,
non(N) = knp,
non(M) = cof (M) = knp,
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(4) COf(N) = Kcn,
(5) 280 — Ksk-

Moreover, Q preserves all cardinals and all cofinalities.

Proof We now use the cn-norm for the nm part as well. (Recall 7.1.2: We can use
any nm-norm, as long as bigness is satisfied.) The proofs above do not change, apart
the one of non(N) < kuyn: In the inductive construction, we only had to do something
at the cn-indices, and we could ignore the nm-indices (as there were only few). In
the new version, we have to include the nm-indices as well. But this is no problem:
We now do exactly the same at nm-indices as at cn-indices (which we can, as the
nm-norm is the same as the cn-norm). O
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