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ABSTRACT

Intermolecular interactions of ncRNAs are at the core
of gene regulation events, and identifying the full
map of these interactions bears crucial importance
for ncRNA functional studies. It is known that RNA–
RNA interactions are built up by complementary base
pairings between interacting RNAs and high level
of complementarity between two RNA sequences is
a powerful predictor of such interactions. Here, we
present RIsearch2, a large-scale RNA–RNA interac-
tion prediction tool that enables quick localization
of potential near-complementary RNA–RNA interac-
tions between given query and target sequences. In
contrast to previous heuristics which either search
for exact matches while including G−U wobble pairs
or employ simplified energy models, we present a
novel approach using a single integrated seed-and-
extend framework based on suffix arrays. RIsearch2
enables fast discovery of candidate RNA–RNA in-
teractions on genome/transcriptome-wide scale. We
furthermore present an siRNA off-target discovery
pipeline that not only predicts the off-target tran-
scripts but also computes the off-targeting poten-
tial of a given siRNA. This is achieved by combin-
ing genome-wide RIsearch2 predictions with target
site accessibilities and transcript abundance esti-
mates. We show that this pipeline accurately pre-

dicts siRNA off-target interactions and enables off-
targeting potential comparisons between different
siRNA designs. RIsearch2 and the siRNA off-target
discovery pipeline are available as stand-alone soft-
ware packages from http://rth.dk/resources/risearch.

INTRODUCTION

Non-coding RNAs (ncRNAs) have received increasing at-
tention over the past decades. It has become clear that
RNAs play a multitude of roles in cellular processes through
their interactions with other RNAs, including the discov-
ery of the catalytic abilities of RNAs (1) and the identifi-
cation of wide-spread riboregulators, such as microRNAs
(miRNAs) (2).

Different classes of RNAs have their specific type of
RNA–RNA interactions. For example, in mammalian tran-
scriptomes tRNA anticodons bind to codons on mRNAs
(3); small nucleolar RNAs guide the post-transcriptional
modification of rRNAs, tRNAs, snRNAs and mRNAs (4–
6); snRNAs bind pre-mRNAs at splice sites, enabling the
removal of intronic sequences from nascent mRNA tran-
scripts (7); a class of long non-coding RNAs (lncRNAs)
can trigger mRNA decay through binding to 3′ UTRs (8);
and miRNAs direct the translational repression or mRNA
degradation via binding (predominantly) to 3′ UTRs of
mRNAs (9). Aside from these endogenous RNAs, small
interfering RNAs (siRNAs), widely used in gene silencing
studies, are loaded into the RNA-induced silencing complex
(RISC), same as miRNAs, and guide it in binding and cleav-
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ing the transcripts of interest (10). However, these siRNAs
also form off-target interactions with transcripts other than
the intended target, promoting the so-called siRNA off-
target effects, which can involve transcript degradation and
transcriptional/translational repression (11).

Given that RNA–RNA interactions play such promi-
nent roles in cells, predicting them on a large scale is of
great interest in further understanding gene regulatory net-
works. This is also highly relevant for accurate interpreta-
tion of RNAi data generated by siRNA-mediated knock-
down studies. However, generating a complete map of the
RNA–RNA interactome in silico is challenging at several
levels. RNA–RNA interactions come in many flavors, rang-
ing from a few to several hundred base pairs, involving
straightforward stem structures to complex 3D structures,
some guided by seed formation and others not. Conse-
quently, no computational method can efficiently model the
full range of RNA–RNA interactions.

In addition, the general prediction of the joint secondary
structure of two interacting RNAs is computationally ex-
pensive. Hence, simplifications and heuristics are required
to make large-scale screens for RNA–RNA interactions fea-
sible. A number of computational approaches are currently
available for predicting RNA–RNA interactions between
single sequences. They can be divided into different classes
ranging from methods that neglect intramolecular struc-
ture, to those that do consider certain types of intramolec-
ular interactions (see (12) for a thorough discussion). The
fastest methods take only intermolecular base pairs into ac-
count. By limiting the size of bulges and internal loops to
a maximum of l nucleotides, a time complexity of O(l2mn)
can be achieved for interacting sequences of lengths m and n
as done in RNAhybrid (13). The prefactor l2 can be dropped
when loops are approximated by affine functions as shown
in RNAplex (14). Typically the target, e.g. a whole genome
or transcriptome, is much larger than the query, thus, these
methods are linear in time with respect to the target length.
A further simplified energy model which maintains high
accuracy for predicting near-complementary duplexes has
been introduced by RIsearch (15).

Several other tools were designed specifically for miRNA
target prediction, such as DIANA-microT (16), Tar-
getScan (17), miRanda mirSVR (18,19), MIRZA (20) and
MIRZA-G (21), some based on estimation of the hybridiza-
tion free energy and some based on sequence features, often
with emphasis on perfect pairing in the canonical seed re-
gion. These tools can also perform siRNA off-targets pre-
diction, or more precisely, they can detect putative miRNA-
like off-target interactions of siRNAs. One important indi-
cator for functionality of the predicted miRNA target, com-
monly used by these tools, is information about its evolu-
tionary conservation. However, this feature is not relevant
for siRNA off-target predictions due to the synthetic na-
ture of siRNAs. The existing prediction tools are mainly in-
tended for performing predictions along 3′ UTR regions,
therefore, they are infeasible to apply in whole-genome
(or transcriptome) screens which can reveal the true off-
targeting potential of transfected siRNAs more accurately.

Here, we address the huge challenge of searching full-size
genomes and transcriptomes for the type of RNA–RNA
interactions requiring a seed (a stretch of complementary

base pairs) within the interaction itself. We present a novel
method, RIsearch2, using a seed-and-extend strategy. In its
first step, indices of query and target sequences (typically
a genome) are built and seed matches are located by us-
ing suffix arrays. In the second step, these seeds of comple-
mentary RNAs are extended with a dynamic programming
(DP) approach using our simplified energy model for near-
complementary RNA–RNA interactions. Although the ba-
sis of the two steps are the algorithmic concepts underly-
ing GUUGle (22) and RIsearch, these are here deeply in-
tegrated in a single efficient method. This efficient imple-
mentation ensures the energy (and not just the match itself)
of each identical seed match is only computed once, and
that the DP computation is directly anchored on the seed
sequences. To our knowledge, RIsearch2 is the first RNA–
RNA interaction prediction tool using a seed-and-extend
framework based on suffix arrays.

