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ABSTRACT Mucispirillum schaedleri is an abundant inhabitant of the intestinal mu-
cus layer of rodents and other animals and has been suggested to be a pathobiont,
a commensal that plays a role in disease. In order to gain insights into its lifestyle,
we analyzed the genome and transcriptome of M. schaedleri ASF 457 and performed
physiological experiments to test traits predicted by its genome. Although described
as a mucus inhabitant, M. schaedleri has limited capacity for degrading host-derived
mucosal glycans and other complex polysaccharides. Additionally, M. schaedleri re-
duces nitrate and expresses systems for scavenging oxygen and reactive oxygen
species in vivo, which may account for its localization close to the mucosal tissue
and expansion during inflammation. Also of note, M. schaedleri harbors a type VI se-
cretion system and putative effector proteins and can modify gene expression in
mucosal tissue, suggesting intimate interactions with its host and a possible role in
inflammation. The M. schaedleri genome has been shaped by extensive horizontal
gene transfer, primarily from intestinal Epsilon- and Deltaproteobacteria, indicating
that horizontal gene transfer has played a key role in defining its niche in the gut
ecosystem.

IMPORTANCE Shifts in gut microbiota composition have been associated with in-
testinal inflammation, but it remains unclear whether inflammation-associated
bacteria are commensal or detrimental to their host. Here, we studied the life-
style of the gut bacterium Mucispirillum schaedleri, which is associated with in-
flammation in widely used mouse models. We found that M. schaedleri has spe-
cialized systems to handle oxidative stress during inflammation. Additionally, it
expresses secretion systems and effector proteins and can modify the mucosal
gene expression of its host. This suggests that M. schaedleri undergoes intimate
interactions with its host and may play a role in inflammation. The insights pre-
sented here aid our understanding of how commensal gut bacteria may be in-
volved in altering susceptibility to disease.

KEYWORDS DNRA, Deferribacteres, gut microbiota, Helicobacter, fluorescence in situ
hybridization, metatranscriptomics

Received 6 November 2016 Accepted 4
January 2017 Published 31 January 2017

Citation Loy A, Pfann C, Steinberger M, Hanson
B, Herp S, Brugiroux S, Gomes Neto JC,
Boekschoten MV, Schwab C, Urich T, Ramer-
Tait AE, Rattei T, Stecher B, Berry D. 2017.
Lifestyle and horizontal gene transfer-mediated
evolution of Mucispirillum schaedleri, a core
member of the murine gut microbiota.
mSystems 2:e00171-16. https://doi.org/
10.1128/mSystems.00171-16.

Editor Catherine Lozupone, University of
Colorado, Denver

Copyright © 2017 Loy et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to David Berry,
berry@microbial-ecology.net.

* Present address: Clarissa Schwab, Food
Biotechnology Laboratory, Department of
Health Sciences and Technology, ETH Zürich,
Zurich, Switzerland; Tim Urich, Institute of
Microbiology, Ernst-Moritz-Arndt University,
Greifswald, Germany.

RESEARCH ARTICLE
Host-Microbe Biology

crossm

January/February 2017 Volume 2 Issue 1 e00171-16 msystems.asm.org 1

 on O
ctober 8, 2018 by guest

http://m
system

s.asm
.org/

D
ow

nloaded from
 

https://doi.org/10.1128/mSystems.00171-16
https://doi.org/10.1128/mSystems.00171-16
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:berry@microbial-ecology.net
http://crossmark.crossref.org/dialog/?doi=10.1128/mSystems.00171-16&domain=pdf&date_stamp=2017-1-31
msystems.asm.org
http://msystems.asm.org/


Mucispirillum schaedleri is a non-spore-forming, flagellated anaerobe with a spiral or
broken-stick morphology thought to assist movement through the viscous gut

mucus layer (1, 2). M. schaedleri has a long history of being included in defined
microbial consortia for gnotobiotic laboratory animal studies (3–5) and is one of eight
species in the widely used category altered Schaedler flora (ASF) (6). Members of the
genus Mucispirillum has been detected in a variety of hosts, including pigs, goats, dogs,
rats, mice, turkeys, termites, and cockroaches (7–15). M. schaedleri is a core member of
the laboratory mouse microbiota and can colonize the intestinal tract from the stomach
to the colon (16). As part of the phylum Deferribacteres (17) (Fig. 1), Mucispirillum stands
out as one of the few taxa (genus classification and above) commonly found in mice
but not humans (18). It has, however, occasionally been detected in humans (19), which
may be due to either transient or infrequent colonization or its presence at an
abundance below the detection limit of standard sequencing efforts.

