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Abstract

We propose a symmetrized version of the defect to be used in the estimation of the local time-stepping error of
symmetric one-step methods for the time propagation of linear autonomous evolution equations. Using the anti-
commutator of the numerical flow and the right-hand side operator in the definition of the defect of the numerical
approximation, a local error estimator is obtained which has higher accuracy asymptotically than an established version
using the common defect. This theoretical result is illustrated for a splitting method applied to a linear Schrödinger
equation.
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1. Introduction

Consider the evolution equation
u′(t) = H u(t), u(0) = u0, (1)

defined on a Banach space X , with a generally unbounded time-independent operator H : D(H) ⊂ X → X which
generates a semigroup. We assume that the problem is well-defined with a sufficiently regular solution u, and denote
the fundamental solution by E = E(t) = e tH , such that

E ′ = H E = E H = 1
2 E H + 1

2 H E = 1
2{E , H}, (2)

where {U, V } = U V +V U denotes the anti-commutator of two operators. Observe that the symmetrized problem (2)
is a special case of a Sylvester-type differential equation.

Let S(t) denote the numerical flow generated by a one-step integration scheme of order p, with S ≈ E . The local
error of the integrator is denoted by L = S − E .

In computational practice, the error estimator L̃ ≈ L discussed below will be applied in a finite-dimensional setting
after (spatial) discretization of the given evolution equation and can serve as a reliable basis for the adaptive choice
of optimal time step-sizes for efficient large-scale computations. In our reasoning below we tacitly assume all the
appearing quantities to be as smooth as required.

2. Defect-based local error estimation

2.1. Classical version
We consider (w.l.o.g.) a single step of the one-step method represented by S starting from t = 0. An asymptotically
correct computable local error estimator based on the (classical) defect Dc of the numerical solution,

Dc(t) = S ′(t)−H S(t), (3)
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has been successfully employed particularly for the adaptive integration of time-dependent Schrödinger equations by
splitting methods in a series of papers [1, 2, 3]. Here the local error is approximated on the basis of the relation

L(t) =
∫ t

0

e (t−τ)H Dc(τ) dτ = 1
p+1 tDc(t) + O(tp+2). (4)

This represents the approximation of the local error integral by Hermite quadrature, involving a single evaluation at
τ = t and exploiting the fact that, due to convergence order p, the derivatives of the integrand vanish at τ = 0 up to
order p− 1. The resulting a posteriori error estimator is denoted by L̃c(t) := 1

p+1 tDc(t).

2.2. Symmetrized version
Self-adjoint one-step schemes (also called time-reversible or symmetric) are characterized by the property S(−t)S(t) =
Id. We stress that self-adjoint schemes have even order p, see [4, Theorem II.3.2].

In the following we assume that S is self-adjoint, and thus the parameter p, denoting the order of the scheme, is
an even integer. For this case, a modified construction employing a symmetrized defect,

Ds(t) := S ′(t)− 1
2{S(t), H}, (5)

yields a local error estimator with higher asymptotical accuracy, as we reason below. We will show that, in contrast
to (4), we even have

L(t) =
∫ t

0

e (t−τ)( 1
2H)Ds(τ) e (t−τ)( 1

2H)dτ = 1
p+1 tDs(t) + O(tp+3). (6)

The error estimator L̃s(t) := 1
p+1 tDs(t) with symmetrized defect Ds is based on Hermite quadrature formula as for

the classical version, but now applied to (6).

Theorem 1. Consider a selfadjoint one-step scheme of (even) order p ≥ 2, represented by S(t), applied to a linear
evolution equation (1). Let E(t) = etH , and

Ŝ(t) = S(t)− L̃s(t) = S(t)− 1
p+1 tDs(t), Ds(t) from (5).

Then the local error operator L̂(t) = Ŝ(t)− E(t) of the corrected scheme represented by Ŝ(t) satisfies

L̂(t) = O(tp+3), (7)

i.e., the corrected scheme has even order p+ 2.

Proof: By assumption on S we have S(−t)S(t) = I. By construction of Ds we have Ds(t) = O(tp), and the corrected
scheme is of order p+ 1 at least (cf. e.g. [2]). It will have even order p+ 2 if it is again selfadjoint or sufficiently close
to selfadjoint. Thus, let us consider Ŝ(−t) Ŝ(t) :

Ŝ(−t) Ŝ(t) =
(
S(−t) + 1

p+1 tDs(−t)
) (
S(t)− 1

p+1 tDs(t)
)

= S(−t)S(t)︸ ︷︷ ︸
= I

− 1
p+1 t

(
S(−t)Ds(t)−Ds(−t)S(t)

)
− 1

(p+1)2 t
2Ds(−t)Ds(t) .

Here, S(−t)Ds(t)−Ds(−t)S(t) is the critical term. With

Ds(t) = S ′(t)− 1
2{S(t), H},

Ds(−t) = S ′(−t)− 1
2{S(−t), H}

we have

S(−t)Ds(t) = S(−t)S ′(t)− S(−t) 1
2{S(t), H}

= S(−t)S ′(t)− 1
2H −

1
2S(−t)H S(t),

2



and

Ds(−t)S(t) = S ′(−t)S(t)− 1
2{S(−t), H} S(t)

= S ′(−t)S(t)− 1
2S(−t)H S(t)−

1
2H .