We furthermore use the RIsearch2 method to address
the challenge of discovering siRNA off-targets. Sequence-
specific off-target effects of an siRNA are caused by un-
intended interactions between the transfected siRNA and
functional transcripts other than the intended target tran-
script (23). These off-target interactions can cause cleav-
age of off-targeted transcripts with near-perfect comple-
mentarity or can trigger miRNA-like silencing, often me-
diated by the presence of specific complementary seed se-
quences in the 5′ end of the siRNA (24). Given the mul-
tiple possibilities of forming stable interactions, off-target
effects cannot be avoided in the choice of the siRNA se-
quence, but recognizing and minimizing these off-target ef-
fects is important for identifying the correct phenotypic
outcome in gene knockdown experiments (25) or reduc-
ing side-effects in drug therapy (26,27). Typically, most
siRNA design and efficiency prediction tools (28,29) fo-
cus on satisfying certain thermodynamic and positional cri-
teria regarding the interaction with intended target and
employ subsequent BLAST searches to detect siRNAs
with potential off-targets (30). However, the recently pub-
lished specificity-focused siRNA design tool siSPOTR (31)
showed that efficient siRNAs can also be designed by avoid-
ing sequences with high off-targeting potential. Here, we
provide a pipeline based on RIsearch2, that not only detects
individual siRNA off-targets, but also measures the over-
all genome- or transcriptome-wide off-targeting potential
of a given siRNA, making it possible to compare the off-
targeting potential of different siRNAs. Within the pipeline,
in order to increase the robustness of the method, we com-
bine RIsearch2 RNA–RNA interaction predictions with
target site accessibility and target transcript abundance in-
formation.

MATERIALS AND METHODS

We first describe the RIsearch2 method and then its appli-
cation on siRNA off-targets, for which we present the pro-
cessing pipeline, as well as the siRNA transfection data and
how it was used for validation.

RIsearch2 algorithm

While the first version (15) of RIsearch applied a Smith–
Waterman–Gotoh-like algorithm (32), a DP approach
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Figure 1. Match implementation. A sample query sequence is given on
top. (A) How an interaction to the target sense and antisense strand might
look (complementary and in anti-parallel direction), and (B) how it is im-
plemented within RIsearch2 (identical and in parallel direction). The high-
lighted bases correspond to G−U wobble pairs.

based on filling the DP matrices along the entire input se-
quences, RIsearch2 follows the seed-and-extend paradigm.
It is a two-stage strategy, that uses suffix arrays in the first
step to locate maximal stretches of perfect complementarity
(allowing for wobble pairs) and in the second step extends
those seed matches on either end using DP with the scor-
ing scheme introduced by RIsearch. The individual steps
are described in the following.

Index construction. Prior to the first stage of the algo-
rithm, target sequences (could be a whole genome or tran-
scriptome) are converted into a suffix array index struc-
ture using the libdivsufsort 2.0 library (https://github.com/
y-256/libdivsufsort). Here, we do not use a generalized suf-
fix array where each sequence is padded with unique termi-
nator symbols, but instead build a regular suffix array of the
concatenated sequences, also explicitly storing the reverse
complement sequences. Each entry in the suffix array is an-
notated with a serial number identifying the sequence from
which the suffix originated. Additionally, we store the orig-
inal nucleotides sequentially and independent of the suffix
array (see Supplementary Figure S1).

The index is constructed in O(N · log N) time, where N is
twice the number of nucleotides in the input sequences (as
we explicitly store both strands). This is done once before
the actual screen, and the resulting index is stored in a bi-
nary format on disk to be reused for any number of future
runs. The file size is N ×64 bit plus some header information
containing sequence names.

Match implementation. Instead of reversing the query (be-
cause two interacting RNA strands run in opposite direc-
tions) and finding complementary sequences, we match di-
rectly for identity to our target suffix array and consider the
resulting hits as matches on the opposite (reverse comple-
mentary) strand. Therefore, we in the following consider ex-
act matches as Watson–Crick pairs, and, in order to allow
for G−U wobble pairs, we actually consider G−A and U−C
matches as valid pairs (see Figure 1).

Seed requirement and query preparation. We define a seed
of length l as a consecutive stretch of l complementary
bases, allowing for canonical Watson–Crick pairs as well
as the G−U wobble base pair. Seed requirements can be

specified by minimum length and position within the query
sequence to force a specific portion of the RNA query to
base pair, e.g. the seed region of microRNAs. The query se-
quences are processed sequentially, and in parallel if multi-
ple threads are used (enabled by the OpenMP API). Each
query is converted into a partial suffix array where entries
that violate the seed criteria are excluded from the matching
stage. For example, if a seed is required to be of minimum
length six and located within the first eight nucleotides, then
only the suffixes starting from the first three positions of the
sequence are considered in the next step (see Figure 2A–C).

Parallel suffix array matching. The matching is performed
by traversing the target and query suffix arrays in parallel
to locate perfect complementary suffixes with a minimum
length specified by the seed criteria. In each step, binary
search is used to determine the intervals that contain all
suffixes sharing a given prefix. Only intervals that represent
valid base pairs are recursively explored in depth-first or-
der (see Figure 2C and D). Matching intervals that span a
single target sequence and cannot be extended further with
valid base pairing on that target, are converted into actual
sequence indices only if they have reached the minimum
length. These indices naturally represent the seed locations
in query and target sequences. For target sequences, the ac-
tual matches are found on the opposite strand as illustrated
in Figure 2E and previously described in subsection ‘Match
implementation’.

Seed extension. For all identified seeds, the matching re-
gion (up to a user-defined distance from the seed match) is
extended and the hybridization energy is computed by using
the simplified energy model of RIsearch (15). This is done
by filling the usual DP matrices for flanking regions up- and
downstream of the seed region with the special requirement
of having the first (last) base pair of the seed set and thereby
anchoring the DP extension. For all hits passing the user-
defined hybridization energy threshold, the actual interac-
tion ‘alignment’ is found via backtracking through the DP
matrix.

siRNA off-target discovery pipeline

Here, we present the siRNA off-target discovery pipeline,
that can predict the off-target effects of a given siRNA and
measure its off-targeting potential for RNAi applications
in human. Note that this pipeline can easily be tuned for
any other organism by simply replacing the input data. We
describe the pipeline step by step in the following.

