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 7 

Electron-rich polyoxometalates (POMs), known since the early discovery and development of POM chemistry, are 8 

POMs incorporating extra electrons upon reduction and comprise an emergent family of different archetypes, 9 

structural flexibility and functionality. Here, we describe synthetic strategies to obtain electron-rich POMs with 10 

important catalytic, electronic and magnetic properties and discuss their differences and advantages compared to 11 

their fully oxidized analogues. This is the first review summarizing the existing knowledge about polyoxometalate 12 

reduction, encompassing a comprehensive description of reduced compounds (over 200 structures are reviewed) 13 

and the influence the reduction causes on the structure, function and properties of this molecule class. 14 

 15 

Polyoxometalates (POMs) are a large group of transformable discrete anionic polynuclear metal-oxo clusters. These 16 

compounds contain arrays of corner- and edge-sharing pseudo-octahedrally coordinated MO6 (M = V, Nb, Mo, W) units, 17 

packed to form an ionic core, where the electronic configuration of the metal is usually d0 or d1 (metals in their highest 18 

oxidation states).1 These metals are commonly called addenda atoms or peripheral elements and their ionic radii and charge 19 

are suitable for O2‒ coordination. The coordination number of the addenda atoms can be increased from 4 to 6 upon 20 

acidification and  they are able to form double bonds with unshared terminal oxygens in MO6 octahedra through pπ-dπ 21 

interactions. One of the most widely accepted classification of POMs divides them into two groups: 1) isopolyanions (IPAs), 22 

which consist of only one type of metal (M) atom, [MmOy]
q‒, and 2) heteropolyanions (HPAs), with the general formula 23 

[XrMmOy]
q‒, where X is the so-called heteroatom. POMs have multiple applications in various areas, such as catalysis,2,3 bio− 24 

and nanotechnology,4 medicine,5-6 macromolecular crystallography,7-9 electrochemistry,10 material sciences11 and molecular 25 

magnetism12 and many of them are related to their redox properties. POMs are often recognized as electron reservoirs 26 

because of their strong capacity to bear and release electrons indicating their redox nature.13 POMs can be regarded as soft 27 

Lewis bases due to the abundant oxygen atoms that can donate electrons to electron acceptors. However, the addenda metal 28 

ions of the polyanion skeletons possess unoccupied orbitals that can accept electrons and thereby act as Lewis acids.2 29 

The reduced, also called electron-rich, POMs typically retain the general structure of their parent molecule and are 30 

often characteristically deep blue in color comprising a very large group of complexes known as the “poly blues” or 31 

“heteropoly blues” (FIG. 1). Their blue color is the result of intense d–d electron transitions and intervalence charge-32 

transfers.14  33 

 34 
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 35 
Figure 1 | Conventional types of electron-rich POMs. a | Isopolyanios: Linqvist type isopolymolybdate, -tungstate {M6O19} 36 

(M = Mo, W) and organically functionalized vanadates {V6On(OR)19-n} or {V6O19-3n((OCH2)3CR1)n} (R = -CH3, -C2H5; R1 = -CH3, -37 

C2H5, -CH2OH, -NO2), decatungstate {W10O32} and functionalized decavanadates {V10O28-3n((OCH2)3CR2)n} (R2 = -C2H5, -CH2OH). 38 

Color code: MO6, blue polyhedra. b | Keggin based anions: classical Keggin anion {XM12O40} (X – heteroatom, which is missing 39 

in metatungstate, M = Mo, W); bi- and tetra-capped pseudo-Keggin anions. Color code: MO6, blue polyhedra; VO5, green 40 

polyhedra. Examples of vanadium spherical anions {V18O42} and {X6V15O42} (X = As, Sb, Ge, and Si). Color code: VOn, blue 41 

polyhedra; X, green spheres. {V18O42} is an isopolyanion, hovewer based on the structural classification it is presented in the 42 

Keggin based anions section. c | Wells-Dawson based anions: classical {X2M18O62} (X – heteroatom, M = Mo, W, V) and basket-43 

like {X⊂P6Mo18} (X – alkali metal) archetypes. Color code: MO6, blue polyhedral; X – yellow or purple spheres. d | Anderson-44 

like anions: left - [(MoV
2O4)3(CO3)4(OH)3]5– 219; right - XVIV

6O6{(OCH2CH2)2N(CH2CH2OH)}6]n+ (X = Li, Na, Mg, Mn, Fe, Co, Ni)206 . 45 

Color code: V/Mo, green; M, pink; N, blue; C, violet; O, red. 46 
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The most prominent reduced POMs are the mixed-valence molybdenum blue MoV/MoVI “giant wheels” based on {Mo154} 47 

units, which are obtained by partial reduction of Na2MoO4 with a reducing agent (e.g. N2H4, NH2OH, SnCl2) in acidic 48 

solutions.15,16 “Heteropoly ‘browns’’ are polyoxotungstates (POTs) generated by spontaneous intraionic disproportionation of 49 

the WV atoms in the “blue” species under acidic conditions yielding more higly reduced WIVO6 octahedra.17,18 50 

The added electrons can be either localized on a metal ion or delocalized as ‘‘extra’’ electrons over a number of metal 51 

ions leading to an increased electron density on the terminal oxygen ions of the POM. The delocalized electrons can be 52 

considered either as thermally activated electrons hopping from one addendum ion to the next or as electron ground-state 53 

delocalization. The latter presumably involves π bonding through bridging oxygens from the reduced metal ion MV to its 54 

oxidized neighbor addendum MVI.14 55 

The capacity to reduce a particular POM depends on the charge to nuclearity ratio and for heteropolyanions the kind 56 

and oxidation state of the heteroatoms must be taken into consideration. In 1972, Pope19 divided all POMs into three types: 57 

type I, which comprises polyanions in which each addendum atom has one unshared terminal oxo ligand, type II, 58 

characterized by two unshared terminal oxo ligands per addendum atom, and type III, as a combination of the two former. 59 

Pope predicted that only type I and III polyanions can be reversibly reduced. According to the molecular orbital theory of oxo-60 

type octahedral complexes, species with one unshared oxygen (type I) have one non-bonding t2g orbital, which can 61 

accommodate one or two electrons by reduction, however, anions with two unshared oxygens (type II) lack the non-bonding 62 

t2g orbital, because in the orbitals participate in the π-bonding.20 Consistent with this early paradigm, up to date there is no 63 

data about reduction of Anderson-type anions ([XMo6O24Hx]
n‒, X = heteroatom; M = Mo, W; x = 0 ‒ 6) or octamolybdates 64 

([Mo8O26]4‒), which belong to type II POMs. However, it is possible to reduce the heptamolybdate anion [MoVI
7O24]6‒ (type II 65 

by Pope classification) photochemically through the formation of an intermediate complex bearing only one unshared oxygen 66 

atom as in type I.21-22 67 

Polyoxomolybdates (POMos) are more readily reduced than their isostructural POTs, and therefore Mo ions are 68 

preferentially reduced in mixed-metal Mo/W POMs.23 The isostructural POMos have potentials that are about 400 mV more 69 

positive than the corresponding POTs, for example, the one-electron reduction potential in acetone for α-PW12 is ‒895 mV, 70 

whereas for α-PMo12 it is ‒468 mV.24 In POMs exhibiting the common Keggin structure [XM12O40]n– (X = heteroatom, M = Mo, 71 

W, Nb), which consists of 12 addenda atoms, the number of accepted electrons can vary from 1 25 to 12 26 for POMos, but for 72 

the analogous POTs the maximum number of “blue” electrons is 6 18 (TABLE 1). Vanadium addenda ions accept electrons even 73 

better than molybdenum ions (one-electron reduction potential for α-PVW11 is 600 mV 10). It has been demonstrated that in a 74 

spherical {V18O42} structureall vanadium ions are reduced to VIVleading to an accepted number of 18 electrons. 75 

POMs can be reduced in different ways, for example, photochemically,21, 27, 28 electrolytically1 and in the presence of 76 

reducing reagents (metals, B2H6, NaBH4, N2H4, NH2OH, H2S, SO2, SO3
2‒, S2O4

2‒, S2O3
2‒, SnCl2, MoCl5, MoOCl5

2‒, Mohr’s salt, 77 

formic acid, ethanol, ascorbic acid, tartaric acid, thiourea, hydroquinone, D-glucose, sucrose, etc.). Under hydrothermal 78 

conditions, MoVI and WVI can accept one or two electrons1  and thusthe vast majority of reduced POMs are synthesized by the 79 

hydrothermal method. Reduced POMos are often air-stable, whereas reduced POTs are typically air-sensitive.14 Various 80 

oxidants, which contain O2 or H2O2, restore reduced POMs to the non-reduced ones. Since the reduction increases the 81 

nucleophilicity of the POMs, transition metal ions act as electrophiles and stabilize the POMs through covalent attachments.26 82 



4 
 

The characterization of reduced POMs can be challenging, especially in the case of mixed-metal compounds, where the 83 

usage of multiple complementary physical techniques is sometimes necessary just to determine the compound’s formulation. 84 

A detection of the number and structural positions of the different metal centers can be achieved by single-crystal X-ray 85 

diffraction complemented by elemental analysis. 86 

 87 

Table 1. Number of reduced electrons in POMs based on the Keggin structure XM12 (X = heteroatom; M = Mo, W)..  88 

Type of addenda 

ions 

No. of accepted electrons 

min max 

Keggin type XM12 (12 addenda ions) 

M = Mo 1 25 12 27 

M = W 1 120 6 18 

M = Mo, W 2 269 8 109 

Bi-capped Keggin type XM12V2 (14 addenda ions 

M = Mo 3 129 8 130 

M = V, Mo 2 139 6 140 

M = W 4 149 4 149 

Tetra-capped Keggin type XM8V8 (16 addenda ions) 

M = Mo 8 157 13 158 

 89 

To obtain the number of electrons and their location and degree of delocalization in the POMs is a more challenging 90 

approach. Electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) can give insights into the 91 

valence of the metal centers, while magnetic measurements can indicate the number of unpaired electrons. In solution, redox 92 

titrations, electrochemistry, and UV−visible spectroelectrochemist ry are most useful for determining the exact degree of 93 

reduction. Paramagnetic electron-rich POMs are predominantly studied by EPR spectroscopy, while diamagnetic ones are 94 

investigated by NMR spectroscopy in solution.29 Computational chemistry has also become increasingly accurate and 95 

affordable for elucidating the electronic structure of reduced POMs.30 The theoretical analyses based on the Anderson-96 

