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1. Introduction and Results

Symmetries have always been a driving principle in both mathematics and
physics. This statement manifests itself as Noether’s Theorem, namely that
every continuous symmetry of a system leads to a conservation law.

When constructing a physical model to describe elementary particles one
considers an energy functional together with a certain amount of symmetries
that leave it invariant. These symmetries can both be discrete and continuous.
The energy functionals considered in quantum field theory are formulated in
terms of objects from differential geometry. Consequently, their invariances and
the corresponding conversation laws also allow for a geometric interpretation.

When considering an energy functional that involves a map between two
manifolds, the invariance under diffeomorphisms on the domain gives rise to
the energy-momentum tensor, which is conserved for a critical point. Moreover,
symmetries on the target lead to a different conserved quantity, which is called
Noether current in the physics literature.

Throughout this article we will study an action functional that is moti-
vated from the supersymmetric nonlinear sigma model from quantum field
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theory [2], see also [1]. From a geometric point of view this energy functional
consists of the energy for harmonic maps coupled to spinor fields in a nonlinear
fashion. For a recent survey on harmonic maps we refer to [18], for an intro-
duction to spin geometry see [21]. The geometric study of the supersymmetric
sigma model was initiated in [11,12], where the notion of Dirac-harmonic maps
was introduced. This notion was extended later on to include an additional
curvature term [7,10], a two-form potential [6] and a connection with metric
torsion on the target [8]. Currently, many analytic and geometric aspects of
Dirac-harmonic maps and their extensions are well-understood, like the reg-
ularity of weak solutions [7,24]. However, apart from an existence result for
uncoupled Dirac-harmonic maps [4], a general existence result is still not avail-
able.

For a general treatment of harmonic maps and conservation laws we refer
to the book [19]. For a supergeometric study of harmonic maps, see [20]. In
this article we focus on the derivation of conservation laws for critical points
of the supersymmetric nonlinear sigma model to targets with symmetries.

It is well known that both nonlinear Dirac equations on surfaces and
harmonic maps from surfaces to spheres have a natural connection to CMC
surfaces. The critical points of the supersymmetric nonlinear sigma model
interpolate between these equations and we discuss a geometric interpretation
of the combined system.

This article is organized as follows: In Sect. 2 we recall the mathematical
setup that we use to study Dirac-harmonic maps and Dirac-harmonic maps
with curvature term. In the third section we consider the case of a spherical
target, derive a conservation law and give several geometric and analytic appli-
cations. Section 4 is then devoted to a target with isometries, where we again
derive a conservation law for Dirac-harmonic maps and Dirac-harmonic maps
with curvature term.

2. The Nonlinear Supersymmetric Sigma Model as a Geometric
Variational Problem

Let us describe the mathematical setup used in this article. Let (M,h) be a
closed Riemannian spin manifold with spinor bundle ΣM . We fix both a spin
structure and a metric connection ∇ΣM on ΣM . Moreover, we fix a hermitian
scalar product on ΣM which we denote by 〈·, ·〉ΣM . On the spinor bundle
there is the Clifford multiplication of spinors with tangent vectors, which is
skew-symmetric

〈ψ,X · η〉ΣM = −〈X · ψ, η〉ΣM

for all X ∈ TM, η, ψ ∈ Γ(ΣM). Moreover, we have the Clifford relations, that
is

X · Y · ψ + Y · X · ψ = − 2h(X,Y )ψ
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for all X,Y ∈ TM . The Dirac operator /∂ acting on sections of ΣM is defined
as

/∂ := eα · ∇ΣM
eα

,

where eα, α = 1, . . . ,dim M is a basis of TM . Throughout this article we will
make use of the summation convention, that is we sum over repeated indices.
The Dirac operator /∂ is elliptic and self-adjoint with respect to the L2-norm.

We will mostly consider a two-dimensional domain M , in this case the
spinor bundle splits as ΣM = Σ+M ⊕ Σ−M , where we call Σ+M the bundle
of positive spinors and Σ−M the bundle of negative spinors. We will make use
of the complex volume element ωC, which is defined by

ωC := ie1 · e2.

In order to project to the subbundles Σ±M we make use of the projector

P± :=
1
2
(1 ± ωC). (2.1)

In addition, let (N, g) be another Riemannian manifold. Consider a map
φ : M → N , which we use to pullback the tangent bundle TN to M . We form
the twisted bundle ΣM ⊗ φ∗TN , sections in this bundle will be called vector
spinors. We will denote the connection on ΣM ⊗ φ∗TN by ∇̃. This leads to
the twisted Dirac operator acting on vector spinors, which is given by

/D := eα · ∇̃eα
.

This twisted Dirac operator is also elliptic and self-adjoint with respect to the
L2-norm.

If we choose local coordinates we will use Greek indices for coordinates
on the domain M and Latin indices for coordinates on the target N . Whenever
clear from the context we will use 〈·, ·〉 for a generic scalar product without
referring to the actual bundle.