Predicting putative siRNA–RNA interactions. We iden-
tify all putative binding sites of a given siRNA with the
RIsearch2 algorithm, using the whole repeat-masked hu-
man genome (hg19), as provided by the UCSC Genome
Browser database (33), as a target sequence. All RIsearch2
parameters are subject to user preferences. In this study, we
set the minimum seed length to 6 nt and limit the seed se-
quence to be located in the first 12 nt of the given siRNA.
This seed setting is more relaxed than the widely accepted
seed constraint of canonical miRNA interactions (position
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Figure 2. Suffix array preparation and matching. (A) The user provides a query (Q = ACUGCUAG of length m = 8) and specifies the seed by either length,
position, or both. The command-line parameter -s 2:7/3 requires a seed to be at least 3 nt long and located between positions 2–7 of the query. This
allows for only four valid seed start locations, indicated with the blue lines above the query sequence. This corresponds to positions 1–4 in the 0-based
index being valid start positions that satisfy the seed requirements, colored blue. Seeds starting in any other position would violate the seed requirements
and are colored red. (B) A suffix array of the query (SA) is constructed, containing the starting positions of suffixes of Q in lexicographical order. KEY
holds a running number; boxes are colored blue if the suffixes satisfy the seed requirements, red otherwise. Q is stored as the original sequence, regardless
of the SA order. (C) Suffixes that violate the seed requirement (see A) are set to zero in KEY and m in SA, pointing to the null terminator. The array is
then re-sorted based on KEY . This ensures that all discarded suffixes are moved to the beginning of the array, while all valid suffixes are still sorted in
lexicographical order. (D) The target SA is built from the concatenated sequences, as shown in Supplementary Figure 1. IDX is sorted according to SA
order, while T is stored in order of the original sequence. For both query and target SA, we find the intervals of suffixes starting with each nucleotide. In
the example, we show the suffixes starting with C and further traverse both SAs as long as there are corresponding non-empty intervals (between (C) and
(D)), until the minimum seed length is reached. We find two positions in the target that match the CUG in the query, highlighted in light green and blue
respectively. Note that the query suffix CUAG would also match the target CUA, but not CUG. (E) The match with IDX 2 (light green) refers to a target
site in the reverse complement sequence 3, and likewise IDX 1 to a target site in 0 (light blue).

2–7), in order to allow for prediction of non-canonical in-
teraction pairs. Besides that, we set the hybridization en-
ergy threshold of RIsearch2 to −10 kcal/mol to filter out
some of the low-confidence binding sites predicted on the
whole genome. It has been shown that this cut-off value in-
cludes almost all of the miRNA binding sites as reported
in TarBase version 4.0 (34,35). For our siRNA off-target
discovery pipeline, we assume that the low-energy and non-
seed-based interactions that are discarded do not affect the
ranking of our computed off-targeting probabilities (see
Equation 1). In the following we denote the set of the in-
cluded interactions as I.

Intersection with transcriptomic data. Putative interaction
data of the predicted binding sites is further intersected with
transcriptomic data using the bedtools intersect function
(36). In this way, we discard the interactions predicted in un-
expressed regions, as well as assign position-specific abun-
dance values to each predicted binding site. The motiva-
tion behind taking transcript abundances into account is
to obtain a more accurate reconstruction of the off-target
landscape, based on the following rationale: Given a certain
concentration of siRNA in the cell and a particular tran-
script to which the siRNA can hybridize, the more abun-
dant this transcript is in the cell, the higher the chances are
for the siRNA to bind this target. Besides, it is also likely
that a higher amount of siRNAs will be ‘wasted’ on it, which
may further reduce the efficiency to silence the intended tar-
get. The source of transcriptomic data fed into the pipeline
could be any of the genome-wide expression profiling tech-

niques (e.g. microarray, RNAseq) as long as it includes ge-
nomic coordinates and abundance estimates for transcripts
in one of the accepted formats (BED, GTF and GFF cur-
rently). For different analyses presented within this paper,
we use different transcriptomic data sources that are de-
scribed together with respective transfection datasets.

Partition function. Given all predicted interactions I of a
single siRNA and their binding site abundance estimates,
the off-target space of the siRNA is probabilistically mod-
eled using the partition function from statistical mechanics,
where each potential interaction between siRNA and ex-
pressed transcripts represents a micro-state. In this way, and
with the help of the partition function, binding site-specific
interaction probabilities are computed and further used to
assess off-target effects.

The efficiency of an siRNA does not increase indefinitely
with interaction energy but necessarily levels off for suffi-
ciently strong, near-complementary siRNA–target interac-
tions. To model this saturation effect we introduce two phe-
nomenological parameters � and � . Denoting the lowest
possible binding energy of the siRNA under consideration
with Emin, which is the hybridization energy of the perfect
complementary interaction computed by RIsearch2, � de-
termines the hybridization energy threshold beyond which
siRNA efficiency does not increase further. The second pa-
rameter � determines a common interaction energy value
that is assigned to all such interactions. Default values for
these parameters are set as � = 0.8 and � = 0.8, and we
present our results only under this parameter setting. For
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any predicted interaction i of a given siRNA, let us denote
its hybridization energy with Ei, binding site abundance
level with Ai, and binding site opening energy (accessibility)
with Oi. Denoting the thermodynamic beta constant with �
(=1/RT ≈ 1.62 mol/kcal at 37◦C), the partition function Z
of the siRNA and interaction probabilities pi are computed
as follows.

Z =
∑
i∈I

Ai e−β(E′
i +Oi )

pi = Ai e−β(E′
i +Oi )

Z
(1)

E′
i =

{
γ · Emin if Ei < α · Emin

Ei otherwise

Accessibility of binding sites. In the equations above, hy-
bridization energies of all putative interactions are adjusted
with opening energies to obtain the total free energies. The
opening energy of an interaction is defined as the energy
required to unfold the binding site region within the in-
tramolecular structure of the target transcript. Instead of
obtaining these energies from a secondary structure anal-
ysis performed on the given transcriptome data, which is
computationally expensive, we have, once and for all, ap-
proximated them on genome-wide level. For this genome-
wide accessibility analysis, we used RNAplfold (37) from
the ViennaRNA Package 2.1.9 (38) to compute the approx-
imate local opening energies for every region, up to a length
of 30 nt, within the human genome (hg19). RNAplfold uses
a sliding window approach, and we set the parameter for
this window size to W = 80 and the maximum base pairing
distance to L = 40, as recommended for siRNA inhibition
efficiency predictions (39). Our siRNA off-target discovery
pipeline assigns the opening energies from any given acces-
sibility data. All results presented in this study are based
on the genome-wide accessibility analysis as described here.
However, any transcriptome-specific data can be provided
as input to the pipeline.