Habbard ideas using quantum-chemical density functional theory (DFT) and ab initio calculations or the parametric solution of 97 

exchange and delocalization problem provide a basis for further investigation of the multinuclear mixed-valence clusters. 98 

As in the case of oxidized POMs reduced anions have been found the widest application as catalysts, due to their 99 

resistance to oxidative decomposition, high thermal stability, and sensitivity to light and electricity.27, 32-35 Almost all types of 100 

reduced POMs with different degree of reduction demonstrate electrocatalytic activity and have been applied as reductive 101 

and oxidative electrocatalysts. The outstading photocatalytic activity of one-electron reduced decutungstate [H+W10O32]5‒ also 102 

should be noted.27 The magnetic susceptibility of a great number of electron-rich POMs was tested, but only some VIV- 103 

containing Keggin-based anions were applied as qubits for molecular spintronics35 or as molecular magnet36. Unlike most 104 

nanoparticle-protecting ligands, electron-rich POMs can reduce metal cations to colloidal metal(0) particles, which are then 105 

stabilized by the oxidized POM anions, and thus the POMs play a dual role, acting as both reducing agents and stabilizing 106 
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anions. So far Keggin and Wells-Dawson electron-rich POMs with number of “blue” electrons from 1 to 8 were used as 107 

protecting ligands for metal(0) nanoparticles.37 Yamase group over the years tested isopolymolybdates (IPOMos) which can 108 

be reduced within cancer cells as anti-cancer agents,38,39 the Lindqvist type POV inhibits Na+/K+-ATPase,40 hovewer application 109 

of reduced POMs in biology is not elaborated enough and their role in this processes is not at all undersood. The unique 110 

stability of the Keggin structure allowing it to take up to 24 electrons makes it possible to use POMs based on this anion as 111 

electron storage device.41 112 

Despite the long history of “heteropoly blues” the present review is the first one that summarizes and gives an 113 

overview of existing electron-rich POMs. The description of the reduced POMs is divided in two parts. The first section will 114 

discuss isopolyanions, where one or more Mo, W or V atoms are in a lower oxidation state, whereas the second part will 115 

describe reduced heteropolyanions based on their structural archetype, namely mixed-valence POMs based on Keggin 116 

structure (anions with classical and capped Keggin structure), mixed-valence POMs with Wells-Dawson structure and their 117 

derivatives (basket-like POMos and borophosphate POMos), Anderson-like fully reduced POVs and POMos and vanadium 118 

cluster compounds based on the spherical {V18O42} archetype.. The reduced giant POMs developed by Müller et al.42 will be 119 

left out due to existing reviews 43-44 about these compounds. Furthermore, the use of POMs as electron-accepting moieties in 120 

charge-transfer compounds developed by Hill45 and Kochi46, which are synthesized by co-crystallization with organic donors 121 

such as substituted amides, aromatic amines, or tetrathiafulvenes and decamethylferrocene, are not discussed in this review. 122 

Reduced isopolyanions 123 

Isopolymolybdates 124 

The existing data about reduced isopolymolybdates (IPMos) are centered around the classical Lindqvist [Mo6O19]2‒ 125 

archetype47-50 (FIG. 1 a) and heptamolybdate [Mo7O24]6‒ 21,22 (FIG. 3 a), along with one-time synthesis of IPMos with structures 126 

that do not belong to one of the classical POM archetypes.- 51-54 The photoreduction of alkylammonium polyoxomolybdates,21 127 

namely hexa-, hepta and octomolybdates, is described by an example of heptamolybdate as the most extensive study. Up to 128 

now seven reduced IPMos, which accepted between one and twelve electrons, were crystallized and investigated by single-129 

crystal XRD (TABLE S1). 130 

One-electron reduction of the Lindqvist anion [MoVI
6O19]2‒. According to the Cambridge Crystallographic Data Centre (CCDC) 131 

and Inorganic Crystal Structure Database (ICSD), up to date there are no data about crystal structures of reduced 132 

isopolymolybdates with Lindqvist structure (FIG. 1 a). Hovewer, in 1979, Che and co-workers described the controlled 133 

potential electrolysis of [Mo6O19]2‒ in dimethylformamide, which yielded the brown [MoVMoVI
5O19]3‒ ion. 48-50 They showed 134 

that the reduction step [MoVI
6O19]2‒ + e- ⇆ [MoVMoVI

5O19]3‒ is reversible and assumed that the structure of the parent oxidized 135 

form is retained upon reduction.  EPR measurements of [MoVMoVI
5O19]3‒ indicate thermal delocalisation of the valence 136 

electron with increasing temperature.48,49 The introduction of an electron which is localised on one molybdenum atom has a 137 

perturbing effect on the MoV=Ot bond.47 138 

Mechanism of heptomalybdate [MoVI
7O24]6‒ reduction. According to Pope’s hypothesis19 the heptamolybdate anion 139 

[MoVI
7O24]6‒ cannot be reduced due to the presence of two cis-dioxo groups within the MoO6 octahedron (type II POM by 140 

Pope classification). Thus, the reduction of [MoVI
7O24]6‒ has so far only be observed by irradiation with ultraviolet light 141 
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(λ ≥ 313 nm) in aqueous solution22 or in the solid state 21 in the presence of the [NH3
iPr]+ (iPr – isopropyl) cation since the 142 

proposed reduction mechanism involves an interaction between the heptamolybdate anion and the cation (FIG. 2 a). The 143 

reduction of MoVI takes place through the formation of an intermediate complex with one unshared oxygen, which is 144 

characteristic for type I POMs according to Pope (FIG. 2 a, reaction I). This intermediate enables the reduction reaction and 145 

therefore does not contradict Pope’s theory. The EPR spectra revealed a localized octahedral MoVO5(OH) site resulting from 146 

an electron transfer between the anion and the counterion via hydrogen bonding.21,22 The X-ray structure  of UV-irradiated 147 

single crystal of [NH3
iPr]6[MoVI

6O24] is in agreement with the EPR by revealing the protonation of the bridged oxygen in the 148 

MoVO5(OH) octahedra (FIG. 3 a).21 149 

Electron acceptance as a key factor for the formation of new polymolybdate archetypes. The reduction of type II IPOMos 150 

(octa- and hepta-anions) in non-aqueous solvents leads to the formation of novel mixed-valent POMos with structures 151 

different from the parent anions. α-Octamolybdate (Bu4N)4-[MoVI
8O26], a typical type II POM, was reduced to the crosslike 152 

octamolybdate anion [MoV
4MoVI

4O24]4‒ by refluxing it with triethylenetetramine (TETA) and N,N’-dicyclohexylcarbodiimide 153 

(DCC) in dry acetonitrile. The [MoV
4MoVI

4O24]4‒ anion has an unusual MoV
4O8 cubane-like core and was termed χ-154 

octamolybdate due to its shape (FIG. 2 b).52 155 

Cronin et al.54 obtained the novel mixed-valent “shrink-wrapped” anion [H2MoV
4MoVI

12O52]10‒ by the addition of 156 

protonated hexamethylenetetramine (HMTAH+ or C6H13N4
+) as cation to the reaction solution that is typically used to for giant 157 

Mo cluster systems (MoO4
2‒ and hydrazine). The large organic cation prevents the rapid aggregation of metal-oxide-based 158 

polyhedra to clusters with a stable uniform spherical topology. This novel compound contains an unusual platform-like Mo12 159 

core (FIG. 2 c).54 The four MoV centers comprise two centrosymmetrically related MoV
2 groups (located in the central part of 160 

the [H2MoV
4MoVI

12O52]10− cluster core) displaying a short Mo(2)-Mo(3) contact of 2.6427(4) Å, which is characteristic for 161 

Mo ‒ Mo single bonds. 162 

The reaction of the Lindqvist nitrosyl derivative (nBu4N)3[MoVI
5O13(OMe)4(NO){Na-(MeOH)}] with VCl3 in methanol 163 

yields the two electron reduced nitrosyl decamolybdate [MoV
2MoVI

7O25(OMe)6(MoIINO)]‒ and the reaction of 164 

(nBu4N)2[MoVI
5O18(NO)] with N2H4·2HCl in a mixture of methanol and acetonitrile yields the four-electron reduced nitrosyl 165 

decamolybdate [MoV
4MoVI

5O24(OMe)7(MoIINO)]2‒.51 166 

 167 
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 168 
 169 

Figure 2 | Schematic representation of reduced isopolymolybdates formation. a |  UV-induced reduction of 170 

heptamolybdate.21,22 b | Formation of the reduced χ-type octomolybdate starting from α-octomolybdate.52 c | Formation of 171 

the “shrink-wrapped” anion [H2MoV
4MoVI

12O52]10‒.54 172 

 173 
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The structure of decamolybdate is closely related to that of the well-known decatungstate [W10O32]4‒ (FIG 1, a) and consists of 174 

two halves of five edge-sharing octahedral connected through four quasi-linear Mo-O-Mo bridges. The Hückel calculations 175 

demonstrate that the “blue” electrons are circulating around the eight equatorial molybdenum sites as the delocalization is 176 

strongly favored by the quasi-linear M-O-Mo bridges.51 177 

In 1993, Khan and co-workers were the first to obtain [Me2NH2]6[H2MoV
12O28(OH)12(MoVIO3)4] by hydrothermal 178 

synthesis starting from Na2MoO4, MoO3, Mo, C(CH2OH)4, (Et4N)CI, Me3NH and H2O.55 The high degree of reduction of the 179 

central ɛ-Keggin (BOX 1) core {MoV
12O40} significantly increases the basicity of the oxygen atoms on the surface, which allows 180 

the aggregation of four electrophilic {MoVIO3} units. The remarkable flexibility of the host ɛ-Keggin cage is demonstrated by 181 

encapsulation of two protons. Later Yamase et al. showed that [H2MoV
12O28(OH)12(MoVIO3)4]6‒ can also be formed by 182 

reduction in tumor cells from heptamolybdate and confirmed their prediction by long-term photolysis of 183 

[iPrNH3]6[Mo7O24]·3H2O in aqueous solutions at pH 5–6 yielding the same electron rich anion. 38,53 184 

