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Abstract
The effect of the Earth’s gravitational potential on a quantumwave function has only been observed
formassive particles. In this paperwe present a scheme tomeasure a gravitationally induced phase
shift on a single photon traveling in a coherent superposition along different paths of an opticalfiber
interferometer. To create ameasurable signal for the interaction between the static gravitational
potential and thewave function of the photon, we propose a variant of a conventionalMach–Zehnder
interferometer.We show that the predicted relative phase difference of 10−5 rad ismeasurable even in
the presence offiber noise, provided additional stabilization techniques are implemented for each arm
of a large-scale fiber interferometer. Effects arising from the rotation of the Earth and thematerial
properties of thefibers are analysed.We conclude that opticalfiber interferometry is a feasible way to
measure the gravitationally induced phase shift on a single-photonwave function, and thus provides a
means to corroborate the equivalence of the energy of the photon and its effective gravitationalmass.

1. Introduction

Interferometry has proven to be an effective tool for high-sensitivitymeasurements in physics. For example, the
recent groundbreaking detection of gravitational waves [1] relied onMichelson interferometers tomeasure
ripples in the curvature of space–time predicted 100 years ago by the theory ofGeneral Relativity (GR). This
achievement indicates that state-of-the-art technology enables the realization of interferometers capable of
detecting gravitational effects even on quantumparticles.While there exists awell developed framework
incorporating general relativistic gravity into quantumphysics–quantum field theory on curved space–time [2]
—itsmost distinctive predictions, such asHawking radiation fromblack holes, are nowhere close to be testable
in the near future. Various experiments have been proposed to test its other predictions, e.g. general relativistic
corrections to theNewtonian gravitational phase shift formassive particles [3, 4]. Yet, the size of the
interferometric setups that are necessary to observe these corrections is still beyond the reach of the present-day
technological capabilities. Rapidly advancing quantumoptics technology allows for quantum states of light to be
transmitted over increasingly large distances, which sparked proposals for experiments probing the effects of the
space–time curvature on photons [5]. As afirst important step towards this goal, we propose an experimental
scheme for observing the gravitational phase shift on a single photon.We discuss the gravitational effects on the
single-photon state inside aMach–Zehnder interferometer (MZI), which is placed vertically inside the Earth’s
gravitational field.We show that the use of opticalfibers togetherwith amodification of the classicMach–
Zehnder scheme allows to obtain a detectable signal, even in the presence of noise.

Thefirst experiment testing the influence of a gravitational potential on a quantumwave functionwas
performed byColella, Overhauser andWerner using neutrons in amatter-wave interferometer [6]. Subsequent
measurements of the gravitational acceleration ghave also relied on atoms andmolecules [7]. However, because
these experiments all usedmassive particles, they can be interpretedwithin the framework ofNewtonian gravity;
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on the other hand, gravitational tests withmassless particles, e.g.measurement of the Shapiro delay [8], require a
general relativistic explanation [9]. In order to detect GR effects on a single photonwave function, aMZIwith
arms located at different heights above the Earth can be used [9, 10]. The time of emission of the photon serves as
a ‘clock’, keeping track of the evolved proper time along each path of the interferometer [9]. By reading the state
of the clockwe gain information about the path taken by the photon inside theMZI, which should lead to a drop
in visibility according to the quantum complementarity principle [11, 12].We therefore expect the visibility to
start decreasing once the relativeGRproper time difference between the arms approaches the photon coherence
time (the precision of the clock). The observation of such a drop in visibility would constitute a genuine test of
the interplay betweenGR and quantummechanics. Unfortunately, interferometers with arm lengths of a few
thousand kilometers would be required for such an experiment. Such large-scale interferometers are currently
only feasible for space-based experiments [13]. However, a smaller interferometer still allows formeasuring
gravitationally induced phase shifts as we discuss in this work. A successful demonstration of this phase shift
would constitute e.g. a verification of the equivalence between the energy of a single photon and its effective
gravitationalmass [10].

