Effective interactions of knotted ring polymers
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ABSTRACT

We present a review of recent computational investigations on the properties of ring
polymers in solution. In particular, we focus on effective interactions obtained by means of
coarse-graining techniques. We discuss the relative importance of the self-avoidance and
the topological contributions in the qualitative features of the effective potential. We extend
our previous results on identical rings and determine the effective potential between
dissimilar ring polymers of distinct topology and size. The obtained results evidence the
dramatic effects of the specific topology on the effective interactions, and hence in the
structural correlations, of polymeric systems.



Multiscale simulations is one of the most active and important fields in many areas of
computational science [1, 2]. They are an indispensable tool to obtain relevant information
on a variety of physical systems at different length- and time scales. They find wide
applications in, e.g., biological systems [3, 4], in the study of structural correlations [5] or
as a means to improve simulation performance in combination with renormalization group
theory [6]. Multiscale simulations of complex polymer systems involve the application of
coarse-graining (CG) techniques. CG amounts to the systematic elimination of the most local
and faster degrees of freedom in the system, allowing the reduction of computational
expense and the bridging of different length and time scales. This is particularly useful in
polymers, which exhibit a rich and complex structure as well as relaxation processes
extending over a extremely broad dynamic window. In the field of biophysics, DNA is an
archetypical example of this complexity [7]. Basic biological process, such as DNA
replication, involve a vast spectrum of length and time scales, arising from the long double
helix structure. Another relevant aspect of the macromolecular complexity is topology. This
problem has generated increasing interest on the biophysical community over the last
years, since long biopolymers as DNA are easily found in the knotted state [8 - 13]. Knotting
is also possible for smaller systems such as proteins [14]. Given the importance of such
systems and the role played in them by topology, it is pertinent to pay attention in
coarse-grained techniques in which topology as an ingredient from the very outset.

The mathematical object that takes into account the interactions between
coarse-grained particles is known as effective potential, V,,(R) [15]. Here, R is the

distance between two suitably chosen degrees of freedom, each one effectively describing
the whole molecule. A typical and useful choice is to use the centers of mass of the two
considered macromolecules. The knowledge of ¥, (R) is a key goal of CG techniques. The
effective potential allows to extract the relevant information in order to simulate polymer
solutions at least up to the overlap concentration, removing the irrelevant fast degrees of
freedom, i.e., the fluctuations of the individual monomers. An illustrative example of the
usefulness of CG is the fact that V_,(R) is closely related with the second virial coefficient,

B,, of the solution. The temperature for which B, =0 coincides with the so-called © -point,

i.e, the temperature at which the dissolved polymers behave as ideal (Gaussian
conformations). A considerable amount of work has been dedicated to the calculation of
V. (R)combining different solvent quality and topological conditions, as for e.g. linear

polymers [16, 17] or unknotted ring polymers [18, 19]. The relevant determination of
V. (R)allows the prediction, via the condition B, =0, of a decrease of the ©-temperature

for ring polymers with respect to their linear counterparts. This has been confirmed
experimentally [20,21].

One of the most striking effects of topology on the effective interactions is given by
the so-called topological potential between two unknotted ring polymers, V,,,(R), which

is a part of the total contribution to the effective potential ¥, (R). This topological

interaction exists even for the ideal case of infinitely thin and non-interacting ring
polymers, and it arises from the constraint that, as the two rings approach each other, any
concatenation or link formation between them is forbidden. This topological constraint
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gives rise to a reduction of the number of available states, and thus of the total entropy. The
resulting topological interaction was first considered in the pioneering work of
Frank-Kamenetskii et al. [22], and has been investigated in detail in the recent works of
Hirayama et al. [23] and of Bohn and Heermann [24]. There, the interdependence between
topological interactions and those stemming from self-avoidance was discussed. Thus, it

was shown that V,, (R) changes with the strength of the excluded-volume parameter and

it also depends on the degree of polymerization N of the molecules.