[H2MoV
12O28(OH)12(MoVIO3)4]6‒ depressed the proliferation of human cancer cells such as AsPC-1 (IC50 = 175 µg·ml‒1) 185 

pancreatic and MKN-45 (IC50 = 40 µg·ml‒1) gastric cells in vitro and in vivo.39 Considering the possibility of photoreduced 186 

product formation in biological systems some of the anti-tumour activity of heptamolybdate can probably be traced back to 187 

its reduced species.39 188 

The controlled hydrothermal oxidization of the triangular incomplete cuboidal [MoIV
3O4(H2O)9]4+ precursor in acidic 189 

solution, which was synthesized according to Cotton procedure,56 yielded the mixed-valence MoIV–MoVI 190 

[H4MoIV
6MoVI

7O36py6]·H2py3·2H2O (py – pyridine), in which the anion possesses a β-Keggin structure with two [MoIV
3O4] 191 

fragments.57 The described anion exhibits Mo–Mo distances ranging from 2.5131(9) to 2.5318(9) Å, which is unusually short 192 

for POMos. These short distances are unequivocally indicative of the existence of two Mo–Mo bonded [MoIV
3O4] units and in 193 

agreement with bond distances in [MoIV
3O4(H2O)]4+.The only known polyoxoanion with MoIV centres is [H4MoIV

6MoVI
7O36py6]2‒ 194 

and it has six terminal pyridine groups stabilizing the six MoIV ions.57 195 

Isopolytungstates 196 

Among the highly diverse class of isopolytungstates, decatungstate [WVI
10O32]4- and metatungstate [H2WVI

12O40]6- are most 197 

susceptible to electron acceptance. Metatungstate demonstrated remarkable electron storage capacity as it can 198 

accommodate up to 24 electrons.58 Decatungstate can accept a maximum of two electrons. Up to now eight reduced 199 

isopolytungstates (IPTs), which accepted between one and up to six electrons, were crystallized and investigated by single-200 

crystal XRD (TABLE S1). 201 

One-electron reduction of the Lindqvist anion [WVI
6O19]2‒. Reduced IPTs of the Lindqvist-type anion with one accepted 202 

electron [WVWVI
5O19]3‒ were synthesized hydrothermally in the presence of metallic V or Mo as reducing agent.58 The 203 

existence of the reduced tungsten sites was confirmed by manganometric titrations.59 EPR analysis showed that the extra 204 

electron in [WVWVI
5O19]3‒ is delocalized over all six W centers via intramolecular electron hopping between the metal centers 205 

resulting in a rapid conversion of ‒WV‒O‒WVI‒ into ‒WVI‒O‒WV‒ and so on.48,59 Another procedure to obtain the reduced 206 

Lindqvist-type IPT is the synthesis of the electron donor-acceptor complex (CpFeCp)3[WVWVI
5O19] (CpFeCp = Fe(C5H5)2) from 207 

orthotungstate WO4
2‒ and ferrocene Fe(C5H5)2 with no other reducing agent demonstrating that ferrocene acts as an effective 208 

agent to reduce WVI to WV.60 209 
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Electron storage capacity of metatungstate [H2W12O40]6‒. Metatungstate [H2W12O40]6‒ exhibits the α-Keggin structure (BOX 1) 210 

with two non-exchangeable protons in a tetrahedral cavity, which is formed by four trinuclear capping units. In 1976, Launay 211 

showed that metatungtate [H2WVI
12O40]6‒ can be reduced by controlled potential electrolysis to yield the brown form.58 In 212 

these brown compounds n (number of electrons introduced) is a multiple of 6, such as in the following species H8[H2W12O40]4‒ 213 

(n = 6), H18[H2W12O40] (n = 12) and H36[HW12O40]5+ (n = 24), which could be isolated as solids.58, 61, 62 According to spectral and 214 

electrochemical properties, it was suggested that the total reduction process involves the transfer of 6 electrons and 6 215 

protons, which is consistent with the localisation of the accepted electrons within a single trinuclear cap WIV
3, where the 216 

terminal oxo ligands are protonated to aqua ligands: (WVI=O)3 + 6e- + 6H+ → (WIV←OH2)3.63 217 

Launay’s suggestions 58 were confirmed by the synthesis of Rb4H8[H2WIV
3WIV

9O40] 64 and [Bu4N]3H9[H2WIV
3WIV

9O40] 63 218 

with the α-Keggin (BOX 1) anion Hn[{WIV
3(OH2)3}WVI

9O34(OH)3](5-n)‒ (n = 1, 2) and 183W-NMR17 and XPS investigations 61. The 219 

trinuclear caps WIV
3 of the Keggin structure are proposed to be reduced sequentially.63 The 6 e‒ reduced anion 220 

[H2{WIV
3(OH2)3}WVI

9O34(OH)3]3‒ can undergo condensation in aqueous solution between pH = 4 and 6.5 forming the highly-221 

nuclearity reduced species [(XO4)WIV
3WVI

17O62Hx]
y‒ (X = H2

2+, B3+).65 222 

The 24-electron reduced POT (NH4)6[H2WVI
12O40] yields a fuel cell electrocatalyst towards the oxidation of hydrogen in 223 

acid electrolyte.66 This activity may be caused by either the presence of 6d vacant orbitals similar to the conventional Pt 224 

catalysts or reactivity of non-acidic protons in the structure. Moreover, electron-“tungsten brown” metatungstates with 225 

reduced three WIV caps exhibit some electrocatalytic activity. 226 

One and two-electron reduction in catalytic active decatungstates. Decatungstate [WVI
10O32]4‒ is well-known for its high 227 

photocatalytic activity.67 The structure of [WVI
10O32]4‒ consists of two lacunary Lindquist [W5O14]2‒ fragments linked by four 228 

corner-sharing oxygens with an unusually wide W‒O‒W angle of 178°  (FIG. 1 a).68 The one-electron-reduced complex 229 

[WVWVI
9O32]5‒ was prepared by controlled-potential electrolysis of [W10O32]4‒ in N,N-dimethylformamide (DMF).69 Long-term 230 

UV irridation of the oxidized parent decatungstate leads to the formation of a mixture of protonated one- and two-electron 231 

reduced species, namely [HWVWVI
9O32]4‒ and [H2WV

2WVI
8O32]4‒, respectively.70,71 The unprotonated two-electron reduced 232 

[WV
2WVI

8O32]6‒ anion was prepared by controlled-potential electrolysis in the absence of protic media.72 The structure of the 233 

decatungstate anion is obviously not changed by the reduction. Based on EPR70 and 183W NMR spectra 71, it was concluded 234 

that in both the one- and two-electron reduced anions, [WVWVI
9O32]5‒ and [WV

2WVI
8O32]6‒ , repsecitvely, the extra electrons 235 

are principally located at the equatorial sites (four edge-shared within a plane octahedra) (FIG. 1 a). 236 

Decatungstates have been successfully applied by Hill and co-workers27, 73, 74 during the homogeneous photocatalytic 237 

oxidation of various organic substrates, such as alkanes, alkenes, alcohols, and amines due to the wide range of redox 238 

potentials of {W10O32}, as well as the reversibility in their multielectron reductions. Mechanistic studies have shown that the 239 

same one-electron reduced form of decatungstate [HWVWVI
9O32]4‒ is formed during the catalytic oxidation, which may react 240 

quantitatively with oxygen to form hydrogen peroxide and/or organic hydroperoxides as final products. 75-77 241 

Isopolyvanadates 242 

Polyoxovanadates (POVs) appear to provide structures of sufficient flexibility to allow the existence of multiple oxidation 243 

states while retaining structural integrity. The mixed-valent VIV/VV and fully-reduced VIV; VIII/VIV isopolyvanadates (IPVs) consist 244 



10 
 

mostly of a variety of vanadium alkoxide structures. Up to now 22 reduced IPVs, which accept between one and six electrons, 245 

were crystallized and investigated by single-crystal XRD (TABLE S1). 246 

Reduced and organically functionalized hexavanadates. The Lindqvist vanadium core {V6O19} (FIG. 1 a) is unstable due to the 247 

high charge/volume ratio. The most high-valent (VV), mixed-valent (VIV/VV, VIII/VIV) or fully reduced (VIV; VIV/VIII) hexavanadates 248 

were obtained as alkoxo-derivatives, in which varying numbers of double bridged oxo groups of {V6O19} are replaced by alkoxy 249 

oxygen donors of polyol ligands (FIG. 1 a).78 Zubieta et al. were successful in synthesizing a variety of hexavanadate 250 

derivatives with the help of trisalkoxo μ-bridging moieties revealing a rich class of VIV/VV mixed valence compounds. 79-81 The 251 

oxovandium clusters can be formed under solvothermal conditions: 1) by a comproportionation reaction of precursors with 252 

vanadium atoms in oxidation states +3 (V2O3) and +5 (VO3
‒, V2O5)80; 2) by reducing the fully oxidized compound with reducing 253 

agents (1,2-diphenylhydrazine, N2H5OH etc.) 79,82; 3) by reaction of VO(OR)3 (R = Me, Et, Bu) with BH4
‒ in methanol. 83-87 The 254 

solvothermal reaction of VOSO4 with p-tert-butylcalix[4]arene in methanol under anaerobic conditions yielded the VIII/VIV 255 

hexavanadate [VIIIVIV
5O6(OCH3)8(calix)(CH3OH)]‒.88 In each mixed-valence or fully reduced cluster six vanadium nuclei surround 256 

one oxo anion forming a nearly regular octahedron (FIG. 1 a). EPR studies and DFT calculations showed that the d-electrons of 257 

the VIV nuclei can be extensively delocalized in the highly symmetrical {V6O19} hexavanadate core.83,86 The magnetic exchange 258 

interactions between unpaired d-electrons in the Lindqvist core-structure are prone to geometric spin frustration.79 Recently, 259 

Matson et al. reported the synthesis and characterization of  iron-substituted Lindqvist type alkoxo-vanadates 260 

[VIV
3VV

2O6(OCH3)12FeIIIX] (X = Cl, OTf, OTf ‒ trifluoromethylsulfonate)89, which are capable to accept up to four electrons while 261 

remaining the +3 oxidation state of the iron atom.90 262 

Xu et al. have studied the influence of five functionalized hexavanadates, including one reduced IPVs 263 