2.1. Dirac-harmonic Maps and Extensions

In this section we recall the action functional that we will mostly investigate
in this article

Eκ(φ, ψ) =
∫

M

(|dφ|2 + 〈ψ, /Dψ〉 + κ〈RN (ψ,ψ)ψ,ψ〉)dM. (2.2)

Here, κ is a real-valued parameter. The first term is the usual harmonic energy
for a map between two Riemannian manifolds, in the second term the scalar
product is taken on the bundle ΣM ⊗φ∗TN . In the third term the spinors are
contracted as

〈RN (ψ,ψ)ψ,ψ〉ΣM⊗φ∗TN = Rijkl〈ψi, ψk〉ΣM 〈ψj , ψl〉ΣM ,
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which ensures that the action is real-valued. Here Rijkl are the components of
the Riemann curvature tensor on N . The critical points of (2.2) are given by
(see [7, Proposition 2.1])

τ(φ) =
1
2
RN (eα · ψ,ψ)dφ(eα) +

κ

2
〈(∇RN )�(ψ,ψ)ψ,ψ〉, (2.3)

/Dψ = −2κRN (ψ,ψ)ψ. (2.4)

Note that the energy functional (2.2) and its critical points (2.3), (2.4) inter-
polate between the energy functionals for Dirac-harmonic maps (κ = 0) and
Dirac-harmonic maps with curvature term (κ = −1

6 ).
We call solutions of the system (2.3), (2.4) κ-Dirac-harmonic maps.
We want to point out that the energy functional we are considering here

is slightly different compared to the physics literature since we do not use
Grassmann-valued spinors. However, this leads to the advantage that we can
employ well-established methods from geometric analysis to study (2.2) and
its critical points.

In the following we will sometimes need the extrinsic version of (2.3),
(2.4). To this end we apply the Nash embedding theorem to isometrically
embed N into some R

q. We will denote the second fundamental form of the
embedding by II.

The extrinsic version of (2.3), (2.4) is given by the system

−Δφ = II(dφ, dφ) + P (II(eα · ψ, dφ(eα)), ψ) − κG(ψ), (2.5)

/∂ψ = II(dφ(eα), eα · ψ) + κF (ψ,ψ)ψ (2.6)

with the terms

G(ψ) = −1
2
(〈(∇II)(∂yi , ∂yk), II(∂yj , ∂yl)〉

− 〈(∇II)(∂yi , ∂yl), II(∂yj , ∂yk)〉)〈ψi, ψk〉〈ψj , ψl〉,
F (ψ,ψ)ψ = −2(P (II(∂yk , ∂yj ), ∂yl) − P (II(∂yl , ∂yj ), ∂yk))〈ψj , ψl〉ψk,

where now φ : M → R
q and ψ ∈ Γ(ΣM ⊗ R

q). In addition, P denotes the
shape operator that is defined via

〈P (ξ,X), Y 〉TN = 〈II(X,Y ), ξ〉Rq

for all X,Y ∈ TN and ξ ∈ T⊥N .
The extrinsic version allows us to consider a weak formulation of (2.3),

(2.4). To this end, we define the following space

χ(M, N) := {(φ, ψ) ∈ W 1,2(M, N) × W 1, 4
3 (M, ΣM ⊗ φ∗TN) with (2.3) and (2.4) a.e.}.

Definition 2.1. A pair (φ, ψ) ∈ χ(M,N) is called weak κ-Dirac-harmonic map
from M to N if and only if the pair (φ, ψ) solves (2.3), (2.4) in a distributional
sense.
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2.2. Spinorial Symmetries

Before we discuss how isometries on the target lead to conservation laws we
briefly discuss some symmetries arising in the context of the spinors. To this
end we recall the following

Lemma 2.2. The complex volume element ωC satisfies the following algebraic
relations
(1) ω2

C
= 1.

(2) X · ωC = −ωC · X for a two-dimensional manifold and X ∈ TM .
(3) 〈ωC · ψ, η〉ΣM = −〈ωC · ψ, η〉ΣM for all ψ, η ∈ ΣM .

Proposition 2.3. The energy functional (2.2) and its critical points (2.3), (2.4),
are invariant under the symmetries
(1) ψ → eiαψ with α ∈ R

(2) ψ → ωC · ψ

Proof. Note that the complex volume element ωC is parallel and thus by
Lemma 2.2 we find

/D(ωC · ψ) = −ωC · /Dψ.

Consequently, we obtain

〈ωC · ψ, /D(ωC · ψ)〉ΣM⊗φ∗TN = −〈ωC · ψ, ωC · /Dψ〉ΣM⊗φ∗TN = 〈ψ, /Dψ〉ΣM⊗φ∗TN

and

〈ωC · ψk, eα · ωC · ψk〉ΣM = −〈ωC · ψk, ωC · eα · ψk〉ΣM = 〈ψk, eα · ψk〉ΣM ,

〈ωC · ψi, ωC · ψk〉ΣM 〈ωC · ψj , ωC · ψl〉ΣM = 〈ψi, ψk〉ΣM 〈ψj , ψl〉ΣM

proving the claim. �

Note that we also have discrete symmetries in the term

Rijkl〈ψi, ψk〉ΣM 〈ψj , ψl〉ΣM .

Remark 2.4. In the physics literature the complex volume element ωC is usually
denoted by γ5.

3. The Case of a Spherical Target

In this section we consider the system (2.3), (2.4) in the case of a spherical tar-
get. On the one hand this particular case is attractive since the huge symmetry
of the sphere easily leads to a conservation law. Moreover, in the physics liter-
ature nonlinear sigma-models are mostly considered having a spherical target.

For N = Sn ⊂ R
n+1 with the round metric the Euler-Lagrange equations

read

−Δφi = |dφ|2φi + Re〈ψi, eα · ψj〉ΣMφj
α, i = 1, . . . , n + 1, (3.1)
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/∂ψi = −φj
αeα · ψj ⊗ φi − 2κ(|ψ|2ΣMψi − 〈ψj , ψi〉ΣMψj), i = 1, . . . , n + 1,

(3.2)

where we use the notation φj
α := ∂φj

∂xα .

Remark 3.1. Suppose we have a smooth solution of the system (3.1), (3.2).
Using that |dφ|2 = −〈Δφ, φ〉 for maps taking values in Sn ⊂ R

n+1 we find

Re〈ψi, eα · ψj〉ΣMφj
αφi = 0.