Together with S(−t)S(t) = I, whence

0 = d
dt

(
S(−t)S(t)

)
= −S ′(−t)S(t) + S(−t)S ′(t),

we obtain
S(−t)Ds(t)−Ds(−t)S(t) = 0 .

Thus,
Ŝ(−t) Ŝ(t) = I − 1

(p+1)2 t
2Ds(−t)Ds(t) = I + O(t2 p+2),

i.e., Ŝ is very close to selfadjoint. Now we reason in a similar way as in the proof of [4, Theorem II.3.2], proceeding
from the local error structure (asymptotic expansion) for Ŝ(t),

Ŝ(t) = E(t) + tp+2 C + O(tp+3) .

Then,

I + O(t2 p+2) = Ŝ(−t) Ŝ(t)
=
(
E(−t) + tp+2 C + O(tp+3)

)(
E(t) + tp+2 C + O(tp+3)

)
= E(−t) E(t)︸ ︷︷ ︸

= I

+ tp+2
(
E(−t)C + C E(t)

)
+ O(tp+3).

Due to E(±t) = I ± tH + O(t2) this implies C = 0. �

Theorem 1 also implies that the symmetrized defect-based local error estimator is of a better asymptotic quality
than the classical one, with a deviation L̃(t)− L(t) = O(tp+3) and not only O(tp+2).

Remark 1. An inspection of the proof of Theorem 1 shows that the argument remains valid under the weaker as-
sumption

S(−t)S(t) = I + O(tq) with q > p+ 2 . (8)

This also shows that Theorem 1 can be applied to the corrected scheme Ŝ(t), with order p+2 ≥ 4 instead of p, satisfying
(see proof above)

Ŝ(−t) Ŝ(t) = I + O(tq) with q = 2 p+ 2,

since for p ≥ 4 we have q = 2 p+ 2 > (p+ 2) + 2, and therefore (8) is satisfied (mutatis mutandis) for the scheme of
order p+ 2. This argument can be repeated inductively.
However, this method of increasing the order by defect correction will usually not be practically very relevant due to a
prohibitive computational effort as compared to a straightforward higher-order method.

Remark 2. A modification of the approach presented here also applies to nonlinear and/or nonautonomous problems.
Its practical efficiency remains to be investigated, however, and corresponding results and applications will be reported
elsewhere.

3. Splitting methods

For problems (1) with a partitioned operator H = A+B, exponential splitting methods are commonly used because
of their favorable computational properties [1, 2, 3, 4]. As an example to illustrate the general considerations above,
we resort to a symmetric 3-stage splitting method

S = S(t) = e tA1 e tB1 e tA2 e tB1 e tA1 , (9)

where we denote Aj = aj A, Bj = bj B. For a consistent scheme we have 2A1 +A2 = A and 2B1 = B.
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Practical evaluation of the defect. In this situation, the defect can be evaluated efficiently, see [2]: With

v1 = e tB1 e tA1 u, v2 = e tB1 e tA2 v1, v3 = e tA1 v2,

the classical defect (3) evaluates to

Dc u = e tA1

(
B1 v2 + e tB1 e tA2

(
(A2 +B1) v1 + e tB1 e tA1 A1 u

))
− (A1 +A2 +B) v3.

Similarly for the symmetrized defect (5),

Ds u = e tA1

(
B1 v2 + e tB1 e tA2

((
A2 +B1

)
v1 + e tB1 e tA1

(
−
(
1
2A2 +B1

)
u
)))

− 1
2 (A2 +B) v3.

Thus, the additional effort for the evaluation of Ds u only amounts to one more matrix-vector product. For an arbitrary
number of stages the procedure is analogous.

4. Numerical example

To give a numerical illustration of the above considerations, we solve a linear Schrödinger equation

i ∂t ψ(x, t) = − 1
2 ∂

2
x ψ(x, t) + V (x)ψ(x, t), (10a)

with harmonic potential
V (x) = 1

2 ω
2 x2, (10b)

and exact solution
ψ(x, t) =

(
ω
π

) 1
4 exp

(
− ω

2 (i t+ x2)
)
. (10c)

We choose ω = 1 and impose periodic boundary conditions on the interval x ∈ [−H,H] with H = 10. We use the
5-stage 4th-order splitting scheme ‘Emb4/3AK s’ (p = 4) from the collection [5], with the potential V (x) playing the
role of A and the kinetic term playing the role of B. The latter is discretized in space using pseudospectral Fourier-type
collocation using 512 subintervals. Table 1 shows the local splitting error after a single step with stepsize t together
with the deviation of the local error estimates based on the classical and symmetrized defect, respectively.

t ‖Lψ0‖2 order ‖L̃c ψ0 − Lψ0‖2 order ‖L̃s ψ0 − Lψ0‖2 order

0.40 1.77 e-05 1.42 e-06 6.31 e-08
0.20 5.57 e-07 5.0 2.23 e-08 6.0 4.95 e-10 7.0
0.10 1.74 e-08 5.0 3.49 e-10 6.0 3.87 e-12 7.0
0.05 5.45 e-10 5.0 5.45 e-12 6.0 3.16 e-14 7.0

Table 1: Numerical results for example (10). The norm ‖ ·‖2 is gauged in a way such that it is a discrete analog of the L2-norm on [−H,H].
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