Mucispirillum has been associated with both inflammatory markers and active colitis
in the T-bet�/� Rag2�/� mouse model, in chemically induced colitis, and during
Citrobacter rodentium infection (20–23). ASF mice infected with Helicobacter bilis exhib-
ited an IgG response to M. schaedleri (24), indicating that it can become the target of
a systemic immune response potentially via translocation across the intestinal mucosal
barrier (25). In a study of diet-induced weight modification, Mucispirillum was positively
correlated with serum leptin levels (26), which may be a feed-forward loop to maintain
its niche, as luminal leptin induces mucin secretion (27, 28). Leptin is also thought to be
released into the lumen during colitis (29), which may contribute to Mucispirillum
expansion during intestinal inflammation. Despite its localization to the mucus layer
and association with mucus production, it has not, however, been identified as a
significant degrader of host-derived compounds in vivo (30).

Though it is a core member of the murine gut microbiota and increases during
conditions of inflammatory stress, the genetic and physiological features of
M. schaedleri remain poorly understood. In this study, we analyzed and compared the
draft genomes of two recently diverged lineages of M. schaedleri ASF 457. We per-
formed physiological experiments to test key features predicted by the genomes. We
also identified genes expressed by M. schaedleri in vivo using newly generated and
previously published metatranscriptomic data from gnotobiotic and conventional mice.
Together, these results provide a comprehensive picture of the evolution and intestinal
lifestyle of this inflammation-associated mucus-dwelling bacterium and further our
understanding of its potential to be an intestinal pathobiont.

RESULTS
Genomic features. (i) Genome reconstruction and comparison. The assembled

genomes of variants MCS and AYGZ have 36 and 39 contigs, respectively, and were
estimated to be largely complete based on detection of a complete set of tRNAs and
conserved housekeeping genes (see Table S1 in the supplemental material). The two
genomes are very similar, with only a few shared genes having nonidentical sequences.
The nonidentical, shared genes generally have high sequence identity (�99%) and
include genes for hydrogenase 2, transposases, transporters, and multiple proteins with
unknown functions, indicating that the genomes diverged little from one another and
that differences consist of only a small number of single nucleotide polymorphisms.

(ii) Central metabolism. The genomes predict that M. schaedleri altered Schaedler
flora 457 (ASF 457) harbors a complete Embden-Meyerhof-Parnas (EMP) pathway and
a nonoxidative pentose phosphate pathway, as well as a complete tricarboxylic acid
(TCA) cycle that features a Helicobacter-type succinyl-coenzyme A (CoA):acetoacetate
CoA transferase (SCOT; EC 2.8.3.8) (Fig. 2). It has complete biosynthesis pathways for
most amino acids, but several pathways, such as for methionine and tryptophan, are
incomplete or not detected (Text S1). M. schaedleri may therefore be reliant on amino
acid or oligopeptide transporters for growth. Ammonia can be assimilated via a
glutamate dehydrogenase (GdhA, EC 1.4.1.4), and a type 3 glutamine synthetase (GlnA,
EC 6.3.1.2) (31). A description of cofactor and vitamin biosynthesis pathways, storage
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compounds, motility and chemotaxis genes, a clustered regularly interspaced short
palindromic repeat (CRISPR) system, mobile genetic elements, and transporters can be
found in Text S1.

(iii) Putative electron donors and carbon sources. The M. schaedleri genome
features an extremely limited repertoire of polysaccharide degradation machinery,
consisting of just 3 glycoside hydrolases (family 57 �-amylases) that are likely used for

FIG 1 Phylogeny and habitat of Mucispirillum. (A) Phylogenetic tree of M. schaedleri in relation to other cultured members of
the Deferribacteres and abundant gut taxa based on the maximum-likelihood method using the 16S rRNA gene and 500
bootstraps. The source of isolation of the members of the Deferribacteres is indicated by color. GenBank accession numbers
are shown in parentheses. Scale bar, 0.05 change per nucleotide position. (B and C) Fluorescence in situ hybridization image
of the ceca of ASF4 mice colonized with M. schaedleri ASF 457 (Cy3, green), showing localization proximal to the mucosa (B)
and its almost complete absence in the lumen (C). All bacteria (targeted by the EUB338I-III mix, Cy5) are blue, and DAPI
(4=,6-diamidino-2-phenylindole)-stained cells are shown in gray.