If we think of the summation over i, j as taking the trace of an endomorphism,
then we may expect that the endomorphism itself contains some interesting
information.

In the following we show how the existence of isometries on the sphere
leads to a conserved quantity. Becoming more technical, let us recall the fol-
lowing facts:

Definition 3.2. A vector field X is called Killing vector field on (N, g) if

LXg = 0,

where L represents the Lie-derivative of the metric. In terms of local coordi-
nates we have

0 = (LXg)ij = gjk∇∂yi X
k + gik∇∂yj Xk.

The group SO(n + 1) acts isometrically on Sn. The set of Killing vector
fields on Sn can be identified with the Lie algebra so(n + 1) of SO(n + 1). In
addition, so(n + 1) can be represented as (n + 1) × (n + 1) skew-symmetric
real-valued matrices. For simplicity we will assume that these matrices have
only entries of +1, 0,−1.

We will determine a conserved current in the case that we have a weak
solution of (3.1), (3.2), where we follow the ideas from [17] for harmonic maps.
This method has the advantage of leading to the result in a rather straight-
forward way.

Proposition 3.3. Let (φ, ψ) : M → Sn be a weak κ-Dirac-harmonic map. Then
the following conservation law holds∫

M

(
Re〈eα · ψi, ψm〉ΣM + (φi

αφm − φiφm
α )

)
(∇eα

η)dM = 0 (3.3)

for all η ∈ C∞(M).

Proof. Let X(φ) be a Killing vector field on Sn and η ∈ C∞(M). Testing (3.1)
with Xk(φ)η we obtain

−
∫

M

ΔφkXk(φ)ηdM =
∫

M

|dφ|2 φkXk(φ)︸ ︷︷ ︸
=0

ηdM

+
∫

M

Re〈ψk, eα · ψj〉ΣMφj
αXk(φ)ηdM.
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Note that the first term on the right hand side vanishes since X ⊥ φ. In
addition, we calculate

−
∫

M

ΔφkXk(φ)ηdM =
∫

M

∇φk∇Xk(φ)︸ ︷︷ ︸
=0

dM +
∫

M

∇φkXk(φ)∇ηdM,

where the second terms vanishes since X(φ) is a Killing vector field. Since
Killing vector fields on the sphere can be identified with antisymmetric matri-
ces, we find ∫

M

Re〈ψk, eα · ψj〉ΣMφj
αXk

im(φ)ηdM

=
∫

M

(Re〈ψi, eα · ψj〉ΣMφj
αφm

− Re〈ψm, eα · ψj〉ΣMφj
αφi)ηdM

=
∫

M

(Re〈ψi, /∂ψm〉ΣM − Re〈ψm, /∂ψi〉ΣM )ηdM

=
∫

M

(Re(〈ψi, /∂ψm〉ΣM − 〈/∂ψm, ψi〉ΣM︸ ︷︷ ︸
Im〈ψi,/∂ψm〉ΣM

)ηdM

+
∫

M

Re〈ψi, eα · ψm〉ΣM (∇eα
η)dM

=
∫

M

Re〈ψi, eα · ψm〉ΣM (∇eα
η)dM,

which completes the proof. �

We can check by a direct calculation that given a smooth κ-Dirac-
harmonic map we obtain a vector field that is divergence free.

Lemma 3.4. Let (φ, ψ) : M → Sn be a smooth κ-Dirac-harmonic map. Then
the vector field

J im
α := Re〈eα · ψi, ψm〉ΣM + (φi

αφm − φiφm
α ) (3.4)

is divergence free.

Proof. We calculate

∇eα
J im

α = Re〈/∂ψi, ψm〉ΣM − Re〈ψi, /∂ψm〉ΣM + Δφiφm − Δφmφi.

Moreover, we find

Re〈/∂ψi, ψm〉ΣM − Re〈ψi, /∂ψm〉ΣM

= 2κ Re
( − |ψ|2ΣM 〈ψi, ψm〉ΣM + 〈ψj , ψi〉ΣM 〈ψj , ψm〉ΣM

+ |ψ|2ΣM 〈ψi, ψm〉ΣM − 〈ψj , ψm〉ΣM 〈ψj , ψi〉ΣM

)
− Re〈eα · ψj , ψm〉ΣMφj

αφi + Re〈ψi, eα · ψj〉ΣMφj
αφm
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= 4κ Re
(
Im(〈ψm, ψj〉ΣM 〈ψi, ψj〉ΣM

)
− Re〈eα · ψj , ψm〉ΣMφj

αφi + Re〈ψi, eα · ψj〉ΣMφj
αφm

= −Re〈eα · ψj , ψm〉ΣMφj
αφi + Re〈ψi, eα · ψj〉ΣMφj

αφm.

On the other hand we have

Δφiφm − Δφmφi = −Re〈ψi, eα · ψj〉ΣMφj
αφm + Re〈ψm, eα · ψj〉ΣMφj

αφi

such that

∇eα
J im

α =φj
αφi Re(〈ψm, eα · ψj〉ΣM − 〈eα · ψjψm〉ΣM )

= 2φj
αφi Re(Im(〈ψm, eα · ψj〉ΣM ))

= 0,

yielding the claim. �
Following the terminology used in the physics literature we call the vector

field J Noether current. It is obvious that J is unique up to multiplication with
an overall constant and the addition of a parallel vector field.

Remark 3.5. The term 〈ψi, eα ·ψm〉ΣM takes the form of a Killing vector field
associated to a Killing spinor. More precisely, a Killing spinor ψ is a section
of ΣM that satisfies

∇Xψ = αX · ψ,

where α is a non-vanishing complex number. To a given Killing spinor we can
associate a vector field V via the Riemannian metric

h(V,X) := i〈ψ,X · ψ〉ΣM .

