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between pairs of paths through an interferometer. Higher order interferences with multiple
constituents are excluded by Born’s rule and can only exist in generalized probabilistic theories. Thus,
high-precision experiments searching for such higher order interferences are a powerful method to
distinguish between quantum mechanics and more general theories. Here, we perform such a test in
an optical multi-path interferometer, which avoids crucial systematic errors, has access to the entire
phase space and is more stable than previous experiments. Our results are in accordance with
quantum mechanics and rule out the existence of higher order interference terms in optical
interferometry to an extent that is more than four orders of magnitude smaller than the expected
pairwise interference, refining previous bounds by two orders of magnitude.

Introduction

Since arising almost a century ago, quantum mechanics has long become an established paradigm for the
description of nature on a submicroscopic scale. It is at the basis of an enormous variety of present and potential
future applications [1], such as quantum communication [2, 3], quantum computation [4—6] and protocols like
entanglement swapping [7] or teleportation [8]. However, all these applications ultimately rely on interference
and entanglement, which can be alternatively explained by theories sharing only some fundamental features
with quantum mechanics, such as the superposition principle or probabilistic predictions for outcomes, and yet
differing from it in other aspects [9—12]. In order to distinguish between quantum theory and such alternatives,
one needs to design dedicated experiments. The situation may be compared with the time before the first Bell
test experiments had been performed. Until then, one could explain all quantum mechanical phenomena with a
local hidden variable theory. It was required, to first state Bell’s theorem [13], and then to perform dedicated
experiments with space-like separated laboratories to exclude the alternative. Only last year all experimental
loopholes were finally closed [14—17]. Similarly to Bell, Leggett and Garg developed an analogous inequality for
correlations among measurements performed on a system at different times [ 18]. If this inequality is violated,
the time evolution of a system cannot be understood classically. Also recently the Leggett-Garg inequality was
violated with neutrino oscillations by more than 60 [19]. Another example is the experiment that distinguishes
between quaternion and complex (standard) quantum theory [20, 21]. In this work, we focus on an
experimental test capable of discerning between quantum mechanics and its generalizations exhibiting higher
order interference [22].

The probabilistic nature of quantum theory is stated by Born’s rule [23], i.e. that the probability density
P (r, t) for an observation of a quantum object at a certain time ¢ and a certain position r is given by the absolute
square of its wavefunction W (r, ¢):

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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P(x, t) = U¥, ) U(r, t) = |V(r, H)]*. )

As a consequence of Born’s rule and quantum superposition, interference can take place even for single particles
[24]. For concreteness, consider an interferometer with multiple non-overlapping paths k = A, B, C, ... which
superpose in some output port to the final wavefunction ¥ = 3, ¥. Equation (1) implies:

P(r, 1) = Y |W(x, O + > Iu(r, 1), @)

k k<l

with pairwise (first-order) interference terms Iy = W) + c.c., depending on the relative phase between the
two paths kand . Thus, one obtains interference terms that always originate from pairings of paths, but no
higher order interferences involving more than two paths at once.

In this vein, one can use the presence or absence of higher-order interferences as an experimental probe of
the current framework of quantum mechanics. First developed by Sorkin in the context of a measure theory on
spacetime [25], one can define a hierarchy of interference terms. In a three-path interferometer with individually
blockable paths A, B, C,we define P,pc as the probability to find a particle in the output port of the
interferometer if all paths are open, P, for only paths A and B being open, etc. The so-called second-order
interference term

Ingc = Papc — Pap — Pac — Ppc + P + Pp + F¢ 3)

should be zero, independent of the individual phases and amplitudes in each interferometer arm, due to
equation (2). Conversely, a significant deviation from I;5c = 0 would indicate the existence of higher-order
interferences and contradict conventional quantum theory. Note that the definition (3) accounts for deviations
from the standard theory in a model-independent way.

