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Patterns of correlation of 
facial shape with physiological 
measurements are more integrated 
than patterns of correlation with 
ratings
S. Windhager1,2, F. L. Bookstein1,3, E. Millesi4, B. Wallner4 & K. Schaefer1

This article exploits a method recently incorporated in the geometric morphometric toolkit that 
complements previous approaches to quantifying the facial features associated with specific body 
characteristics and trait attribution during social perception. The new method differentiates more 
globally encoded from more locally encoded information by a summary scaling dimension that is 
estimated by fitting a line to the plot of log bending energy against log variance explained, partial warp 
by partial warp, for some sample of varying shapes. In the present context these variances come from 
the regressions of shape on some exogenous cause or effect of form. We work an example involving 
data from male faces. Here the regression slopes are steepest, and the sums of explained variances over 
the uniform component, partial warp 1 and partial warp 2 are greatest, for the conventional body mass 
index, followed by cortisol and, lastly, perceived health. This suggests that physiological characteristics 
may be represented at larger scale (global patterns), whereas cues in perception are of smaller scale 
(local patterns). Such a polarity within psychomorphospace, the global versus the focal, now has a 
metric by which patterns of morphology can be modeled in both biological and psychological studies.

“Human facial diversity is substantial, complex, and largely scientifically unexplained”1. The human face is an 
important source of information for social interactions and for scientists alike. A face advertises, among other 
things, a person’s sex, age, hormonal status, previous environmental exposure, health, interpersonal attitudes, 
and emotions. The study of faces and what they communicate in this way integrates genomics, human behavioral 
biology and life history, evolutionary psychology, and biological anthropology. Ultimately the theory of these rela-
tionships is an evolutionary one: that the human body and face have been shaped by selective forces throughout 
our evolutionary history in response to natural and social environments. Facial morphology thereby occupies the 
middle of a causal chain whereby biological factors such as age, sex, and body composition are reflected in facial 
and bodily characteristics that then serve as cues in person perception and the consequent behaviors.

Correlational studies have identified some links between physical characteristics and social inference, but 
usually fail to identify the specific morphological pathways underlying the inferences. Morphometric face anal-
ysis, however, has demonstrated that quantification of the morphological cues is crucial2–4. For studying corre-
lates of facial shape variation, researchers are now turning to geometric morphometric (GMM) methods, which 
can combine biological factors, shape information, and trait inference in the same data space. In 2005, Schaefer 
and colleagues were the first to make use of this possibility in the analysis of faces5–7. In Schaefer et al. 2009, the 
approach was made explicit in a review article and given the name “psychomorphospace”8. Since then GMM has 
been applied in face research by several research groups, e.g., refs 9–12.
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Instead of using distances, angles, or ratios, GMM is based on a complete multivariate analysis of the locations 
(that is, the Cartesian coordinates) of a designed set of landmark and semilandmark points taken all together. 
The most important advantage of GMM is that it preserves the relative spatial relationships of the landmarks and 
semilandmarks throughout the analysis. The first step is standardizing for position, size and orientation of the 
faces using a least squares criterion (Procrustes distance). Thereafter, linear regressions of the shape coordinates 
on the variable of interest quantify and depict the association of this variable with facial shape. This paper exploits 
a GMM technique only a couple of years old that decomposes the result of such a shape regression into variation 
at both large and small scales, in order to localize and visualize the relative predominance of its large-scale ver-
sus small-scale features. The publication introducing this method13 focused on providing modern paleobiology 
with a tool to differentiate among integration, dis-integration, and self-similarity. But the concepts and equations 
entailed directly transfer to the fundamental questions in face research. Integration implies a large contribution 
from large-scale variation (global patterns), whereas dis-integration can be interpreted as a higher amplitude of 
small-scale variation (local patterns) in facial signals. Thus, this morphometric notion of integration is based as 
much in the geometry of landmark placement as in their correlations13. Even though small-scale features may be 
correlated, they cannot be “integrated” in our morphometric sense unless the deformations of the spaces around 
them are correlated as well, meaning the integration must be at large scale.

Our article exemplifies the new analysis using regressions of male faces on three traits typically associated 
with facial shape: a physical trait (body mass index, BMI), an endocrinological measure (salivary cortisol), and a 
rating (perceived health). This short list is not intended as an exhaustive directory of traits, only as a preliminary 
survey of the range of scaling dimensions that might be exploited in today’s range of studies of facial shape and 
trait attribution.