Not many Riemannian manifolds allow the existence of Killing spinors [5],
however these always exist on spheres. Consequently, it is not surprising that
a term having the form of a Killing vector field appears in the Noether current
for κ-Dirac-harmonic maps to spheres.

From now on we assume that M is two-dimensional and by Ω we denote
a connected domain in M . We denote the local coordinates on Ω by x, y and
its tangent vectors by ∂x, ∂y.

Remark 3.6. Suppose that φ : Ω → Sn is a smooth harmonic map. In this case
the Noether current reads

J im
α := φi

αφm − φiφm
α .

By a direct calculation it follows that the Noether current satisfies the following
algebraic relation

∂xJy − ∂yJx − 2[Jx, Jy] = 0,

which can be thought of as a vanishing curvature condition if we think of J as
the connection one-form on the bundle φ∗TN ⊗so(n+1). This fact relates the
theory of harmonic maps to spheres to the world of integrable systems [26].
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In the following we discuss if a similar structure also holds for κ-Dirac-
harmonic maps to spheres.

Lemma 3.7. The vector field J im
α defined in (3.4) satisfies the following alge-

braic relation

∂xJ im
y − ∂yJ im

x − 2(J ij
x Jjm

y − J ij
y Jjm

x )

= −Re〈(∂x · ∇∂y
− ∂y · ∇∂x

)ψi, ψm〉ΣM

+ Re〈ψi, (∂x · ∇∂y
− ∂y · ∇∂x

)ψm〉ΣM

− 2
(
Re〈ψi, ∂x · ψj〉ΣM Re〈ψj , ∂y · ψm〉ΣM

− Re〈ψi, ∂y · ψj〉ΣM Re〈ψj , ∂x · ψm〉ΣM

− Re〈ψi, ∂x · ψj〉ΣMφj
yφm + Re〈ψj , ∂y · ψm〉ΣMφiφj

x

+ Re〈ψi, ∂y · ψj〉ΣMφj
xφm − Re〈ψj , ∂x · ψm〉ΣMφiφj

y

)
. (3.5)

Proof. By a direct computation we find

∂xJ im
y − ∂yJ im

x = −Re〈(∂x · ∇∂y
− ∂y · ∇∂x

)ψi, ψm〉
+ Re〈ψi, (∂x · ∇∂y

− ∂y · ∇∂x
)ψm〉 − 2(φi

xφm
y − φi

yφm
x ).

On the other hand we obtain

J ij
x Jjm

y − J ij
y Jjm

x = − (φi
xφm

y − φi
yφm

x )

+ Re〈ψi, ∂x · ψj〉Re〈ψj , ∂y · ψm〉
− Re〈ψi, ∂y · ψj〉Re〈ψj , ∂x · ψm〉
− Re〈ψi, ∂x · ψj〉φj

yφm + Re〈ψj , ∂y · ψm〉φiφj
x

+ Re〈ψi, ∂y · ψj〉φj
xφm − Re〈ψj , ∂x · ψm〉φiφj

y.

Note that all terms proportional to ψjφj drop out since the vector spinors ψ
satisfy ψ ⊥ φ. The result then follows by combining both equations. �

If we also assume that (φ, ψ) : Ω → Sn is a smooth κ-Dirac-harmonic
map, we find the following

Proposition 3.8. Let (φ, ψ) : Ω → Sn be a smooth κ-Dirac-harmonic map. Then
the Noether current J im

α satisfies the following algebra

∂xJ im
y − ∂yJ im

x − 2(J ij
x Jjm

y − J ij
y Jjm

x )

= − ∂x〈ψi, ∂y · ψm〉ΣM + ∂y〈ψi, ∂x · ψm〉ΣM

− 2(Re〈ψi, ∂x · ψj〉ΣM Re〈ψj , ∂y · ψm〉ΣM

− Re〈ψi, ∂y · ψj〉ΣM Re〈ψj , ∂x · ψm〉ΣM )

+ 4κ Re
(
2|ψ|2〈∂x · ∂y · ψi, ψm〉ΣM − 〈ψj , ψi〉〈∂x · ∂y · ψj , ψm〉ΣM

+ 〈ψi, ∂x · ∂y · ψj〉〈ψj , ψm〉ΣM

)
. (3.6)
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Proof. Multiplying (3.2) by ∂x · ∂y we obtain

(∂x · ∇∂y
− ∂y · ∇∂x

)ψi = ∂y · ψjφj
x ⊗ φi − ∂x · ψjφj

y ⊗ φi

+ 2κ(|ψ|2∂x · ∂y · ψi − 〈ψj , ψi〉∂x · ∂y · ψj),

which yields

− Re〈(∂x · ∇∂y
− ∂y · ∇∂x

)ψi, ψm〉 + Re〈ψi, (∂x · ∇∂y
− ∂y · ∇∂x

)ψm〉
= −Re〈∂y · ψj , ψm〉φj

xφi + Re〈ψi, ∂y · ψj〉φj
xφm − Re〈ψi, ∂x · ψj〉φj

yφm

+ Re〈∂x · ψj , ψm〉φj
yφi + 2κ Re

(
2|ψ|2〈ψi, ∂x · ∂y · ψm〉

+ 〈ψj , ψi〉〈∂x · ∂y · ψj , ψm〉 − 〈ψi, ∂x · ∂y · ψj〉〈ψm, ψj〉).
Consequently, the right-hand side of (3.5) becomes

∂xJ im
y − ∂yJ im

x − 2(J ij
x Jjm

y − J ij
y Jjm

x ) = −2(Re〈ψi, ∂x · ψj〉Re〈ψj , ∂y · ψm〉
− Re〈ψi, ∂y · ψj〉Re〈ψj , ∂x · ψm〉) + Re〈∂y · ψj , ψm〉φj

xφi

− Re〈ψi, ∂y · ψj〉φj
xφm + Re〈ψi, ∂x · ψj〉φj

yφm − Re〈∂x · ψj , ψm〉φj
yφi

+ 2κ Re
(
2|ψ|2〈∂x · ∂y · ψi, ψm〉 − 〈ψj , ψi〉〈∂x · ∂y · ψj , ψm〉

+ 〈ψi, ∂x · ∂y · ψj〉〈ψj , ψm〉).
Rewriting the terms in the last two lines gives the result. �

Remark 3.9. Let us make some observations regarding the structure of (3.6).