Off-targeting probabilities. After computing the probabil-
ities pi of all RIsearch2-predicted putative interactions, we
sum up the interaction probabilities targeting the same
transcript to obtain the transcript-specific siRNA target-
ing probability poff, j for each off-target transcript j, and
pon for the intended target transcript of the given siRNA.
These poff, j and pon values represent the probability that
the given siRNA silences transcript j in competition with
all other potential off- and on-target interactions. To quan-
tify the overall off-targeting potential of a given siRNA,
we report the sum of all off-target interaction probabilities
POFF = (1 − pon).

siRNA transfection datasets

For the evaluation of our RIsearch2-induced siRNA off-
target discovery pipeline, which is also an implicit evalua-
tion of RIsearch2 itself, we focused on validating predicted
off-target transcripts and off-targeting potential measures
of individual siRNAs. For the former, we used the Burchard

siRNA transfection dataset (40) to evaluate our results to-
gether with results generated by the state-of-the-art siRNA
off-target prediction method MIRZA-G (21). For the latter,
we used a compiled microarray dataset, obtained from the
supplementary material of a published TargetScan study
(41), and compared the performance of our method with
another tool available, siSPOTR (31). In addition, we also
used the Huesken (42) and DSIR (28) datasets to analyse
the relationship between siRNA inhibition efficiency and
off-targeting potential.

Dataset for validating individual off-targets. Burchard
et al. (40) analyzed the off-target signatures of six different
siRNAs, targeting the APOB gene, and one control siRNA,
targeting the RAD18 gene, by carrying out the transfec-
tion experiments in two human cell lines and one mouse
in vivo/cell line. RNA was extracted at 6, 12, 24 and 48 h
upon transfection and gene expression was measured us-
ing microarrays. From this dataset, we only used the data
corresponding to the two human cell lines, HUH7 and
PLC/PRF/5, and the six siRNAs targeting the APOB gene.
Their sequences (antisense strand) are given in Supplemen-
tary Table S1. We obtained the corresponding expression es-
timates and probeset annotation files from the Gene Expres-
sion Omnibus database (43), accession number GSE14073.
To obtain the set of transcripts that is downregulated upon
siRNA transfection, we performed differential expression
analysis using the GEO2R interface (44). Since only one
replicate was available per timestamp, we considered the 6
and 12 h samples as technical replicates and ignored the
24 and 48 h data to avoid detecting long-term pathway ef-
fects. For each cell line and each siRNA, we obtained the
log2 fold changes (log2FC) of transcript expression levels
between mock and siRNA transfection.

The initial set of transcripts present in the cell line and
their abundances were approximated with expression mea-
surements corresponding to the mock-transfection experi-
ment at the 6 h post-transfection time point. We used the
probe annotation files in order to retrieve corresponding
transcript identifiers; and for each captured transcript, we
obtained the genomic coordinates of the transcript exons
with the help of exon coordinate files downloaded from the
UCSC Table Browser (45). The set of transcripts is there-
fore limited to those (∼36 000 in total) that are captured
with microarray probesets and can successfully be mapped
to RefSeq, Ensembl, GenBank and dbEST identifiers in the
UCSC Browser based on the May 2015 annotations.

In the following, we call this dataset the Burchard dataset.
It has been used for validating the individual off-target tran-
scripts of six siRNAs predicted by our pipeline and by
MIRZA-G (21).

Off-targeting potential evaluation dataset. For the evalu-
ation of off-targeting potential measurements computed
with our pipeline and with siSPOTR (31), we used the
dataset from supplementary material of the TargetScan
context+ study (41), containing differential expression mea-
surement data upon transfection of 175 unique sRNAs in
HeLa cell lines. This is the same data used for testing and
training purposes in the siSPOTR study (31). We only used
a portion from this dataset, corresponding to 63 siRNAs,
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for two reasons. First, we excluded the siRNAs with no per-
fect complementary target since they were actually designed
to assess positional mutations on the original siRNA de-
sign. Second, we only included the siRNAs that met the
criteria for strand biasing in order to get loaded into the
RISC complex, as well as the criteria of efficiency, regard-
ing on-target silencing (>85%), as reported in the siSPOTR
study (31). Sequences (antisense strand), target gene iden-
tifiers and array accession IDs of these siRNAs are given
in Supplementary Table S2. The processed data made avail-
able only contains differential expression data (log2FC) for
∼18 000 transcripts between mock and siRNA transfection,
therefore we do not have abundance estimates for the mock
transfection study in order to approximate initial abun-
dance levels as described for the previous dataset. Instead,
we retrieved the baseline expression data of a HeLa cell line
from ENCODE (GSM958735) in exon mapped RNAseq
data format and fed this into our pipeline as initial tran-
script abundance levels when computing the off-targeting
potential of these 63 siRNAs.

Evaluating siRNA off-target predictions

The performance of our pipeline and of MIRZA-G on de-
tecting the real off-targets is evaluated by analysing the dif-
ferential expression level (upon siRNA transfection) of top
off-targets predicted for the six siRNAs from the Burchard
dataset. For each method, we analyzed the log2FC distri-
butions of top off-targets with the median fold changes ap-
proach as previously done for the evaluation of MIRZA-G
(21). In this approach, for each off-target prediction method
and siRNA, predicted off-target transcripts are sorted by
their confidence scores (poff, j in our case) in descending or-
der. The median log2FC value of top n transcripts is ob-
tained from the transfection dataset, for incremental val-
ues of n (1 ≤ n ≤ 300). To compare the methods over all
siRNAs considered, median fold changes of all considered
siRNAs are averaged for each value of n and plotted sep-
arately for each method. These functions over n represent
the median performance of the siRNA off-target prediction
methods. Similarly, we also evaluate the two methods with
mean fold changes approach, by simply substituting the me-
dian log2FC values with mean log2FC values in order to re-
veal more information about the nature of the log2FC distri-
butions. Lower median/mean fold changes reflect stronger
downregulation of predicted off-targets, indicating a better
performance of the prediction method. Lastly, we present
another analysis to assess the capability of the two meth-
ods to detect critical off-targets within their top predic-
tions. As critical off-targets we consider those transcripts
that are strongly downregulated upon siRNA transfection,
using varying log2FC thresholds to determine whether an
off-target is critical. For each method and log2FC thresh-
old, we plot the ratio of critical off-targets to the number of
top predictions considered.

