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Abstract
Within the established theoretical framework of quantummechanics, interference always occurs
between pairs of paths through an interferometer. Higher order interferences withmultiple
constituents are excluded by Born’s rule and can only exist in generalized probabilistic theories. Thus,
high-precision experiments searching for such higher order interferences are a powerfulmethod to
distinguish between quantummechanics andmore general theories. Here, we perform such a test in
an opticalmulti-path interferometer, which avoids crucial systematic errors, has access to the entire
phase space and ismore stable than previous experiments. Our results are in accordancewith
quantummechanics and rule out the existence of higher order interference terms in optical
interferometry to an extent that ismore than four orders ofmagnitude smaller than the expected
pairwise interference, refining previous bounds by two orders ofmagnitude.

Introduction

Since arising almost a century ago, quantummechanics has long become an established paradigm for the
description of nature on a submicroscopic scale. It is at the basis of an enormous variety of present and potential
future applications [1], such as quantum communication [2, 3], quantum computation [4–6] and protocols like
entanglement swapping [7] or teleportation [8]. However, all these applications ultimately rely on interference
and entanglement, which can be alternatively explained by theories sharing only some fundamental features
with quantummechanics, such as the superposition principle or probabilistic predictions for outcomes, and yet
differing from it in other aspects [9–12]. In order to distinguish between quantum theory and such alternatives,
one needs to design dedicated experiments. The situationmay be comparedwith the time before the first Bell
test experiments had been performed. Until then, one could explain all quantummechanical phenomenawith a
local hidden variable theory. It was required, tofirst state Bell’s theorem [13], and then to performdedicated
experiments with space-like separated laboratories to exclude the alternative. Only last year all experimental
loopholes were finally closed [14–17]. Similarly to Bell, Leggett andGarg developed an analogous inequality for
correlations amongmeasurements performed on a system at different times [18]. If this inequality is violated,
the time evolution of a system cannot be understood classically. Also recently the Leggett-Garg inequality was
violatedwith neutrino oscillations bymore than 6s [19]. Another example is the experiment that distinguishes
between quaternion and complex (standard) quantum theory [20, 21]. In this work, we focus on an
experimental test capable of discerning between quantummechanics and its generalizations exhibiting higher
order interference [22].

The probabilistic nature of quantum theory is stated by Born’s rule [23], i.e. that the probability density
P tr,( ) for an observation of a quantumobject at a certain time t and a certain position r is given by the absolute
square of its wavefunction tr,Y( ):
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P t t t tr r r r, , , , . 12*= Y Y = Y( ) ( ) ( ) ∣ ( )∣ ( )

As a consequence of Born’s rule and quantum superposition, interference can take place even for single particles
[24]. For concreteness, consider an interferometer withmultiple non-overlapping paths k A B C, , ,= ¼which
superpose in some output port to the final wavefunction k kY = å Y . Equation (1) implies:

P t t I tr r r, , , , 2
k

k
k l

kl
2å å= Y +

<

( ) ∣ ( )∣ ( ) ( )

with pairwise (first-order) interference terms I c.c.kl k l*º Y Y + , depending on the relative phase between the
two paths k and l. Thus, one obtains interference terms that always originate frompairings of paths, but no
higher order interferences involvingmore than two paths at once.

In this vein, one can use the presence or absence of higher-order interferences as an experimental probe of
the current framework of quantummechanics. First developed by Sorkin in the context of ameasure theory on
spacetime [25], one can define a hierarchy of interference terms. In a three-path interferometer with individually
blockable paths A B C, , , we definePABC as the probability tofind a particle in the output port of the
interferometer if all paths are open,PAB for only pathsA andB being open, etc. The so-called second-order
interference term

I P P P P P P P 3ABC ABC AB AC BC A B Cº - - - + + + ( )

should be zero, independent of the individual phases and amplitudes in each interferometer arm, due to
equation (2). Conversely, a significant deviation from I 0ABC = would indicate the existence of higher-order
interferences and contradict conventional quantum theory. Note that the definition(3) accounts for deviations
from the standard theory in amodel-independent way.