(1) In the physics literature the Noether algebra (3.6) take the simpler form

∂xJ im
y − ∂yJ im

x + 2(J ij
x Jjm

y − J ij
y Jjm

x )

= − ∂x〈ψi, ∂y · ψj〉ΣM + ∂y〈ψi, ∂x · ψj〉ΣM ,

see for example [1, p.249]. To obtain their results physicists make use
of so-called Fierz-identities, which can be applied to simplify spinorial
bilinear terms. However, physicists usually formulate these identities for
Grassmann-valued spinors.

(2) If we think of J as a connection one-form, then the right hand side of
(3.6) gives its curvature.

Remark 3.10. Suppose that φ : Ω → S2 ⊂ R
3 is a harmonic map. Making

use of the conserved Noether current one can show that there exists a map
B : Ω → R

3, unique up to a constant vector, satisfying

ΔB = 2Bx × By.

This equation is well known since it describes a CMC surface when we also
require that B is conformal. More precisely, conformal parametrizations of
CMC 1 surfaces are characterized by the system

|Xx|2 = |Xy|2, 〈Xx,Xy〉 = 0, ΔX = 2Xx × Xy. (3.7)
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However, we do not know if the map B is conformal. If we consider the linear
combination X± = B ± u, for a conformal map u, then it turns out that X±
is a solution to the system (3.7). Assuming that u,X+,X− are immersions,
we can associate to a harmonic map a triple of immersions of surfaces, at a
constant distance 1 from each other with B(Ω) in the middle (having Gauss
curvature 1), and X+(Ω) and X−(Ω) having mean curvature 1/2 at either side.
For more details see [19, p. 53] and references therein.

According to the last remark the existence of the Noether current for
harmonic maps to spheres leads to a beautiful geometric construction. In the
following we want to discuss if the same holds true for κ-Dirac-harmonic maps
to spheres.

Proposition 3.11. Let (φ, ψ) : Ω → Sn be a smooth κ-Dirac-harmonic map.
Then there exist functions Bmi that satisfy

ΔBmi = 2(Bmj
x Bij

y − Bmj
y Bji

x ) − ∂x〈ψi, ∂y · ψm〉ΣM + ∂y〈ψi, ∂x · ψm〉ΣM

− 2(Re〈ψi, ∂x · ψj〉ΣM Re〈ψj , ∂y · ψm〉ΣM

− Re〈ψi, ∂y · ψj〉ΣM Re〈ψj , ∂x · ψm〉ΣM )

+ 4κ Re
(
2|ψ|2〈∂x · ∂y · ψi, ψm〉ΣM − 〈ψj , ψi〉〈∂x · ∂y · ψj , ψm〉ΣM

+ 〈ψi, ∂x · ∂y · ψj〉〈ψj , ψm〉ΣM

)
(3.8)

and

|Bx|2 = |〈ψi, ∂y · ψm〉ΣM |2 − 2|φy|2, |By|2 = |〈ψi, ∂x · ψm〉ΣM |2 − 2|φx|2,
〈Bx, By〉 = 〈ψi, ∂x · ψm〉ΣM 〈ψi, ∂y · ψm〉ΣM − 2φi

yφi
x.

Proof. Since the Noether current (3.4) is divergence-free, we have

∂x

(〈ψi, ∂x · ψm〉 − (φi
xφm − φiφm

x )
)

+ ∂y

(〈ψi, ∂y · ψm〉 − (φi
yφm − φiφm

y )
)

= 0.

Hence, there must exist functions Bmi that satisfy

Bmi
x = 〈ψi, ∂y · ψm〉 − φi

yφm + φiφm
y ,

Bmi
y = −〈ψi, ∂x · ψm〉 + φi

xφm − φiφm
x .

By a direct calculation we find

ΔBmi = ∂xJ im
y − ∂yJ im

x

and the result follows by Proposition 3.8. �

Remark 3.12. It is obvious that we do not get a nice geometric configuration
as for harmonic maps to spheres from (3.8) due to the presence of the spinors.

Although the regularity theory for Dirac-harmonic maps with curvature
term is fully developed by now [7] we want to point out how the Noether
current can be used to establish the continuity of the map φ, whenever we are
given a weak solutions of (2.3), (2.4) with a spherical target.
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For harmonic maps to spheres this was first noted in [16, Proposition 2.1],
and for Dirac-harmonic maps to spheres in [11, Remark 4.4] without referring
to the Noether current.

Proposition 3.13. Let (φ, ψ) : Ω → Sn be a weak κ-Dirac-harmonic map. There
exists M ∈ W 1,2(Ω,R(n+1)×(n+1)) such that

−Δφ =
∂φ

∂x

∂M

∂y
− ∂φ

∂y

∂M

∂x
(3.9)

holds.

Proof. We calculate (in a distributional sense)

Δφm = −|dφ|2φm − Re〈ψm, eα · ψi〉φi
α

= −(φi
αφm − φiφm

α )φi
α − Re〈ψm, eα · ψi〉φi

α

= −J im
α φi

α.