The mentioned studies regard the case of simple circular (,unknotted”) rings. To the
best of our knowledge, the influence of the knotedness of the rings on the effective potential
has only been considered in a recent work by Narros et. al. [25]. In that work the authors
derived by Monte Carlo (MC) techniques effective potentials between unknotted rings as
well as between knotted rings with different topology. The study was restricted to the case
of identical rings (i.e., both rings having the same topology and N). For moderate values of
N, it was found that the strength of the effective potential grows with increasing complexity
of the knot. In this contribution we extend the investigation of Ref. [25] and we obtain
effective potentials between pairs of dissimilar rings (distinct topologies and number of
monomers). The results presented below provide new insights into the role of molecular
size and toplogical contraints in the properties of ring polymers [18,19,23 - 25].

In our coarse-grained model for ring polymers the relevant magnitudes are the
distance between the centers of mass (CM) of the rings, R, and their average size
characterized by the radius of gyration, R,. We have calculated the effective interaction

between two ring polymers, whose CMs are at a mutual distance R. The topologies of the
two rings are denoted by 7, and their degree of polymerization by N;, with ;= 4, B. Thus,
we denote the effective potential between A and Bas V,,(R;7,,N ,,7;,N,). We consider the
simplest ring topologies of torus knots, i.e., the unknot (or trivial knot) 0,, the trefoil knot,
3,, and the 5,-knot. These are very common in nature, because they have high probability
to be obtained from a long polymer [26]. Indeed, these topologies are very often found in
circular DNA [10, 27], both in dilute and semi-dilute conditions, as well as in proteins [14].
For completeness, we also introduce the notation =L to refer to common linear
polymers. We use a model of tethered hard-spheres for the ring polymers, as described in
Ref. [25]. The maximum allowed values of the bond length and MC step are selected in
order to prevent accidental concatenation by bond-crossing [25]. Following the procedure
described in Ref. [25], we have used the umbrella-sampling MC technique to generate
configurations of the two rings at the whole relevant range of CM-distances. This procedure
allows us to obtain the radial distribution function g(R) with high accuracy. The effective
potential is then obtained as [25] V.r(R) = —kgT In g(R), with T the temperature and kg
Boltzmann's constant.

The average radius of gyration R, of an isolated ring polymer in equilibrium depends

on both the topology 7 and the monomer number N and it follows the law [28]:



N> N=<N
R (v,N) =V @ (1)
N N=N(7),

where v,=1/2 and v =3/5 are the critical exponents of the random walk and the

self-avoiding random walk, respectively, and N'(z7) is a topology- and model-dependent

crossover value of N . Typically, N*(01)~=~3OO, for unknotted rings whereas this value

grows for more complicated complex knotted topologies. Due to computational limitations,
we have used relatively short molecules, i.e, N&[15,200]. When two rings interact with

each other, the gyration radii are in general a function of their separation R :
R,,=R,,(R;T,,N T4, N;,), i=A,B.Obviously, for infinite separation the latter is identical
to the undisturbed gyration radius of an isolated ring (Eq. (1)). We thus introduce the
notation:
Rg,i(R_>OO;TA9NA5’FB’NB)ER§(TI'DM)' (2)

Accordingly, we also define a “swelling factor”, «;, as the relative change of the size of the
ring with respect to its undisturbed size (R — o), due to its interation with the other ring
when their centers of mass coincide (R = 0):
Rg,i(R = O;TAaNAorgaNB)

R)(7,,N,) '
In the following, the distance between the CM’s of the two rings will be measured in units of
the molecule-averaged infinite-separation radius of gyration:

<R0> = RE(TA’NA) + RE(TB’NB)
g 2 :

(3)

a,(t,,N T3, Ny) =

(4)