In any experiment with discrete particles, the probability Pwill be proportional to the detected particle flux
p. Therefore, a directlymeasurable quantity

p p p p p p p p 4ABC AB AC BC A B C3 0 º - - - + + + - ( )

can be defined [26]. In this expression, for example, pAB is the detected particle flux at the outputwhen only
pathsA andB are open. The background term p0 gives themeasured signal when all paths are blocked,
accounting for detector dark current/dark counts. For a better comparison of the results with the expected
behavior, one can introduce the normalized quantity 3 3 3k dº measuring the ratio of hypothetical second-
order interference to the sumof the expected first-order interference, I I IAB AC BC3d º + +∣ ∣ ∣ ∣ ∣ ∣, with
I p p p pAB AB A B 0= - - + being thefirst-order interference betweenA andB. For interferometers withmore
than three paths, the higher (third, fourth,K)-order interference terms ( 4k , 5k ,K), which of course are also zero
in standard quantum theory, can be defined accordingly.

Different Sorkin experiments have been realized previously to obtain an upper bound on themodulus of the
second-order interference term. These experiments were implemented in optics [27–29] as well as via nuclear
magnetic resonance (NMR) inmolecules [30], and by using a single spin in diamonds delivering results [31]
whichwere all in accordance with the expectation 03k = . TheNMRexperiment provided the hitherto tightest
constraint with 0.001 0.0033k =  .

As is the case for any such null-test experiment, the tightness of the bound and, thereby, the strength of any
conclusions to be drawn about the foundations of the theory depend on themeasurement uncertainties. In
previous optical 3-path interferometers, the precisionwasmostly limited by the phase stability of the
interferometer, while the accuracy suffered fromdetector nonlinearities [29]. In this work, we present a greatly
improvedmulti-path experiment, namely a stabilized 5-path interferometer, withwhichwe are not only able to
tighten the bound on second-order interference by two orders ofmagnitude, but alsomeasure third and fourth-
order interference terms. The 5-path interferometer has the additional advantage of permitting the acquisition
ofmore statistics for the second- and third-order interference term since it consists of ten 3-path interferometers
andfive 4-path interferometers. It was recently shown that near-field effects in slit-basedmeasurements, where
the relevant dimensions are just one or two orders ofmagnitude larger than thewavelengthλ, can lead to so-
called non-classical paths associatedwith apparent higher-order interference and, therefore, bias the experiment
[32, 33]. In our interferometer this effect is negligibly small, which eliminates this bias. The systematic error of
detector nonlinearities is also taken into account for the first time in this type of experiment by separate detector
calibration and full quantum state tomography of the produced 5-dimensional qudit state.

Wewere able to performmeasurements in three different regimes: classical (with coherent laser light), semi-
classical (thermal single photons) and quantum (heralded single photons). Ameasurement in the classical
regime is basically a test of Poynting’s theorem (energy conservation in the electromagnetic field), whereas a
measurement in the quantum regime is a test against higher order interferences. As recently suggested there
should exist correspondences between the classical electromagnetic field and the quantumfield [34], therefore a
violation of Born’s rule should directly imply a deviation fromPoynting’s theorem and vice versa. By performing
themeasurements in those different regimes and comparing the results it is possible to test these
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correspondences. If therewere deviations fromone but not from the other regime, then this would be a strong
evidence for yet unknown behavior in the transition between themacroscopic and the quantumworld.

The optical 5-path interferometer

A schematic drawing of our setup can be seen infigure 1. For themeasurements in the classical regime (C)we
used a continuous-wave single frequency laser at 808 nmpower-stabilized to 1 mWwith relative fluctuations
smaller than 0.1%over the completemeasurement time of several days by using a liquid crystal noise eater
(Thorlabs LCC3112).We used a single photon source to performmeasurements in the semi-classical (SC) and
quantum regimes (Q). Photon pairs at 808 nmare produced via type-II spontaneous parametric down
conversion (SPDC) in a 10 mm long periodically poled potassium titanyl phosphate (ppKTP) crystal, which is
pumped by a blue laser (404 nm). The orthogonally polarized photons are separated by a polarizing beam splitter
(PBS).We collect 6 105´ single photons per second in each of the outputs in singlemodefibers andwe get 105

pairs per second at 4 mWpumppower. One of the photons serves as a heralding photon, whereas the other is
sent through ourmulti-path interferometer. Therefore, we have two possibilities to conduct themeasurement
with single photons: either free running, where all photons transmitted through the interferometer are counted
(yielding a thermal photon number distribution) in the semi-classical regime or conditioned, where only
photons are counted if there is a heralding photon (producing a sub-Poissonian distribution) [35] in the
quantum regime. All light sources were linearly polarized.