A conventionalMZI, with arms of length l separated in height by a distance h, placed vertically inside Earth’s
gravitational field is illustrated in figure 1. The relation between the enclosed areaA=lh and gravitational phase
difference is approximately given by [10]

f
p
l

D » ( )ANg

c

2
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whereN is the group effective index of the transmissivemedium for light propagation, g is the gravitational
acceleration,λ is the central wavelength used to excite the interferometer and c is the speed of light in vacuum.
The gravitational phase shift can be interpreted to be a result of the coupling of the average energy of a photon
with effectivemass = =n

l
m h
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2 to theNewtonian gravitational potential [10]. If the coherence time of the
photon ismuch larger than the proper time difference experienced between different paths the fringe visibility is
high and the detection probabilities at the two output detectors are given by
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where f ( )t denotes the time varying phase-noise contributions present in any real interferometric setup.
The required interferometric area for a givenwavelength depends on the phase difference as given by

equation (1). Due to the small effectivemass of the photons, the required area of the interferometric set-up is
much larger than the area needed formatter-wave interferometry [6, 10]. For photons in the optical regime
(l ~ -10 m0

6 ), an area of about 105 m2 leads to a phase shift on the order of fD ~ -10G
5 rad. In order to

achieve such large-area interferometers, optical fibers are ideally suited for compact arrangements even at the
table-top scale. Remarkably, commercially available fiber spools containing 100 kmoffiber do not exceed
2×10−2 m3 of volume and 10 kg of weight whichmakes them suitable for implementations in the laboratory
despite the long path lengths required.

Figure 1. Schematic of a conventionalMach–Zehnder interferometer of areaA=lh placed vertically inside Earth’s gravitational field.
A beam splitter (BS) transforms a single photon into a coherent superposition between the two possible arms. Thewave function
evolves along two different paths and arrives at themerging beam splitter at the same time but slightly shifted in phase due to the
presence of a gravitational potential.
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2.Measuring gravitational phase shifts for single photons

In anoise-free environment themeasurementof the gravitational phase shiftwouldbe straightforward.TheMZI
couldfirst be calibratedbyorienting the setuphorizontally—such that the area (A) is parallel to the surface of the
Earth—to equalize the optical path lengths of the arms; then, byorienting the interferometer vertically (figure2), we
coulddetermine the gravitational phase by simply observing thedifference in count rates between thedetectors. In
reality, however,fiber interferometers can alsobeused as sensors for various physical and chemical variables due to
their high sensitivity for external perturbations [14]. This leads inour case tonoise induced signal fading [15, 16],
which is a change in the amplitudeof thedetected signal as a functionof time. It is thereforenecessary todesign an
experiment capable of distinguishing the static gravitational signal from time-dependentnoise. Tanakaproposed a
possible solution for an all-fiberMZI [17], where the arrangement canbe rotated about an axis parallel to its arms.
Thephase difference between the two arms is angle-dependent and canbemeasured for all intermediate angles
between thehorizontal andvertical orientationof the interferometer.Measurements are only takenwhen the angle
between the surface of theEarth and the area of the interferometer isfixed.Due to the static nature of this rotation and
the impossibility of calibrating the interferometer for different angleswithout losing thedesired information, this
scheme relies heavily onpassive stabilizationof thefibers. For theproposed areaof 5000m2phase-noise larger than
10−6 radwithin thedetectionbandmust be suppressed.Although such stability has beendemonstrated infiber
interferometers [18–20], achieving this precision for such a large-scale interferometer is a challenge. In the schemewe
present here,wemodulate the gravitational potential difference evenwhen the interferometer is at afixedposition
during themeasurements (figure 2).

2.1. Setup
Our scheme consists of a rotatable 3-armMZI (figure 2). Each of the three arms ismade up of afiber beam
splitter (FBS), afiber phase shifter and an optical fiber of length l . The interferometer can be shielded from
external noise, arising from temperature fluctuations and air currents, by placing it in a vacuumchamber. In
order to reduce coupling to vibrations, the entire set-up can be placed on an actively stabilized vibration isolation
system. An optical switch (OS), consisting of an electro-opticalmodulator (EOM) and a polarizing beam splitter,

