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Abstract

Background: The binding of small ligands to RNA elements can cause substantial changes in the RNA structure. This
constitutes an important, fast-acting mechanism of ligand-controlled transcriptional and translational gene regulation
implemented by a wide variety of riboswitches. The associated refolding processes often cannot be explained by
thermodynamic effects alone. Instead, they are governed by the kinetics of RNA folding. While the computational
analysis of RNA folding can make use of well-established models of the thermodynamics of RNA structures formation,
RNA–RNA interaction, and RNA–ligand interaction, kinetic effects pose fundamentally more challenging problems
due to the enormous size of the conformation space. The analysis of the combined process of ligand binding and
structure formation even for small RNAs is plagued by intractably large state spaces. Moreover, the interaction is
concentration-dependent and thus is intrinsically non-linear. This precludes the direct transfer of the strategies
previously used for the analysis of RNA folding kinetics.

Results: In our novel, computationally tractable approach to RNA–ligand kinetics, we overcome the two main
difficulties by applying a gradient-based coarse graining to RNA–ligand systems and solving the process in a
pseudo-first order approximation. The latter is well-justified for the most common case of ligand excess in RNA–ligand
systems. We present the approach rigorously and discuss the parametrization of the model based on empirical data.
The method supports the kinetic study of RNA–ligand systems, in particular at different ligand concentrations. As an
example, we apply our approach to analyze the concentration dependence of the ligand response of the rationally
designed, artificial theophylline riboswitch RS3.

Conclusion: This work demonstrates the tractability of the computational analysis of RNA–ligand interaction.
Naturally, the model will profit as more accurate measurements of folding and binding parameters become available.
Due to this work, computational analysis is available to support tasks like the design of riboswitches; our analysis of
RS3 suggests strong co-transcriptional effects for this riboswitch.
The method used in this study is available online, cf. Section “Availability of data and materials”.
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Background
Riboswitches enable the specific response to the pres-
ence of ligands by transcriptional or translational control
of gene expression. Their ability to switch genes on or
off depending on small molecules such as theophylline or
tetracycline makes them valuable biotechnological tools.
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The design of tailored riboswitches for specific applica-
tions and advanced control logic is therefore an attractive
endeavor in synthetic biology [1]. A riboswitch can be
understood as the composition of its aptamer and its actu-
ator domain. It senses the ligand by binding it to a binding
pocket of the aptamer domain; this influences the con-
formations of the actuator domain and thereby leads to
a measurable response to ligand binding, e. g. by ter-
minating transcription (OFF-switch) or suppressing the
terminator hairpin (ON-switch).
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The computational design of artificial riboswitches
requires a sufficiently accurate model of the lig-
and binding process and the structural response of
the RNA to ligand binding. The equilibrium ther-
modynamics of RNA–ligand binding has been stud-
ied for RNA–RNA interactions, e. g. in [2, 3], and
for small molecule binding in RNA–ligand [4]. As in
the case of single molecule RNA folding, purely ther-
modynamic models are sometimes insufficient because
they disregard the dynamics of the process. This can
cause dramatic mis-predictions. Various approaches have
analyzed the kinetics of single molecule RNA folding
[5–8]. For tractability, the continuous process is decom-
posed into elementary steps, simplified based on heuristic
assumptions, and/or approximated by a coarse-grained
process.
Wolfinger et al. [7] present a coarse-graining approach

to approximate RNA folding. Following e. g. [6], they
analyze the folding process on the energy landscape of
conformations, i. e. secondary structures, Ri of an RNA R.
Conformation change is modeled by elementary moves
(base pair insertion or deletion) endowed with reaction
rates that follow the Arrhenius rule and thus depend
on the energy barrier between the source and target
conformations. In the approximation of RNA secondary
structures, activation energies for opening/closing of
single base pairs are approximately constant. The energy
barrier thus effectively depends only on the energy differ-
ence between source and target [7]. This defines a Markov
Process on the state space of all secondary structures,
which is too large to make it possible to analyze it by diag-
onalizing the corresponding rate matrix. To effectively
reduce the state space, [7] combine states into basins that
consist of all conformations that are connected to the
same local minimum by their gradient walk on the energy
landscape. Since gradient walks connect states to their
lowest energy neighbors, they correspond to the fastest
folding paths from a state into a local minimum. This
provides the rationale for approximating the full process
by the macroprocess on gradient basin macrostates,
which are assumed to be equilibrated. Consequently, the
rates between the macrostates are canonically derived
as weighted sums of microrates of the original process.
By employing this heuristic approach, the size of the
conformation space of smaller RNA molecules of up to
a hundred nucleotides is typically reduced to just a few
thousand macrostates. For example, in our analysis of the
81 nucleotide long riboswitch RS3 [1], 11.4millions of sec-
ondary structures are mapped to 1133 macrostates. The
macroprocess is finally solved by diagonalization. In our
approach we re-use ideas of this coarse-graining, which
also allows us to re-use several tools for single-molecule
RNA kinetics (RNAsubopt [9], barriers [10],
treekin [7]).