The interferometer is aMach-Zehnder-type 5-path interferometer consisting of a diffractive beam splitter (a
diffractive optical element—HoloeyeDE 263—modulating the incident light via amicro-relief surface)which
createsfive almost equally powerful beams, collimated by a lens ( f 150 mm= ). A shutter assembly serves to
block or unblock each of thefive beams individually, phase plates (glass plates with a thickness of 0.15 mmand
anti-reflection coated for 808 nm)mounted onmotorized rotation stages in all of thefive beams allowus to set
the phase of each path independently.We are able to achieve an absolute repeatability of 0.005°, which
corresponds to 1000p in phase. A second lens ( f 150 mm= ) overlaps thefive beams on a second grating at the
end of the interferometer before the resulting beam is sent onto a detector. The interferometer is designed in
f4 -configuration and the individual beams are separated by 5 mm, therefore the overall dimensions are
60 2´( ) cm2. For detecting single photonswe used SPCM-AQRH-12-FC single photon countingmodules
fromPerkin Elmer followed by a quTAU time-to-digital converter fromqutools GmbH. This systemhas a
deadtime of 33.85 0.31 ns( ) and 150 18( ) dark counts per second. The laser radiation is detected by a
PhysimetronA139-001 photoreceiver based on a Si-photodiode (Hamamatsu S2386-18K) and a 1MVA−1

transimpedance amplifier, read out by anAgilent 34410Amultimeter. This detection systemhas a low
maximumnonlinearity of less than 35ppm [36]. Onemeasurement set consists of the 2 325 = different
possible open/closed combinations of the five paths. These 32 combinations weremeasured in randomorder to
reduce the influence of anymemory effects of the detectors and of drifts of the sources. To obtain data with

Figure 1.Experimental setup. The light source is either given by a power stabilized laser or single photons (both at 808 nm)produced
via SPDC in a ppKTP crystal pumped by a blue laser. The interferometer consists of two diffractive beamsplitters and two lenses.
Shutters and phase plates in each of the paths allow independentmanipulation. The inset shows the dimensions and separations of the
shutters and the e1 2 intensity diameters of the beams.
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comprehensive statistics we recorded several thousandmeasurement sets within a totalmeasurement time of
several days. Thewhole interferometer is shielded against airmotion and stray light aswell as passively and
actively temperature stabilizedwith a PI controller (Wavelength ElectronicsHTC1500) and heatingmats to a
root-mean-square fluctuation<0.02 K in 24 h (The temperaturewasmonitoredwith a PT1000 resistance
thermometer). Additionally, the phases are actively stabilized by optimizing the phase-plate position after 100
measurement cycles towardsmaximally constructive interference of all two-path combinations. This point in
phase space was chosen for convenience of alignment and because small phase changes lead only in second order
to deviations in output power. This results in good phase stability over thewholemeasurement time. By
comparing thefluctuations and drifts of the single-path powerwith themulti-path powers (see figures 4 and 5 of
the supplementarymaterial [37]), which have the same order ofmagnitude, we found that phase uncertainty
plays aminor role compared to power noise from the light source.

The resulting average powers of the different path combinations can be seen infigure 2 for themeasurement
with the power stabilized laser [37] (Themeasured powers over thewholemeasurement time for laser and single
photons can be found in the supplementarymaterial).Wefiltered the data for extreme outliers (resulting from
shutter failure) according toGrubbs’ test for outliers (with a significance level of 99%) [38, 39]. After that the
largest relative standard deviation of the various classical signals is 0.3% for 5618measurement sets recorded
within 68 h. For the semi-classical (quantum) single photonmeasurement with 1912measurement sets the
largest standard deviationwasmeasured to be 3.6% (15.5%) over ameasurement time of 88 h. These higher
values resultmainly from shot noise.

Due to the anti-correlation between the numerator ò and the denominator δ in the definition ofκ, a bias
towards positive values can arise from randomfluctuations in the data when calculatingκ for every shutter cycle
and averaging over the data sets. However, calculating the averages of numerator and denominator in the
definition ofκ separately,

j, 3, 4, 5 5j
j

j


k

d
á ñ º

á ñ

á ñ
= ( )

eliminates their correlations and yields an unbiased estimator of the higher-order interference terms. Indeed,
one can show that error sources, which typically occur in interference experiments, such as power fluctuations of
the photon source, countrate fluctuations of the detectors (Poissonian photon counting uncertainties),
detector/electronic noise, coherent phasefluctuations aswell as incoherence, have no systematic effect on the
measurement outcome [40].