Figure 2. Sketch of the interferometric scheme used to resolve the gravitationally induced phase shift of single-photons. (a) Schematic
drawing of the complete setup: the photons (orange and blue paths) are used as interfering particles whereas classical laser light (blue
path) is used to stabilize the interferometer bymeans of an imbalancedMZI in each arm as the angle of inclination (θ) changes. The
laser exciting arm 1 can also be used to calibrate the interferometer to operate at the quadrature point in horizontal position (q = 0).
(b) Stabilizationmechanism: the entire interferometer can be kept at the quadrature point during rotation—without erasing the
gravitational phase information—bymeans of an imbalancedMZI in each arm. (c)Phase detection: single photons are coupled into
the stabilized interferometer and are used to observe the gravitationally induced phase shift bymeasuring the difference in photon
counts between the detector in arm2 and the detectors in arm3 for each angle θ. The high frequencymodulation provided by the
optical switch creates a time-varying gravitational signal in a low-noise band at the detectors.
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is used to connect the additional arm to the conventionalMZI, directing the photons either along arm2or arm3
as a function of time. This technique effectively creates two two-armMZIswith different spacings between their
arms resulting in different gravitational potential differences. Therefore a time-varying signal,modulated at the
EOM frequency, is received at the single-photon detectors (SPD) and can be extracted by post-selecting data at
the frequency ofmodulation performed by the EOM.The rotational degree of freedom (e.g. about arm1,
figure 2) is used to calibrate the interferometer in the horizontal position aswell as creating an angle dependent
signal by slowly rotating the interferometer and performingmeasurements atfixed positions.

2.2. Calibration andmeasurement
To avoid signal fading for different angles in the presence of noise without extinguishing the gravitational
information in each of the arms, the following strategymay be applied. The interferometer can be calibrated in
the horizontal position—where gravitational differences are absent—using a frequency stabilized laser source in
arm1 (figure 2).We can operate at themost phase-sensitive point (quadrature point) of theMZI by adjusting a
phase difference of p

2
between arm1 and arms 2 and 3. To keep theMZI at this point for all angles and during

rotation, the length of each arm is kept constant bymeans of an additional, imbalancedMZI consisting of the
corresponding fiber spool and a short segment offiber (blue lines infigure 2) together with a frequency stabilized
laser source in each arm. The length of this segment can be chosen to be as short as possible, so that we can
assume the noise to be negligible in the passively isolated, noise reducing vacuum chamber. This allows to
monitor and thusminimize the noise in the long fiber spool, where the vacuum environmentminimizes
common-mode noise for each of the three additional interferometers. A linewidth for the stabilizing lasers in the
kHz regime is required for good visibility in these unbalancedMZIs. The interferometer can nowbe slowly
rotated (e.g. about arm1) to change the gravitational potential difference in a controlledway. Because of the
active stabilization provided by the imbalancedMZI in each arm, an observer located at one of the rotated arms
willmeasure a stable path length during the entire rotation. Afterfixing the entire setup at a given angle, single
photons—with frequency different from the lasers—are coupled into the interferometer via thefirst FBS
(figure 2(c)). The single photonswill now experience a different gravitational potential depending onwhich path
they take leading to a relative phase shift. SPDs in arms 2 and 3 can be used to resolve this phase difference. The
dynamic EOM-modulation togetherwith the controlled (static) rotation of the interferometer and the active
stabilization preserving the calibration condition, allows us tomeasure the gravitationally induced phase shift on
the single photons. In designing this interferometer it is crucial to identify all the physical phenomena that could
introduce noise that would swamp the gravitational effect wewish to observe.

3.Noise analysis

3.1. Effects of the rotation of the earth
The rotation of the Earth introduces an additional relative phase-shift ( fD C) between the spools, an effectfirst
observed in bulk interferometric setups [21]. The calibration of the interferometer in the horizontal position
effectively sets fD c between the different arms equal to zero.However, as θ increases, this difference for arms 2
and 3with respect to arm1 constantly changes in addition to fD g .We can estimate this effect by assuming the
velocity of the photon to be constant as seen by an observer in the laboratory.We can then calculate (see
appendix A) the resulting phase-shift between the two outermost arms—represented by spools 1 and 3 in

figure 2—within the framework of special relativity to be (up tofirst order in WR