RNA–ligand interaction model
We are going to describe a reaction system of the RNA
R (given by its sequence of nucleotides {A,C,G,U}) with
the ligand L at the level of RNA and binding complex
conformations, such that we can study the kinetics of
association, dissociation, and conformation changes. For
simplicity, we assume that there is only a single ligand con-
formation (also denoted L). In the same way as a single
RNAmolecule transitions between various conformations
during the folding process, the complex of RNA and lig-
and adopts different conformations LRi. Importantly, only
a subset of the RNA conformations binds the ligand. The
part of the total state space that corresponds to the RNA–
ligand complexes is therefore isomorphic to a subset of the
state space of the free RNA molecule. Thus, our system of
consideration consists of the reactions

Ri −→ Rj (1)
L + Ri −→ LRi (2)

LRi −→ L + Ri (3)
LRi −→ LRj, (4)

for all i, j ∈ {1, . . . ,N}, i �= j. According to the rate laws for
elementary reactions, the rates of each of these reactions
depend on specific rate constants and the concentrations
of the molecules. The reactions 1 and 4 only have non-
zero rate constants, if the RNA conformations Ri and Rj
are related by an elementary move such as the insertion
or deletion of a base pair. Moreover, L and Ri can inter-
act only for the subset of the Ri that form an appropriate
binding pocket; otherwise, the complex LRi is deemed
unstable and thus excluded from the model. Since RNA
conformations correspond to RNA secondary structures,
the energies of monomer states can be calculated from the
Turner energy model [11]. For dimer states, we add the
aptamer–ligand-specific binding energy. For the exem-
plary studied riboswitch RS3, this energy can be derived
from the empirical dissociation constant [1]. Finally, we
derive the rate constants as Metropolis rates with appro-
priate pre-exponential factors that can be estimated from
empirical rates. Note that the rates of base pair opening k−
and closing k+ are directly related by the energy change
�G due to the closing. Concretely, k−/k+ = exp(�G/RT)

for �G < 0. Experimental values are available for the zip-
pering rate, which corresponds to the rate of closing the
last hairpin in a helix. A careful analysis in [12] yields a
value in the range 4.7 · 107 to 109s−1 roughly consistent
with earlier estimates [13–15]. In principle, a kinetic con-
stant can be derived for the closing of first base pair in
a loop from a worm-like chain model [12, 16]; following
earlier work on RNA kinetic models [7], we use here a sin-
gle kinetic parameter k+ for all base pairs. An empirical
rate of one specific theophylline aptamer association was
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reported as 600M−1s−1 [17], which may serve as rough
estimate for comparable systems. Note that [17] measured
the macroscopic apparent rate that depends on the rate of
dimerization as well as the rate of refolding into structures
with theophylline binding pocket.
While the Reactions 1, 3, and 4 are of first order, the

second order association in Reaction 2 introduces non-
linearity into the system. Assuming ligand excess, which
is a very plausible assumption for small molecular lig-
ands, however, it is possible to devise a pseudo-first order
approximation of the system.
Even if the reaction equations above appropriately

model the RNA–ligand interaction, this system is still
computationally intractable for typical riboswitch sizes.
As a remedy, we construct a coarse-grained process based
on the separate gradient-basins for the monomer and
dimer-states. The monomer states with suitable bind-
ing pocket are connected to dimer states, cf. Fig. 1.
Importantly, there is no direct mapping from monomer
macrostates to dimer macrostates of our coarse-grained
system because conformations without binding pockets
are absent from the “dimer world”. The upper basin in the
“monomer world” of Fig. 1 is subdivided into two basins
in the dimer world; conversely, the middle and lower

Fig. 1 Relation between the monomer energy landscape � (above)
and the dimer energy landscape �∗ (below). We obtain the landscape
of the dimers from the landscape of the monomers by constraining
the structures to contain the binding pocket. Blue circles indicate
structures with binding pocket, while the remaining structures are
shown as green squares. Notably, the assignment to gradient-basins
regularly differs for corresponding structures in both landscapes, if
gradient neighbors (solid arrow transitions) of the monomer world
have no binding pocket such that non-gradient neighbors (dashed
arrow transitions) of the monomer world correspond to gradient
neighbors in the dimer world. Filled circles and squares mark local
minima

monomer basins correspond to a single basin of the dimer
world.