For each of themeasured 32-tuples we calculate 3,4,5 and 3,4,5d . Examples of histogramplots of themeasured
ensemble of 3 3 dá ñ, 4 4 dá ñand 5 5 dá ñ in the three different regimes are shown infigure 3 [48]. After
averaging across all possible path combinations one obtains themean values and associated uncertainties
presented in table 1.

Figure 2.Mean values of themeasured powers for the different path-combinationswith classical light. Extreme outliers have already
been removed.
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Analysis of systematic errors

Due to themacroscopic separation of the paths and beamwidth in our interferometer, exceedingλ by 3 to 4
orders ofmagnitude (see inset infigure 1), the effect of non-classical paths [32, 33] is of negligible influence.
Specifically, one can bound the bias to 10 22k -∣ ∣ bymaking theworst case assumption that all light, which is
not passing through the apertures is diffracted into any of the other interferometermodes. Instead, themain
systematic uncertainty in our experimental configuration arises from the nonlinearity of the detectors. Real
detectors usually have a nonlinear response function, whichmeans that the recorded value (voltage, photon
counts,K) is not linear in the incident power or photon flux, but biased differently for different optical powers.
This biases the value ofκ, as wemeasure light powers varying overmore than one order ofmagnitude. Here, the
bias arisesmainly due to nonlinearities in the electronics of our photoreceiver and due to deadtime in the single
photon detector. To take this error into account it is useful to fully characterize our 5-path interferometer, which
can be described as a 5-dimensional qudit state. Therefore, we additionally performed complete quantum state
tomography [41, 42]. The densitymatrix ρwas numerically reconstructed from single- and two-path
measurements with defined phases via direct reconstruction. The phases are calibrated via scanning the classical
two-path laser interference.We used the direct reconstruction instead of amaximum likelihood estimation to

Figure 3.Histograms of 3 3 dá ñvalues in the (a) classical, (b) semiclassical and (c) quantum regime for the 3-path subset A B C, ,{ }.
Histograms of 4 4 dá ñvalues in the (d) classical, (e) semiclassical and (f) quantum regime for the 4-path subset A B C D, , ,{ }.
Histograms of 5 5 dá ñvalues in the (g) classical, (h) semiclassical and (i) quantum regime in the 5-path interferometer. The blue line is
a Gaussian fit to the distribution of the data and themean value is indicated by the vertical black line, whosewidth corresponds to the
standard error of themean (one standard deviation).

Table 1.Mean values of themeasured higher-order interferences and their
standard errors in the classical, semi-classical and quantum regimes.

3ká ñ 4ká ñ 5ká ñ

classical 10 5´ -( ) 9.7±0.1 2.7±0.2 0.3±0.3
semi-classical ( 10 4´ - ) −9.9±1.8 −5.1±2.1 −3.8±3.9
quantum 10 3´ -( ) −1.1±1.6 0.3±1.8 −2.6±2.9
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avoid systematic deviations in the state reconstruction, which have recently been shown to arise due to the
constraint of physicality inmaximum likelihood estimates [43]. The real and imaginary parts of the resulting
densitymatrix are shown infigure 4.We calculated tr 0.74;2r = the deviation from1 (a pure statewith no
which-path information) can be attributed to an imperfect overlap of the five beams at the second beamsplitter.
While this degree of coherence in the interferometermust be determined for an accurate prediction of the
influence of the nonlinearities, its actual value has no systematic impact on the Sorkin experiment. The effect of
the nonlinearity on the reconstruction is negligible for two reasons: the ratio of the photon fluxes for the
differentmeasurement settings ismuch smaller than in themeasurements contributing to the evaluation ofκ.

Figure 4.The densitymatrix ρ of the 5-dimensional qudit state in our interferometer, with tr 0.742r = .

Figure 5. Final result. k̃ gives the difference between the experimentallymeasured ká ñ and the value expected fromdetector
nonlinearities thk for themeasurements in the three regimes. The order of k̃ increases along the horizontal axis and the error bars
indicate one standard deviation.

Table 2.Predicted values thk of the higher-order interferences and their
standard errors in the classical and semi-classical regimes.