Since the Noether current J im
α is conserved there exist functions Mmi on Ω

satisfying

J im
x =

∂M im

∂y
, J im

y = −∂M im

∂x
,

which completes the proof. �

Corollary 3.14. This yields continuity of φ via Wente’s Lemma [25] for all
values of κ.

Remark 3.15. If one also considers a two-form contribution in the action func-
tional as in [6] then the Noether current is no longer conserved. This is not
surprising from a physical point of view: The two-form potential in the energy
functional is used to model a (generalized) external magnetic field. However,
a magnetic field always destroys the rotational symmetry of a system since it
introduces a preferred direction.

Remark 3.16. The norm of the Noether current satisfies

|J im
α |2 = |Re〈ψi, eα · ψm〉ΣM |2 + |φα|2. (3.10)

Proof. We calculate

|J im
α |2 = |Re〈ψi, eα · ψm〉|2 + 2|φα|2 − 2(Re〈ψi, eα · ψm〉)(φi

αφm − φiφm
α ).

Note that the mixed terms vanish since ψ ⊥ φ. �

In the following we want to explore the limit φ = const, which is well-
known in the physics literature as the Gross-Neveu model.
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3.1. The Gross Neveu Model and CMC Surfaces

The Gross-Neveu model [15] is a model for interacting massive fermions in
two dimensions. For its mathematical study let (M,h) be a closed Riemannian
spin surface. For a geometric treatment of the Gross-Neveu model on complete
Riemannian manifolds see [9].

Its energy functional is given by

E(ψ) =
∫

M

(〈ψ, /∂ψ〉 − λ|ψ|2 − κ

2
|ψ|4〉)dM, (3.11)

where λ and κ are real-valued parameters and ψ ∈ Γ(ΣM ⊗ R
q).

The critical points of (3.11) are given by

/∂ψi = λψi + κ|ψ|2ψi. (3.12)

The analytic aspects of such kind of nonlinear Dirac equations have been
studied in [13,23].

Lemma 3.17. Let ψ ∈ Γ(ΣM ⊗ R
q) be a solution of (3.12). Then the Noether

current

J im
α := 〈ψi, eα · ψm〉ΣM

is conserved, that is

∇eα
J im

α = 0. (3.13)

Proof. This follows by a direct calculation. �

In order to derive the corresponding Noether algebra we need an algebraic
relation for the spinorial bilinear terms. Since we are only interested in a local
statement, we choose a local trivialization of the spinor bundle ΣM such that
we can work with complex-valued functions.

Lemma 3.18. Let ψi, ψj , ψm ∈ Γ(ΣM). Then the following algebraic identity
holds

〈ψi, ∂x · ψj〉ΣM 〈ψj , ∂y · ψm〉ΣM − 〈ψi, ∂y · ψj〉ΣM 〈ψj , ∂x · ψm〉ΣM

= 2〈ψi, ∂x · ∂y · ψm〉ΣM |ψ|2ΣM + |P−ψj |2ΣM 〈P−ψi, P−ψm〉ΣM

− |P+ψj |2〈P+ψi, P+ψm〉ΣM , (3.14)

where P± is defined in (2.1).

Proof. We prove the identity via a local calculation. Locally, the spinors ψi, i =
1, . . . , q can be thought of as C

2-valued functions and we choose

ψi =
(

a1

a2

)
, ψj =

(
b1

b2

)
, ψm =

(
c1

c2

)
,
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where a1, a2, b1, b2, c1, c2 are complex-valued functions. In addition, Clifford
multiplication with ∂x and ∂y can be expressed as multiplication with the
matrices

∂x· =
(

0 1
−1 0

)
, ∂y· =

(
0 i
i 0

)
.

By a direct calculation using the standard hermitian scalar product on
C

2 we find

〈ψi, ∂x · ψj〉ΣM 〈ψj , ∂y · ψm〉ΣM − 〈ψi, ∂y · ψj〉ΣM 〈ψj , ∂x · ψm〉ΣM

= 2i(a2c̄2b1b̄1 − a1c̄1b2b̄2)

and also

2〈ψi, ∂x · ∂y · ψm〉ΣM |ψ|2ΣM = 2i(−a1c̄1b1b̄1 + a2c̄2b1b̄1 − a1c̄1b2b̄2 + a2c̄2b2b̄2).

We require that

a1c̄1b1b̄1 = a2c̄2b2b̄2,

which is equivalent to

|P−ψj |2ΣM 〈P−ψi, P−ψm〉ΣM = |P+ψj |2ΣM 〈P+ψi, P+ψm〉ΣM ,

completing the proof. �

Corollary 3.19. Let ψi, ψj , ψm ∈ Γ(ΣM). If in addition

|P−ψj |2ΣM 〈P−ψi, P−ψm〉ΣM = |P+ψj |2ΣM 〈P+ψi, P+ψm〉ΣM (3.15)

holds, then (3.14) simplifies to

〈ψi, ∂x · ψj〉ΣM 〈ψj , ∂y · ψm〉ΣM − 〈ψi, ∂y · ψj〉ΣM 〈ψj , ∂x · ψm〉ΣM

= 2〈ψi, ∂x · ∂y · ψm〉ΣM |ψ|2. (3.16)

Lemma 3.20. Let ψ be a smooth solution of (3.12). Moreover, suppose that
(3.15) holds. Then the Noether current (3.13) satisfies the following algebra

∂xJ im
y − ∂yJ im

x − κ(J ij
x Jjm

y − J ij
y Jjm

x ) = 2λ〈ψi, ∂x · ∂y · ψm〉ΣM . (3.17)

Proof. By a direct calculation we find

∂xJ im
y − ∂yJ im

x = 〈(∂x · ∇∂y
− ∂y · ∇∂x

)ψi, ψm〉+〈ψi, (∂x · ∇∂y
− ∂y · ∇∂x

)ψm〉
= 2κ|ψ|2〈ψi, ∂x · ∂y · ψm〉 + 2λ〈ψi, ∂x · ∂y · ψm〉.