We are learning steadily more about the facial correlates of body composition and endocrinological status, on 
the one hand, and ascribed personal characteristics in social perception, on the other. Studies of facial masculinity 
or femininity and facial attractiveness have a longer history, while the topics of facial cues to body mass index or 
health are receiving increasing attention. Current studies in these areas exploit a variety of methods, including 
linear distances and angles, techniques of computer vision, and geometric morphometrics. Yet one cannot say 
whether it is the individual features (eyebrows, eyes, nose, mouth – all aspects of local variation) or instead gen-
eral aspects of shape such as the overall shape of the facial outline or facial width-to-height ratio (global variation) 
that carry most of the signal. Early approaches to this puzzle included the dissection of the face into single features 
and their isolation and systematic variation via line drawings or identi-kits (e.g., ref. 14), along with single- and 
multiple-feature variation15. Although these approaches proved productive, information about natural variation 
and covariation of the features could not be included and, in spite of modern software and feature manipulations 
(e.g., refs 16,17) cannot be retrieved. By distinguishing between local and global variation, the GMM approach 
presented in this paper supersedes such testing of isolated single features.

It is difficult to derive hypotheses about the relative contributions of large- and small-scale variation from the 
existing literature. Since faces are biological systems operating under functional constraints, a certain degree of 
integration is to be expected. This expectation is consistent with the observation that so far no biological data set 
was analyzed in which the slope of the regressions we will be highlighting was closer to zero (indicating no inte-
gration) than −0.5613. One also might expect that facial shape changes consequent to biological processes (body 
fat storage, water retention) would be more global than psychological signals would be. That is, even given the 
compartmentalization of fat or extracellular fluids (e.g., ref. 18), these are likely to be more uniformly distributed 
around the face than are social signals. For example, as Keating15, p. 68, concludes, “variations in eye size or lip 
thickness alone [are the] reliable dominance cues.” Another hint that local effects dominate social perception is 
the finding that even neutral facial expressions convey emotional meaning because certain purely histological 
traits, such as downturned corners of the mouth due to fatty pads or water retention, mimic emotional expres-
sions19, while certain ambiguous emotional displays, such as lowering the eyebrows and upturning the corners of 
the mouth, bear emotional valence (e.g., refs 20,21). Highly transient states like these that owe to single muscle 
units likely represent the most dis-integrated facial features. Other forms of social inference might be intermedi-
ate, relying on both local and global features. Taken as a whole, our new approach may not rewrite these intuitive 
understandings, but it will quantify them for the first time.

Material and Methods
Participants.  Frontal photographs (procedure below), body height via anthropometer, body composition 
(Tanita TBF 300), and saliva samples (see below) were collected from 34 ethnically Central European men from 
the Viennese student population. They were recruited at the Centre for Organismal Systems Biology of the 
University of Vienna. Each participant was informed about the measurement procedure, subsequent data use, 
and the right to withdraw from the study at any time; all gave their informed written consent. All protocols were 
in accordance with the Declaration of Helsinki.

Subjects’ age ranged from 19 to 27 years; body mass index [body weight (kg)/body height (m)2; BMI], from 
17.7 to 34.9 (22.9 ±​ 4.1). BMI and body fat proportion were highly correlated (rs =​ 0.881); we chose to present 
BMI because it is the more common choice of previous researchers into facial adiposity.

Hormone sampling.  Each participant provided six saliva samples, three per session at intervals of about 
20 minutes. Each session started between 08:00 and 09:30 a.m. Participants were advised not to eat or drink for at 
least one hour before the data collection, not to brush their teeth that morning (in order to avoid the risk of small 
bleeds), and not to be involved in sports or sexual activities, to drink alcohol or caffeine, or to take drugs over the 
12 hours preceding the measurement session. Salivary samples were frozen at −​20 °C and analyzed jointly in the 
endocrine lab at the Department of Behavioural Biology of the University of Vienna. Cortisol concentration was 
quantified by a microtiter plate enzyme immunoassay (EIA) using procedures developed by Palme and Möstl22. 
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Repeated measurements of duplicate pool samples revealed a mean inter-assay coefficient of variation of 11.6%; the 
mean intra-assay coefficient of variation was 14.5%, which is the usual variation for analyses using group-specific 
enzyme immuno-assays23,24. Individual samples with high discrepancies between duplicate samples were excluded 
before averaging. Mean cortisol values per subject ranged between 14.8 and 52.3 ng/ml (29.9 ±​ 8.9 ng/ml).