Contributions
We start by elaborating the general macroprocess
of RNA–ligand interaction, based on gradient basin
macrostates, and derive the corresponding rate constants.
This contributes an original description of coarse-grained
interaction processes; it is the first fundamental prerequi-
site for our tractable RNA–ligand kinetics approach. Fur-
thermore, we leverage that a wide spectrum of biological
RNA–ligand systems operate under strong ligand excess,
justifying the pseudo-first order approximation. On these
grounds, we establish the first analytical approach for
RNA–ligand interaction kinetics. Based on solving the
master equation of the interaction process, this enables
the computation of time-dependent macrostate proba-
bilities. Finally, we study the kinetics of the artificially
designed riboswitch RS3 [1] interacting with theophylline.
We analyze the system at different concentrations and
present results that strongly suggest co-transcriptional
effects.

Methods
We consider the fixed interaction system of the RNA R
and the ligand L. Let X denote the set of all monomer
microstates, X = {Ri | i = 1, . . . ,N}; in our setting, the
Ri are the secondary structures of a given RNA sequence.
The subset X+ ⊆ X comprises the conformations that can
bind the ligand. Here X+ contains all states with a specific
binding pocket. Furthermore, defineX∗ as the set of dimer
microstates LRi, X∗ = {LRi | Ri ∈ X+} ⊆ {LRi | i =
1, . . . ,N}.
A dimer microstate LRi ∈ X∗ has the energy E(Ri) + θ ,

where θ < 0 denotes the binding energy of R and L. The
inverse temperature is b = 1

RT , where T is the absolute
temperature and R is the universal gas constant. For a set
S ⊆ X∪X∗ of microstates, let Z[ S ] := ∑

x∈S exp(−bE(x))
denote the partition function of S. The probability of a
microstate x in S is then given by

Pr[ x | S ] :=
{
exp(−bE(x)) /Z[ S ] if x ∈ S,
0 otherwise.

Let x, y ∈ X ∪ X∗ be microstates. The microrate con-
stant from x to y is denoted k(x → y) (or k(y ← x)). On
microstates x, y, we define the symmetric neighborhood
relation N such that xN y holds if and only if x and y have
a distance of exactly one elementary move.
For xN y, let

E�
xy := max{E(x),E(y)} − E(x)
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be the activation energy of the transition x → y as defined
by the Metropolis rule. Accordingly, the microrate con-
stants for distinct states x, y ∈ X ∪ X∗, where xN y, are
defined as

k(x → y) := A(x → y) exp(−bE�
xy),

otherwise, define k(x → y) := 0. A(x → y) denotes the
reaction-specific pre-exponential factor. For our pur-
poses, we assume that this factor depends only on the type
of reaction and the factors for conformation change in
monomers and dimers are equal. Thus, we distinguish the
factors Aa for association, Ad for dissociation, and AR for
conformation changes of the RNA secondary structure.
As we will show later, Aa = Ad due to detailed balance.
Denote the powerset of a set S by P(S). A monomer

(or dimer) macrostate is a set of monomer (or dimer)
microstates, i. e. an element of P(X) (P(X∗)). We denote
the (macro)rate constant from macrostate α to β by
r(α → β) (or r(β ← α)). Macrorate constants are defined
by summing over microrate constants and their respective
state probabilities, i. e.

r(α → β) :=
∑

x∈α,y∈β

Pr[ x | α ] ·k (x → y) .

We emphasize that we use the term macrostates freely
to denote general sets of microstates. Only when we
introduce specific partitions of the microstates into
macrostates, it makes sense to distinguish represented
macrostates of our specific coarse-grained system from
other sets of microstates.

Results and discussion
Macrostate kinetics of RNA–ligand interaction
For a microstate x ∈ X+, we denote its corresponding
dimer microstate (after binding to L) by Lx, i. e. for x = Ri,
Lx = LRi. This notation is raised to sets of microstates
by defining Lα := {Lx | x ∈ α}. Lemma 1 below asserts
that the rate constants between dimer microstates and
macrostates can be computed exactly like rate constants
of monomer states.

Lemma 1 For x, y ∈ X+, k(Lx → Ly) = k(x → y).
Furthermore, Pr[ Lx | Lα ]= Pr[ x | α ] holds for all
α ∈ P(X+). Finally, r (Lα → Lβ) = r (α → β) , for all
macrostates α,β ∈ P(X+).

Proof The individual claims follow easily from the def-
initions. If (x, y) /∈ N , k(x → y) = 0 = k(Lx → Ly), so
assume xN y. Since

E�
LxLy = max

{
E(Lx),E(Ly)

} − E(Lx)

= max
{
E(x) + θL,E(y) + θL

}

− (E(x) + θL)

= max{E(x),E(y)} + θL

− E(x) − θL

= E�
xy

holds,

k(Lx → Ly) = A(Lx → Ly) exp
(
−bE�

LxLy

)

= A(x → y) exp
(
−bE�

xy

)

= k(x → y).

Furthermore,

Pr[ Lx | Lα ] = exp(−bE(Lx))
Z[ Lα ]

= exp(−b[E(x) + θL] )
∑

x∈α exp(−b[E(x) + θL] )

= exp(−bθL) exp(−bE(x))
exp(−bθL)

∑
x∈α exp(−bE(x))

= Pr[ x | α ] .