Evaluating siRNA off-targeting potential measurements

In the literature there seems to be no standard method to
evaluate the overall off-target effect based on expression
estimates before and after siRNA transfection, such as to

evaluate the power of prediction methods. In the siSPOTR
study, this evaluation is done by Spearman’s rank corre-
lation analysis between prediction- and expression-based
rank-order of siRNAs. The former is dependent on the
computed off-targeting potential measure POTS and the
latter is derived from suppression signatures in large-scale
expression data. Within the siSPOTR study, this siRNA-
specific suppression signature is quantified as the number
of downregulated (log2FC < −0.3, upon siRNA transfec-
tion) transcripts that in their 3′ UTR contain a heptamer
with perfect complementarity to the seed region (position
2–8) of the siRNA antisense sequence. Instead of perform-
ing the similar analysis with fixed log2FC threshold and per-
fect seed complementarity, we extend this approach to a
broader evaluation. First, unlike siSPOTR, we also allow
G−U wobble pairing between those heptamers; simply be-
cause G−U pairs are very common for miRNA seed regions
(46) and this is very likely the case for siRNA–(off-)target
interactions as well. Furthermore, instead of performing the
rank correlation analysis with the fixed threshold approach
used in the siSPOTR study, where the expression-based off-
targeting potential measure is measured once with the given
log2FC threshold (−0.03), we present several Pearson cor-
relation analyses under different threshold settings. In the
following, we use the term expression-based off-targets when
referring to transcripts that contain a complementary hep-
tamer and are differentially expressed with a log2FC value
lower than a given threshold.

In addition, we present a similar correlation analysis with
another expression-based off-targeting measure, the total
differential expression of expression-based off-targets, i.e.
the negative sum of their log2FC values. The reasoning
behind this is, that an off-target transcript with a higher
level of downregulation should contribute more to the
expression-based overall off-targeting potential measure.
We believe that this reflects the off-target suppression sig-
natures more accurately, and provides additional insight in
the reliability of the methods.

For a fair performance comparison between RIsearch2
and siSPOTR based on their off-targeting potential mea-
sure, here, we restricted our off-targeting potential compu-
tation from transcriptome-wide to 3′ UTR only. This is due
to the POTS measure being focused only on 3′ UTRs. To
compute our 3′ UTR-restricted off-targeting potential mea-
sure POFF3′ for the 63 aforementioned siRNAs, we pro-
vided only the abundance of 3′ UTRs in the initial transcrip-
tome data input file when running the pipeline. Genomic
coordinates for 3′ UTRs were obtained from Ensembl (ver-
sion 75) (47).

Investigating the relationship between inhibition efficiency
and off-targeting potential of siRNAs

Inhibition (repression) efficiency of siRNAs is influenced
by numerous siRNA design factors, however its relation-
ship with off-target effects so far has never been investigated
in detail. Here, we analyzed if off-targeting potential of an
siRNA might be one of the key driving factors that deter-
mine its inhibition efficiency.

We performed our analysis on 1967 siRNAs, targeting
25 different genes, where their inhibition efficiencies were
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measured in H1299 cell lines (Huesken dataset (42)), and
on 129 siRNAs, targeting 10 different genes, where inhibi-
tion efficiencies were measured in HeLa cell lines (DSIR
dataset (28)). It should be noted that both datasets contain
low, medium and high efficiency siRNAs designed for each
of the targeted transcripts. As initial transcript abundance
level estimates to feed into our pipeline, we retrieved the
H1299 baseline expression data from the Expression Atlas
(48) provided by Cancer Cell Line Encyclopedia (CCLE)
and the HeLa baseline expression data from ENCODE, as
described previously for the off-targeting potential evalua-
tion dataset. Note that we discarded 464 siRNAs from the
original Huesken dataset due to no expression data for the
on-target genes that the siRNAs were designed for.

For both datasets, we analyzed the relationship between
inhibitory activity and predicted off-targeting potential
of siRNAs in two ways: mean efficiency analysis of top
siRNAs, where ranking is based on off-targeting potential;
and mean off-targeting potential analysis of top siRNAs
when siRNAs are ranked by inhibition efficiency.

RESULTS

Predicting siRNA off-targets

For each of the six siRNAs from the Burchard dataset, we
ran our RIsearch2-based off-target discovery pipeline sep-
arately for HUH7 and PLC/PRF/5 cell lines since these
cell lines have different initial transcript abundance esti-
mates, hence, different off-target signatures for the siRNAs
when transfected. As discussed before, RNAplfold param-
eters were set to W = 80 and L = 40, RIsearch2 param-
eters to seed length of 6 in the first 12 nt of the siRNA
(s = 1:12/6), and pipeline parameters α = γ = 0.8.
Afterward, in order to perform off-target predictions with
MIRZA-G, we obtained the target transcript sequences
with the help of exon coordinate files that are priorly used to
generate initial transcriptomic data for the two cell lines. For
each transcript represented in the array, we obtained the full
transcript sequences without any limitations on UTRs or
CDS. Before performing MIRZA-G predictions with these
transcript sequences, we modified the siRNA antisense se-
quences from the Burchard dataset by adding two addi-
tional As to the 3′ end to complete them to 21 nt, as it is
the procedure followed by the MIRZA-G study itself (21).
Then, we ran the MIRZA-G program under default param-
eter settings and obtained the confidence scores of predicted
off-target genes.