Rating study.  Each rater (39 male, 62 female; ethnically Central European; 20–45 years, 33 ±​ 6.7 years) rated 
each of the 34 male faces (grey-scaled and masked by a blurred ellipse, Fig. 1) in pseudo-random order on a com-
puter screen using sliders with a hidden range from 0 (unwell) to 100 (healthy appearance). Participation in the 
rating study was wholly voluntary; all participants completed the procedure. To account for individual variation 
in rating ranges, data were rank-ordered within each rater; then the median of the 101 scores for each photograph 
was taken as the measure for perceived health for the corresponding photograph. Median ranks ranged from 5 
to 26.75 (17.2 ±​ 5.9) out of 34, a gratifyingly wide span that sustained the further analysis we are about to report.

Facial photographs and landmark data.  Frontal photographs were taken at 350 cm with the head 
adjusted according to the Frankfort horizontal and a neutral facial expression. We used a digital reflex camera 
(Canon EOS 40D) with a 200 mm lens positioned at eye height.

A total of 71 landmarks and semilandmarks were digitized to capture facial shape (Fig. 1). Landmark defini-
tions basically match the earlier operationalization of Windhager and colleagues25.

Shape analysis.  The initial steps in the present research dataflow were those that have become standard in 
Procrustes studies of facial form8,27. Landmark and semilandmark locations from Fig. 1, after Procrustes super-
imposition, were regressed on correlates of facial form of three different types: physiological measurements (here, 
BMI), hormonal transients (here, salivary cortisol), and perceptions by others (here, a health rating). The regres-
sion vectors that prove conventionally significant by the usual permutation tests may be visualized as thin-plate 
spline grid deformations from the mean form to the predicted forms that lay three standard deviations from the 
mean in either direction (Fig. 2).

At this point we invoked the novel procedure just introduced to the community of disciplines concerned with 
evolution: the formal construction of a dimension of spatial scaling corresponding to any shape phenomenon of 
interest (here, any of these regressions). For a detailed mathematical explanation of this procedure, see ref. 13.  
The approach is an extension to our shape morphometrics of a formalism already somewhat familiar from studies 
of Brownian motion. Mandelbrot’s notion of fractal dimension28 is based on early work by Perrin29 and others 
confirming Einstein’s self-similar model of diffusion. In Brownian motion, as observed in the laboratory, the 
statistical properties of any segment of the process are independent of the duration of that segment except for 
one single parameter, the diffusion coefficient (or, for a random walk, the step variance). A diffusion four times 
as long as another looks exactly the same except for a scaling of amplitude by a factor of 2 (the square root of 4).

Bookstein13 shows how this same notion of scaling can be converted from time comparisons to space compar-
isons by use of the machinery of principal and partial warps that is already part of the standard thin-plate-spline 
morphometric toolkit27. This machinery has been part of GMM since the beginning (cf. refs 26, 27 and 30), 
but these tools are not applied as often as the other parts of this useful technological praxis for shape analysis. 
Briefly, any individual shape of some landmark configuration (here, the shape of a face) can be represented as 
the deformation of the sample average shape. The thin-plate spline diagram that GMM typically uses to convey 
one of these deformations has a specific bending energy, a net quantity of what would be actual physical energy 
if the situation were that of a metal plate bending perpendicular to the picture plane. Bending energy turns out 
to be a quadratic form (in effect, a sum of squares) in the coordinates of the landmark points themselves. And, 
just as sines and cosines are a conveniently simple representation of the way a musical sound can be expressed in 
terms of pure tones, so the principal warps are a conveniently simple representation of the ways that any single 
shape change can be re-expressed as a superposition of these rhetorically useful forms of “pure bending at some 
particular scale.” Principal warps are geometrically orthogonal components corresponding to deformations at 