The effective potential V, (R;L,N,L,N) between two linear polymers of N

monomers each has a characteristic Gaussian shape, a result arising both from on-lattice
[16, 24, 29] and off-lattice simulations [25] at good solvent conditions. This behavior can be
rationalized by the fact that the monomer distribution around the center of mass is
approximately Gaussian for a linear chain. For sufficiently long chains, the effective
potential becomes a universal function of R/(R;)), and it has an N -independent amplitude

Vyy(R=0;L,N,L,N) =2k,T at full overlap [16, 24, 25], in agreement with theoretical

predictions [30, 31]. The bounded value at full overlap is a general feature of polymers,
stemming from their property of being inter-penetrable, which allows for coincidence of the
centers-of-mass without violation of monomer excluded volume constraints. The bounded
character of the effective potential also holds for -ring polymers [24, 25] though in this case
its amplitude is higher than for linear polymers, namely V(R =0;0,,N,0,,N)=6k,T . In

other words, the effective repulsion between polymers with the same N is much stronger
for rings than for linear chains. However, only a small fraction of this repulsive interaction
can be attributed to the topological potential [22 - 24].

The specific molecular topology does not only alter the effective potential
quantitatively. It also leads to qualitative differences. In particular, the effective potential
Vy(R) for 0,-ring polymers does not show the Gaussian form found for their linear
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counterparts [23 - 25]. Its shape rather features a plateau at separations R =< O.S(R;)) (see

Fig. 1), and even a minimum at zero separation [25] for small rings (reflecting an effective
short-range attraction). This feature stems from the typical configurations of two unknotted
rings at small mutual separation (R — 0), in which one of the rings adopts and open
conformation that facilitates interpenetration [25]. Similar features have been observed in
the effective potential for amphiphilic dendrimers [32], giving rise to clustered structures
under certain conditions [33].
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Figure 1:The effective potential ¥, (R) for identical ring polymers of 3, (solid lines)

and 5, (dashed lines) topologies, and for different degrees of polymerization N (see
parentheses in the legend). The effective potential for 0,-rings is included for comparison
(lower thin solid line).

Let us now discuss effective potentials for knotted rings, namely with 3,- and 5,
-topologies. Fig. 1 shows results for V,(R;3,,N,3,,N) and V. (R;5,N,5,N). As can be
seen, the scaling regime has not been reached neither for 3, nor for 5, -rings for N as
large as 100, within the investigated range of polymerization degree N < 200, in contrast
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to the case of 0, -topology, for which the effective potential already approaches a
universal form for N =80 [25]. Nevertheless, there is an apparent trend, especially for the
3, -case, towards convergence to the universal form obtained for the 0,-topology. For the
smallest values of N, a strongly repulsive potential is found for both 3,-and 5, -topologies.

This is an expected result since knotting yields smaller and thus denser molecules, giving
rise to stronger self-avoidance effects. Such effects diminish for larger rings, in which the
knot size becomes negligible in comparison to the overall size of the ring. Since
Vi (R;5,N,5,,N) >V ;(R;3,,N,3,,N) we expect that the convergence to the scaling limit

will be reached at smaller N for 3, -rings than for 5, -rings. This guess is consistent with the
observation that N'(5,)> N'(3,) for the crossover (Eq.(1)) in the scaling behavior of RJ.
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Figure 2: The effective potentials V,;,(R;3,,100,0,,N) (solid lines) and V,,(R;0,,100,3,,N)

(dashed lines). The molecular sizes for the B molecule are specified in the legend.