[VIV
3VV

3O10(OH)3((OCH2)3CNO2)2]91, on Na+/K+-ATPase activity in vitro.40 Dose dependent Na+/K+-ATPase inhibition was 264 

obtained for all investigated compounds, however, the obtained results indicate that the most potent inhibitor is the reduced 265 

compound (IC50 = (1.8 ± 0.5)·10−5 mol·L‒1). 266 

Classically functionalized and “wheel”-type decavanadates. Exploiting the hydrothermal synthetic procedure as in the case 267 

of alkoxohexavanadatates, Zubieta and co-workers obtained clusters based on the fully {VIV
10O28} or partially {VIV

8VV
2O28} 268 

reduced cores with variable numbers of doubly and triply bridging oxo groups being replaced by the alkoxy oxygen donors of 269 

tris-alkoxy ligands (FIG. 1 a). 81,86 270 

In 1982, Heitner-Wirguin and co-workers firstly reported on the synthesis and structure of the mixed-valence wheel-271 

like decavanadate anion [(VIVO)2VV
8O24]4−, which was obtained by the hydrolytic dissociation of VIVO(acac)2 in methylene 272 

chloride or chloroform in the presence of CuII(acac)2 or ZnII(acac)2. 92.93 Later, an improved synthetic procedure, which does not 273 

require the use of CuII(acac)2 or ZnII(acac)2 anymore, was reported together with a magnetic susceptibility study by Baxter and 274 

Wolczanski. 94,95 The structure of [(VIVO)2VV
8O24]4− is absolutely different from d0 decavanadate [VV

10O28]6‒ and consist of the 275 

macrocyclic [VVO3]8
8− ligand, which binds two vanadyl cations [VIVO]2+ at the center. The reaction of the macrocyclic [VVO3]8

8− 276 

ligand with CuII affords a heteropoly complex, namely [CuII
2VV

8O24]4−, of which structure is similar to that of [(VIVO)2VV
8O24]4−.96 277 

The second synthetic way to obtain the wheel cluster [(VIVO)2VV
8O24]4− is the condensation of [VV

5O14]3‒ upon irradiation with 278 

visible light. 97,98 279 

Reduced heteropolyanions 280 
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Keggin-type polyoxometalates 281 

Box 1|Keggin structure and its isomers 

The Keggin structure was first reported in 1933 during the analysis of 12-tungstophosphoric acid255 and has become the de 

facto emblem of POM chemistry. The bulk of publications in this field are devoted to Keggin type anions. This ion has the 

general formula [XM12O40]n–, where X is a heteroatom that is coordinated by four O atoms leading to its tetrahedral 

geometry, M = Mo or W, charges range from n = 2 (X = SVI 256) to n = 7 (X = CuI 257). Investigations of the Keggin structure 

revealed five isomers, each resulting from  60° rotation of one, two, three and four {M3O13} triad units, respectively, leading 

to the α, β, γ, δ and ε isomers as reported by Baker and Figgis.258 The arrangements of the M3O13 triads affect the molecular 

orbital energies and the distances between metal centers, which also in turn affect the electrostatic repulsion. Thus, the 

stability of fully oxidized Keggin anions decreases in the order α ˂ β ˂ γ ˂ δ ˂ ε. The reduced clusters behave differently. The β 

form becomes the most stable isomer after the acceptance of the second and fourth electron as the LUMO is lower than that 

in the α form.259 The γ isomer also has a low LUMO and gains stability upon reduction, but not enough to be competitive 

with the β isomer. The other isomers, δ and ε, are much more unstable than α or β in any reduction state and require 

transition metal support.259-261 Remarkably, in reduced Keggin POMs resistance to addenda atom substitution can increase 

due to the additional energy factor of orbital overlaps for the delocalization of the added electrons. Also addenda 

substitution for a lower charged metal increases total negative charge of the already reduced anion, which can lead to its 

instability. A general way to stabilize the Keggin anions with higher negative charges after reduction is to introduce 

electrophilic capping groups such as {VVO}3+ or {VIVO}2+. The structures, which are formed after such capping, have become 

known as “pseudo-Keggin” structures. 

 

 282 

Electron accepting properties of Keggin-type polyoxomolybdates. The synthesis of the heteropoly acid from orthophosphate 283 

PO4
3‒ and molybdate MoO4

2‒ under acidic conditions and its subsequent reduction to form an intensely coloured 284 

phosphomolybdenum blue [PMoV
nMoVI

(12‒n)O40](3+n)‒ was firstly reported by Scheele in 1783. However, its discovery is widely 285 

attributed to Berzelius in 1826.15 Especially the molybdate blues have long been used for colorimetric determination of trace 286 

levels of elements that readily form Keggin anions, e.g. for analysis of phosphates and silicates. 287 
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So far seventeen reduced POMos of Keggin structure, which accept between one and up to twelve electrons, were 288 

crystallized and investigated by single-crystal XRD (TABLE S2). 289 

The redox behavior of Keggin-type POMos is highly acid-dependent.10,99 Launary et al. reported on the pH effect of the 290 

first three reversible two-electron reductions of [SiMoVI
12O40]4‒. The two- electron waves are shifted to more negative 291 

potential when the pH is higher and they are eventually split into one-electron waves. This takes place at pH 2.4 for the first, 292 

pH 9.5 for the second and pH 13 for the third wave giving rise to the formation of [SiMoVMoVI
11O40]5‒, [SiMoV

2MoVI
10O40]6‒ and 293 

[SiMoV
3MoVI

9O40]4‒, respectively. 48, 100 294 

The reduced α- and β-Keggin POMos can be synthesized electrochemicaly101,102 or by hydrothermal reactions21,105-112 25, 295 
31, 103-107 Reduced POMos exhibiting the ε-Keggin structure can only be synthesized hydrothermally with the support of TMII-296 

units (TM ‒  transition metal, e.g. NiII, CoII). 26, 108-111 Organic ligands (e.g. 1,2-propanediamine) or reagents bearing a 297 

heteroatom (e.g. As2O3)109 can display reducing effects on the addenda atoms. A complex containing an ε-core is 298 

[Na(MoVIO3)4MoV
12(OH)12O28]7- possessing Mo-capping units and a central cavity, which is capable of accommodating protons 299 

or metal cations.55 This compound was obtained in aqueous solution from heptamolybdate and phenylphosphonic acid with 300 

hydrazinium dichloride N2H4·2HCl as reducing agent. The magnetic properties of electron-rich Keggin-type POMos were 301 

investigated and in the case of [GeMoV
8MoVI

4O40]12‒ and [(AsVO4)MoV
8WVI

4O33(μ2–OH)3]8‒ the negative Weiss constants 302 

indicate the possible occurrence of weak antiferromagnetic interactions between the transition metal centers.109 On the 303 

other hand, the magnetic properties of the compound with fully reduced addenda atoms [MoV
12O30(µ-OH)10H2{NiII4(H2O)12}] 304 

(FIG. 3 a)26 are dominated by exchange interactions between the four NiII centers, while the strong interactions between the 305 

12 Mo (4d1) centers result in six MoV‒MoV dumbbells with Mo‒Mo single bonds  as is the case 306 

in[Na(MoVIO3)4MoV
12(OH)12O28]7‒.55 307 

The CoII-capped ε-Keggin anion [(CoIIbpy)2(PMoV
4MoVI

8O40)]3‒ has been checked for catalyzing water oxidation to 308 

generate O2 under visible light irradiation using [Ru(bpy)3]2+ as  photosensitizer and S2O8
2‒ as the sacrificial electron 309 

acceptor.31 Although the stability of POMo under photocatalytic conditions was demonstrated by dynamic light scattering 310 

(DLS), extraction experiment, and UV-Vis and FT-IR spectroscopy, it should be noted that bipyridine and CoIIICoII-oxide, which 311 

can be formed under these conditions, are well established to be efficient water oxidation catalysts. A turnover number of up 312 

to 49 sec‒1 was observed by the authors,31 which shows that this reduced POMos could be an  efficient visible light-driven 313 

catalysts for water oxidation. The photocatalytic water oxidation activity of [(CoIIbpy)2(PMoV
4MoVI

8O40)]3‒ resembles that of  314 

POMs with non- reduced addenda atoms. 112 315 

Nobel metal nanoparticles can be formed in water at room temperature in the presence of four electron-reduced 316 

Keggin POMo H7[β-PMoV
4MoVI

8O40] and are stable for several months. 113-115 In this case the electron-rich POMos play the role 317 

of the reductant and stabilizer.  318 

The salt of doubly reduced [PMoV
2MoVI

10O40]5− anion with benzimidazolium exhibited a dielectric anomaly, which was 319 

caused by electric dipole relaxation.116 This dipole relaxation can be explained by a hopping process of the blue electrons and 320 

a charge relaxation from a disproportionated structure to a fully delocalized structure due to distortion of the Keggin 321 

framework by intermolecular interaction. 322 

POM-molecular cluster batteries based on [PMoVI
12O40]3− anion exhibit a large capacity of ca. 270 (A h)/kg in a voltage 323 

range between 1-5 – 4.0 V due to their ability to reversibly accept 24-electrons during charging/discharging process.41 324 
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Electron accepting properties of Keggin-type polyoxotungstates. In 1960-1970 Pope and co-workers laid the foundation for 325 

the investigation of the reduction processes in Keggin-type heteropolytungstates (HPT). 117,118 and unveiled the formation of 326 

heteropoly “browns” with W in the oxidation state +4.17,18 They demonstrated that the electrons can be accepted by Keggin 327 

POTs [XW12O40]n‒ (X = PV, SiIV, FeIII, CoII) without protonation until the total charge of the reduced species is ‒6 in acidic media 328 

and ‒8 in neutral media. Further reduction is then always accompanied by protonation keeping the overall ionic charge at ‒6 329 

or ‒8.  So far eleven reduced HPTs exhibiting the Keggin structure {XWV/VI
12O40}, which accept between  one and up to six 330 

electrons, were crystallized and investigated by single-crystal XRD (TABLE S2). 331 

Reduced Keggin type POTs could be so far synthesized electrochemically 123-125 117-119 or under hydrothermal 332 

conditions.-106, 120-123 One-electron reduced POTs were obtained at pH = 4.3 – 5.5, whereas the higher reduced electron-rich 333 

Keggin POTs were obtained at higher pH. As previously noted the “blue” electrons do not alter the crystal structure of the 334 

parent POT anion. Detailed analysis of structural parameters of α-[CoIIWVI
12O40]6‒ and α-[CoIIWV

2WVI
10O40]8‒ showed that 335 

except for a shortening of each central Co‒O tetrahedral distance by 0.03 Å and a consequent corresponding increase in 336 