Finally,

r(Lα→ Lβ) =
∑

Lx∈Lα
Ly∈Lβ

Pr[ Lx | Lα ] ·k(Lx → Ly)

=
∑

x∈α
y∈β

Pr[ x | α ] ·k(x → y)

= r(α → β).

The microrate constant from monomer to dimer states
is constant, whereas the back rate depends on the binding
energy θ .

Lemma 2 (Association and dissociation microrate con-
stants) For x ∈ X+, the rate of association is k(x → Lx) =
Aa, while the dissociation rate is k(Lx → x) = Ad exp(bθ).
All other rates between monomer and dimer microstates
are 0.

Proof By Metropolis rule, for x ∈ X+,

k(x → Lx) = Aa exp
(−bE�

xLx
)

= Aa exp (−b[E(x) − E(x)] )
= Aa,

since E�
xLx = max{E(x),E(Lx)} − E(x) and, additionally,

E(Lx) = E(x) + θL ≤ E(x). Analogously, for the inverse
microrate,
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k(Lx → x) = Ad exp
(−bE�

xLx
)

= Ad exp(−b[E(x) − E(Lx)] )
= Ad exp(bθL).

The association (dissociation) microrates due to
Lemma 2 induce corresponding macrorates, which
additionally depend on the probability of the associa-
ble (dissociable) microstates in the source macrostate,
respectively (Lemma 3).

Lemma 3 (Association and dissociation macrorate con-
stants) For arbitrary α ∈ P(X) and β ∈ P(X+), equation
r(α→ Lβ) = Aa

Z[α∩β ]
Z[α ] holds. Additionally, r(Lβ → α) =

Ad
Z[α∩β ]
Z[β ] · exp(bθ).

Proof Let α ∈ P(X) and β ∈ P(X+). Thus

r(α→ Lβ) =
∑

x∈α
Ly∈Lβ

Pr[ x | α ] ·k(x → Ly)

=
∑

x∈α∩β

Pr[ x | α ] ·k(x → Lx)

= Aa
Z[ α ∩ β ]
Z[ α ]

and

r(Lβ → α) =
∑

Lx∈Lβ
y∈α

Pr[ Lx | Lβ ] ·k(Lx → y)

=
∑

x∈α∩β

Pr[ Lx | Lβ ] ·k(Lx → x)

= Ad
Z[ α ∩ β ]
Z[ β ]

· exp(bθL).

A tractable model under ligand excess
For our coarse-grained RNA–ligand interaction process,
we partition the monomer microstates X and the dimer
microstates X∗ into sets of macrostates � and �∗, respec-
tively. For the theoretical discussion, we require only
that � and �∗ are partitions of the respective sets X
and X∗. Later, in our application, we are going to define
macrostates as gradient basins (within their respective
component).
We denote the monomer macrostates (in �) by

α1, . . . ,αn and the dimer macrostates (in �∗) by
β1, . . . ,βm. Since—by model assumption—the ligand is in
large excess, the change of the ligand concentration [ L] is
essentially negligible in relation to the change of RNA con-
centrations. Formally, we assume d/dt[ L]= 0, i. e. at all
times [ L]= l0, for the initial ligand concentration l0. The

change of RNA monomer and RNA–ligand dimer con-
centrations over time is described by a system of ordinary
differential equations (ODEs) corresponding to Reactions
(1)–(4).
Following the first-order rate laws, Reaction (1) causes

n2 − n flows r(αi → αj)[αi] from αi to αj (1 ≤ i, j ≤ n,
i �= j); Reaction (4) m2 − m flows r(βi → βj)[βi] from βi
to βj (1 ≤ i, j ≤ m, i �= j); and Reaction (3) n · m flows
r(βi → αj)[βi] from βi to αj (1 ≤ i ≤ m and 1 ≤ j ≤ n).
In contrast to these simple first-order transitions, the state
changes due to Reaction 2 follow second-order rate laws
contributing the n · m flows r(αi → βj)[ L] [αi] from αi to
βj (1 ≤ i ≤ n and 1 ≤ j ≤ m). Without the assumption
d/dt[ L]= 0, the rate would depend on two variable con-
centrations, causing the system to be non-linear. However,
by our assumption, the concentration [ L] is constant.