We analyzed the off-target prediction results generated
by the two methods with median and mean fold changes
analyses as described in ‘Materials and Methods’ section’s
subsection ‘Evaluating siRNA off-target predictions’. As can
be seen in Figure 3A and B, the averaged mean and me-
dian value of log2FC distributions is consistently negative
for either methods, indicating that transcripts top-predicted
as off-targets with both methods tend to be downregulated
upon siRNA transfection. The general performance of the
two methods are quite close in median analysis, MIRZA-G
performing better up to top ∼30, however, in the mean
analysis the RIsearch2 pipeline clearly performs better due
to the lower averaged mean log2FC values for predicted
top off-targets. Median and mean analyses reflect different

features of the log2FC distributions, and the advantage of
RIsearch2 becomes apparent in the mean analysis. This left-
skewed log2FC distribution of top off-targets predicted by
RIsearch2 shows its capability to detect off-targets that do
have stronger experimental support (stronger downregula-
tion). This can also be seen in Supplementary Figure S2, in
which results are shown for individual siRNAs. The alter-
native representation in Figure 3C clearly shows that top
off-target predictions of RIsearch2 contain more critical
off-targets than MIRZA-G predictions when critical off-
targets were determined with the log2FC threshold given in
the x-axis. Predicting such highly downregulated off-targets
with high confidence scores is desirable, and hence, one can
say that our pipeline outperforms the MIRZA-G method,
for the dataset under consideration. Due to space limita-
tions, we present the results for siRNA transfections in
HUH7 cell line in Supplementary Figures S3 and S4. Nev-
ertheless, it should be noted that all our findings here are
also consistent with results for the HUH7 cell line.

In addition to this validation approach, we also inves-
tigated the correlation between transcript-specific log2FC
values and off-targeting confidence scores that are gener-
ated by either method for PLC/PRF/5 cell line. Both Pear-
son’s r and Spearman’s � analyses (Supplementary Figures
S5 and S6) show a stronger and more significant correla-
tion for RIsearch2 than for MIRZA-G predictions. Thus,
our poff, j measure is a better predictor of the downregula-
tion level of predicted off-target transcripts.

Validating off-targeting potential measures

Using our pipeline, we computed the 3′ UTR-restricted off-
targeting potential POFF3′ of 63 siRNAs (with the same
parameter settings as used for the Burchard dataset). To
compare our results with siSPOTR, we retrieved the POTS
values, off-targeting potential measured by siSPOTR, from
its supplementary material (31). We evaluated and com-
pared the two methods with Pearson correlation anal-
ysis between expression-based and prediction-based off-
targeting potential measures as described in the ‘Materi-
als and Methods’ section’s subsection ‘Evaluating siRNA
off-targeting potential measurements’. In Figure 4, we plot-
ted the Pearson correlation coefficients (only significant
correlations are highlighted) between method-measured
off-targeting potentials and threshold-specific expression-
based off-targeting potentials. It shows a significant corre-
lation between RIsearch2-based POFF3′ measure and num-
ber of expression-based off-targets (of the 63 siRNAs) for
any log2FC threshold between −1.5 and −0.3. Note that
it is the threshold that determines whether a transcript is
considered as an expression-based off-target. However, for
siSPOTR-based POTS scores, correlation with the number
of expression-based off-targets is significant only for thresh-
olds larger than −0.5. This suggests that the RIsearch2-
based off-targeting potential measure is more stable and
promising than the siSPOTR-based measure, since our cor-
relation with expression-based off-targeting potential mea-
sure is more resistant to changes in log2FC threshold and
also stronger for most of the thresholds lower than −0.3,
which is the threshold from the siSPOTR study. On the
other hand, siSPOTR-based POTS score is very strongly
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Figure 3. Evaluation of individual off-target predictions performed by RIsearch2 (siRNA off-targets pipeline) and MIRZA-G. All analyses are based on
the Burchard dataset where six APOB siRNAs were transfected into PLC/PRF/5 cell lines. Top off-targets are selected from method-specific predictions
based on the confidence scores generated by either method (poff, j for RIsearch2). In the mean (A) and the median (B) fold changes analyses, mean/median
differential expression level (averaged over all siRNAs) of top off-targets are plotted for different numbers of top off-targets considered. (C) Proportion
of critical off-targets within the top (10, 50, 100) predictions generated by either method for six siRNAs, i.e. considering 60 transcripts in total for top 10.
Off-targets are considered critical if they are downregulated, upon the transfection of siRNA, with a log2FC value lower than the threshold given in the
x-axis.

Figure 4. Evaluation of predicted off-targeting potential measures with
siRNA-specific differential expression data from 63 siRNA transfection
experiments. Pearson’s r is given for each correlation analysis between
method-specific off-targeting potential measure, RIsearch2-based POFF3′
or siSPOTR-based POTS, and threshold-specific expression-based off-
targeting potential measure of 63 siRNAs. The expression-based measure
corresponds to the number of transcripts that have a complementary hep-
tamer to the siRNA seed region in their 3′ UTR and are differentially
expressed upon siRNA transfection with a log2FC value lower than the
threshold given on the x-axis. Only significant correlations (P-value < 0.05)
are highlighted and the log2FC threshold −0.3, which is the evaluation
threshold employed in the siSPOTR study, is shown with a dashed line.

correlated with the number of expression-based off-targets
for log2FC thresholds higher than −0.5, whereas POFF3′

measure is not. Lack of correlation for such thresholds
is actually what should be expected from an off-targeting
potential measurement method. Simply because siRNAs
are expected to downregulate their off-target transcripts
and as we increase the log2FC threshold in the correla-
tion analysis, we start taking transcripts with no significant
downregulation into consideration and expression-based
off-targeting potential measure loses its rationale. In other
words, this proves that siSPOTR-based POTS score is only
correlated with the siRNA-specific number of transcripts
that have 3′ UTR seed complementarity, regardless whether
these transcripts are real off-targets or not. However, our
POFF3′ measure is significantly correlated with expression-
based off-targeting potential measures for several down-
regulation thresholds. In addition, we present the similar
correlation analysis against another expression-based off-
targeting potential measure (total differential expression of
expression-based off-targets) in Supplementary Figure S7.
Note that findings from both analyses are in good agree-
ment with each other.

Over all, our analysis shows that POFF3′ score promises a
more comprehensive and stable off-targeting potential mea-
surement than the siSPOTR-based POTS score when they
are compared against the overall off-targeting trace left on
gene expression levels (by fold change) upon siRNA trans-
fection. However, our pipeline, in contrast to siSPOTR, is
actually designed to measure the off-targeting potential of
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siRNAs in transcriptome-wide level. As described above,
this is done by taking all potential binding sites of siRNAs
into account whether it is within UTRs, CDSs or non-
coding transcripts. Due to insufficient data and a lack of
standard validation method, we cannot present any evalua-
tion results on the transcriptome-wide POFF measure.