W‒Otetrahedra distances, the reduction caused remarkably little change in the interatomic distances within the complex.124 337 

 338 
 339 

Figure 3 | Synthesis of electron-rich POMs based on the Keggin anion. a | Schematic representation of the formation process 340 

of fully reduced NiII-supported [MoV
12O30(µ-OH)10H2{NiII4(H2O)12}] anion.26 b | General scheme of bivanadyl bi-capped Keggin 341 
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POMs formation. c | pH-depended formation of monomeric [SiMoV
4MoVI

10O44]4- and dimeric [Si2MoV
14MoVI

14O84(H2O)2]6‒ bi-342 

capped anions.152 d | Schematic representation of the formation of transition metal supported tetra-capped anion (e.g. 343 

[AsMoVI
6MoV

2VIV
8O44]5‒ connected covalently with two {Co(phen)2(H2O)}).155 344 

 345 

Using 27Al NMR Hill et al. demonstrated the defined electron exchange between a fully oxidized α-[AlIIIWVI
12O40]5‒ and 346 

the one-electron reduced α-[AlIIIWVWVI
11O40]6‒.125 The electron-rich α-[AlIIIWVWVI

11O40]6‒ is stable with respect to 347 

disproportionation, structural isomerization and hydrolysis (from pH 0 to 7). In addition, it remains unprotonated over a wide 348 

pH range (pH 1.8 to 7.5) and is free of Na+ ion pairing with Na+ (C >1 M).  349 

Stability of the [SiWIV
3WVI

9O40]10– “brown” anion in acid solution depends on the nature of the Keggin isomer and 350 

decreases in the order α > β > γ, which can be correlated with the structural modifications induced by rotation of the 351 

{WIV
3O13} groups. The 4e‒ blue anion [SiWV

4WVI
8O40]8– is stable in acidic solution with theβ-isomer being more stable than the 352 

corresponding α and γ forms.126 353 

Coronado and co-workers investigated the influence of the electron transfer on the magnetic properties of the two-354 

electron reduced {W4O16} fragment of the α-[PWV
2WVI

10O40]5– anion.127 They showed that the electron transfer between edge-355 

sharing and corner-sharing WO6 octahedra have very close energy values and induce a large energy gap between the singlet 356 

ground state and the lowest triplet states. These data explain the diamagnetic properties of the mixed-valence Keggin ions 357 

reduced by two electrons and can be used for other electron-rich POM archetypes. 358 

Neumann and co-workers have recently shown that H5[PWV
2WVI

10O40] is a photoactive electron and proton donor by 359 

light-induced excitation of the intervalence charge transfer band.32 The reduced POT H5[PWV
2WVI

10O40] was used to transfer 360 

electrons to the di-rhenium catalyst that catalyzes the selective reduction of CO2 to CO. 361 

The study of reoxidation of photoreduced [PWVWVI
11O40]4− by hydrogen peroxide, peroxyacetic acid, 362 

peroxymonosulfate, peroxydisulfate and dioxygen (O2) in the presence of the model pollutant 2-propanol under various 363 

conditions provide insight into POM-catalyzed redox reactions in water purification and selective redox applications.33 A 364 

unified chain reaction is proposed in which the rate-limiting step is outer-sphere one-electron transfer to oxidants yielding 365 
•OX (•OH, SO4

•− or CH3CO2
•). The chain includes a number of [PWVWVI

11O40]4−-regenerating steps that, with some bulk 366 

oxidants, leads to further consumption of bulk oxidant and transformation of pollutant. 367 

The conversions of the three types of olefins catalyzed by NaCuI
2(tib)4(H2O)4[H2PWVWVI

11O40][H2PWVI
12O40]·6H2O (tib ‒ 368 

1,3,5-tris(1-imida-zolyl)benzene), are 98.3% (1‒hexene), 95.7% (cyclo hexene), and 97.1% (1‒octene), indicating that this 369 

compound can be used as an effective catalyst for epoxidation.120 370 

The photochemically reduced (λ ˃ 320 nm, propan-2-ol as a sacrificial reagent) tungstosilicate, [SiWVWV
I11O40]5‒, was 371 

used to obtaine fine metal nanoparticles of Ag, Au, Pd, and Pt, by simple mixing of the corresponding metal ions with reduced 372 

polyoxometalates at room temperature.128 373 

Capped Keggin polyoxometalates 374 

The surface modification of a classical Keggin anion with other groups may adjust or ameliorate the physicochemical 375 

properties of the Keggin ion itself. Inorganic {VO} capped Keggin-type derivatives (FIG. 1 b) have been synthesized by 376 

hydrothermal technique. These compounds are mainly obtained as bi-capped and tetra-capped bivanadyl POMos, bi-capped 377 
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bivanadyl POTs and polyoxoniobates (PONs), and bi-capped bimolybdenum and biantimony POMos do also exist. (TABLE S3, 378 

S4) 379 

Redox-properties of bi-capped bivanadyl Mo and mixed Mo/V polyoxometalates. Highly reduced bi-capped bivanadyl mix-380 

valence molybdenum Keggin anions {XMoV/VI
12O40(VIVO)2} (X = Si, P, Ge, As, V),104,105, 129-138 or molybdenum-vanadium anions 381 

{XMoV/VI
8VIV/V

4O40(VIVO)2} (X = P, V),103, 139-147 were firstly presented by Hill et al.131 in 1996 and proved to be useful building 382 

blocks to construct multi-dimensional extended solid materials that show oxidative resistance and act as catalysts in 383 

homogeneous oxidation (FIG. 1 b; FIG. 3 b). 26 reduced bi-capped bivanadyl POMos and mixed POMo/Vs, which accept 384 

between two and eight electrons, were crystallized and investigated by single-crystal XRD (TABLE S3) up to now. 385 

A number of bi-capped Keggin-type structures have been synthesized by hydrothermal reactions, sometimes 386 

supported by organic ligands (bipyridine, 1,10-phenanthroline etc) and transition metals (CoII,105 CuI,137 ZnII 134 etc). Under 387 

these conditions the reactions allow only little control over the stoichiometry or the degree of reduction. 388 

Capping of the {VO} units on two opposite sides of α-Keggin POMs results in an asymmetrical negative charge 389 

distribution and polarization of the POMo core making them attractive for asymmetric modification with transition metal 390 

cations (e.g. NiII,133 CuI,137 CoII 105). Moreover, the steric orientations of the coordination sites for the capped Keggin POMos 391 

are more flexible than those for the uncapped species. 392 

The first reported bi-capped POMo, the [PMoV
6MoVI

6O40(VIVO)2]5‒ anion, 131 can be best described as an α-Keggin core 393 

{PMo12O40} with {VO} units capping two opposite pits. Caps are formed through the ligation of four oxygen atoms originating 394 

from two opposite {Mo4O4} faces to each {VO} unit in a square pyramidal manner (FIG. 3 b). DFT calculations 132 confirmed 395 

Hill’s suggestion that the metal centers in this reduced anion contain eight d electrons: six are accommodated in three 396 

symmetry-adapted Mo orbitals, while the other two d electrons are in quasi degenerate linear combinations of the d 397 

vanadium orbitals. 398 

By using the Wells-Dawson-type POMo H6P2Mo18O62·nH2O and NH4VO3 as starting material in a hydrothermal reaction 399 

it is possible to obtain another Mo-V bi-capped bivanadyl mixed Mo/V Keggin-type derivative, namely 400 

[PMoVI
8MoV

2VIV
4O42]5‒.147,148 The structure of [PMoVI

8MoV
2VIV

4O42]5‒ is similar to that of [PMoV
6MoVI

6O40(VIVO)2]5‒.125 In the case 401 

of bi-capped molybdenum-vanadium anions {XMoV/VI
8VIV/V

4O40(VIVO)2} (X = P, V) 103, 139-147 the α-Keggin core is based on a 402 

central {XO4} tetrahedron surrounded by four corner sharing triads of {Mo2VO13}, which is composed of two {MoO6} octahedra 403 

and one square {VO5} pyramid (FIG. 3 b). 404 

Generally, variable-temperature magnetic susceptibility measurements showed the presence of antiferromagnetic 405 

interactions among the reduced MoV ions plus a paramagnetic contribution from the VIV ions in {XMoV/VI
12O40(VIVO)2} (X = Si, P, 406 

Ge, As).133,134,137,138 In addition, an antiferromagnetic interaction is possible between the cation (e.g. CoII) and the VIV ions, 407 

which are directly linked through an oxygen bridge. 408 

Studies of the electrochemical properties of compounds with {XMoV/VI
12O40(VO)2} (X = Si, P, Ge, As)134,135,139 structure 409 

revealed similar redox behavior to the parent Keggin {XMo12O40}, that is, they undergo three two-electron reversible 410 

reductions of molybdenum. The VIVO2+ caps have a slight effect on the electrochemical properties and no redox waves of VIV 411 

can be observed.134 412 

Bi-capped anions [PMoV/VI
12O40(VIVO)2]n‒ with two localized spins have been proposed as qubits for molecular 413 

spintronics.35 Here, the molybdenum core acts as a reservoir for a variable number of delocalized electrons and exhibits weak 414 
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magnetic coupling with the two (VO)2
+ units. Through electrical manipulation of the molecular redox potential, the charge of 415 

the core can be changed, thus two-qubit gates and qubit readout can be implemented.35 416 

The [HPMoVI
8VV

4O40(VIVO)2]2‒‒carbon paste electrode (CPE) exhibits bifunctional electrocatalytic activities, namely 417 

reduction of iodate IO3
‒ and oxidation of ascorbic acid with electrocatalytic efficiency (CAT) of 57% and 43%, respectively, 418 

which are considerably higher than the CAT values for HPMoVI
12O40

2‒‒CPE  (16% and 1%).139 Here and throughout it should be 419 

noted, that CPEs are quite unstable and some of POM electrochemical features can involve the CPE components. 420 

Redox-properties of bi-capped bivanadyl polyoxotungstates and polyoxoniobates. The only two examples of reduced bi-421 

capped bivanadyl polyoxotungstates, [VIVWV
2WVI

10O40(VIVO)2]2‒ 149 and [AsVWV
4WVI

6VIV
4O42]7‒, 122 have been reported recently 422 

(TABLE S3). Photocatalytic studies indicate that the compound [NiIIL4VIVWVI
10WV

2O40(VIVO)2] (L = 1,4-bis(imidazol-1-423 

ylmethyl)benzene) not only serves as an active photocatalyst for the degradation of dye molecules but also exhibits selective 424 

photocatalytic activity for the degradation of cationic dyes in aqueous solution.149 Furthermore, two bi-capped bivanadyl 425 

structures are known for polyoxoniobate: fully-oxidized [VVNbV
12O40(VVO)2]9‒ and the three-electron reduced 426 