c
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where b is the radius of the spool, vz is the (average) light speed along the direction of the cylindrical symmetry
axis of the spool,D º - º -l N l N l L L1 1 3 3 1 3 is the optical path-length difference andω is the (average) angular
speed of the light circling around the spool. The anglesf and θ represent the latitude coordinate of the lab on
Earth and the spool inclination angle, respectively, as shown infigure 3.We define ξ as the angle between the
normal projection of the symmetry axis of the spool(s) to the surface of the Earth and the unit vector pointing
South. By definition, x = 0 defines a vector pointing South at the location of the lab, whereas x p= 2 defines a
vector pointing East. The term linear inDl in equation (3) is the usual phase term for standard fiber
interferometry, heremultiplied by a factor originating from the rotation around the spools axis. Because of the
expected value for the gravitational phase (h= 3 m, =l 10 m5 )we can calculate a bound on the optical path
length difference of about D -l 10 11 m.The oscillating term contains two functions defined by
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that describe an effect arising from the special geometry of the fiber spools. The angles a1 and a3 describe the
planes inwhich the photon enters the fiber spools at time t=0 in the laboratory frame. From equation (3)—
which can be interpreted as a coupling between the rotation of the Earth and the rotation around the fiber spool
—it is easy to observe, that the amplitude is independent of the length l (mod pb2 ) of thefiber. Using b=0.2 m,
w ~ 10 rad9 s−1, ~v 400z m s−1, l = 1550 nm and f = 48.21 we can expect a phase-shift on the order of
0.5 rad. Comparing fD c to the gravitationally induced phase shift (equation (1)) by taking the same numbers
and the effective refractive index to beN=1.468 for afiber of reasonable length =l 105 m,we expect fD g to be
approximately three orders ofmagnitude smaller. Fortunately, it is relatively easy to align the geometric angles
a3 and a1 to be parallel for all spools. For simplicity we consider fromnowon a a= = 03 1 without loss of
generality.We require the effect to be independent of the angle between the fiber spool symmetry axis and the
surface normal of the Earth (e.g. between ‘horizontal’ and ‘vertical’ position in the laboratory), in contrast to the
gravitational effect6. This can be done by choosing x p= n ( În ), indicating that the axis of rotation between
the ‘vertical’ and the ‘horizontal’ position should be parallel to the line connecting the cardinal directionsWest

and East. In this case fD µ Dw w( ) ( )l l2 sin cosc c c2 2
, wherewe defined +≔l L L3 1. Therefore the oscillating

term in equation (3) reduces to
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where the argument in the sine function is periodic with a period of pb4 . The periodicity together with the
geometry of themodel used for calculating equation (3) allows for the interpretation of the sine-term as
describing the plane perpendicular to thefiber symmetry axis, where the photon leaves the fiber spool. Note that
this termonly arises because of the geometry of thefiber spool andwould not be observable in a straight fiber
interferometer. Setting an upper bound for themaximal angular displacement between the planes of the spools
where the photon can leave by using equations (1) and (6), we obtain a required stability of about mD ~l 13 rad.
With a spool radius of about 0.2 m this translates to an angular stability of about 7mdeg. Though feasible, this is
certainly one of themost challenging parts of the experiment. Thismeans that in order to not swamp the
gravitational effect by the rotation of the Earth, all of the three possible input planes (described by the ai) and all
of the three possible output planes (described byDl and b)must not changemore than 7mdeg during rotation
from the horizontal—where this effect is not present due to calibration—to the vertical.

3.2. Internalfiber noise
Another factor that limits the sensitivity and stability of anyfiber interferometer is internalnoise originating from
thermalproperties of thefiber itself [20, 22, 24–26]. External noise,mainly fromtemperaturefluctuations, air currents

Figure 3. Spool geometry used to calculate the phase-corrections due to the rotation of the Earth. The x-axis is always pointing South,
the z-axis is normal to the surface of the Earth and the y-axis is pointing to the East. The photons enter the spool in a plane defined by
the angle ai, where i is indexing the corresponding fiber spool.

6
To avoid possible relative pressure induced changes in the refractive index for thefiber spools during rotation, it is beneficial to keep the