In any experiment with discrete particles, the probability P will be proportional to the detected particle flux
p- Therefore, a directly measurable quantity

€3=Papc — Pap — Pac — Ppc T P4+ Pg t+ Pc — Py “)

can be defined [26]. In this expression, for example, ppis the detected particle flux at the output when only
paths A and B are open. The background term p, gives the measured signal when all paths are blocked,
accounting for detector dark current/dark counts. For a better comparison of the results with the expected
behavior, one can introduce the normalized quantity k3 = ¢3 /5 measuring the ratio of hypothetical second-
order interference to the sum of the expected first-order interference, 63 = |Iug| + |lacl + |Ipc|, with

Inp = pyg — P4 — Py + P, beingthe first-order interference between A and B. For interferometers with more
than three paths, the higher (third, fourth,...)-order interference terms (4, &s,...), which of course are also zero
in standard quantum theory, can be defined accordingly.

Different Sorkin experiments have been realized previously to obtain an upper bound on the modulus of the
second-order interference term. These experiments were implemented in optics [27-29] as well as via nuclear
magnetic resonance (NMR) in molecules [30], and by using a single spin in diamonds delivering results [31]
which were all in accordance with the expectation k3 = 0. The NMR experiment provided the hitherto tightest
constraint with k3 = 0.001 =+ 0.003.

As is the case for any such null-test experiment, the tightness of the bound and, thereby, the strength of any
conclusions to be drawn about the foundations of the theory depend on the measurement uncertainties. In
previous optical 3-path interferometers, the precision was mostly limited by the phase stability of the
interferometer, while the accuracy suffered from detector nonlinearities [29]. In this work, we present a greatly
improved multi-path experiment, namely a stabilized 5-path interferometer, with which we are not only able to
tighten the bound on second-order interference by two orders of magnitude, but also measure third and fourth-
order interference terms. The 5-path interferometer has the additional advantage of permitting the acquisition
of more statistics for the second- and third-order interference term since it consists of ten 3-path interferometers
and five 4-path interferometers. It was recently shown that near-field effects in slit-based measurements, where
the relevant dimensions are just one or two orders of magnitude larger than the wavelength ), can lead to so-
called non-classical paths associated with apparent higher-order interference and, therefore, bias the experiment
[32,33]. In our interferometer this effect is negligibly small, which eliminates this bias. The systematic error of
detector nonlinearities is also taken into account for the first time in this type of experiment by separate detector
calibration and full quantum state tomography of the produced 5-dimensional qudit state.

We were able to perform measurements in three different regimes: classical (with coherent laser light), semi-
classical (thermal single photons) and quantum (heralded single photons). A measurement in the classical
regime is basically a test of Poynting’s theorem (energy conservation in the electromagnetic field), whereas a
measurement in the quantum regime is a test against higher order interferences. As recently suggested there
should exist correspondences between the classical electromagnetic field and the quantum field [34], therefore a
violation of Born’s rule should directly imply a deviation from Poynting’s theorem and vice versa. By performing
the measurements in those different regimes and comparing the results it is possible to test these
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Figure 1. Experimental setup. The light source is either given by a power stabilized laser or single photons (both at 808 nm) produced
via SPDC in a ppKTP crystal pumped by a blue laser. The interferometer consists of two diffractive beamsplitters and two lenses.
Shutters and phase plates in each of the paths allow independent manipulation. The inset shows the dimensions and separations of the
shutters and the 1/e? intensity diameters of the beams.

correspondences. If there were deviations from one but not from the other regime, then this would be a strong
evidence for yet unknown behavior in the transition between the macroscopic and the quantum world.

The optical 5-path interferometer

A schematic drawing of our setup can be seen in figure 1. For the measurements in the classical regime (C) we
used a continuous-wave single frequency laser at 808 nm power-stabilized to 1 mW with relative fluctuations
smaller than 0.1% over the complete measurement time of several days by using a liquid crystal noise eater
(Thorlabs LCC3112). We used a single photon source to perform measurements in the semi-classical (SC) and
quantum regimes (Q). Photon pairs at 808 nm are produced via type-1I spontaneous parametric down
conversion (SPDC) in a 10 mm long periodically poled potassium titanyl phosphate (ppKTP) crystal, which is
pumped by a blue laser (404 nm). The orthogonally polarized photons are separated by a polarizing beam splitter
(PBS). We collect 6 x 10 single photons per second in each of the outputs in single mode fibers and we get 10°
pairs per second at 4 mW pump power. One of the photons serves as a heralding photon, whereas the other is
sent through our multi-path interferometer. Therefore, we have two possibilities to conduct the measurement
with single photons: either free running, where all photons transmitted through the interferometer are counted
(yielding a thermal photon number distribution) in the semi-classical regime or conditioned, where only
photons are counted if there is a heralding photon (producing a sub-Poissonian distribution) [35] in the
quantum regime. Alllight sources were linearly polarized.