Lifestyle and Evolution of Mucispirillum schaedleri

January/February 2017 Volume 2 Issue 1 e00171-16 msystems.asm.org 3

 on O
ctober 8, 2018 by guest

http://m
system

s.asm
.org/

D
ow

nloaded from
 

msystems.asm.org
http://msystems.asm.org/


glycogen storage (Text S1). Genes for degradation of glycerophosphodiester and
glycerol, as well as for transport of glucose, dicarboxylic acids, and short-chain fatty
acids, were also detected (Text S1). The genomes encode 15 proteases and 3 amino-
peptidases, a subset of which (4 for AYGZ, 5 for MCS) are predicted to be secreted.
Catabolic pathways for glutamine, asparagine, and cysteine were identified. We de-
tected multiple ABC transporters for amino acids, including for leucine, isoleucine,
valine, and methionine. Transporters were also present for peptides and polyamines
(ABC type), oligopeptides, and a permease for oligopeptides. We detected hydrogenase
2 (EC 1.12.7.2), which is a membrane-bound Ni-Fe hydrogenase that reduces menaqui-
none to menaquinol in a reversible reaction (32). Although we detected a formate
dehydrogenase, which allows for reversible NAD-dependent interconversion of formate
and CO2, we found neither hydrogenase 3 nor hydrogenase 4, so there is no evidence
for the presence of a formate-hydrogen lyase.

FIG 2 Selected genomic features of M. schaedleri ASF 457. Predicted metabolic and physiological capabilities based on genome annotations are shown.
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(iv) Respiration and oxidative-stress response. M. schaedleri has genes for dis-
similatory nitrate reduction to ammonia (DNRA), with a periplasmic nitrate reductase
(NapA, EC 1.7.99.4) as well as a nitrite reductase (NrfA, EC 1.7.2.2). The presence of genes
for fumarate reductase suggests that fumarate can also be used as a terminal electron
acceptor for anaerobic respiration. We also detected genes for the membrane-bound
Rnf complex, which is proposed to couple the electron transfer from reduced ferredoxin
to NAD� with the translocation of Na� ions across the cytoplasmic membrane via a
Na�-translocating ferredoxin:NAD� oxidoreductase and thereby generate a sodium ion
gradient (33).

M. schaedleri has genes for a high-affinity cbb3-type cytochrome c oxidase (EC
1.9.3.1), which may be used either for protection from O2 stress (34, 35) or for
microaerobic respiration (36, 37). Several genes for detecting and defending against
oxidative stress, including a superoxide reductase, catalase, cytochrome c peroxidase,
rubrerythrin, and thioredoxin reductase, were detected. The genome also includes
genes for a nitroreductase as well as other nitroreductase family proteins, which may
be used for scavenging nitrogen radicals formed during nitrate and nitrite reduction.
We detected genes for a putative trimethylamine-N-oxide reductase (EC 1.7.2.3) for the
reduction of trimethylamine-N-oxide (TMAO) into trimethylamine (TMA), which may
serve as a trophic link to methylotrophic methanogens in the gut that use methylated
amino compounds like TMA in conjunction with H2 during methanogenesis (38).

(v) Secretome and putative interaction genes. Parts of either a type II secretion
system (T2SS) or a type IV pilus biogenesis machinery (T4P) were present in the
genome. The T2SS is widely distributed especially among Proteobacteria, most of which
are extracellular pathogens, and is usually encoded by at least 12 genes in a single
operon (39, 40). We detected genes for only 5 proteins, the major prepilins T2SC to
T2SG. Seven of the T2SS core proteins (T2SH to T2SO) (41) seem to be missing,
indicating either a nonfunctioning T2SS system or, alternatively, the presence of a T4P
or DNA uptake machinery (42). A gene encoding PilZ, a putative T4P assembly protein,
is located in close vicinity to the T2SS/T4P genes. We also detected a PilT protein, which
has been proposed to be a force-generating protein for pilus retraction (43).

We detected a putative type IVA secretion system (T4ASS), including five Tra
conjugal transfer proteins (TraC, TraD, TraF, TraG, TraL), three Trb conjugal transfer
proteins (TrbB, TrbD, TrbG), and a VirB complex with a type IV secretion/conjugal
transfer ATPase VirB4 family protein and a VirB8 family protein belonging to the
putative T4ASS (44), which may mediate horizontal gene transfer (HGT) (45) via
conjugation or play a role in pathogenicity (46, 47). Virulence-associated protein D
(VapD) was found located between the Tra and Trb loci of the T4ASS and several
transposases, integrases, and tRNA genes. The exact biological role of VapD has not yet
been established, but it is known as alpha-toxin in Haemophilus influenzae and as a
typical prokaryotic toxin with the activity of an mRNA interferase (48). Though many
pathogens carry multiple vap genes, Helicobacter pylori also carries only the vapD gene
(48).

The type VI secretion system (T6SS) consists of 13 conserved core proteins necessary
for function (49). M. schaedleri has bacteriophage-like components of the T6SS, includ-
ing hemolysin-coregulated protein (Hcp), valine-glycine repeat protein G (VgrG, puta-
tively), TssB/C, which complexes to form a needle sheath (50), and TssE, which is
homologous to the bacteriophage baseplate protein gp25 (51). It also has membrane-
associated proteins TssL, TssM, TssJ, and other T6SS proteins with unknown functions
(TssA, TssF, TssG, and TssK). Additionally, homologs to other associated proteins, such
as ClpV and a putative eukaryote-like phospholipase D protein, which is involved in
destabilization of the host cell membrane (52), were also detected.