Figure 1.  (a) Landmark scheme. Thirty-seven point landmarks and thirty-four semilandmarks (–) were 
digitized on each facial portrait. Subsequently, their x- and y-coordinates were subjected to a generalized 
Procrustes superimposition with additional steps for sliding and symmetrization26. (b) Greyscaled version of 
the same portrait on standardized background as vignetted by a blurred ellipse. The face in this figure is the 
actual average of all the sample faces after each was unwarped to the sample average configuration.
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different geometric scales (analogous to different powers in polynomial curve fitting31). A partial warp is just the 
combination of two copies of the same principal warp, once for the horizontal coordinate of a facial shape, once 
for the vertical coordinate. Finally, the uniform component is the part of the change that comes from patterns that 
are free of bending – the so-called affine transformations that leave parallel straight lines parallel.

Once each observed shape is represented in terms of this new set of descriptors, the uniform component 
together with all the partial warps, the analysis of integration just introduced into the evolutionary literature13 
is launched, as follows. One begins by removing all the shape variance that corresponds to the uniform shape 
changes (here, changes in height/width ratio of these faces). In a context of two-dimensional data (such as our 
facial photos), if the variance of every partial warp is exactly proportional to the reciprocal of its bending energy, 
then the nonuniform shape variance of every small square of landmarks and semilandmarks, regardless of size, 
position, or orientation, will be the same. If the variance of partial warps drops faster than their bending energy 
rises, the transformation can be said to be more integrated, with greater variability at the larger scales of shape 
features. Conversely, if partial warp variance drops more slowly than bending energy rises, the transformation 
is more dis-integrated, with more variability of the smaller-scale structures than would be predicted by the 
large-scale variation. (Our standard Procrustes null distribution lies in an extreme position on this scale, with the 
variance of every partial warp exactly the same a priori. This is one reason it is an inadvisable choice for applica-
tions in biological morphometrics32).

One gets from a landmark-based data representation to an estimate of this scaling dimension for any particu-
lar shape phenomenon by carrying out one additional regression (see examples in the penultimate figure below). 
The new regression fits a line to a plot of log bending energy against log partial warp variance for all the partial 
warps representing the transformation under study. In plots like this one, the first partial warp is the pattern of 
nonuniform shape change with the least bending per unit Procrustes length–this is usually a bending of the long 
axis of the form under study, and can be in the x-direction, the y-direction, or any combination. The second 
partial warp typically complements the first one by some version of a cubic (S-shaped) bend, likewise in any com-
bination of x- and y-directions, and so on until the last partial warp, which is usually the relative displacement of 
the pair of landmarks at closest spacing to one another. Whatever the reference form, the partial warps provide an 
ordination of all its possible shape changes along the single dimension of steadily greater and greater bending per 
unit Procrustes length (of the deformation). The fitted regression slope is a summary measure of the steepness of 
fall of this ordination. Slopes steeper than −​1 correspond to integrated processes (such as growth) that affect all 
regions of the form by a small number of quite powerful 1-factors. Slopes shallower than −​1 represent patterns of 
the opposite connotation, patterns that are much less correlated from locus to locus across the form. In-between 
are the strictly self-similar processes, of slope exactly −​1. These are the analogues of Brownian motion for this 
domain of shape features—transformations that have the same nonuniform variance (transformation of squares 
into trapezoids or kites), as a proportion of starting scale, regardless of that scale.

Of the regressions of form on its correlates that are considered in this paper, one is an integrated pattern, one is 
a dis-integrated pattern, and one is a self-similar pattern. We show the regressions of variance on bending energy 
responsible for this classification and, back on the picture of the face, the evident variations of predicted landmark 

Figure 2.  Visualization of symmetrized shape regressions upon BMI, cortisol and health rating by thin-
plate spline (TPS) deformation grids. The average landmark configuration corresponds to the undeformed 
grid. The complete symmetrized scatter of all shape coordinates that generate the grand mean is presented to 
its left. The deformations correspond to a decrease (left) or an increase (right) of 3 standard deviations of the 
predictor variable: BMI, top right pair; cortisol, bottom left pair; health rating, bottom right pair.
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shifts that correspond to this taxonomy of scaling regimes. We also interpret the difference, which is substantial, 
in terms of the different origins of these shape regressions in development versus perceptual processes.