The interferometer is a Mach-Zehnder-type 5-path interferometer consisting of a diffractive beam splitter (a
diffractive optical element—Holoeye DE 263—modulating the incident light via a micro-relief surface) which
creates five almost equally powerful beams, collimated by alens (f = 150 mm). A shutter assembly serves to
block or unblock each of the five beams individually, phase plates (glass plates with a thickness of 0.15 mm and
anti-reflection coated for 808 nm) mounted on motorized rotation stages in all of the five beams allow us to set
the phase of each path independently. We are able to achieve an absolute repeatability of 0.005°, which
corresponds to /1000 in phase. A second lens (f = 150 mm) overlaps the five beams on a second grating at the
end of the interferometer before the resulting beam is sent onto a detector. The interferometer is designed in
4f -configuration and the individual beams are separated by 5 mm, therefore the overall dimensions are
(60 x 2) cm”. For detecting single photons we used SPCM-AQRH-12-FC single photon counting modules
from Perkin Elmer followed by a quTAU time-to-digital converter from qutools GmbH. This system has a
deadtime of (33.85 £ 0.31) nsand (150 %+ 18) dark counts per second. The laser radiation is detected by a
Physimetron A139-001 photoreceiver based on a Si-photodiode (Hamamatsu $S2386-18K)anda 1 MVA™!
transimpedance amplifier, read out by an Agilent 34410A multimeter. This detection system has alow
maximum nonlinearity of less than 35 ppm [36]. One measurement set consists of the 2° = 32 different
possible open/closed combinations of the five paths. These 32 combinations were measured in random order to
reduce the influence of any memory effects of the detectors and of drifts of the sources. To obtain data with
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Figure 2. Mean values of the measured powers for the different path-combinations with classical light. Extreme outliers have already
been removed.

comprehensive statistics we recorded several thousand measurement sets within a total measurement time of
several days. The whole interferometer is shielded against air motion and stray light as well as passively and
actively temperature stabilized with a PI controller (Wavelength Electronics HTC1500) and heating mats to a
root-mean-square fluctuation <0.02 Kin 24 h (The temperature was monitored with a PT1000 resistance
thermometer). Additionally, the phases are actively stabilized by optimizing the phase-plate position after 100
measurement cycles towards maximally constructive interference of all two-path combinations. This point in
phase space was chosen for convenience of alignment and because small phase changes lead only in second order
to deviations in output power. This results in good phase stability over the whole measurement time. By
comparing the fluctuations and drifts of the single-path power with the multi-path powers (see figures 4 and 5 of
the supplementary material [37]), which have the same order of magnitude, we found that phase uncertainty
plays a minor role compared to power noise from the light source.

The resulting average powers of the different path combinations can be seen in figure 2 for the measurement
with the power stabilized laser [37] (The measured powers over the whole measurement time for laser and single
photons can be found in the supplementary material). We filtered the data for extreme outliers (resulting from
shutter failure) according to Grubbs’ test for outliers (with a significance level of 99%) [38, 39]. After that the
largest relative standard deviation of the various classical signals is 0.3% for 5618 measurement sets recorded
within 68 h. For the semi-classical (quantum) single photon measurement with 1912 measurement sets the
largest standard deviation was measured to be 3.6% (15.5%) over a measurement time of 88 h. These higher
values result mainly from shot noise.