symmetry axis of the spool and the surface normal to the Earth always parallel.
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andacoustic noise canbe greatly reducedbyhousing thefiber-spool inside an evacuated chamber, shielded
additionally fromacoustic noise by active vibration isolating systems. In fact,without this shielding it has been shown
tobe impossible tomeasure ameaningful signal due to signal fading [18]. Inmost applications for short-scalefiber
interferometry, the shotnoise limit sets a lowerboundon thephase-sensitivityof an interferometer. For large-scale
fiber interferometers, intrinsic thermalnoise of the transmissivemedium itself can limit theperformance, andmustbe
carefully analysed for the application at hand.There are several theoretical investigations attempting tomodel the
observednoisefloors foropticalfiber interferometers. Themeasuredpower spectral density (PSD) for typicalfibers
used inopticalfiber sensing (see e.g. [20, 23]), has a f1 dependence in the low frequency regime,which showsgood
agreementwith theories formechanical dissipation inopticalfibers [24]. For frequencies over 1 kHz, theobservedPSD
curves showexcellent agreementwith another theory for thermal phasenoisebyWanser [22]. ThePSDhas a rapid cut-
off for Fourier frequencies above100 kHz, indicating a lowernoise contribution in this frequency regime.The root-
mean-square amplitudeof phasenoisefluctuationsdepends strongly on the geometry andmaterial of thefiber.Using
thefiberparameters forCorning’s standard singlemodefiber SMF-28 [23], thenoise contribution from intrinsic
thermalphasenoise for an interferometerwith total length =l2 200 kmcanbe7 estimated tobe around10−6 rad
Hz−1/2 at 100 kHzaccording toWanser’s theory (figure4). Abetter estimation for this boundcanonlybegivenby
measuring the crucial parameters for thefibers actuallyused in this experiment, although theorderofmagnitude
shouldnot change for commercially available opticalfibers.One can see, that the thermalnoise contribution canbe
tailored tobe lower than the gravitationally inducedphase shift by anappropriate choiceof signal band-passfiltering at
thedetectors andproper choiceof themodulation frequencywith theOS.Passive stabilizationbynoisedamping
foundations andvacuumenvironment arenecessary forkeeping externalnoise contributions to aminimum.This
might also reduce theneed for an active stabilization loop for the shortfiber segments connecting the three armsof the
interferometer (orange lines infigure2). Active stabilizationof thefibersperformedby the imbalancedMZIs in each
armkeeps the interferometer at thedesiredquadrature, independentof the inclination angleθ.

3.3. Polarization and dispersion
Opticalfiber interferometers are also sensitive to polarization effects [27]. The states-of-polarization (SOP) of
the two interferometer armoutputs determine themixing efficiency at themerging beam splitter, where perfect
polarization overlap occurs for parallel SOPs resulting in amaximal visibility [28]. The proposed setup relies on
rotation around one of the arms of theMZI, so special caremust be taken to preserve perfectmixing and avoid
polarization drifts and rotations. One possible approach to overcoming drifts in polarization is to use
polarization-maintaining (PM)fibers. Themain disadvantages of using PMfibers are themuch higher
transmission losses (∼0.5 dB (km nm)–1 instead of∼0.18 dB (km nm)–1) and themuch higher costs. Therefore it
ismost practical to use standard single-mode fibers with an active stabilization of the polarization in each arm
[28]. The required quality of this stabilization dependsmainly on the chosen frequency of the optical switch.

Becausewe are aiming formeasuring small optical phase shifts with large scale fiber interferometers,
dispersive effectsmight also be of great importance.We assume the single-photon states to haveGaussian

spectral amplitude [29] w =
ps

w w- - - w w

s

-( )( ) ( ) ( )
f e t1

2

1 4 i 0 0
0 2

4 2 , where s2 is the variance of the spectral intensity and

Figure 4.Theoretical curve for theWanser thermal noise theory. The root-mean-square amplitude of the phase noisefluctuations at
room temperature in thefibers as a function of frequency, as given in [22], is shown. The plot represents the expected phase noise for a
fiber interferometer operating at awavelength of l = 1550 nm and a total length of =l2 200 km . The used fiber parameters are:
thermal conductivity k = 1.37 W mK−1, refractive index temperature coefficient = ´ -n Td d 9.52 10 6 K−1, effective refractive
index n=1.468, coefficient of linear expansion a = ´ -5 10L

7 K−1, thermal diffusivity = ´ -D 0.82 10 6 m2 s−1,mode-field
radius w m= 5.2 m0 andfiber outer radius af=62.5 μm.TheWanser theory is in excellent agreement with experimentally observed
noise figures for Fourier frequencies above 1 kHz [20, 23].