Relationship between inhibition efficiency and off-targeting
potential of siRNAs

We computed the POFF off-targeting potential score of
1967 siRNAs (Huesken dataset) and 129 siRNAs (DSIR
dataset) with our pipeline using the same parameter settings
as above. For each dataset, we used cell line-specific initial
transcript abundance levels as discussed in the ‘Materials
and Methods’ section. By using the POFF scores and mea-
sured inhibition efficiencies of these siRNAs, we carried out
four different mean analyses to investigate whether they are
related to each other. We sorted the siRNAs based on their
POFF off-targeting potentials in increasing and decreasing
order, and based on these rank-orders, we plotted the mean
inhibition efficiency of top n siRNAs, for all values of n.
Likewise, we also sorted the siRNAs based on inhibition
efficiency and plotted POFF scores.

Figure 5 shows these analyses for the Huesken (panels A
and B) and DSIR (panels C and D) datasets. We ranked
the siRNAs by the off-targeting potential measure POFF
in increasing order from low to high while computing the
mean inhibition efficiency of the top siRNAs. We note that
this mean goes from high to low (orange curve in Figure
5A and C), indicating lower inhibition efficiencies for siR-
NAs with high predicted off-targeting potential. This sug-
gests that siRNAs with lower efficiencies tend to have higher
potential to repress transcripts other than their intended
target and this might be the reason for their on-target de-
ficiency. When we change the order of this ranking and
sort the siRNAs from high to low POFF , for both datasets,
we see a weak increase in the mean inhibition efficiency of
top siRNAs (blue curve in Figure 5A and C), which also
supports our previous argument. As a reverse analysis, we
ranked the siRNAs based on their inhibition efficiencies in
increasing order from low to high efficiency, while comput-
ing the mean off-targeting potential of top siRNAs. Corre-
spondingly, we note that the mean goes from high to low
(orange curve in Figure 5B and D), indicating high off-
targeting potential for low inhibition efficiencies, in both
datasets. When siRNAs are ranked from high to low inhi-
bition efficiency, we also see that mean POFF measure of
the top siRNAs goes from low to high (blue curve in Figure
5B and D), clearly indicating lower off-targeting potential
for highly efficient siRNAs. Overall, these findings support
the inverse relationship between off-targeting potential and
inhibition efficiency of siRNAs. This suggests that the off-
targeting potential of siRNAs might have impact on their
inhibition efficiency.

Repeating the same analysis with our 3′ UTR-restricted
off-targeting potential measure POFF3′ also supports this
inverse relationship between off-targeting potential and in-
hibition efficiency (see Supplementary Figure S8). In that
analysis, using POFF3′ instead of POFF resulted in slightly
different off-targeting potential rankings for siRNAs con-
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Figure 5. Relationship between inhibition efficiency (Inh.Eff.) and off-
targeting potential measure POFF of siRNAs from Huesken (A and B)
and DSIR (C and D) datasets. A and C show the mean Inh.Eff. of top n
siRNAs when siRNAs are ranked by POFF measure in increasing and de-
creasing order. B and D show the mean POFF measure of top n siRNAs
when siRNAs are ranked by Inh.Eff. in increasing and decreasing order.
Note that y-axes are not in the same scale.

sidered. Considering the increasing support in literature for
miRNA binding sites in regions other than 3′ UTRs (49–
52) and the fact that siRNAs use the same machinery as
miRNAs, we believe that measuring the off-targeting poten-
tial over the whole transcriptome still provides a more com-
prehensive off-targeting assessment when comparing differ-
ent siRNA designs.

Computational complexity

We implemented the siRNA off-target discovery pipeline as
an independent software package, that accepts RIsearch2
interaction predictions and RNAplfold accessibility
information as input. We executed the RIsearch2 and
RNAplfold runs prior to the pipeline. For RIsearch2
runs, we screened our siRNA sequences against the
whole repeat-masked human genome (hg19, including
unplaced contigs and alternate haplotype assemblies,
totaling 3 137 161 264 nt, thereof 1 430 387 259 non-N).
Creating the index of the whole genome with RIsearch2
took 49 min single-core time on a single Intel C© Xeon C©

CPU E5-2650 with 2.0 GHz. Storing this index required
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47 GB of storage space and also at least as much RAM for
subsequent RIsearch2 runs on this data. For 2431 siRNAs
from the Huesken dataset, running RIsearch2 against the
created hg19 index, with before-mentioned seed and energy
threshold settings, took ∼7 h running 32 threads on two
Intel C© Xeon C© CPU E5-2650 with 2.0 GHz. For the pre-
computation of the genome-wide accessibility information
with RNAplfold, we wrote a script that can divide the
input sequences into 100-kb fragments, run the analysis
for each subsequence, combine all generated RNAplfold
results and pack them into a binary format. We run this
script with 16 threads (thread per chromosome) on the
same machine, and it took ∼40 h to get all the results (both
strands). Storing these results required 176 GB storage.
After precomputing these results, running the off-target
discovery pipeline for 2431 Huesken siRNAs took ∼3.5
h, running 32 threads (thread per siRNA) on the same
machine with two CPUs. However, it should be noted that,
in this run, we did not compute the transcript-specific poff, j
off-targeting probabilities. Instead, we just reported the
off-targeting potential of siRNAs. For the case where we
report off-targeting probabilities of six siRNAs from the
Burchard dataset, running the pipeline took ∼3 min, using
six threads (thread per siRNA) on a single Intel C© Xeon C©

CPU E5-2650 with 2.0 GHz.
In order to compare the running time of RIsearch2 with

other currently available methods, we prepared a small test
set since a genome/transcriptome-wide screen is not fea-
sible with all of the methods. Within this small set, our
query file includes 63 siRNAs, same as the siRNAs used
for validating the off-targeting potential measure, and the
target file is composed of 5982 transcripts and their anti-
sense sequences, all longer than 80 nt, from human chromo-
some X. We ran the RNA–RNA interaction screens on this
small set by using several energy- and/or accessibility-based
methods: GUUGle, RIsearch, miRanda, PITA, IntaRNA,
RNAplex, MIRZA-G and RIsearch2. We present the run-
ning times for these methods in Figure 6, detailed results in-
cluding parameter settings are given in Supplementary Ta-
ble S3. It shows that RIsearch2 is in general one to two or-
ders of magnitude faster than the other methods. Surpris-
ingly, GUUGle is also slower although it is limited to find-
ing seed matches only, even compared to the slowest run of
RIsearch2, which corresponds to the parameter setting that
should find exactly the same seeds as GUUGle, but also
compute the hybridization energy of the extended match.
We also note that we in general are one to two orders of
magnitudes faster than miRanda, although some settings is
in the range of a half to one order of magnitude faster. For
this and the other methods, however, a direct comparison
is not possible as the programs follow different approaches
with outset in different constraints.