Due to the anti-correlation between the numerator € and the denominator § in the definition of k, a bias
towards positive values can arise from random fluctuations in the data when calculating  for every shutter cycle
and averaging over the data sets. However, calculating the averages of numerator and denominator in the
definition of « separately,

(kj) = @, j=3,4,5 (5)
(6))

eliminates their correlations and yields an unbiased estimator of the higher-order interference terms. Indeed,
one can show that error sources, which typically occur in interference experiments, such as power fluctuations of
the photon source, countrate fluctuations of the detectors (Poissonian photon counting uncertainties),
detector/electronic noise, coherent phase fluctuations as well as incoherence, have no systematic effect on the
measurement outcome [40].

For each of the measured 32-tuples we calculate €3 4 5 and 83 4 5. Examples of histogram plots of the measured
ensemble of 3/ (83), €4/ (04) and €5 / (65) in the three different regimes are shown in figure 3 [48]. After
averaging across all possible path combinations one obtains the mean values and associated uncertainties
presented in table 1.
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Figure 3. Histograms of ¢3 / (63) values in the (a) classical, (b) semiclassical and (c) quantum regime for the 3-path subset {A, B, C}.
Histograms of ¢4 / {6,) values in the (d) classical, (e) semiclassical and (f) quantum regime for the 4-path subset {A, B, C, D}.
Histograms of ¢5 / (85) values in the (g) classical, (h) semiclassical and (i) quantum regime in the 5-path interferometer. The blue line is
a Gaussian fit to the distribution of the data and the mean value is indicated by the vertical black line, whose width corresponds to the
standard error of the mean (one standard deviation).

Table 1. Mean values of the measured higher-order interferences and their
standard errors in the classical, semi-classical and quantum regimes.

(K3) (Ka) (Ks)
classical (x107) 9.7 £ 0.1 2.7 +£0.2 03403
semi-classical (x 1074) —99+ 1.8 —514+2.1 —3.84+3.9
quantum (x 1073) —1.1 £ 1.6 0.3 + 1.8 —2.6 £29

Analysis of systematic errors

Due to the macroscopic separation of the paths and beam width in our interferometer, exceeding A by 3 to 4
orders of magnitude (see inset in figure 1), the effect of non-classical paths [32, 33] is of negligible influence.
Specifically, one can bound the bias to |x| < 1072 by making the worst case assumption that all light, which is
not passing through the apertures is diffracted into any of the other interferometer modes. Instead, the main
systematic uncertainty in our experimental configuration arises from the nonlinearity of the detectors. Real
detectors usually have a nonlinear response function, which means that the recorded value (voltage, photon
counts,...) is not linear in the incident power or photon flux, but biased differently for different optical powers.
This biases the value of x, as we measure light powers varying over more than one order of magnitude. Here, the
bias arises mainly due to nonlinearities in the electronics of our photoreceiver and due to deadtime in the single
photon detector. To take this error into account it is useful to fully characterize our 5-path interferometer, which
can be described as a 5-dimensional qudit state. Therefore, we additionally performed complete quantum state
tomography [41, 42]. The density matrix p was numerically reconstructed from single- and two-path
measurements with defined phases via direct reconstruction. The phases are calibrated via scanning the classical
two-path laser interference. We used the direct reconstruction instead of a maximum likelihood estimation to
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Figure 4. The density matrix p of the 5-dimensional qudit state in our interferometer, with trp? = 0.74.
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Figure 5. Final result. & gives the difference between the experimentally measured (k) and the value expected from detector
nonlinearities r¢, for the measurements in the three regimes. The order of & increases along the horizontal axis and the error bars
indicate one standard deviation.

Table 2. Predicted values iy, of the higher-order interferences and their
standard errors in the classical and semi-classical regimes.

K3, th R4, th Rs,th
classical (x1075) 9.7 + 3.1 —1.6 + 4.1 3.9 £ 5.1
semi-classical (x 107%) —11.2 £ 0.1 —35+0.1 0.0 £0.8

Table3. & = (k) — K is the nonlinearity-corrected higher-order
interference for all measurement regimes. All these values are within one
standard deviation of the expected zero value.