Ankyrin repeats (ANK) are found primarily in eukaryotic genomes, but proteins with
ANK domains are also present in some symbiotic and pathogenic bacteria (53). We
detected a total of 10 genes with ANK domains in ASF 457. Eleven genes were
identified with tetratricopeptide repeat (TPR) domains, which are involved in virulence
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in bacterial pathogens (54). In addition, we detected hemolysin-3, a putative colicin V
production protein (55, 56), and seven genes encoding putative �-lactamases (EC
3.5.2.6).

Putative horizontally transferred genes. Phylogenetic trees could be calculated
for most (1,599) of the genes in the AYGZ genome. More than half of the genes have
putatively been horizontally transferred between M. schaedleri and bacteria not be-
longing to the phylum Deferribacteres. In comparison, only 7% and 4% of genes of the
genomes of the abundant gut bacteria Bacteroides thetaiotaomicron and Ruminococcus
bromii, respectively, were found by the same analysis to be putative interphylum
transfers. According to our analysis, many putatively horizontally transferred genes
originate from Proteobacteria (n � 261) and Firmicutes (n � 168) (Fig. 3). Among
Proteobacteria, Epsilonproteobacteria contributed the majority of transferred genes (n �

97), with the largest fraction coming from Campylobacter and Helicobacter spp. Among
the Firmicutes, Clostridia contributed the largest number of genes (n � 108). Many of
the nearest neighbors within the gene trees derived from genomes classified to the
genus level as Eubacterium and Clostridium.

Most of the putative horizontally transferred genes are classified as being involved
in replication, recombination, and repair (cluster of orthologous groups [COG] category
L), with a large fraction coming from Firmicutes (Fig. S1). Firmicutes are also by far the
largest group contributing to coenzyme transport and metabolism (COG category H)
and inorganic iron transport and metabolism (COG category P), whereas Proteobacteria
appear to be an important source for genes in most of the other COG categories. In

FIG 3 Putative sources of interphylum horizontal gene transfer in the M. schaedleri ASF 457 AYGZ genome. Each block represents a putative horizontally
transferred gene. Blocks are colored by the predicted source of the gene and are shown at the phylum level; classes within the Proteobacteria and genera within
the Epsilonproteobacteria are also shown. Nonhorizontally transferred genes are not shown.
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addition, M. schaedleri putatively acquired several genes involved in virulence, resis-
tance, and defense, and mobile genetic elements from other bacteria (Text S1; Fig. S1).
Of note, the T6SS appears to have been horizontally transferred from Epsilonproteo-
bacteria. No homologs of M. schaedleri genes belonging to the T6SS are present in other
Deferribacteres genomes, and nearly all genes share a node in their phylogenetic trees
with just Campylobacter and/or Helicobacter (Fig. S2); in addition, T6SS genes (minimum
of 30% identity, matching at least 80% of the gene) shared between M. schaedleri and
Helicobacter hepaticus had high synteny, with an almost identical gene order (Fig. 4).

Physiological experiments. We tested selected features of the genome predictions
in pure-culture physiological experiments with M. schaedleri ASF 457 MCS. Addition of
nitrate significantly boosted the growth of M. schaedleri, and nitrate was completely
reduced to ammonium, with no detectable nitrite accumulation, indicating that
M. schaedleri is indeed capable of DNRA (Fig. 5A). To determine whether increased
growth was due to nitrate reduction or to additional ammonium as a nitrogen source,
M. schaedleri was incubated with different combinations of nitrate and/or ammonium.
While ammonium alone could not elevate growth, it also did not inhibit growth in
combination with nitrate (Fig. S3A). Fumarate reduction to succinate, which was also
predicted by the genome, was also confirmed (Fig. S3B). Incubations with combinations

FIG 4 Synteny of type VI secretion system (T6SS) genes of M. schaedleri ASF 457 AYGZ and Helicobacter hepaticus. Gene names and loci are listed. TssB and
TssC are components of the bacteriophage-like contractile sheath. TssE, TssJ, TssK, TssL, and TssM are components of the baseplate (97).

FIG 5 Physiological experiments of M. schaedleri ASF 457 MCS. Pure cultures were grown in AMM with various amounts of nitrate (A) or combinations of nitrate,
formate, fumarate, and hydrogen (B). Growth was determined spectrophotometrically (at 600 nm) and was normalized by subtracting the background
absorbance of the medium. Means and standard deviations of results from three replicate experiments are shown.
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of H2 or formate as an electron donor and nitrate and fumarate as electron acceptors
were also performed. H2 supported growth, but no growth was detected for cultures
with formate as the electron donor, even in the presence of nitrate or fumarate (Fig. 5B).