7
Because of the optical switch, only two arms of theMZI are involved at a given time instant.
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w0 is the central frequency of the pulse. Allowing for pulses to evolve differently in distinct fibers we can rewrite
the detection probability (equation (2)) for a conventionalMZI as (appendix B)

tt
t t
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where t t tº + D2
0
2 2 and t0 is the initial temporal width of the photon8. The time-domain broadening is given

by t lD D≔ D lm withDm representing the dispersion coefficient (ps (km nm)–1), l the length of the fiber (km)
and lD representing the spectral width (nm). The prime in equation (7) indicates the second fiberwith different
material coefficient. TheGaussian pre-factor depends on the ratio between path difference, represented by the
gravitational phase shift, and pulse length represented by the broadening of the initial pulse in the time domain.
It can be shown by using equation (7) that the dispersion broadening results in an effect that is about two orders
ofmagnitude smaller than the gravitational phase shift for photonswith spectral width achievable in recent
experiments [30]. Thus dispersion is not a limiting factor in the proposed experiment.

3.4. Attenuation and integration time
While the interferometer’s path lengths should be as large as possible to increase the relative gravitational phase
difference between the arms, longer optical fiber paths also introducemore noise and reduce transmission, thus
increasing the integration time required for statistically significantmeasurements. In this setup, the gravitational
phase can be resolved bymeans of a difference in count rates as a function of θ and themodulation frequency of
the optical switch. To determine an upper bound on the required integration time, we assume the single photon
source to possess photon statistics following a Poisson distribution at the detectors after passing through the
fibers. In order to be visible over the Poissonian noise, the difference in photon counts due to gravity should be at
least n̄i , where n̄i is the average number of photons registered by the ith detector per time t. Because the optical
switch directs the photons either along arm2or arm3, the set-up reduces to a conventionalMZI, where the
difference in gravitational potential can be seen as phase changemodulated by a phase-shifter. The amplitude in
thismodel is proportional to the potential difference between arms 2 and 3 and themodulation frequency is
given by the one of the EOM.The integration time of the detectors can thus be estimated by (see appendix C)

 h
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where N̄ is the number of photons per unit time provided by the single photon source, η is the quantum

efficiency of the detector, nd is the dark count rate and = a- -Sa( )a 10
l

i i
104 is the overall attenuation factor of the

interferometer withα the attenuation coefficient of the optical fiber, l the length (m) of the horizontal arms of
theMZI and the ai are the various attenuation coefficients of thefiber optic components used in the
interferometer. The detection probability for the detector in question at an angle θ at the quadrature point is
denoted by P. The detection probability for the ‘horizontal’ position (q = 0), where gravity has no effect, is
denoted byA. Because of the large area needed to observe even a small gravitational phase shift, it is desirable to
work at awavelengthwhere the optical fibers have high transmission. For standard single-mode fibers this is
usually around awavelength of 1550 nm. To achieve high quantum efficiencies and low dark count rates for
photon detection at this particular wavelength, superconducting nanowire SPDs (SNSPDs)may be used. The
dark count rate for SNSPDs have been shown to be as low as 1 Hz for detectors with quantum efficiency>90%
[31]. Because the integration time is inversely proportional to N̄ , a single-photon sourcewith high brightness is
beneficial. Spontaneous parametric down conversion (SPDC) in nonlinear crystals is one of themost versatile
and reliable technologies to produce single-photon states of light. The last 20 years havewitnessed significant
technological improvements in the performance of such sources, which can now reach brightnesses of up to 105

pairs (s GHz)–1 permWof pumpwith typical bandwidths of the order of 100 GHz [30]. By inserting the
nonlinear crystal in an optical cavity, it is possible to narrow the bandwidth up to 10–100MHz, while keeping
high brightness, of the order of 104 pairs (sMHz)–1 permWof pumppower [32]. Typical pump powers that
ensure real single-photon regimes range between 1 and 10 mW.Based on these and equation (8), we expect a
maximal required integration time for q = p

2
of about two days.