In addition, we find

J ij
x Jjm

y − J ij
y Jjm

x = 〈ψi, ∂x · ψj〉〈ψj , ∂y · ψm〉 − 〈ψi, ∂y · ψj〉〈ψj , ∂x · ψm〉.
The claim then follows from the Fierz identity (3.16). �

Remark 3.21. It is obvious that the Noether algebra has the form of a zero-
curvature condition for J when we are considering the massless Gross-Neveu-
model, that is λ = 0.
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Proposition 3.22. Let ψ be a smooth solution of (3.12). In addition, suppose
that (3.15) holds. Then there exist functions B that satisfy

ΔBmi = κ(Bmj
x Bji

y − Bmj
y Bji

x ) + 2λ〈ψi, ∂x · ∂y · ψm〉ΣM . (3.18)

Proof. Since the Noether current is divergence free, there exist functions B
that satisfy

−Bij
y = 〈ψi, ∂x · ψj〉, Bij

x = 〈ψj , ∂y · ψj〉.
Thus, a direct calculation yields

ΔB = ∂xJy − ∂yJx

and the result follows from (3.17). �
Remark 3.23. In the case that λ = 0 the Noether algebra (3.18) satisfies the
equation for a CMC surface. However, B is not conformal, since

|Bx|2 �= |By|2, 〈Bx, By〉 �= 0

without posing further assumptions.

We can again use the Noether current to establish some regularity result.
However, the regularity of weak solutions of (3.12) is already well-understood,
see [3,23].

Remark 3.24. Let ψ ∈ W 1, 4
3 (ΣM) be a distributional solution of (3.12) with

λ = 0. Again, by application of the Wente Lemma we find that the map B is
continuous since

‖Bx‖L2 ≤ C‖ψ‖2
L4 ≤ C‖∇ψ‖2

W 1, 4
3
,

where the last estimate follows from the Sobolev embedding in two-dimensions.
However, we cannot use the statement on the regularity of B to gain regularity
for ψ.

Remark 3.25. It is obvious that the algebra of the Noether current for harmonic
maps to spheres and for the massless (λ = 0) Gross-Neveu model (3.17) is
the same. This fact suggests that both models describe similar geometric and
physical phenomena.

In physics this fact is often referred to as bosonization, which reflects the
fact that a combination of two fermions behaves like a boson.

In geometric terms we have seen the relationship between harmonic maps
to spheres and CMC surfaces in Remark 3.10. On the other hand, it is also
well-known that the solutions of nonlinear Dirac-equations of the form (3.12)
with λ = 0 describe CMC surfaces from the universal covering of M in R

3, see
[3,14]. More precisely, we have the following bijection

{Solutions of /∂ψ = H|ψ|2ψ}/ ± 1 ↔ {Conformal periodic H-immersions M̃ ⊂ R
3

with branching points of even order},

where M̃ denotes the universal covering of M .
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4. Conservation Laws for Targets with Killing Vector Fields

In this section we discuss how to generalize the notion of the Noether current
to target manifolds that possess Killing vector fields. The approach that we
take here is different compared to the one that is usually taken in the physics
literature. We derive the Noether current by assuming that the target mani-
fold admits Killing vector fields, whereas in the physics literature the Noether
current is obtained by considering symmetries acting on the fields that leave
the action invariant.

Let ξ be a diffeomorphism that generates a one-parameter family of vector
fields X. Then we know that

d

dt

∣∣
t=0

ξ∗g = LXg.

This enables us to give the following

Definition 4.1. Let ξ be a diffeomorphism that generates a one-parameter
family of vector fields X. Then we say that X generates a symmetry for the
action Eκ(φ, ψ, ξ∗g) if

d

dt

∣∣
t=0

Eκ(φ, ψ, ξ∗g) =
∫

M

LX(|dφ|2 + 〈ψ, /Dψ〉 + κ〈RN (ψ,ψ)ψ,ψ〉)dM = 0,

where the Lie-derivative is acting on the metric g.

Note that if X generates an isometry then LXg = 0 such that we have
to require the existence of Killing vector fields on the target.

Lemma 4.2. Let (φ, ψ) be a smooth κ-Dirac-harmonic map to a target with
Killing vector fields. Then the Lie-derivative acting on the metric g of the
energy density is given by

LX(|dφ|2 + 〈ψ, /Dψ〉 + κ〈RN (ψ,ψ)ψ,ψ〉) = 2∇eα
〈dφ(eα),X(φ)〉

− 〈RN (eα · ψ,ψ)dφ(eα),X(φ)〉
+ 2κ〈ψi, ψk〉〈ψj , ψl〉(Rijsl∇kXs − Rsjkl∇sXi). (4.1)

Proof. We calculate (with xα being local coordinates on M)

LX |dφ|2 = (LXg)ij
∂φi

∂xα

∂φj

∂xβ
hαβ

= 2∇iXj
∂φi

∂xα

∂φj

∂xβ
hαβ

= 2〈dφ(eα),∇eα
(X(φ))〉

= 2∇eα
〈dφ(eα),X(φ)〉 − 2〈τ(φ),X(φ)〉

= 2∇eα
〈dφ(eα),X(φ)〉 − 〈RN (eα · ψ,ψ)dφ(eα),X(φ)〉

− κ〈(∇XR)(ψ,ψ)ψ,ψ〉,
where we used that φ is a solution of (2.3) in the last step.
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As a second step we calculate

LX〈ψ, /Dψ〉 = 〈ψi, ( /Dψ)j〉(LXg)ij

= 〈ψi, ( /Dψ)j〉(∇iXj + ∇jXi)

= −2κRabcj〈ψa, ψc〉〈ψi, ψb〉〉(∇iXj + ∇jXi),

where we used that ψ is a solution of (2.4). Recall the formula for the Lie-
derivative of the Riemann curvature tensor

LXRijkl = (∇XR)ijkl + Rsjkl∇iXs + Riskl∇jXs + Rijsl∇kXs + Rijks∇lXs.