[VIVNbV
12O40(VIVO)2]11‒.150,151 They were synthesized under similar hydrothermal conditions but for the synthesis of the 427 

reduced anion ethylenediamine was presented in the reaction mixture. 428 

Redox-properties of bi-capped bimolybdenum and biantimony polyoxomolybdates. The formation of molybdenum-capped 429 

anions is also possible if no vanadium compound is present in the reaction mixture. Six reduced bimolybdenum and 430 

biantimony POMos, which accept between four and eight electrons, were crystallized and investigated by single-crystal XRD 431 

(TABLE S3). 432 

Polyoxoanion [SiMoV
4MoVI

10O44]4–152  which was synthesized by reaction of the oxothio precursor 433 

[Mo12S12O12(OH)12(H2O)6]4− with hydrochloric acid, silicate anions, and tetramethylammonium hydroxide under hydrothermal 434 

conditions, is capped by {MoVIO2} subunits sharing two O atoms to form a dimer. At high temperature and low pH, a 435 

hypothetical five-electron reduced-Keggin structure with two {MoVO2} capping units is obtained. This electron-rich species 436 

dimerizes to form [Si2MoV
14MoVI

14O84(H2O)2]6‒ (FIG. 3 c).152 437 

The [AlMoV
4MoVI

8O40(MoVIO2)]5− 153 and [(AsVO4)MoVI
6MoV

6O35 (MoVO)2]‒ 154 anions also demonstrate bi-capped Keggin 438 

structures. The attachment of  capping units to the Keggin-type polyanion can be described as a Lewis-type interaction 439 

between the four-electron-reduced {XMoIV
4MoVI

8O40} species, acting as a base, and the {MoVIO2} as Lewis acid, which exhibit a 440 

structure stabilizing effect. 441 

The catalytic property of [(AsVO4)MoVI
6MoV

6O35 (MoVO)2]‒ 153 has been explored showing that it is able to convert 442 

styrene to benzaldehyde (85.2%). In the same time the catalytic properties of [AlMoV
4MoVI

8O40(MoVIO2)]5− 153 were evaluated 443 

in the oxidation of cyclohexanol to cyclohexanone. A conversion rate of 26.7% with a high selectivity of 98.5% for the 444 

conversion to cyclohexanone was reported. It has to be noted that a blank reaction without POMo gives only 4.2 % of 445 

conversion. 446 

POMs containing antimony oxide units often play an important role in heterogeneous oxidation catalysis. Moreover, 447 

antimony cations also have a stabilizing effect on polyoxometalates at high temperatures.154 The bi-capped antimony α-448 

Keggin anion [PMoV
5MoVI

7SbIII
2O40]2‒ can be synthesized either under hydrothermal conditions in the system of 449 

Sb2O3 ‒ (NH4)6Mo7O24 ‒ H3PO4 ‒ en ‒H2O 155,156 or by reduction of (Bu4N)3[PMo12O40] with six mole-equivalents of Na/Hg 450 
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amalgam in the presence of two mole-equivalents of SbCl3 following to the scheme:104 451 

[PMo12O40]3‒ + 2 SbCl3 + 6e → [PMo12O40Sb2]3‒ + 6Cl‒. 452 

Redox-properties of tetra-capped pseudo-Keggin polyoxoanions. In contrast to bi-capped Keggin systems tetra-capped 453 

structures of electron-rich POMs are known only for mixed Mo/V systems with the general formula {XMo8
V/VIV8

V/IV}, X = P, V, 454 

As (FIG. 1 b; FIG. 4 d). 103, 122, 157-165 19 reduced tetra-capped pseudo Keggin polyoxoanions, which accept between eight and 455 

thirteen electron, were crystallized and investigated by single-crystal XRD so far (TABLE S4). 456 

All tetra-capped compounds are synthesized in a similar fashion. When applying hydrothermal synthesis, the 457 

heteropolyacids H3XMo12O40 (X = P, As) and NH4VVO3 are often used as the starting material. Wang and coworkers pointed out 458 

that the use of NH4VO3 as precursor in the transformation reaction of the Keggin into the pseudo-Keggin structure may 459 

increase the negative charge density on the external oxygen atoms leading to a more reactive POM anion.159 Using 460 

H2C2O4·2H2O during the synthesis not only decreases the pH of the reaction system but also can act as a reducing agent.157 461 

 [(XO4)MoV/VI
8VIV

8O40]n– is structurally based on the α-Keggin {(PO4)MoV/VI
8VIV

4O36} (FIG. 1 b) archetype containing four 462 

additional five-coordinated terminal VIVO2+ units. One distorted and disordered XO4
3‒ (X = P, V, As) tetrahedron lies inside the 463 

host cavity. The Mo ions are all six-coordinated resulting in an octahedral geometry. Each vanadium ion possesses a distorted 464 

{VO5} square pyramidal geometry with eight vanadium ions forming the central belt by sharing edges of {VO5} square 465 

pyramids. There are two {Mo4O18} rings by common edges above and below the V8 belt. The assignments of the oxidation 466 

state for the molybdenum and vanadium ions are consistent with their coordination geometry and confirmed by bond 467 

valence sum calculations.In most of the cases the transition metal (CoII, NiII or CuII) complexes do covalently link to the anion 468 

via terminal capping VIV=O groups (FIG. 3 d). 469 

An Ab Initio and DFT study of [PMoV
2MoVI

6VIV
4O40(VIVO)4]5‒ shows that six of ten accepted electrons are delocalized 470 

over the V8-ring, whereas the remaining electrons are deloclaized over the Mo centers.166 As with bi-capped anions, variable-471 

temperature magnetic susceptibility measurements were performed and show the presence of antiferromagnetic 472 

interactions betweem the reduced Mo(V) and V(IV) atoms. 157-160 473 

Wells-Dawson-type polyoxometalates 474 

So far eight reduced POMos, two reduced POTs and three mixed-metal (Mo/W and V/Mo) POMs of Wells-Dawson 475 

structure, which accept between  one and up to five electrons, were crystallized and investigated by single-crystal XRD so far 476 

(Table S5). 477 

Polyoxomolybdates exhibiting the Wells-Dawson structure. The one- and two electron reduction of α-[P2MoVI
18O62]6– in 478 

acetonitrile leads to α-[P2MoVMoVI
17O62]7– and α-[P2MoV

2MoVI
17O62]8–, which were confirmed by EPR and 31P NMR studies.167 479 

The magnitudes of the EPR g values suggest that the odd electron is either delocalized or is rapidly hopping between a mirror-480 

plane-related pair of equatorial Mo atoms. 167 Electrolytic reduction of [(P2O7)MoVI
18O54]4‒ at 0.11 V in acetonitrile solution 481 

yielded the green one-electron reduced species [(P2O7)MoVMoVI
17O54]5‒ and the blue two-electron-reduced species 482 

[(P2O7)MoV
2MoVI

16O54]6‒, of which formation was confirmed by 31P NMR and EPR studies.168 Four compounds contain two or 483 

three electron reduced Wells-Dawson anions {As2Mo18O62}, which are capped by a certain number of CuII or AsIII species on 484 

different coordination positions. These compounds were hydrothermaly synthesized by altering of the pH and the organic 485 

ligand within the reaction system.169  486 
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Reduction by two or more electrons produces highly basic forms that have been isolated as protonated 487 

polyoxometalate salts.170 The dependence of the EPR line width on temperature for [nBu4N]5[H3S2MoVMoVI
17O62] is consistent 488 

with the intermolecular thermal delocalization of the odd electron over the entire molecular framework in the temperature 489 

range from 77 to 253 K.171 By reaction of [nBu4N]4[H3S2MoVI
18O62] with triphenylphosphine in acetonitrile the four-electron 490 

reduced α-Wells-Dawson compound [nBu4N]5[H3S2MoV
4MoVI

12O62]·4MeCN was prepared.172 The most significant structural 491 

alterations, compared to the parent structure, are an increase in the Mo–Mo distances between corner-sharing MoO6 units in 492 

the equatorial belt by 0.066 Å and a decrease in the Mo–O–Mo bond length connecting the two halves of the anion. 493 

(C16H18N3S)5[S2MoVMoVl
17O62]·CH3CN was used to fabricate a modified carbon paste electrode (CPE) which exhibits five redox 494 

peaks in the potential range from −300 mV to 700 mV exhibiting more positive first redox potentials than the [P2MoVI
18O62]6− 495 

ion and in addition  higher stability and electrocatalytic activity towards the reduction of nitrite, chlorate, bromate and 496 

hydrogen peroxide in acidic (1 M H2SO4) aqueous solution.34 497 

α-[(SO3)2MoV
2MoVI

16O54]6‒, which incorporates the pyramidal sulfite anion, was synthesized in the presence of an 498 

excess of triethanolamine (TEA) at pH 4.0 with Na2S2O4 not only acting as reducing agentbut also as the source for the 499 

incorporated of SO3
2‒.173 The electrochemistry of these two-electron rich anion has been investigated in aqueous media using 500 

cyclic and rotated disk voltammetry at glassy carbon electrodes and bulk electrolysis with a focus on the pH-dependence for 501 

the oxidation to α-[MoVI
18O54(SO3)2]4−.174 In buffered media at pH ≥ 4, the cyclic voltammetric response for α-502 

[(SO3)2MoV
2MoVI

16O54]6‒ reveals two partially resolved one-electron oxidation processes corresponding to the sequential 503 

generation of α-[(SO3)2MoVMoVI
17O54]5‒ and α-[(SO3)2MoVI

18O54]4‒.174 α-[(SO3)2MoV
2MoVI

16O54]6‒ was obtained during simple 504 

one-pot reaction because α-[MoVI
18O54(SO3)2]4‒ is slightly easier to reduce than the β-form. Furthermore, on a much longer 505 

bulk electrolysis timescale, β → α isomerisation occurs showing that the reduced forms of the α-isomer are 506 

thermodynamically favoured over the β forms, which was shown by Cronin and co-workers.175 In aprotic acetonitrile β-507 