We used F. James Rohlf ’s computer programs tpsUtil and tpsDig2 for landmark digitization, tpsRelw for slid-
ing of the semilandmarks, tpsRegr for the shape regressions, and tpsSuper for the image unwarping and averag-
ing33. The analysis of spatial scaling was carried out in S-Plus.

Results
The principal scalar measurements of this study were nearly uncorrelated among themselves. Rank-correlations 
were as follows: BMI and cortisol, 0.089; BMI and health rating, 0.157; cortisol and health rating, 0.279 (n.s. for 
our N =​ 34). Facial shape variation was strongly predicted by each of BMI, cortisol, and health rating separately. 
Each shape regression was significant (all p’s ≤​ 0.05 over 1000 permutations). With symmetrized faces, the frac-
tion of variance explained by BMI was 18.5%, by cortisol, 10.7%, and by health rating, 6.0%.

Before proceeding to the detailed spatial analysis, we guide the reader through the typical verbal interpreta-
tion of opposite pairs of grids (Fig. 2) and averaged unwarped images (GM morphs, Fig. 3). The male facial shape 
associated with low BMI in our data is mainly characterized by an elongated facial outline with the sensory organs 
comparatively larger and more widely spread out over the area of the face. This general pattern is emphasized by 
higher eyebrows, a relatively larger visible part of the sclera and iris, a longer nose, fuller lips, upturned corners 
of the mouth, and a more pointed chin. In contrast, men with a high BMI tend to have a rounder face with more 
centrally situated and comparatively smaller sensory organs. Likewise, the sclera and the iris are less visible, the 
mouth has more downturned corners, and the chin appears to be wider and rounder. The general facial correlates 
of low salivary cortisol somewhat resemble those for low BMI except for the shape of the eye region (eyes that 
are more almond-shaped). In contrast, high salivary cortisol is related to eyes that are more slit-like, with upper 
lid regions that look almost swollen. Generally, the facial outline widens with increasing salivary cortisol as with 
increasing BMI. Morphs visualizing the different health ratings hardly differ in overall size and location of the 
sensory organs in relation to the whole face (as they did for comparisons over the range of BMI or salivary corti-
sol). Still, the shapes of sensory organs are not the same along the attributed health gradient. For lower health rat-
ings, the eyes are relatively rounder, the nose thinner and longer, and the mouth narrower but framed by thicker 
lips. In contrast, higher health ratings are characterized by relatively more elliptical eyes with lower and straighter 
eyebrows, as well as a shorter and wider nose. The lips are relatively thinner and the mouth is wider. The overall 
face is less oval, but rather more square than one with lower attributed health.

In order to quantify spatial scaling for each of these regressions, shape variance is first split into uniform and 
non-uniform shape changes. The relative contribution of the uniform component varied by predictor variable: 
31.5% for BMI, 26.8% for cortisol, 25.2% for health rating (Table 1). The uniform component is depicted as black 
lines in the penultimate figure. Thereafter, the scaling dimension is estimated via the regression of log partial warp 
variance on log bending energy for all the partial warps of the transformation (Fig. 4; Fig. 5, third column). By 
definition, the first partial warps have the least bending per unit Procrustes length. Table 1 shows that the sum 

Figure 3.  Computed morphs of the averaged unwarped image (GM morphs) depicting the same shape 
regressions and configurations as the thin-plate splines (Fig. 2): the sample average as well as the facial 
shapes corresponding to low (minus three standard deviations) and high (plus three standard deviations) 
of BMI, cortisol, and health rating.
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of variances over the uniform component, partial warp 1 and partial warp 2 (the largest scale contributions) is 
highest for BMI (86%), followed by cortisol (73%) and health rating (54%). The variance at these highest three 
scales is 0.95 ×​ 10−4 for BMI, 0.49 ×​ 10−4 for cortisol, and 0.24 ×​ 10−4 for health rating.