Gene expression in gnotobiotic and conventional mice. Published metatran-
scriptomes from the intestinal microbiota of conventional mice were screened for
reports of Mucispirillum. Reads from metatranscriptomes containing Mucispirillum spp.
were then mapped to the AYGZ genome, as it has slightly more genes. Putative
M. schaedleri transcripts were detected in 48 libraries from three studies and included
cecum, colon, or pooled cecum and colon contents of healthy mice (57), dextran sulfate
sodium (DSS)-treated mice (58), and nonobese diabetic mice (59). Transcripts were
detected at relatively low abundance in all samples (median, 515 reads; range, 4 to
11,910 reads), which is consistent with the typically low abundance of Mucispirillum
organisms. In total, reads mapped to 851 genes (37% of predicted genes in the
genome). Among the most highly expressed were genes involved in DNRA as well as
cytochrome c biogenesis, though not the hydrogenase 2 or the T6SS gene (Table S2).

The published study with the largest number of mapped reads compared cecum
and colon metatranscriptomes (59), and we attempted to determine whether there was
differential gene expression in M. schaedleri between these two intestinal compart-
ments. No differential gene expression was detected, though this may have been due
to limited sequencing depth (median, 694 reads; range, 195 to 4,984 reads). The
properties of the mucus layer are different between these two compartments (60), so
to further explore whether there is differential expression of M. schaedleri genes in the
cecum and colon, we compared levels of gene expression in gnotobiotic mice colo-
nized with a consortium of four ASF species (ASF4) and M. schaedleri. Between 1.2 and
3% of mapped reads were mapped to M. schaedleri, with no statistically significant
difference in relative abundances between the two compartments (median, 68,800
reads; range, 38,570 to 193,800 reads). Transcripts from 2,015 genes (87% of all genes)
were detected in the RNA sequencing (RNA-seq) libraries. Among the most-expressed
genes included those involved in DNRA, hydrogenase 2, the oxidative-stress response
(rubrerythrin and catalase), and the T6SS. Five M. schaedleri genes were detected as
differentially expressed (all upregulated) in the colons of the gnotobiotic animals
relative to in their ceca (Table S3A). All five genes have unknown functions, though
three are predicted to be exported.

Mucispirillum has been reported to be elevated in abundance during intestinal
inflammation (22, 23, 61), and we therefore evaluated its gene expression using a
gnotobiotic DSS colitis mouse model harboring the eight strains of the ASF (ASF8). As
expected, DSS treatment induced colitis, including significant weight loss, colonic
shortening, and gross lesions compared to conditions for control mice (Fig. S4). RNAs
from pooled cecal and colon contents were sequenced, and between 1.3 and 4.1% of
mapped reads were mapped to M. schaedleri (median, 81,760 reads; range, 55,300 to
286,700 reads). Transcripts from 2,036 genes (89% of all genes) were detected overall.
Among the most highly expressed genes included those involved in DNRA, cytochrome
c, hydrogenase 2, and the oxidative-stress response (rubrerythrin, catalase, and super-
oxide dismutase). Surprisingly, only 12 genes were differentially expressed during
inflammation, 11 of which were upregulated and 1 of which was downregulated
(Table S3B). Genes in the putative type IVA secretion system were upregulated, as were
genes encoding an uncharacterized reductase system with homology to dimethyl
sulfoxide (DMSO) reductase of Escherichia coli and the tetrathionate reductase and
trimethylamine-N-oxide reductase of Salmonella enterica serovar Typhimurium (32 to
36% identity) (AYGZv1_260003 and AYGZv1_260004, respectively).

Mouse mucosal tissue gene expression. To test whether M. schaedleri affects host
physiology, we compared the transcriptional profiles of the cecal mucosal tissues of
ASF4 mice with or without M. schaedleri ASF 457 MCS using microarray technology.
Gene set enrichment analysis (GSEA) revealed that the presence of M. schaedleri was
associated with the selective transcription of several gene sets, including those for
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upregulation of translation and respiratory electron transport, as well as chemokine
receptors and chemokines (Table S4A). Gene sets associated with the complement and
coagulation cascades, lipoprotein metabolism, and mitosis were downregulated (Ta-
ble S4B). Upstream regulator analysis predicted several regulators that may be acti-
vated (such as NF-�B and PPAR-delta) or inhibited (such as epidermal growth factor
[EGF]) by M. schaedleri (Table S5).