The system of ODEs. The change of concentrations is
now described by summing over single contributions:

d
dt

[αi]=
∑

1≤k≤n
k �=i

r(αk → αi)[αk]

+
∑

1≤k≤m
r(βk → αi)[βk]

−
∑

1≤k≤n
k �=i

r(αi → αk)[αi]

−
∑

1≤k≤m
r(αi → βk)[ L] [αi]

for i = 1, . . . , n, and

d
dt

[βj]=
∑

1≤k≤n
r(αk → βj)[ L] [αk]

+
∑

1≤k≤m
k �=j

r(βk → βj)[βk]

−
∑

1≤k≤n
r(βj → αk)[βj]

−
∑

1≤k≤m
k �=j

r(βj → βk)[βj]

for j = 1, . . . ,m.
We set γ := (α1, . . . ,αn,β1, . . . ,βm)T and define the

(n + m)× (n + m)-matrix R(l0). Then the entire coarse-
grained system under ligand excess can be expressed by
the linear ODE d

dt [ γ ]= R(l0)[ γ ] , where

R(l0) =
(

A C
l0 · D B

)

is constructed from four submatrices:
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A is an n×n-matrix with entries aij = r(αi ← αj) for
1 ≤ i, j ≤ n, i �= j. For 1 ≤ i ≤ n,

aii := −
∑

1≤k≤n
k �=i

r(αk ← αi) −
∑

1≤k≤m
l0r(βk ← αi).

B is anm×m-matrix with entries bij = r(βi ← βj) for
1 ≤ i, j ≤ m, i �= j. For 1 ≤ j ≤ m,

bjj := −
∑

1≤k≤n
r(αk ← βj) −

∑

1≤k≤m
k �=j

r(βk ← βj).

C is an n×m-matrix with entries cij = r(αi ← βj) for
1 ≤ i ≤ n, 1 ≤ j ≤ m, and

D is anm×n-matrix with entries dij = r(βi ← αj) for
1 ≤ i ≤ m, 1 ≤ j ≤ n.

Computing RNA–ligand kinetics
The described ODE system can be solved analytically
building on existing software. The entire computation
pipeline consists of five major steps:

1. enumeration of the RNA’s structure space
2. computation of the gradient basins and

corresponding rates for

(a) the monomer landscape
(b) the dimer landscape

3. computation of the rates between the monomer and
dimer basins

4. construction of the full rate matrix R(l0)
5. integration of the linear ODE system

Since an exhaustive enumeration of the structure space
is infeasible even for short RNAs, Step 1 generates only
a selected part of all possible secondary structures of the
input RNA. For this work, we consider only structures
up to a certain energy above the minimum free energy of
the sequence as computed by RNAsubopt [9]. To further
reduce the number of structures, only structures without
any isolated base pairs are generated.
Often, the restriction to low energy structures excludes

important microstates of relatively high energy such as the
open RNA chain from the model. Simply adding such a
structure to the system is insufficient without also includ-
ing transitional structures that connect it to the remaining
states. The solution for this work was to develop a heuris-
tic algorithm to partially explore an energy landscape
around a given structure of interest, flooding neighbored
basins if their local minimum has a lower energy than
the current one, until one reaches structures within the
already explored energy band. This approach seems to be
more adequate in the context of a gradient basin coarse
graining than a direct path heuristic (e. g. findPath [6]).

In Step 2a, we compute the gradient basins and rates
for the monomer landscape from the list of input struc-
tures using barriers [7] (with minh heuristic). For
Step 2b, a list of all input structures that contain the
binding pocket is generated with RNAsubopt’s constraint
folding mode. This enables one to enumerate dimer struc-
tures up to a higher energy than possible for the entire
landscape, ensuring the dimer world is connected. As
shown in Lemma 1, the transition rates in the constrained
dimer landscape are independent of the ligand’s binding
energy and thus can be computed exactly like those of the
monomer landscape.
In Step 3, the transition rates between monomer and

dimer macrostates are computed based on Lemma 3 using
the mapping of the monomer and dimer structures to
their respective basins. For this purpose we modified
barriers to output this information.
Step 4 yields the full rate matrix R(l0) for one set of pre-

exponential factors and a certain ligand concentration l0
by combining the previously computed rate constants. We
emphasize that we can easily compute R(l0) for different
values of l0, Aa and AR without repeating the previous,
more time-consuming computation steps.
Finally, in Step 5 the system of ODEs is solved directly

using the closed form �c(t) = exp(tR(l0)) · �c(0), where �c(t)
is the vector of macrostate concentrations at time t. The
exponential exp(tR(l0)) is obtained by diagonalizing R(l0)
numerically using the tool treekin [7], which performs
this computation efficiently.