For BMI, the partial warp variance drops faster than the bending energy rises (Fig. 5, third column). The cor-
responding slope of −1.12 stands for an integrated pattern. Cortisol shows an intermediate pattern between inte-
gration and dis-integration with a slope of −​0.99 (which Bookstein characterized as “self-similarity”13). Although 
there is a major effect of components at larger scale, there are substantial local effects as well (Fig. 5, second row, 
middle column). These are found mainly in the eye region, the relative distance between the nose and the mouth, 
and the chin. In interpreting these displacement diagrams, the reader should emphasize the visual extent of the 
colors per se – the net lengths of our three selected subdomains of partial warps, irrespective of their direction –  
and should not be concerned with the appearance of “outliers,” as the partial warps are precomputed patterns 
correlated over all 71 of the (semi-)landmarks of the design. The visual impact of the red segments decreases 
down the figure, while those of the cyan and purple segments increase. The most dis-integrated pattern was found 
for the health rating. This means that the corresponding shape changes are much less correlated from locus to locus 
across the male face. The slope of −0.76 here is significantly shallower than the regression slope of −1.12 for BMI 
(p =​ 0.002). Small-scale effects predominate (Fig. 5, bottom row).

Discussion
It has become customary to analyze correlates of facial form by regressing Procrustes shape representations of that 
variation on their hypothesized causes or effects. Both the causes of that variation (here, the BMI index) and the 
effects of that variation (here, perceived “health”) can be detected and described by strong regressions of this sort. 
Our results have shown how regressions like these can sometimes be differentiated by their apparent geometric 
scale. We might summarize the findings and their interpretation in the form of the oversimplified diagram in 
Fig. 6. Physiological effects upon form appear more integrated than hormonal correlates of form, which are, in 
turn, more integrated than the apparently multifocal perceptual effects of form that our brains invoke implicitly 
in the course of rating studies. The finding suggests a polarity within psychomorphospace studies: contrasting 
global versus focal patterns of morphology.

Predictor

Total squared length 
of the regression 
vector (×10−4)1

% Uniform 
component

% 
PW 1

% 
PW 2

Cumulative % 
(Uniform + PW 1 + PW 2)

BMI 1.1078 31.5 26.1 28.4 86.0%

Cortisol 0.6661 26.8 5.1 41.0 72.9%

Health rating 0.4440 25.2 0.8 27.7 53.7%

Table 1.  Contribution of large-scale variation as a function of the predictor variable. Total squared lengths 
of each regression vector together with the relative contributions of the uniform component and the first and 
second partial warps (PW 1 and PW 2) individually (middle columns) and summed (rightmost column). 1This 
is often called total explained Procrustes variance.

Figure 4.  Color key for the shape changes per partial warp depicted in Fig. 5. The first two partial warps (in 
red) correspond to the non-uniform components with the least bending energy per unit Procrustes length. The 
subsequent three partial warp contributions are coded in cyan, and the others – representing small-scale, local 
variations – in purple. Note the log-scale along the vertical axis.
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Figure 6 incorporates a subtle color-coding. You are familiar with color as wavelengths of light: red has the 
longest wavelength in the visible spectrum, blue the shortest. Figure 6 exploits this color spectrum by “coloring” 
the wavelengths of bending as if all these regressors, causes and ratings alike, were filters on the same unchang-
ing data set of shapes. The diagram copies the top right and bottom right regression lines from Fig. 5, “BMI” 
and “Health rating”, and adds three others corresponding to hypothetical processes that go beyond the data of 
the present paper. All these lines are to the same axes as in the right column of Fig. 5. The line labeled “Growth 
allometry” has slope -1.5, the estimated slope for allometry from an analysis of growing rodent skulls13. The 
line labeled “Emotion rating” expresses the conjecture that a rating of an emotional state, such as anger (think 
of the role of the eyebrows in conventional cartoon renderings of this emotion), will focus even more sharply 
on local features and less on global gradients at the largest scales. Finally, the line labeled “no integration” is the 
biologically impossible situation modeled by the Mardia-Dryden distribution26 where all landmarks vary inde-
pendently by the same circular Gaussian. In terms of the more conventional language of filtering, we color “BMI” 
in red because in comparison with selfsimilarity it is like a red filter, emphasizing long spatial wavelengths, and 