[MoVI
18O54(SO3)2]4‒ is retained on the voltammetric timescale upon one- and two-electron reduction. α-[(SO3)2MoVI

18O54]4‒ 508 

undergoes reduction slightly easier than the β form. 509 

 510 

Box 2|Wells-Dawson structure 

In 1892, Kehrmann described the synthesis of a Wells–Dawson-type phosphotungstate for the first time.261 However, 

Dawson published the first crystallographic study of this structure 60 years later.262 The general formula of the Wells–

Dawson anion is [(XO4)2M18O54]n−; M = Mo, W and X = main-group element. The classical Wells-Dawson structure 

incorporates two tetrahedral anions such as PO4
3‒,262 AsO4

3‒,263 SO4
2‒,170 or ClO4

‒ 178. There are only a few examples of {M18} 

Wells-Dawson-like clusters that host non-tetrahedral anions, for example, a single pyramidal anion BiO3
3‒ 264, AsO3

3‒ 265 or 

SO3
2‒ 173 in each {M9} unit, presumably due to size restrictions. A ditetrahedral anion ‒ P 2O7

4‒ 168 (two tetrahedral sharing one 

corner) was also observed in the centre of the structure. The structure, known as α-Wells-Dawson isomer, possesses two 

identical “half units” of the central atom surrounded by nine octahedral units XM9O31 linked through oxygen atoms. The 

isomeric β-Wells-Dawson structure originates from the rotation of one half unit by π/3 around the axis connecting both 

heteroatoms. Similarly to many heteropolyanions, the Wells–Dawson structure can be chemically manipulated to generate 

lacunary units by removing up to six MO6 octahedra, which gives X2M12 anion. The redox properties of Wells-Dawson 
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polyoxometalates in aqueous media have received limited attention because of their low solubility and their instability under 

basic conditions.266-268  

 
Color code: MoO6, blue octahedral; PO4, lilac terahedra; VOn, green polyhedra; S, yellow sphere.  

 511 

Polyoxotungstates exhibiting the Wells-Dawson structure. α-[(SO3)2WVWVI
17O54]5‒ was obtained as Pr4N+ (Pr = propyl) 512 

salt by reducing the so-called “Trojan Horse” [(SO3)2WVI
18O56 (H2O)2]8‒ cluster 176 via a template orientation transformation. 513 

Cyclic voltammetry of α-[(SO3)2WVI
18O54]4‒ and α-[(SO3)2WVWVI

17O54]5‒ in CH3CN produces evidence for an extensive series of 514 

reversible one-electron redox processes that are associated with the tungsten-oxo framework of the POT cluster.177 The 515 

encapsulated sulfite anions in the “Trojan Horse” [WVI
18O56(SO3)2(H2O)2]8‒ cluster 176 act as embedded reducing agents and are 516 

oxidized to sulfate when heated to over 400 °C according to the following reaction scheme: [(SIVO3)2WVI
18O56 517 

(H2O)2]8‒ → [(SVIO4)2WV
4WVI

14O54 (H2O)2]8‒ + 2 H2O. 518 

The only example of a Wells-Dawson-type anion with ClO4
2- as heteroatom was observed in [nBu4N]3[Cl2WVWVI

17O62], 519 

which was obtained under UV irradiation from monomeric WO4
2‒.178 The powder EPR spectrum of reduced 520 

tungstoperchlorate indicates the presence of WV and suggests that the unpaired electron may be delocalized over the W 521 

atoms in the anion network due to thermally activated electron hopping. 522 

The potential photocatalyst for oxidative decomposition of methylene blue dye contains [As2WV
2WVI

16O62]8‒, which is  523 

connected to eight copper ions and synthesized under hydrothermal conditions.179 524 

Addenda priority for electron acceptance in mixed-metal Wells-Dawson polyoxometalates. Baker and co-workers 525 

investigated mixed Mo/W electron-rich anions and the derivatives of parent [P2MonW18-nO62]6‒ (n = 1 ‒ 6) in aqueous solution 526 

using 31P and 183W NMR as well as EPR in the 1980s. 180-183 In 1983, Pope reported the synthesis of Wells-Dawson lacunary 527 

polyoxotungstates and vanadyl sulfate one-electron reduced anions [P2VIVVV
nW18-nO62](8+n)‒ (n = 1, 2).185 The electrochemisrtry 528 

of mono-substituted VIV Wells-Dawson anions V{XkV
IVMoVI

nWVI
17-nO62} (X = P, As; k = 1,185 2;187-189; n = 0, 187-189 2186) were 529 

investigated by Nadjo et al. These anions are efficient as electrocatalysts for the reduction of NO2
‒, oxidation of L-cysteine and 530 
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as stabilizing agents for the preparation of Pd0 nanoparticles. 187-189 However, so far no single crystal structure of this kind of 531 

Wells-Dawson anion is reported. 532 

Cronin and co-workers recently reported a new structural type that is related to the Wells-Dawson archetype in terms 533 

of the cage geometry but with seven of the metal centres having been changed to hetero-metals like in the case of 534 

(NH4)7[(SO3)MoVI
11VV

5VIV
2O52]·12H2O, where 7 Mo atoms were changed to VIV/V.190 The VV is partially reduced to VIV by sulphite, 535 

which also acts as a heteroanion. The distorted egg-shaped capsule of the molybdovanadate-sulfite anion is built up of two 536 

different hemispheres. In the upper hemisphere, three edge-sharing MoO6 octahedra form the cap, which is connected to the 537 

belt via vertexes of alternating VVO4 tetrahedra and MoO6 octahedra. The {M6} belt at the bottom hemisphere is made of 538 

three sets of edge-sharing MoO6/VO6 octahedra interconnected within the framework to give three Mo–O–V moieties 539 

arranged in a ring-like structure. Finally, the {M3} cap at the bottom of the cluster contains two Mo and one V position, 540 

respectively (BOX 2). 541 

Reduced Basket-like polyoxomolybdates. As a unique class of unclassical POM, the basket-like archetype 542 

{M⊂P6MoV/VI
18O73} (M = alkali metal, ⊂ - covalently incorporated) represents mixed valence molybdates, which are obtained 543 

by two or more electron reductions from the corresponding MoVI of orthomolybdate MoO4
2‒ 191-196 or heptamolybdate 544 

Mo7O24
6‒ -197-201 (BOX 2). So far 31 reduced Basket-like polyoxoanions, which accept between two and six electrons, were 545 

crystallized and investigated by single-crystal XRD up to date (TABLE S6). 546 

All basket-like POMos were obtained by hydrothermal synthesis using potassium ,191,192 or alkaline earth metals -193-201 547 

(Ca, Sr, Ba) as template agents to stabilize and induce polyanions formation. The organic ligands play an important role as 548 

reducing agents to reduce the MoVI to MoV centers in one pot reactions including {Mo} (MoO3/Mo, Na2MoO4 or 549 

(NH4)6Mo7O24), H3PO4, MCl2 (M = Ca, Sr, Ba) or KH2PO4 and H2O leading to different dimensions or packing arrangements in 550 

the final hybrid materials.196,198-201 551 

The basket-like polyoxoanion consists of two parts: the “handle” {P4Mo4} unit and the “basket body” {P2Mo14} segment 552 

(BOX 2). The lower {P2Mo14O46} part is a tetravacant lacunary derivative of the Wells–Dawson anion [P2Mo18O62]6‒ formed by 553 

removal of four “belt” Mo octahedra, in which each of the fourteen Mo atoms has only one terminal, double-bonded oxygen 554 

atom and thus meets the criteria for receiving ‘‘blue’’ electrons.14 The upper part {P2Mo4O27} is the handle of the basket 555 

formed by four MoO6 octahedra and four PO4 tetrahedra, in which each of the four Mo atoms has two terminal, double-556 

bonded oxygen atoms. The {P4Mo4} and the “basket body” {P2Mo14} moieties are connected together through edge- and 557 

corner-sharing modes. The entire basket-shaped cluster possesses C2v symmetry. The Mo–O bonds between {P4Mo4} and 558 

{P2Mo14} have longer distances and smaller bond orders in comparison to classical Wells-Dawson anion. As a result, the 559 

negative void formed by nine oxygen atoms of the two parts is large and can accommodate either alkali or alkaline earth 560 

metals. 561 

Another example of Wells-Dawson derivative encapsulating alkali metal [Na(SO3)2(PhPO3)4MoV
4MoVI

14O49]5‒ was 562 

synthesized from Na2MoO4, Na2S2O4 and phenylphosphonic acid.202 Electrochemical investigations of 563 

[Na(SO3)2(PhPO3)4MoV
4MoVI

14O49]5‒ showed three redox couples, in which the electrons were mainly delocalized over eight 564 

Mo sites.203  565 

The compositions of carbon paste electrodes (CPE) with basket-like POMs have been checked for electrocatalytic 566 

activity on reduction of nitrite NO2
‒, hydrogen peroxide H2O2 and oxidation of dopamine. In the series of experiments with 567 
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[Sr ⊂ PV
6MoV/VI

18O73]n– it has been noted that catalytic activities were enhanced with increasing extent of the anion 568 

reduction.194,199 The basket-like POMos demonstrated superiority over other POM archetypes as catalysts in 569 

photodegradation reaction due to their special structure, which makes electrons and holes migrate rapidly to the surface of 570 

the basket cage, thus improving the photocatalytic activities significantly.200 571 

Five-electron reduced Wells-Dawson-like borophosphate polyoxomolybdates. In 2002, Sevov and co-wokers reported 572 

synthesis and structure of a new type of reduced borophosphate POMos. (TABLE S6).204 The polyanion [B2P8Mo12O59(OH)3]8‒ is 573 

structurally very closely related to that of the α-Wells-Dawson anion [P2Mo18O62]6‒ and consist of two crystallographically 574 

equivalent hemispheres of [BP4Mo6O31H1.5]4‒ that are linked together by six shared oxygen atoms (BOX 2). 575 

There are two  phosphate groups  inside the cluster, which are situated near the centres of the molybdenum belts. The 576 

other six phosphate groups are part of the POM cage (addenda) sharing two vertexes with two edge-sharing molybdenum 577 

octahedra and one vertex with a borate tetrahedra. The two borate groups of the anion (one in each hemisphere) share all 578 

corners with three outer and one inner phosphate groups. The magnetic measurements indicate only one unpaired electron, 579 

so the five electrons from these atoms are delocalized over the cluster and four of them are paired. The substitution of the six 580 

terminal oxygen and hydroxyl groups of the outer phosphates in [B2P8Mo12O59(OH)3]8‒ 204 with phenyl groups leads to 581 