Parameters from empirical measurements
The binding energy θ can be derived from an empirically
measured dissociation constant KA

d of the aptamer; e. g. in
the case of theophylline, [18] measure a KA

d of 0.32μM for
the theophylline aptamer of RS3. From the macroscopic
measurement, we derive the binding energy as

θ = RTA ln
(
KA
d · Pr[ “pocket” | A,TA ]

)
,

whereTA = 298K is the temperature of themeasurement,
R is the gas constant, and Pr[ “pocket” | A,TA ] denotes
the equilibrium probability of the binding pocket in the
aptamer at temperature TA as calculated in the Turner
energy model (cf. [1], which neglect the probability). This
relation allows calculating the effective dissociation con-
stant at temperature TR of a theophylline riboswitch like
RS3 that contains the aptamer, due to the inverse relation

KRS
d =

exp
(

θ
RTR

)

Pr[ “pocket” | RS,TR ]

=
(
KA
d · Pr[ “pocket” | A,TA ]

) TA
TR

Pr[ “pocket” | RS,TR ]
.
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For RS3 at TR = 313.15K,

Pr[ “pocket” | A,TA ] ≈ 0.292

and

Pr[ “pocket” | RS,TR ] ≈ 2.59 · 10−11

due to the pocket-constrained and unconstrained ensem-
ble free energies in the Turner model. Thus,

θ ≈ RTA ln
(
0.292KA

d

)
≈ −9.59

kcal
mol

and

KRS3
d ≈

(
0.292KA

d
) TA
TR

2.59 · 10−11 ≈ 7891M.

For relating the rates of the different reaction types,
one needs to estimate the pre-exponential factors of all
reactions. Commonly, one assumes constant factors for
each type of reaction. In reasonable approximation, we
furthermore equate the factors for monomer and dimer
conformation changes.
Given the apparent association rate Am

a (which we
assume to equal the macroscopic pre-exponential factor
of dimerization), one can bound the microscopic pre-
exponential factor Aa. If we assume that refolding is much
slower than dimerization, then Am

a is a product of the
microrate and the equilibrium probability of the bind-
ing pocket. Conversely, if we assume the refolding to be
much faster, than Am

a directly measures the dimerization
microrate. Thus,

Am
a ≤ Aa ≤ Am

a · Pr[ “pocket” | aptamer ]−1 .

In the case of theophylline,

Pr[ “binding pocket” | aptamer ]≈ 1

and consequently, Aa ≈ Am
a .

Finally, the pre-exponential factor for dissociation Ad
equals Aa. This is a consequence of detailed balance of the
dimerization reaction, i. e.

k(Ri → LRi)Pr[ Ri ]= k(LRi → Ri)Pr[ LRi ] ,

which implies

Aa Pr[ Ri ] = Ad exp(bθ)Pr[ Ri ] exp(−bθ)

= Ad Pr[ Ri ] .

Empirical results
We apply our system to demonstrate the effect of changes
in ligand concentrations to the interaction of the designed
ON-switch RS3 from [1] with the ligand theophylline.
Using our prototypical software, we precompute the
macroprocess for RS3 including rate constants in sev-
eral hours. As noted above, this yields 1133 macrostates
in total, 22 of which are dimer states representing RNA

molecules bound to the ligand. From the technical point
of view, our system is described by 1133 coupled dif-
ferential equations for the states α1, . . . ,α1111 through
β1, . . . ,β22. Subsequently, we compute kinetics for each
combination of concentrations and pre-exponential fac-
tors within seconds (on a Core i5-750 @ 4 × 2.67GHz).
Figure 2 summarizes our results; each subfigure plots
the probabilities of prominent monomer and dimer states
over time. In addition, the minimum energy secondary
structures is shown for the most important macrostates.
It serves as a suitable representative of the macrostate’s
ensemble of structures. In this sense it provides a useful,
coarse-grained picture of the most likely refolding paths.
We set the pre-exponential factors to the estimations
AR = 106s−1 and Aa = 600M−1s−1 as described before.
This allows interpreting the time and ligand concentra-
tions in concrete units and relates the speed of folding and
dimerization.
Figure 2a–c show the results for ligand concentra-

tions 104 M, 105 M, and 106 M. In the RS3 riboswitch,
the aptamer domain is fused to a rho-independent ter-
minator at the 3’-end. Thus, during transcription the
aptamer is available shortly before the strong terminator
stem can be formed and then dominates the entire struc-
ture ensemble. Therefore, we study a partially transcribed
riboswitch RS3 that is shortened by the 3’-half of the ter-
minator stem and the 3’ poly-U stretch. The kinetics of
the shortened riboswitch are shown for concentrations
of 10−7 M, 10−6 M, and 10−3M in respective Fig. 2d–f.
Note that the time scales for interaction of RS3 with
theophylline are in accordance with the computed disso-
ciation constant KRS3

d , which implies that the monomer
and dimer concentrations are balanced at about 104M
ligand concentration. This extreme concentration sug-
gests that the riboswitch would be non-functional without
further, probably co-transcriptional, effects. This is a plau-
sible hypothesis since RS3 was designed to regulate at the
transcriptional level.
The estimated rates are derived from a small num-

ber of empirical measurements at different conditions,
such as ion concentrations (100 mM NaCl in [12], 5
mM MgCl2 and 0.5 M NaCl in [18], no Mg2+ and 100
mM NaCl in [17]), temperatures, and actual sequences;
hence they are not directly comparable. Nevertheless,
they provide reasonable ball park estimates, because we
observed that the qualitative behavior of the system is
robust against variations of these parameters by several
orders of magnitude.