Figure 5.  Graphical representation of spatial scaling. The left column depicts the contribution of the uniform 
component (in black) as well as the vectors for partial warp 1 and partial warp 2 (both in red). This stands for 
large-scale variation. In the middle column, the other partial warps, representing small-scale variation, are 
added (the next larger three in cyan, the others in purple). The uniform component together with all partial 
warps gives the deformations depicted in Fig. 2. The right column gives the log partial warp amplitude squared 
together with the log bending energy for each partial warp. The frame at upper right is not missing a red dot; 
rather, there are two red dots, which overlap nearly perfectly on the scale of this vertical axis. Lines are the 
regressions whose slopes indicate the level of (dis-)integration pattern by pattern.
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the Health rating is drawn in blue because, like a blue filter, it comparatively emphasizes shorter wavelengths – 
the partial warps of higher energy at the right on the horizontal scale. Growth allometry should be drawn in the 
“infrared” on this diagram, even stronger at larger scales and weaker at small scales. Conversely, emotional ratings 
should be drawn in ultraviolet, with even more amplitude than the health rating at the smaller scales. Finally, 
the parody of “no integration” is shown in black, as it is incompatible with life. In the metaphor of the filter, this 
distribution lets no meaningful biological signal through at all.

The sort of large-scale variation represented by the red line in Fig. 6 is conceptually analogous to the 
n-dimensional feature space proposed by Grammer and colleagues34, in which correlated features compose a 
single ornament no matter the spatial extent over which they are correlated. In contrast, single feature approaches 
such as identi-kits might be regarded as analogous to the small-scale patterns here indicated by the colors of blue 
or violet.

Certainly, systemic effects are reflected in much more global spatial patterns than single muscle movements 
are. In this context fat and water distribution seem to be important issues. In young adults (as in our sample), fat 
in the face looks fairly evenly distributed because of smooth transitions between subcutaneous fat compartments, 
while ageing leads to abrupt contour changes between these regions18. This is the straightforward explanation 
of why our shape regressions on BMI reveal mainly large-scale changes in facial morphological covariation: all 
facial regions studied are highly integrated in respect of fat deposit processes. In contrast, increased saliva cortisol 
concentrations not only influence the overall shape but also have an impact on specific features, in particular on 
the area around the eyes. Physiologically, circadian secretion rates of cortisol in relation to other hormones or 
life-style factors can dramatically influence the water exchange between cells and the extracellular space by ion 
movements along the cell membranes35. Also, cortisol administration in healthy men leads to an expansion of 
extracellular plasma volume36. So it would be reasonable to assume that the inter-individual differences in cortisol 
in our sample might be associated with differences in water retention. And these effects seem quantifiable not 
only in a more rounded facial outline with somewhat centrally located sensory organs but also locally around 
the eyes. “Swollen eyes” can safely be added to this phenomenon, since periorbital puffiness is typically caused by 
fluid buildup around the eyes.

Further differentiation comes from the nature of ratings. Someone who is asked to attribute a certain trait to a 
face will search for the cues of that trait. In our example, the raters likely pick shape features that in their experi-
ence systematically vary with health status. For instance, faces with “apple cheeks” would consistently be assigned 
a more highly ranked health status than those hollower in the cheek and eye areas (a pattern coherent with our 
shape estimates for perceived health status, Figs 2 and 3). In our sample of young male faces, health raters might 
also pay attention to features such as testosterone markers (pointing to a good immune system37), body size 
markers, and physical strength markers, adding up to a “patchwork face” with a masculine and robust appearance 
(Fig. 3, bottom right morph). For all of these reasons, the spatial scale for a rating is generally less integrated than 

Figure 6.  Spatial wavelengths: the “colors” of the face as viewed frontally. This schema visualizes the 
different structures of correlation across shape regressions by dissecting the scale of variation involved. While 
biological variables are encoded in rather large scale (global patterns), perceptual outcomes tend to be of smaller 
scale (local patterns). Brackets indicate hypothetical scenarios.
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for a physiological condition. Dis-integration probably peaks for ratings of emotional expressions. We now have 
a metric to quantify the different spatial scalings of shape changes associated with the various predictor variables.

In our sample, BMI, cortisol, and health rating are hardly correlated at all. In light of this near-independence 
of causes and effects combined with the visual similarity of some features in the graphs of Fig. 5, we briefly look 
into the shape regressions themselves and relate our results to other studies on facial correlates of BMI, cortisol, 
and perceived health.