DISCUSSION
Metabolic strategies of M. schaedleri. M. schaedleri has an extremely limited

repertoire of carbohydrate degradation machinery, with just 3 glycoside hydrolases
(family 57 �-amylases) that are likely used for processing the storage compound
glycogen (see Text S1 in the supplemental material). The absence of specialized
glycan-degrading enzymes was unexpected, as M. schaedleri inhabits a mucus layer
composed of abundant complex glycoproteins, such as mucin. In comparison, gut
polysaccharide degraders, such as Bacteroides spp., have on average 137 glycoside
hydrolases (62), and Akkermansia muciniphila, a dedicated intestinal mucin degrader,
has 35 predicted glycoside hydrolases (63). It therefore seems that M. schaedleri is not
a primary degrader of host-derived glycans and has limited capacities to utilize dietary
polysaccharides. The genome predicts that M. schaedleri rather uses monosaccharides,
oligopeptides, amino acids, glycerol, and short-chain fatty acids (SCFAs) as the sub-
strates for its energy metabolism (Fig. 2). It is therefore likely a consumer of breakdown
products produced by hydrolytic/fermentative microorganisms, such as Bacteroidaceae
and Ruminococcaceae species (62). M. schaedleri also has a hydrogenase (hyb), and
addition of H2 in pure cultures dramatically improved its growth (Fig. 5B). As hydro-
genases 3 and 4 were not found and the addition of formate did not improve growth
in pure cultures (Fig. 5B), it is unlikely that M. schaedleri produces H2. It is therefore
probably dependent on cross-feeding of H2 produced by other fermentative species,
analogously to how Salmonella Typhimurium is dependent on microbiota-derived H2

for establishment in the gut (64). Future colocalization and coculture studies are
needed to provide insights into whether M. schaedleri is preferably associated with
certain polysaccharide-degrading species in the mucus layer, as these species may
provide it with nutrients such as monosaccharides, amino acids, and H2.

Nitrate is an important electron acceptor in the gut, particularly during inflamma-
tion, when levels are increased due to release of nitrogen radicals from the oxidative
burst (65). M. schaedleri can utilize nitrate as a terminal electron acceptor via dissimi-
latory reduction of nitrate to ammonia (DNRA) using the periplasmic enzyme NapA for
conversion of nitrate to nitrite and NrfA for reduction of nitrite to ammonia (66). In
addition to nitrate reduction, M. schaedleri has genes for a fumarate reductase that
converts fumarate to succinate and encodes a C4-dicarboxylate transport/antiport
system (dcuAB), which is necessary for anaerobic respiration with fumarate. In pure-
culture experiments, the addition of nitrate or fumarate substantially enhanced the
growth rate and yield (Fig. 5), suggesting that nitrate may partially fuel the Mucispiril-
lum blooms observed during inflammation (22).

Resistance to oxidative stress. The intestinal mucosa is thought to be micro-oxic,
and additionally, reactive oxygen and nitrogen species are increased during inflamma-
tion (67, 68). M. schaedleri has several systems for scavenging oxygen and reactive
oxygen species, which may explain its persistence and increased relative abundance in
the inflamed gut (22). Besides encoding superoxide reductase, catalase, and cyto-
chrome c oxidase, the genome encodes rubrerythrin, an oxidative-stress response
protein that acts as a hydrogen peroxidase reductase (69). M. schaedleri therefore seems
to be well adapted to the micro-oxic conditions at the mucosa and in the elevated-
redox environment in the gut during inflammation.

Secretome and possible interactions with the host. Protein secretion is used by
bacterial pathogens as well as symbionts for mediating interactions with their hosts. We
detected a eukaryote-like phospholipase D protein, a member of the type VI lipase
effector superfamily that targets bacterial and eukaryotic membranes (52). It is possible
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that M. schaedleri uses its T6SS to antagonize other bacteria or for promoting the
establishment of a mutualistic or pathogenic relationship with its host (70). The T6SS of
M. schaedleri has probably been laterally transferred from either Helicobacter or Cam-
pylobacter, and the gene order is the same as in H. hepaticus, a spiral-shaped pathogen
that also inhabits the murine intestinal mucus layer and plays an important role in the
development of severe inflammatory bowel disease (71). Interestingly, the presence of
the T6SS in H. hepaticus limits intestinal inflammation (72). It has yet to be shown
whether the presence of M. schaedleri affects inflammation status or disease suscepti-
bility. Microarray data, however, suggest that the presence of M. schaedleri does modify
host mucosal tissue gene expression, and it appears to have proinflammatory proper-
ties (Tables S4 and S5). M. schaedleri also has several putative effector proteins with
eukaryote-like domains, namely, ANK repeats and TPR-containing proteins, that can be
used for interactions with the host and may also play a role during inflammation (73).
Future studies are needed to establish whether M. schaedleri can act as a pathobiont,
a member of the microbiota present in healthy hosts but able to alter susceptibility to
inflammatory bowel disease or enteric infection (74), or is rather a commensal that
benefits from the altered gut environment during inflammation.