Conclusions
Several refinements of the model remain for future
research. Most importantly, the assumption of only a
single binding motif is rather stringent. In general, one
would like to support multiple binding sites with different
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Fig. 2 Kinetics plots showing the probabilities of prominent monomer and dimer states (y-axis) over time in seconds (x-axis) at a RNA folding rate of
106s−1 and a dimerization rate of 600M−1s−1. Additionally, we visualize the the most prominent macrostates by their local minimum structures,
which enables tracking of their coarse-grained refolding. a–c Complete riboswitch RS3 at concentrations 104 M (a), 105 M (b), and 105 M (c). d–f
Partially transcribed riboswitch RS3 (without 3’-half of terminator stem) at concentrations 10−7 M (d), 10−6 M (e), and 10−3 M (f). Note that since
subfigures a–c are based on exactly the same landscapes, they share the same macrostates (e. g., mon1 in a and mon1 in b are equal). As well, this
holds among subfigures d–f. However, across the two groups of subfigures, macrostates are not comparable (e. g., mon1 of a �= mon1 of d), since
the landscapes differ

binding energies. Our model can be naturally generalized
to such scenarios by introducing multiple “dimer worlds”
corresponding to different binding motifs. Furthermore,
some ligands, such as Mg2+ have multiple binding sites.
The current implementation of the Arrhenius approxima-
tion of the RNA folding kinetics, finally, is quite simplistic,
using only a single kinetic prefactor for all structural
rearrangements. A refined model would presumably dis-
tinguishing constants for nucleation, stack extension, base
pair sliding, and loop pinching. Moreover, in particu-
lar transcriptional riboswitches, which operate temporally
coupled with the progressive transcription of the RNA,
will be influenced by this kinetic interplay. It is well
known that RNA chains commonly change their optimal
structure while growing during transcription. Conse-
quently, the RNAs refold during the process of transcrip-
tion [8]. The framework presented here can be extended
to co-transcriptional interaction analysis. However, this

will require additional experimental measurements to cal-
ibrate the parameters of the model to properly relate the
different “reaction” speeds. In particular, this entails accu-
rate measurements of the thermodynamic parameters for
the ligand binding and of the kinetic prefactors of folding
and dimerization as well as the speed of transcription.

Abbreviations
ODE; Ordinary differential equation

Acknowledgements
A two-page abstract of this work appeared at ISBRA’16 [19].

Funding
This work is supported by the German Federal Ministry of Education and
Research (BMBF; support code 031A538B) within the German Network for
Bioinformatics Infrastructure “de.NBI” and by the German Research Foundation
(DFG; grant STA 850/15-1). The authors acknowledge funding support for
publication charges from the German Research Foundation (DFG) and
Universität Leipzig within the program of Open Access Publishing.
The authors declare that the funding body has not been influencing the
design or conclusion of this study.



The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):424 Page 55 of 131

Availability of data andmaterials
The method used in this study is available as free software at www.bioinf.uni-
leipzig.de/~felix/software/RLIkin.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 18
Supplement 12, 2017: Selected articles from the 12th International Symposium
on Bioinformatics Research and Applications (ISBRA-16): bioinformatics. The full
contents of the supplement are available online at https://bmcbioinformatics.
biomedcentral.com/articles/supplements/volume-18-supplement-12.

Authors’ contributions
FK implemented the method and conducted experiments. FK, PFS, and SW
designed the algorithms and experiments. All authors wrote the manuscript.
All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Science and Interdisciplinary Center for
Bioinformatics, University Leipzig, Härtelstr. 16-18, D-04107, Leipzig, Germany.
2MPI for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig, Germany.
3FHI Cell Therapy and Immunology, Perlickstr. 1, D-04103 Leipzig, Germany.
4Department Theoretical Chemistry, University Vienna, Währingerstr. 17,
A-1090 Wien, Austria. 5Bioinformatics and Computational Biology Research
Group, Währingerstr. 17, A-1090 Wien, Austria. 6RTH, University Copenhagen,
Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark. 7Santa Fe Institute, 1399
Hyde Park Rd., Santa Fe, NM, USA.

Published: 16 October 2017

References
1. Wachsmuth M, Findeiss S, Weissheimer N, Stadler PF, Mörl M. De novo

design of a synthetic riboswitch that regulates transcription termination.
Nucleic Acids Res. 2013;41(4):2541–51.

2. Dimitrov RA, Zuker M. Prediction of hybridization and melting for
double-stranded nucleic acids. Biophys J. 2004;87(1):215–26.

3. Bernhart SH, Tafer H, Mückstein U, Flamm C, Stadler PF, Hofacker IL.
Partition function and base pairing probabilities of RNA heterodimers.
Algorithms Mol Biol. 2006;1(1):3.