3,thk 4,thk 5,thk

classical 10 5´ -( ) 9.7±3.1 −1.6±4.1 3.9±5.1
semi-classical ( 10 4´ - ) −11.2±0.1 −3.5±0.1 0.0±0.8

Table 3. thk k kº á ñ -˜ is the nonlinearity-corrected higher-order
interference for allmeasurement regimes. All these values arewithin one
standard deviation of the expected zero value.

3k̃ 4k̃ 5k̃

classical 10 5´ -( ) 0.0±3.1 4.3±4.4 4.2±5.1
semi-classical ( 10 4´ - ) 1.3±1.8 −1.6±2.1 −3.8±4.0
quantum 10 3´ -( ) 0.0±1.6 0.6±1.8 −2.7±2.9
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More importantly, deviations in the densitymatrix do not produce a systematic effect on the expected higher-
order interference, as 0k = holds for all states in quantum theory.

From the densitymatrix it is possible to calculate the expected powers for the different settings of the shutters
in the Sorkin experiment.We found good accordance with ourmeasurement data [44], suggesting that the
tomography produces an accurate description of the interferometer. The nonlinearities of both detectors were
characterized in separate experiments [36]. Applying them to the powers/count rates predicted from the density
matrix yields small corrections of these powers (relative change 0.03%< for the laser powers and 0.5%< for the
unheralded single photon rates).

One can then calculate the apparent higher-order interferences thk , whichwould be expected in the Sorkin
measurements, from thedensitymatrix and the nonlinear correction (see table 2). Note that in case of theheralded
single photondata, wedid not calculate an explicit prediction for because the nonlinearitymodel is quite involved
in this case. Insteadweused themodel to correct the rawexperimental data, inorder to obtain [45].

The differences between the experimentallymeasured higher-order interferences and the expected values
due to the nonlinearities thk k kº á ñ -˜ give corrected higher-order interferences as the final results, which can
be found in table 3. Afinal summary of all the different values is presented infigure 5. Onefinds that all these
values are within one standard deviation of the expected zero value.

Conclusion

Theoptical 5-path interferometer presented in thisworkpermittedus to experimentally confine the allowed
domainof secondorder interference to anuncertainty of 3 10 5´ - in the classical light regime. This is twoorders
ofmagnitude tighter than the bounds obtained from themost precise experiments in any system todate. The
uncertainties in the semi-classical and quantumregimes of 2 10 4´ - and 2 10 3´ - , respectively, are alsomuch
lower thanwhat has been reported before [26, 29]. This new level of precision has been reached by a range of
technical improvements over previous interferometers including power stabilization, phase stabilization and
increased throughput aswell as a judicious analysis of detectornonlinearities, which are thedominant originof
systematic error. Furthermore,wehaveperformed thefirstmeasurement of third- and fourth-order interference
terms,with similarly small uncertainties. So far, all our experimental results showedno significant higher-order
interferences andno violationof the correspondenceprinciple between classical electromagnetic and quantum
field and therefore fully agreewith the conventional theory.The dominant sources of imprecision inour setup are
theuncertainties in determining thedetectornonlinearities aswell as shot noise in the single photon regime. In
order to tighten the boundonhigher-order interference further, highly linear detection systems andbrighter single
photon sources orhigher detection efficiencywill be required.A tighter experimental boundwill aid the
development of new theories or constrain free parameters of existing ones. In particular, knowledge of the various
higher-order terms shouldpermit discriminating between differentmodels for generalized theories, such as
coefficients innonlinear extensions ofBorn’s rule [9], the theory of density cubes [10] andquartic quantum theory
[11]. For example, the bounds on 3k̃ translate directly to bounds on themagnitude of off-diagonal elements in the
theory of density cubes [10]. All these alternative theories contain quantum theory as a subset similarly as quantum
theory contains classical theory as a subset. Themechanismbywhich theories exhibiting higher-order
interferences reduce to standard quantum theory is called hyper-decoherence [11, 12]. Thismechanismwould be
analogous to the process of decoherence, which induces the quantum-to-classical transition.Our experiment also
places a boundon the hyper-decoherence time of thepotential extensions of quantum theorywith second-, third-
and fourth- order interference. Suchpost-quantumtheories are not only interesting from the foundational point
of view; they are also under investigation for their applicability towards quantumcomputation [46, 47].
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