Putatively horizontally transferred genes. Horizontal gene transfer (HGT) is a
major source of phenotypic innovation and a way to facilitate niche adaptation. The
amount of newly acquired genes in a bacterial genome is on average less than 15% (75,
76), though interphylum HGT is thought to occur more frequently in anaerobic bacteria
(77). Microbiota perturbations and intestinal inflammation can, however, boost the
frequency of HGT (78). More than half of the genes in the M. schaedleri genome were
putative interphylum-transferred genes, which is much greater than the percentage of
other abundant gut bacteria transferred. Many of these genes were not related to
metabolic capacity but rather to features that may enhance survival and competitive
growth in a selective mammalian gut environment. In particular, these genes are
involved in interactions with other bacteria or the host (e.g., T6SS), resistance and
defense (e.g., CRISPR, drug resistance), and mobile genetic elements. Horizontally
transferred pathways like the T6SS and glycerol-3-phosphate utilization might be
especially important for facilitating survival and establishment in the mammalian
intestinal tract. Interestingly, several genes involved in chemotaxis, motility, and con-
jugation (those for T4P, T4ASS, and Tra conjugal transfer proteins) were putatively
acquired via HGT. Proteobacteria, one of the core phyla in the mammalian gut, were the
largest phylogenetic group contributing to the gene pool of M. schaedleri, and this was
dominated by genes shared with the epsilonproteobacterial families Helicobacteraceae
and Campylobacteraceae, which include inflammation-inducing enteric pathogens.
Many of these genes are involved in pathogenicity and/or host interaction, which
suggests that HGT contributes significantly to the putative pathobiont lifestyle of
M. schaedleri.

Conclusions and outlook. Comprehensive study of M. schaedleri revealed that this
mucus-associated bacterium is adapted to the high-redox environment of the mucus
layer and is well equipped to handle oxidative bursts that occur during inflammation.
In stark contrast to characterized mucus degraders, M. schaedleri has virtually no
capacity to degrade complex polysaccharides. It therefore likely specializes in the
utilization of small molecules. An exceptionally large number of genes were putatively
horizontally transferred from other gut bacteria and particularly from members of the
Proteobacteria, which are generally facultative anaerobes, inhabit the same gut mi-
croenvironment, and can tolerate high-reduction-potential conditions. This genome
evolution led to the acquisition of a range of molecular mechanisms and effector
proteins for interactions with the host. These genomic features, as well as the ability of
M. schaedleri to modulate gene expression of immune-related genes, suggest that
M. schaedleri may indeed be a pathobiont for certain diseases. Our analyses did not
suggest any explanation for why M. schaedleri would not survive in the human gut, and
it may be that its niche is already occupied by Epsilonproteobacteria such as Helicobacter
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spp., which are slightly better adapted to the human gut due to long-term coevolution
(79).

MATERIALS AND METHODS
DNA sequencing and assembly. Mucispirillum schaedleri ASF 457 variant MCS was provided to

Bärbel Stecher by Charles River Laboratories, Inc. (Wilmington, MA, USA). Nucleic acids were extracted
using a phenol-chloroform-based extraction method (80). DNAs were sequenced using the Illumina
HiSeq2000 with 3-kb mate pair libraries and MinION technology (Oxford Nanopore Technologies, Oxford,
United Kingdom). Illumina data were quality filtered with prinseq-lite (81), and MinION data were filtered
with poretools (82) and prinseq-lite. De novo genome assembly was performed using SPAdes (83).

Genome annotation. The MCS genome and the genome of M. schaedleri ASF 457 variant AYGZ (84)
were annotated with the MicroScope Microbial Genome Annotation and Analysis Platform (85). Meta-
bolic pathways were reconstructed using the MicroCyc and the KEGG (86) classification schemes within
MicroScope. Further details about genome analysis are provided in Text S1.

Physiological studies. Unless otherwise stated, M. schaedleri ASF 457 MCS was cultured under
anaerobic conditions under an N2 and 8% H2 atmosphere at 37°C without shaking using anaerobic
Mucispirillum medium (AMM), which is based on Trypticase soy agar and contains (per liter) 18 g brain
heart broth (Merck), 15 g tryptone soy broth (Oxoid), 5 g yeast extract (Bacto yeast extract), 2.5 g K2HPO4