4. Borujeni AE, Mishler DM, Wang J, Huso W, Salis HM. Automated
physics-based design of synthetic riboswitches from diverse RNA
aptamers. Nucleic Acids Res. 2015;44(1):1–13. Available from: http://dx.
doi.org/10.1093/nar/gkv1289.

5. Mann M, Kucharik M, Flamm C, Wolfinger MT. Memory efficient RNA
energy landscape exploration. Bioinformatics. 2014;30(18):2584–91.

6. Flamm C, Fontana W, Hofacker IL, Schuster P. RNA folding at elementary
step resolution. RNA. 2000;6(3):325–38.

7. Wolfinger MT, Svrcek-Seiler WA, Flamm C, Hofacker IL, Stadler PF.
Efficient computation of RNA folding dynamics. J Phys A: Math General.
2004;37(17):4731–41. Available from http://stacks.iop.org/0305-4470/37/
4731.

8. Hofacker IL, Flamm C, Heine C, Wolfinger MT, Scheuermann G, Stadler
PF. BarMap: RNA folding on dynamic energy landscapes. RNA. 2010;16(7):
1308–16.

9. Lorenz R, Bernhart SH, Höner Zu Siederdissen C, Tafer H, Flamm C,
Stadler PF, et al. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011;6:26.

10. Flamm C, Hofacker IL, Stadler PF, Wolfinger MT. Barrier trees of
degenerate landscapes. Zeitschrift für Physikalische Chemie.

2002;216(2/2002):. Available from: http://dx.doi.org/10.1524/zpch.2002.
216.2.155.

11. Turner DH, Mathews DH. NNDB: the nearest neighbor parameter
database for predicting stability of nucleic acid secondary structure.
Nucleic Acids Res. 2009;38((Database)):D280–2. Available from: http://dx.
doi.org/10.1093/nar/gkp892.

12. Kuznetsov SV, Ansari A. A Kinetic Zipper Model with Intrachain
interactions applied to nucleic acid hairpin folding kinetics. Biophys J.
2012;102(1):101–11. Available from: http://dx.doi.org/10.1016/j.bpj.2011.
11.4017.

13. Pörschke D. Model Calculations on the Kinetics of Oligonucleotide
Double Helix Coil Transitions. Evidence for a fast chain sliding reaction.
Biophys Chem. 1974;2:83–96.

14. Cocco S, Marko JF, Monasson R. Slow nucleic acid unzipping kinetics
from sequence-defined barriers. Eur Phys J E Soft Matter. 2003;10:153–61.

15. Zhang W, Chen SJ. RNA hairpin-folding kinetics. Proc Natl Acad Sci USA.
2002;99:1931–6.

16. Toan NM, Morrison G, Hyeon C, Thirumalai D. Kinetics of loop formation
in polymer chains. J Phys Chem B. 2008;112:6094–106.

17. Latham MP, Zimmermann GR, Pardi A. NMR (Chemical Exchange as a
Probe for Ligand-Binding Kin)letics in a Theophylline-Binding RNA
Aptamer. J Am Chem Soc. 2009;131(14):5052–53. Available from: http://
dx.doi.org/10.1021/ja900695m.

18. Jenison RD, Gill SC, Pardi A, Polisky B. High-resolution molecular
discrimination by RNA. Science. 1994;263(5152):1425–9.

19. Kühnl F, Stadler PF, Will S. Tractable Kinetics of RNA-Ligand Interaction In:
Bourgeois A, Skums P, Wan X, Zelikovsky A, editors. Bioinformatics
Research and Applications: 12th International Symposium. vol. 9683 of
Lecture Notes in Bioinformatics. Berlin: Springer International Publisher;
2016. p. 337–8.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

www.bioinf.uni-leipzig.de/~felix/software/RLIkin
www.bioinf.uni-leipzig.de/~felix/software/RLIkin
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-12
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-12
http://dx.doi.org/10.1093/nar/gkv1289
http://dx.doi.org/10.1093/nar/gkv1289
http://stacks.iop.org/0305-4470/37/4731
http://stacks.iop.org/0305-4470/37/4731
http://dx.doi.org/10.1524/zpch.2002.216.2.155
http://dx.doi.org/10.1524/zpch.2002.216.2.155
http://dx.doi.org/10.1093/nar/gkp892
http://dx.doi.org/10.1093/nar/gkp892
http://dx.doi.org/10.1016/j.bpj.2011.11.4017
http://dx.doi.org/10.1016/j.bpj.2011.11.4017
http://dx.doi.org/10.1021/ja900695m
http://dx.doi.org/10.1021/ja900695m

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	RNA–ligand interaction model
	Contributions

	Methods
	Results and discussion
	Macrostate kinetics of RNA–ligand interaction
	A tractable model under ligand excess
	The system of ODEs.

	Computing RNA–ligand kinetics
	Parameters from empirical measurements
	Empirical results

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