New results for dissimilar rings, V,,(R;3,,100,0,,N) and V,(R;0,,100,3,,N), are
shown in Fig. 2. For the cases of V;(R;3,,100,0,,20) and V,,(R;3,,100,0,,50), there is no



plateau or a minimum at R = 0, i.e., the interaction becomes more repulsive the smaller the
separation between centers-of-mass. A tentative explanation for this feature is that the
large knotted ring has to open up in order to be penetrated by the small unknotted ring.
However this involves localization of the knot, which is entropically very unfavorable. On
the contrary, a plateau, and even a minimum at zero separation, are clearly visible for the
case V,;(R;3,,100,0,,100). Inspections of the molecular conformations (see Fig. 3 for a

representative case), reveal that in this case the large unknotted ring adopts an open
conformation and is penetrated by the small knotted ring, in analogy with the observation
for two identical unknotted rings [25]. This feature is also reflected in the behavior of the
swelling factors «;, i= A4, B, defined in Eq. (3). Thus, we find ,(3,,100,0,,100)=1.57, i.e,,
a swelling of the unknotted by almost 60%, to accomodate the 3,-molecule, whilst the
latter retains its size, «,(3,,100,0,,100)=1. Interestingly, the swelling of the 0,-ring is
present in the whole range of N for which the effective potential exhibits a plateau or a
short-range attraction. Concomitantly, the knotted ring maintains its size in the former
range of N. Indeed, interpenetration facilitated by swelling of the knotted ring is
entropically unfavourable, since it would involve localization of the knot (see also above).
Since the 0,-ring is already big enough, no strong swelling of the latter is necessary at full
interpenetration. For instance, we find «,(0,,100,3,,20)=1.17 and ,(0,,100,3.,20)=1 for
the unknotted and knotted ring, respectively. Finally, due to the high penalty for knotted
rings to swell, penetration of large unknotted rings by small knotted rings is more
favourable than penetration of large knotted rings by small unknotted rings. Hence, the
effective potential V,(R;0,,100,3,,N) is weaker than its counterpart V, (R;3,,100,0,,N).

Figure 3: A typical simulation snapshot showinga 3, - (blue)anda 0,- (red) ring

polymer of N =100 monomers each, with their centers of mass coinciding (golden bead in
the middle).

It is pertinent to ask what is the contribution of the topological interaction to the
total effective potential. For 0,-rings, it has been shown that the topological contribution
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amounts to less that 10% of the full interaction potential [23, 24]. Despite its rather small
magnitude, the topological contribution has the particular feature of showing an attractive
part at small distances, in contrast to the monotonic repulsive contribution that arises from
self-avoidance. The interplay of both contributions brings about a plateau, and even a
minimum at R =0 for the full V,(R;0,,N,0,,N) [25]. As regards the cases examined

here, we find that for small identical knotted rings the effect of the topological potential is
even smaller, since the steric crowding caused by the knots dominates the effective
interaction. However, as N grows, Veﬂ.(R;r,N,r,N) seems to converge to a form

independent of the topology, i.e, the relative importance of the topological and
self-avoidance terms will approach the one discussed for the 0,-case. For dissimilar rings,

the topological contribution to V,(R) seems to be even less important: when the large
ring is the knotted one there is no plateau in ¥, (R), and in the opposite case the weak

swelling of the large unknotted ring is sufficient to explain the existence of the plateau on
the basis of excluded-volume interactions alone [34].

We have put forward a concise review of previously derived results for the effective
interaction between identical ring polymers in good solvent. Moreover we have extended
this work to derive effective interactions between dissimilar rings, of different sizes and
topologies. We have assigned salient characteristics of the derived potentials to the relative
swelling of the rings at small separation. A short-range attraction in the effective potential
is found when the large ring is the unknotted one, whereas a monotonic repulsion is
observed in the opposite case. The obtained results suggest that the topological
contribution to the effective potential is less important for knotted rings than for unknotted
ones. Consequently, we expect that the spatial correlations between, e.g., knotted proteins
or DNA molecules in concentrated environments are dominated by the knotting of the
individual polymers and not by an influence of the knots on the constraint of no
concatenation between any two molecules.

We acknowledge helpful discussions with Ronald Blaak. This work has been
supported by the European Community’s Seventh Framework Programme
(FP7/2007-2013) under the IEF-RINGEFF, Grant Agreement 236664 and by the Austrian
Science Fund (FWF), Grant 23400-N16.
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