Consequently, we find

(LXRijkl)〈ψi, ψk〉〈ψj , ψl〉 = (∇XRijkl)〈ψi, ψk〉〈ψj , ψl〉
+ 2〈ψi, ψk〉〈ψj , ψl〉(Rsjkl∇iXs + Rijsl∇kXs).

Adding up the three contributions yields the result. �

Note that the first term on the right hand side of (4.1) already is in
divergence form, which is what we need to obtain a conservation law. To rewrite
the other terms on the right hand side of (4.1) we need the following

Lemma 4.3. Let X be a Killing vector field on a Riemannian manifold (N, g),
then the following formula holds

−RN (X,Y )Z = ∇2
Y,ZX. (4.2)

Proof. A proof can be found in [22, p.242, Lemma 33]. �

From now on X will always denote a Killing vector field on N .
First, we will give a conservation law for Dirac-harmonic maps, that is

for solutions of (2.3), (2.4) with κ = 0.

Theorem 4.4. Let (φ, ψ) be a smooth Dirac-harmonic map to a target with
Killing vector fields. Then the current defined by

Jα := 2〈dφ(eα),X(φ)〉φ∗TN − 〈∇ψX(φ), eα · ψ〉ΣM⊗φ∗TN (4.3)

is conserved, that is ∇eα
Jα = 0. Here, the notation is to be understood as

〈∇ψX(φ), eα · ψ〉 := 〈ψi, eα · ψj〉∇∂yi Xj ,

where ∂yi is a local basis of TN .

Proof. By a direct calculation we find

∇eα
〈dφ(eα),X(φ)〉 = 2〈τ(φ),X(φ)〉 + 〈dφ(eα),∇dφ(eα)X(φ)〉︸ ︷︷ ︸

=0

= 〈RN (eα · ψ,ψ)dφ(eα),X(φ)〉.
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On the other hand we get

∇eα
〈∇ψX(φ), eα · ψ〉 = 〈∇2

dφ(eα),ψX(φ), eα · ψ〉 +

〈
∇ψX(φ), /Dψ︸︷︷︸

=0

〉

= 〈RN (eα · ψ,ψ)dφ(eα),X(φ)〉,
where we applied (4.2) in the last step. The result then follows by combining
the two equations. �

As for harmonic maps [17], we can use the conserved current Jα to study
the regularity of weak Dirac-harmonic maps.

Proposition 4.5. Suppose there exists a finite dimensional Lie group G which
acts transitively on N by isometries. Then for a given weak Dirac-harmonic
map we can deduce that φ is continuous.

Proof. This follows directly as in [17, Theorem A]. �

Remark 4.6. Let (φ, ψ) be a smooth Dirac-harmonic map from a surface to a
target with Killing vector fields. Then a direct calculation yields

∇∂y
Jx − ∇∂x

Jy = 2
〈

∂φ

∂x
,∇dφ(∂y)X

〉
− 2

〈
∂φ

∂y
,∇dφ(∂x)X

〉

+
〈

RN (∂x · ψ,ψ)
∂φ

∂y
− RN (∂y · ψ,ψ)

∂φ

∂x
,X

〉
.

Due to the non-trivial curvature of the target manifold we cannot rewrite the
right hand side of this equation in terms of the current Jα as we could do in
the case of a spherical target.

Finally, we give a conservation law for solutions of (2.3), (2.4) in the case
of κ �= 0. It turns out, that we have to impose additional restrictions on the
curvature of the target manifold.

Theorem 4.7. Let (φ, ψ) be a smooth κ-Dirac-harmonic map to a target with
Killing vector fields. Then the current defined by

Jα := 2〈dφ(eα),X(φ)〉 − 〈∇ψX(φ), eα · ψ〉 (4.4)

is conserved, if N has constant curvature K.

Proof. Performing a similar calculation as before, we find

∇eα
Jα = −κ〈(∇XRN )(ψ,ψ)ψ,ψ〉 + 2κ〈∇ψX(φ), RN (ψ,ψ)ψ〉.

In general, we cannot expect to rewrite the right hand side as a divergence
term since the right hand side of (4.1) does not vanish for κ �= 0. However, the
first term on the right hand side vanishes by assumption. For the second term
we rewrite
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κ〈∇ψX,RN (ψ,ψ)ψ〉 = Rijkl∇sXi〈ψj , ψl〉〈ψk, ψs〉
= K∇sXi(〈ψj , ψi〉〈ψj , ψs〉 − |ψ|2〈ψi, ψs〉)
= 0,

where we used the assumption that N has constant curvature K in the second
step. The above expression vanishes due to the skew-symmetry of ∇sXi. �

Remark 4.8. On a closed Riemannian surface we can always find a metric
of constant curvature K due to the uniformization theorem. Consequently,
the last Theorem always holds for smooth κ-Dirac-harmonic maps to a closed
two-dimensional target.
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[17] Hélein, F.: Regularity of weakly harmonic maps from a surface into a manifold
with symmetries. Manuscr. Math. 70(2), 203–218 (1991)
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