R3 Ry Rs

classical (x107°) 0.0 £+ 3.1 43+ 4.4 42451
semi-classical (x 10~%) 1.3+ 1.8 —1.6 £ 2.1 —3.84+4.0
quantum (x 1073) 0.0 £ 1.6 0.6+ 1.8 —2.7 £ 29

avoid systematic deviations in the state reconstruction, which have recently been shown to arise due to the
constraint of physicality in maximum likelihood estimates [43]. The real and imaginary parts of the resulting
density matrix are shown in figure 4. We calculated trp? = 0.74; the deviation from 1 (a pure state with no
which-path information) can be attributed to an imperfect overlap of the five beams at the second beamsplitter.
While this degree of coherence in the interferometer must be determined for an accurate prediction of the
influence of the nonlinearities, its actual value has no systematic impact on the Sorkin experiment. The effect of
the nonlinearity on the reconstruction is negligible for two reasons: the ratio of the photon fluxes for the
different measurement settings is much smaller than in the measurements contributing to the evaluation of x.
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More importantly, deviations in the density matrix do not produce a systematic effect on the expected higher-
order interference, as k = 0 holds for all states in quantum theory.

From the density matrix it is possible to calculate the expected powers for the different settings of the shutters
in the Sorkin experiment. We found good accordance with our measurement data [44], suggesting that the
tomography produces an accurate description of the interferometer. The nonlinearities of both detectors were
characterized in separate experiments [36]. Applying them to the powers/count rates predicted from the density
matrix yields small corrections of these powers (relative change <0.03% for the laser powers and <0.5% for the
unheralded single photon rates).

One can then calculate the apparent higher-order interferences r,, which would be expected in the Sorkin
measurements, from the density matrix and the nonlinear correction (see table 2). Note that in case of the heralded
single photon data, we did not calculate an explicit prediction for because the nonlinearity model is quite involved
in this case. Instead we used the model to correct the raw experimental data, in order to obtain [45].

The differences between the experimentally measured higher-order interferences and the expected values
due to the nonlinearities & = (k) — Ky, give corrected higher-order interferences as the final results, which can
be found in table 3. A final summary of all the different values is presented in figure 5. One finds that all these
values are within one standard deviation of the expected zero value.

Conclusion

The optical 5-path interferometer presented in this work permitted us to experimentally confine the allowed
domain of second order interference to an uncertainty of 3 X 1077 in the classical light regime. This is two orders
of magnitude tighter than the bounds obtained from the most precise experiments in any system to date. The
uncertainties in the semi-classical and quantum regimes of 2 x 10~*and 2 x 1072, respectively, are also much
lower than what has been reported before [26, 29]. This new level of precision has been reached by a range of
technical improvements over previous interferometers including power stabilization, phase stabilization and
increased throughput as well as a judicious analysis of detector nonlinearities, which are the dominant origin of
systematic error. Furthermore, we have performed the first measurement of third- and fourth-order interference
terms, with similarly small uncertainties. So far, all our experimental results showed no significant higher-order
interferences and no violation of the correspondence principle between classical electromagnetic and quantum
field and therefore fully agree with the conventional theory. The dominant sources of imprecision in our setup are
the uncertainties in determining the detector nonlinearities as well as shot noise in the single photon regime. In
order to tighten the bound on higher-order interference further, highly linear detection systems and brighter single
photon sources or higher detection efficiency will be required. A tighter experimental bound will aid the
development of new theories or constrain free parameters of existing ones. In particular, knowledge of the various
higher-order terms should permit discriminating between different models for generalized theories, such as
coefficients in nonlinear extensions of Born’s rule [9], the theory of density cubes [10] and quartic quantum theory
[11]. For example, the bounds on &5 translate directly to bounds on the magnitude of off-diagonal elements in the
theory of density cubes [ 10]. All these alternative theories contain quantum theory as a subset similarly as quantum
theory contains classical theory as a subset. The mechanism by which theories exhibiting higher-order
interferences reduce to standard quantum theory is called hyper-decoherence [11, 12]. This mechanism would be
analogous to the process of decoherence, which induces the quantum-to-classical transition. Our experiment also
places abound on the hyper-decoherence time of the potential extensions of quantum theory with second-, third-
and fourth- order interference. Such post-quantum theories are not only interesting from the foundational point
of view; they are also under investigation for their applicability towards quantum computation [46, 47].
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