DISCUSSION

Here, we presented RIsearch2, which is much faster than
other existing methods for RNA–RNA interaction screens
for siRNA off-targets, while using a highly suitable en-
ergy model ignoring intramolecular interactions. For pre-
dicting interactions between siRNAs and their off-targets,
or miRNAs and their targets, the simplicity of this energy
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Figure 6. Execution time comparison of RNA–RNA interaction predic-
tion tools on a small test set (63 siRNAs versus ∼6000 transcripts and their
antisense). Executions involve different parameter settings of RIsearch2
and RIsearch methods and actual execution time of PITA and IntaRNA
tools are longer than it is shown here (they have been aborted after running
for more than 2 days).

model is not a concern since siRNAs or miRNAs when
binding their targets do not form intramolecular interac-
tions. However, intramolecular interactions are a concern
for the targeted transcripts. Within the siRNA off-target
discovery pipeline, we take them into consideration by sum-
ming hybridization and opening energies to obtain the total
free energies of the predicted bindings.

With the combination of RIsearch2 and the siRNA
off-target discovery pipeline, we were able, at a full
transcriptome-wide level in human, to compute off-targets
as a combination of abundance and interaction strength
through a partition function calculation. On essential
benchmarks, we outperform MIRZA-G (21), to our knowl-
edge the most recent tool for off-target discovery of spe-
cific off-target transcripts. In contrast to MIRZA-G, we
find more transcripts that are significantly downregulated
upon siRNA transfection as true off-targets on a substan-
tial higher level.

Neither MIRZA-G nor our siRNA off-target discovery
pipeline take the siRNA concentration into account sim-
ply because it is not needed, when ranking the off-target ef-
fects of single siRNAs. Obviously, for the pool of siRNAs
induced in different concentration, this would make a dif-
ference, but this is not the case for data employed in this
study.

Furthermore, our siRNA off-target discovery pipeline
is, to our knowledge, the first tool capable of calculat-
ing siRNA off-targeting potentials on an entire human
genome/transcriptome in the time scale of hours thanks
to the large-scale prediction capabilities of RIsearch2. The
only other tool we found for which larger siRNA off-target
calculations have been made was siSPOTR (31). However,
this tool is restricted to off-targeting potential calculations
on 3′ UTRs only. On benchmarking RIsearch2 on the same
UTRs, we found that our off-target measure, in contrast to
that of siSPOTR, has a more robust correlation to the over-
all off-targeting trace left on gene expression levels (by fold
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change) upon siRNA transfection. In addition, RIsearch2
made it possible to investigate the possible relationship be-
tween siRNA inhibition efficiency and off-targeting poten-
tial. Our analysis suggests that siRNAs with efficient inhi-
bition tend to have a smaller off-target potential and vice
versa.

It has been shown that the simplified energy model of
RIsearch, predecessor of RIsearch2, in conjunction with a
Smith–Waterman-like algorithm is effective in the search
for near-complementary interactions, resulting in a method
that was the fastest of its kind (15). However, in the same
study, it has already been mentioned that the search space
could be reduced by first identifying short stretches of com-
plementarity, as e.g. GUUGle does, and only applying DP
to extend such regions. By employing a novel integrated
implementation, we have, with RIsearch2, successfully ob-
tained a seed-and-extend method which is far more effi-
cient than what is possible to obtain from any pipeline of
GUUGle and RIsearch. Enabling user-defined seed and ex-
tension constraints and anchoring the dynaming program-
ming on located seeds are some of the main novelties of
this integration. Hence, with the speed-up of RIsearch2
over RIsearch and other methods, RIsearch2 holds an ex-
cellent potential as a filter in general RNA–RNA interac-
tion screens. The RIsearch2 predictions could be fed di-
rectly into methods conducting more detailed RNA–RNA
interaction predictions, and in turn also be combined with
RNA–protein interactions (e.g. (53)).

Currently the data for verified RNA–RNA interactions
are still sparse. For example, for miRNAs the specific inter-
action is often not known although CLIP-seq is contribut-
ing to elaborate more details on the location of the interac-
tion but not necessarily the exact base pairs. This is known
to be a challenge for the range of tools that have been devel-
oped specifically for miRNA target prediction (54). How-
ever more data are emerging (e.g. (55–58)) which will be use-
ful for further efforts. With such data we will be able to get
a more complete picture in regard to erroneous predictions.

RIsearch2 enables a new level of large-scale RNA–RNA
interaction prediction with a number of possible applica-
tions. Together with the large amounts of sequencing data
and methods to find novel non-coding RNAs and other
data sources, performing large-scale interaction prediction
for putative or real ncRNAs can provide the possibility of
making hypothesis about RNA function. It has previously
been shown that reliable RNA–RNA interactions can be
used to infer the functional relationships of miRNAs (59).
Hence, having such interaction data can be the basis for ad-
ditional analysis in terms of discovering new ncRNAs and
elucidating their roles in regulating cellular output. Future
work can also include performing RNA–RNA interaction
screens on genome-wide level by taking evolutionary con-
servation and accessibility of binding sites into account.
Another future work may go in the direction of assigning
p-values to our predictions by taking several factors into
account, such as the conservation across multiple species
(58). Accessibility of binding sites is also another informa-
tion that could be integrated into such an approach. Yet an-
other challenge for such an approach could be creating a
good background model including analysis of randomized
data.

As future direction for the siRNA off-target discovery
pipeline, our findings show that there is room for a new
specificity-oriented siRNA design method that will consider
transcriptome-wide off-targeting potential measure as one
of the key design principles. This would enable designing
highly specific potent siRNAs that promise low-level off-
target signatures specific to the tissue or cell line they are
applied to. Currently siRNA off-target effects are avoided
to some extent by using pooled siRNAs, therefore, another
future direction might be to adapt the current pipeline to
allow computing off-targeting potential scores for different
siRNA pools. This would enable designing tissue (cell line)
specific siRNA pools that promise low-level off-targeting
noise on RNAi applications. However, since we currently
take only transcript abundances into account within our
partition function computation, and ignore siRNA con-
centrations, partition function computation would need
further adjustments to compute off-targeting potential for
siRNA pools. This could be relevant in fine tuning a design
where the concentrations of different siRNAs might have
different ranges of off-target effects.
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Supplementary Data are available at NAR Online.
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