The facial shape changes associated with increasing BMI parallel those that others have found, e.g., ref. 9. The 
overall pattern, which seems robust against choice of morphometric method, is predominantly a global effect, an 
enlarged lower face. In their meta-analysis of two “Caucasian” and two “African” male samples, Coetzee et al. note 
a low but significant positive correlation of BMI with facial width-to-height ratio and a low negative correlation 
with perimeter-to-area and with cheek-to-jaw-width ratios38. Cheek depth and relative lower face width seem to 
be most affected by nutritional condition (see reference 39 for a review). The pattern in Fig. 5 also closely resem-
bles the deformation induced by rising percentage of body fat in men25 and in female adolescents40. In a sample 
of children and adolescents, three normalized distances representing the lower face area were enough to train a 
machine to predict body weight from facial portraits41. Our approach does not require preselection of subsamples 
or preselection of specific local features as in Henderson and colleagues42. When analyzed by shape regressions, 
such features and contrasts are implicitly embraced by a single pooled analysis of all the landmarks and semiland-
marks on all the faces.

This study is one of the first to quantify the facial shape changes that covary with cortisol in young adult males. 
Moore and colleagues produced composite faces, each an average over five to eight men, to represent the four 
combinations of high/low cortisol with high/low testosterone43. It appears that their results parallel ours: Both of 
their high cortisol conditions are characterized by a rounded facial outline with eyes, nose, and mouth relatively 
close together. Due to variation in their head positioning we could not compare aspects of the eyes. Our results 
also resemble to some extent the ones obtained by Gonzalez-Santoyo and colleagues for young adult women44. 
They averaged ten faces of women with low salivary cortisol concentrations and ten faces of women with high 
cortisol levels. As for men, more salivary cortisol was associated with a higher facial width-to-height ratio. In con-
trast, their composite for high cortisol had rounder eyes than the one for low cortisol levels, which is the opposite 
of the trend that we observed. Our pattern of high cortisol effects is also consistent with the facial appearance of 
Cushing’s disease (which involves, among other symptoms, chronic overproduction of cortisol). Common signs 
and symptoms of Cushing’s are a round “moon face” along with weight gain/central obesity, hypertension, thin 
skin and stretch marks, and muscle weakness45,46. Cortisol administration in healthy men has been related to an 
expansion of extracellular plasma volume36. Such water retention might also explain the “swollen eyes” or droop-
ing eyelids that we observed as local effect with increasing cortisol concentration.

The percentage of large-scale variation (Table 1) dropped to just over half when the regression was on a rating 
instead of a physiological measurement. Raters overweighed small-scale variation in face shape when judging 
the health status of another individual in comparison to global patterns like BMI. One explanation could be that 
people attend to small-scale variations because of the variety of facial expressions and their importance in inter-
personal encounters. Perrett and colleagues (2001, as cited in ref. 47) presented composite images combining the 
20% healthiest-looking male students and separately the 20% least healthy-looking. A separate version of their 
study amplified shape, color and texture differences (all images reprinted in ref. 47). The shape characteristics 
associated with perceived health paralleled our results. In women, perceived health is associated with upward 
mouth curvature, but not with eyelid openness42.

According to Vernon and colleagues48, p. E3353, “despite enormous variation in ambient images of faces, a 
substantial proportion of the variance in first impressions can be accounted for through linear changes in objec-
tively defined features.’’ We have shown that those “linear changes” arise at a range of geometric scales. It is a log-
ical next step to examine which ratings use which features and how their weights might vary in social perception 
of other qualities or over the type of person being rated (a child, a woman, a person of a different ethnicity [in 
which respect see Blais et al.49 or Tan et al.50]). In line with the analogy of filtering wavelengths, this approach 
might ramify into models of neural processing patterns that can then be systematically tested by functional brain 
imaging or other neurometric laboratory methods.

In conclusion, the methods we presented here augment the information obtained from a shape regression 
by the patterns of diverse spatial scaling profiles. Not only can we calculate the percentage of variance that is 
explained by large-scale features, to be compared across predictors and contexts (e.g., biological processes vs. 
zero-acquaintance guesses), but also the slope of the additional regression serves as a continuous metric, the 
“color” of the spatial filter. Future studies could extend this paradigm by incorporating ratings of emotions that 
are presumed to correspond to the least integrated shape patterns. The new method renders the framework for 
classification of the profiles of psychomorphospace considerably more robust. For example, the dominance of 
small-scale features in the production of ratings could well help to explain the overgeneralization biases that 
notoriously afflict rating behaviors in most studies of the particular socially salient ratings that lead to prejudice 
and ethnic conflicts.
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