[(BPO4)2(O3P-Ph)6MoV
5MoVI

7O30]5‒ formation.205 582 

Anderson-like polyoxometalates 583 

While classical Anderson-type structure for POMos and POTs cannot be reduced as they contain type II POMs, one-pot 584 

solvothermal reaction with organic ligands and reducing agent leads to formation of fully reduced Anderson-like 585 

functionalized POVs and POMos. In these anions V or Mo ions form double bonds only with one terminal oxygen and thus 586 

have free orbital to accept extra electron (FIG. 1 d). Up to now fourteen reduced Anderson-like POVs 206-212 and seventeen 587 

POMos 213-229, which accept six electrons, were crystallized and investigated by single-crystal XRD so far (TABLE S7). 588 

In 1987 Huang et al. reported the first synthesis of hexanuclear oxovanadium (IV) anion [(VIVO)6(CO3)4(OH)9]5‒ from 589 

VOCI2 and NH4HCO3 under CO2 atmosphere.211 The [(VIVO)6(CO3)4(OH)9]5‒ is consolidated by bridging hydroxo and carbonato 590 

groups, one of which is situated in the centre of the anion. Khan et al. synthesized a series of POVs polyoxocations 591 

[MVIV
6O6{(OCH2CH2)2N(CH2CH2OH)}6]n+ (M = Li, Na, Mg, Mn, Fe, Co, Ni).206 The cyclic fragment {MV6N6O18} adopts the 592 

Anderson-type structure:230 by exhibiting a ring of six VO5N octahedral linked to a central MO6 (M = Li, Na, Mg, Mn, Co, Ni) 593 

unit (FIG. 1 d). 594 

Four Anderson-like alkoxo-POVs anions [VIV
6O6(OCH3)9(µ6-SO4)(COO)3]2‒ can serve as 3-connected second building units 595 

that assemble with dicarboxylate or tricarboxylate ligands to form a new family of metal organic tetrahedrons 596 

{[V6O6(OCH3)9(SO4)]4(L)6}8‒ (L = BDC, BDC-NH2, BDC-Br).210 The similar behaviour demonstrated vanadium(V)-centered anion 597 

[VIV
6O6(OCH3)9(VVO3)(H2O)(COO)3]−, adopting discrete truncated tetrahedral cage geometry.209 598 

The synthesis of new families of functionalized POMos with cyclic cores of MoV and localized Mo–Mo bonds was 599 

initiated by Haushalter and Lai 213-217 and developed by several groups. The fully-oxidized class with the general formula 600 

{X4MoV
6E6} (FIG. 1 d) can accommodate various central and peripheral X groups such as {PO4}, {C6H5PO3}, {C6H5AsO3} and 601 

{CO3}. The system was later extended to the oxothio chemistry by the synthesis of anions such as [X4Mo6S6O6(OH)3]5‒ 602 

(X = HPO4, HAsO4)220,221 where six sulfur atoms were inserted in the bridging positions of the dimolybdenum pairs.  603 
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The hydroxyphospate anions [MoV
6P4X31]n‒ (X = O, OH) tend to form dimers through joined metal ions (Na,214,218,222, 604 

MnII 223, CoII 224, NiII 225,226, ZnII215, FeIII,216 CdII,219,226) . The MoV centers of the {MoV
6O24} core exhibit strongly interacting pairs 605 

leading to an alternating pattern of short and long Mo···Mo contacts, characterized by distances of 2.58 and 3.58 Å, 606 

respectively.218 These anions exhibit reversible redox behaviour and are active catalysts for the reduction of FeIII in solution,226 607 

nitrite, hydrogen peroxide and ascorbic acid224 and for the oxidation of acetaldehyde with H2O2.223 608 

The hydrothermal synthesis of the molybdenum transition metal phosphate system can  not only lead to the formation 609 

of the {P4MoV
6} family but also to wheel-like structures {MoV

16MxP26} (x = 16 ‒ M = CoII 227, NiII 228; x = 14 ‒ M = NiII 229) with a 610 

diameter of ~ 19 Å, which contain {Mo4} tetramers linked by transition metal trimers ant tetramers. CoII and NiII centres show 611 

strong MII‒MII antiferromagnetic interactions (for NiII g = 2.25 and J = ‒24.3 cm‒1 228). 612 

Vanadates of the {V18O42} archetypes 613 

The mixed-valence vanadium isopolyanions form a structurally unusually versatile cluster family due to the variation in  the 614 

amount of VIV and VV and the coordination geometries of the V centers (tetrahedral VV, tetragonal-pyramidal VIV/VV, and 615 

octahedral VIV/VV). The formation of supramolecular host–guest complexes with interesting topologies is possible by linking of 616 

O4V=O square pyramids sharing corners and edges via their basal oxo groups, which was demonstrated by the structures of 617 

{VIV
18O42} and {VIV/V

15O36} (FIG. 1 d).231-234 These compounds demonstrate a very strong antiferromagnetic coupling via the µ-618 

oxo groups, while their frontier orbitals strongly interact with the single-occupied molecular orbitals of the involved vanadyl 619 

groups (S = 1/2) and thus act as very efficient superexchange ligands.235 However, excited multiplet magnetic states can only 620 

be populated significantly at very high temperatures at which the related compounds might already decompose, thus 621 

inhibiting their experimental characterization. To partially overcome this obstacle the introduction of non-magnetic spacer 622 

groups connected to the POV can be applied. Since the discovery of the arsenato-polyoxovanadate compound 623 

K6[As6VIV
15O42(H2O)]·8H2O 236 a great number of As, Sb, Si and Ge derivatives of the isopolyoxovanadate {V18O42} archetype 624 

were reported.237-246 625 

In this review we provide a brief overall picture of this type of POVs. The structural aspects, key properties and 626 

synthetic routes of Si-POVs, Ge-POVs, As-POVs and Sb-POVs, of which central structural motifs are typically derived from the 627 

{V18O42} archetype, were reviewed recently.247 628 

A typical example for host systems for small guests are polyvanadate cluster anions with an approximately spherical 629 

{V18O42} shell, which can be synthesized under relatively mild conditions applying an inert atmosphere.232,234 Interestingly, the 630 

{V18O42} shell can exist as two different structural types: either with a distorted rhombicuboctahedron or a so-called 631 

pseudorhombicuboctahedron (the “14th Archimedean body”) geometry (FIG. 1 d). The first type has Td symmetry and can be 632 

regarded as an enlarged Keggin ion, in which all square planes of the rhombicuboctahedron are spanned by the 24 innershell 633 

µ3-oxygen atoms, which in turn are capped by {VO} units. The second type has an idealized D4d symmetry.234 634 

The spherical {V18O42} shell principally represents a kind of container that can incorporatedifferent species below a 635 

critical sizesuch as H2O, halides, formate or nitrite. The type of encapsulation can depend on the pH value: in a highly basic 636 

medium (pH 14) only a H2O molecule is enclosed, whereas at lower pH values anionic species are preferentially 637 

encapsulated.232, 234, 248, 249 638 
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There are three types of {X2xV18-xO42} structures with x being 2, 3 or 4. The first described [AsIII
6VIV

15O42(H2O)]6– anion236 639 

as well as other {X6V15} (X = Sb,237,238 Ge,240 and Si237) derivatives have crystallographic D3 symmetry and consist of 15 distorted 640 

tetragonal VO5 pyramids and 6 trigonal XO3 pyramids (FIG. 1 d). The 15 VO5 pyramids are linked via vertices and edges to each 641 

other and are connected to the XO3 groups solely through vertices. Two neighboring XO3 groups are joined via an oxygen 642 

bridge forming a handle-like X2O5 moiety. The structure of the clusters can be regarded as consisting of three different layers: 643 

{six corner- and edge-sharing VO5 square pyramids} ‒ {V3X6O28} ‒ {six corner- and edge-sharing VO5 square pyramids}. 644 

The structures of {X4V16} and {X8V14} (X = As,239, 241 Sb,242, 243 Ge,246 and Si,244,245) are built on the same principal as 645 

{V15X6}, that is, by replacing two diagonal VO5 square pyramids with two X2O5 groups.  646 

The geometrically frustrated structure of {VIV
15AsIII

6} exhibits highly interesting magnetic and redox properties. The 647 

{AsIII
6VIV

15} cluster with an ~ 1.3nm diameter exhibits a structure with layers of different magnetizations: a large central VIV
3 648 

triangle is sandwiched by two smaller VIV
6 hexagons (FIG. 1 d). The 15 spins (S = 1/2) are coupled by antiferromagnetic super-649 

exchange and Dzyaloshinsky–Moriya  interactions via different pathways, which results in a collective low spin ground state 650 

with S = 1/2.36 Studies of the adiabatic magnetization and quantum dynamics show that the {AsIII
6VIV

15} cluster can act as a 651 

qubit with relatively long coherence lifetimes and exhibits phonon bottleneck-induced magnetization hysteresis. 36, 235, 250, 251  652 

Conclusions and outlook 653 

The majority of studies in the area of electron-rich POMs has hitherto been focused on bulk synthesis and 654 

characterisation, however, great progress has been made recently in investigating their potentials as catalysts (see e.g. ref 655 
27,31-34) and magnetic materials (see e.g. ref 35, 36). Significant challenges exist for the experimental chemist to understand the 656 

electrochemistry of POMs and thus the synthesis of POMs with defined numbers of “blue” electrons. The development of 657 

new computational methodologies to investigate and understand the mechanisms of POM reduction is gaining 658 

momentum.132, 166, 252 There is considerable interest in the integration of electron-rich POMs into biological systems as they 659 

were shown to exhibit enhanced biological activity in comparison to their oxidized parent structures. For example, tuning of 660 

redox state of Keggin mixed-metal Mo/V POMs is a dominating factor in the functionality of chemical and biological self-661 

detoxifying materials.253 Gaining real-time information about the properties of the different redox states (e.g., their optical 662 

properties via spectro- electrochemical methods) is of high interest. 663 

Despite a number of crucial challenges at both the fundamental and applied levels, the structural characteristics of 664 

reduced POMs are highly advantageous and an enormous future potential exists to revolutionize a number of research fields 665 

such as electro- and photocatalysis, magnetochemistry, nanochemistry and biology, amongst others. 666 
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