(Carl Roth), 1 mg hemin (Sigma), 0.5 mg vitamin K1 (Carl Roth), 0.4 g Na2CO3 (Carl Roth), 3% fetal calf
serum (Sigma), 0.5 mg L-cysteine hydrochloride (Sigma), and 0.5 mg alpha-(D�)-glucose monohydrate
(Carl Roth) (87). M. schaedleri ASF 457 MCS was analyzed for growth in AMM with or without the presence
of the following compounds: hydrogen (8%), formate (0.5, 2.5, 10, or 50 mM), nitrate (2 or 10 mM), and
fumarate (10 or 50 mM). Growth was quantified by optical density measured at 600 nm (OD600) (M107
high-specification visible spectrophotometer; Spectronic Camspec Ltd., Leeds, United Kingdom). OD600

values were normalized by subtracting the background absorbance values of abiotic-medium controls.
Animal experiments. In order to evaluate the gene expression of M. schaedleri MCS in the cecum

and colon, 4- to 6-week-old C57BL/6 mice harboring a reduced altered Schaedler flora (ASF 356, ASF 361,
SB2 [a reisolate of ASF 502], and ASF 519 [ASF4]; n � 3) were inoculated with M. schaedleri MCS and
housed under gnotobiotic conditions in gnotocages. Ten days after inoculation, mice were euthanized
and cecum and colon contents were collected separately and immediately frozen in liquid nitrogen for
subsequent RNA-seq analysis. Animal experiments were approved by the Regierung von Oberbayern,
Germany, and the local ethics committee.

To evaluate the gene expression of M. schaedleri during acute intestinal inflammation, age- and
sex-matched 8-week-old C57BL/6 mice harboring the 8 taxa of the altered Schaedler flora (17) were
maintained under gnotobiotic conditions and treated with 3% dextran sodium sulfate (DSS; molecular
weights [MW], 36,000 to 50,000; MP Biomedicals, Solon, OH, USA) in the drinking water for 5 days (n �
8) and then given regular drinking water for another 3 days. Control animals (n � 8) were given drinking
water without DSS for the entire study. Three days after DSS treatment, all animals were euthanized;
cecal contents were collected and immediately frozen in liquid nitrogen for RNA-seq analysis. To assess
disease severity, colon lengths and scores (0 to 5) were recorded at necropsy based on the presence (�1)
or absence (0) of enlarged cecal tonsils, cecal atrophy, intestinal emptying, mucoid contents, and blood
(modified from reference 88). All animal experiments were approved by the Institutional Animal Care and
Use Committee at the University of Nebraska—Lincoln.

RNA-seq and metatranscriptomic analysis. Nucleic acids were extracted from collected samples,
and DNase was digested twice and checked to be DNA free using PCR. rRNA was removed using the
Ribo-Zero bacterial kit (Illumina, San Diego, CA) and evaluated using an RNA HighSens kit (Experion,
Hercules, CA). RNA was prepared for multiplexed Illumina RNA-seq (NEBNext Ultra RNA library prep kit
for Illumina with NEBNext multiplex oligonucleotides; New England Biolabs, Ipswich, MA) and sequenced
on the HiSeqV4 SR100 platform (Campus Science Support Facilities GmbH, Vienna, Austria). Sequence
data are available at the European Nucleotide Archive (ENA) under BioProject no. PRJEB13534. Published
metatranscriptomic data sets from mice with detectable levels of Mucispirillum were downloaded from
the National Center for Biotechnology Information Short Read Archive database and quality filtered using
Trimmomatic (89). Reads were mapped to the M. schaedleri genome using BWA (90) and analyzed with
HTSeq (91).

Mouse microarray analysis. C57BL/6 mice harboring a reduced altered Schaedler Flora (ASF4; n �
6) or ASF4 mice colonized with M. schaedleri MCS for 10 days (n � 6) were sacrificed. The cecum was
washed in phosphate-buffered saline (PBS) to remove contents and stored in RNAlater (Qiagen). RNA was
purified from cecal tissue samples using TRIzol (Life Technologies, Inc., Carlsbad, CA, USA) followed by
RNeasy Microkit columns (Qiagen, Venlo, the Netherlands). RNA quality was assessed on the Agilent 2100
bioanalyzer (Agilent Technologies, Amsterdam, the Netherlands). RNA was labeled using an Affymetrix
WT plus reagent kit and hybridized to GeneChip Mouse Gene 1.1 ST arrays (Affymetrix, Santa Clara, CA).
Sample labeling, hybridization to chips, and image scanning were performed according to the manu-
facturer’s instructions. Microarray analysis was performed using the MADMAX pipeline (92). Quality
control was performed, and all arrays met our criteria. A custom annotation that combines all individual
probes for a gene (93) was used. Expression values were calculated and normalized using the robust
multichip average (RMA) method (94), and significant differences were assessed using the paired
intensity-based moderated T statistic (IBMT) (95). Pathway analysis was performed by gene set enrich-
ment analysis (96); upstream regulator analysis (Ingenuity) was also performed.
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Accession number(s). Genome and RNA-seq data are available at the European Nucleotide Archive
(ENA) under BioProject no. PRJEB13534, and microarray data are available at the NCBI GEO repository
under accession no. GSE83625.
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