4. Conclusion and outlook

Optical fiber interferometry is a promising technique for table-top experiments aimed atmeasuring
gravitationally induced phase shifts on a single photonwave function. Here we have presented a scheme for
overcoming the static nature of the gravitational interaction by exploiting amodifiedMZI. An additional arm

8
The phase-change due to chirping is too small to be observable and thus neglected.
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allows us to create a time-varying signal controlled by an optical switch operating at a high frequency chosen
tominimize internal fiber noise. By rotating the setup around one of the arms, it is possible to calibrate the
interferometer in the horizontal orientation to itsmost sensitive point of operation.We have shown that by
adding an unbalancedMZI in each arm of theMZI, the calibration condition can be preserved during
rotation. Single photons injected into the interferometer will therefore be subject to only a gravitational
potential difference, depending on the path taken. Due to the fiber spool geometry, the rotation of the Earth
canmanifest itself as a phase shift large enough to swamp the gravitational phase shift. It is therefore necessary
to keep a stringent geometric relation between the variousfiber entrance and exit planes during rotation to
successfully perform the experiment. Polarization drifts, especially during rotation of the setup, can be
avoided by preserving the SOP in each interferometer using an active feedback loop. A successful
measurement of the gravitationally induced phase shift would probe the equivalence between the energy of
the photon and its effective gravitationalmass.While extremely challenging, this experiment has the potential
to open the path for table-top experiments capable of testing the interplay between general relativity and
quantummechanics.
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AppendixA.Derivation of the phase shift due to the rotation of the earth

Wenowgive thederivation for thephase shift arising from the rotationof theEarth (equation (3)) tofirst order in

 º W ( )R

c
. A.1

Weconsider the photon in a dielectricmedium to be a point particlemovingwith velocity <v c. Themotion of
the photon in afiber spool is,first, calculated in an earth-centered inertial (ECI) coordinate system. The proper
time in this frame is denoted by t, andwe place the lab initially at the center of the Earth. The Euclidean
coordinates of a photon in its spiralmotion around the symmetry axis of the spool, located at a distance h away
from the origin, can be described by the trajectory

a
a=
+

 ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( )

( )
( ) ( )l t

b t

b t

v t h

cos

sin , A.2

z

where b is the radius of the spool, a ( )t is the angle fromapredefinedplane (figure 3) and vz is the velocity along the
symmetry axis of the spool.Wenowrotate the spool by an angle q¢ about the y-axis, as describedby thematrix

q
q q

q q
¢ =

¢ ¢

- ¢ ¢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )R

cos 0 sin
0 1 0

sin 0 cos
, A.3y

where q p q¢ -≔ 2 . This is followed by a rotation about the z-axis, which determines the direction of the
symmetry axis of the spool, using the rotationmatrix

x
x x
x x=

-⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( )R

cos sin 0

sin cos 0
0 0 1

. A.4z

Wecontinue by shifting the trajectory to the surface of the Earthwith radiusR by an operator whose action is
defined by

=
+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )S R

a
b
c

a
b

c R
. A.5
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To account for the latitude coordinate we rotate again about the y-axis using

f
f f

f f
¢ =

¢ ¢

- ¢ ¢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( )R

cos 0 sin
0 1 0

sin 0 cos
, A.6y

where the latitude coordinate is given by f p f¢ = -2 . The rotation of the Earthwith an angular speed ofΩ
about the z-axis of the ECI frame by an angle y yW +( ) ≔t t 0 is described by

y
y y
y y=

-⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ( ))

( ) ( )
( ) ( ) ( )R t
t t
t t

cos sin 0
sin cos 0

0 0 1

. A.7z

Applying these operators to the vector defined in equation (A.2) results in aworld line of the photon given by

y f x q= ¢ ¢
 

( ) ( ( ( )) ( ) ( ) ( ) ( ) ( )) ≔ ( ( ) ( )) ( )x t ct R t R S R R R l t ct D t l t, , A.8z y z y

with tangent

= +
 ⎛

⎝⎜
⎞
⎠⎟( ) ≕ ˙ ( ) ( ) ( ) ( ) ( ) ( )

t
x t x t c

D t

t
l t D t

l t

t

d

d
,

d

d

d

d
A.9

and four velocity

h
=

-
˙ ( )
( ˙ ˙)

( )u
cx t

x x,
, A.10

where theMinkowskimetric -( )diag 1, 1, 1, 1 is used. Recall that the photon is considered to be a point particle
movingwith velocity <v c , we can therefore calculate the amount of proper time, say τ spent in the spool:

ò òt
t

h= = - ( ˙ ˙) ( )
t

t
c

x x t
d

d
d

1
, d A.11

T T

0 0

assuming that the photon enters thefiber at t=0 and exits at t=T.We have also used the relation

h h g h- = = =
t( )( ) ( ˙ ( ) ˙ ( )) ( ˙ ( ) ˙ ( ))c u u x t x t x t x t, , ,t2 d

d

2
2 , where γdenotes the Lorentz factor. In order to

calculate (A.11)we require the photon velocity to be constant as seen by an observer in the lab. Denoting the
speed of the photon in the lab by v and the four velocity of the lab by uL we get

h g= - = -
-

( ) ( ) ( )u u c v
c

,
1

, A.12
v

c

L
2

2

2

2

or equivalently

h
= -

( )
( )v

c

c

u u
1

,
. A.13

2

2

4

2
L

Letting tL be the lab-proper time, we can use (A.8) together with = = =b v h 0z tofind

= + +( ( )) ( )t O t C1 A.14L
2

for some constantC. Hence a constant velocity with respect to the lab frame is equivalent to the requirement that
h ( )u u,2

L is time-independent to order  :

h =( ) ( )
t

u u
d

d
, 0. A.152

L

The four velocity of the lab is given by

h
=

-
˙ ( )
( ˙ ˙ )

( )u
cx t

x x,
A.16L

L

L L

and can be calculated using (A.8)with = = =b v h 0z . Solving equation (A.15) by using (A.10) and (A.16)
results in an ordinary differential equation (ODE)with parameters for a ( )t . The solution takes on the form
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 a a w a= + + +( ) ( ) ( ) ( )t t t0 1
2 [33]whereω is the (average) angular speed of light circling around the

spool. After inserting a ( )t to order ò in equation (A.15))we get

a
w

f x w a q x w a= -
+

¢ + + ¢ - +˙ ( ( ) ( ( ))) ( )b v

cb
t tsin cos cos cos sin 1 sin , A.17z

1

2 2 2

0 0

where a aº( )0 0 and the approximation a w a= + +( ( )) ( ( )) ( )t t Ocos cos 0 were used.We can now
calculate h ( ˙ ˙)x x, by inserting equation (A.17) and expand the square root in equation (A.11) tofirst order after

factoring out the constant term - w +
1

b v

c
z

2 2 2

2 . The result of this expansion is

t
w

f x w a q x w a= -
+

-
W

¢ + + ¢ +⎜ ⎟⎛
⎝

⎞
⎠· ( ( ) ( )) ( )b v

c
T

bR

c
T T1 sin cos sin cos sin cos , A.18z

2 2 2

2 2 0 0

where =T l N

c
i i with i representing the associated spoolwith length l and group refractive indexN in the

interferometer. The phase difference between arms1 and 3of our setup aftermultiplying by the optical angular
frequency is given by

f
p
l

t
p
l

t t
w p

l
p
l

f

x w a q x w a

D = D - = -
+ D

-
W

+ ¢

⎜

⎟

⎛
⎝

⎞
⎠

≔ ( )

· ( ( ) ( )) ( )

c c b v

c

l bR

c

F F

2 2
1

2 2
cos

cos , sin sin , , A.19

c
z

1 3

2 2 2

2

1,3 1,3

which is equation (3) in section (3).
Wefinish this appendixwith the following calculation, which reduces somewhat the computational

complexity of the above. Let us introduce the following notation

•

n is a Euclidean unit-length vector along the axis of rotation of the Earth;

•

ℓ is a Euclidean unit-length vector directed from the center of the Earth to the geometric center of thefirst coil
in the spool;

•

i is a Euclidean unit-length vector along the axis of the spool;

•


( )j t is a Euclidean unit-length vector orthogonal to

i so that, in Euclidean coordinates in the lab, the position

of the photon is

+
 

( )tv i bj tz

andwhere 


( )t j t describes amotion on a flat circle with velocity ȧ ( )t .

•


( )k t is a Euclidean unit-length vector along


( ( ))j t td d , thus

i ,


( )j t and


( )k t are all unit length and pairwise
orthogonal, with

a=
 

( ) ˙ ( ) ( )
t

j t t k t
d

d
.

• U(t)denotes amatrix of rotation by angle Wt around the axis of the Earth.We then have

= W( ) ( )r
t

U t U t
d

d
,

whereΩ is the rotation velocity and = ( )r rij is a time-independentmatrix with entries

=r n .ij ijk
k

It follows that r acts on vectors as a vector product:

º = ´
   ( )r ry y y n.

Wewill only keep track of the leading order corrections in the calculations that follow.Note that there occur
some subleading corrections which are ( )O but not of order  2. In order to isolate the leading order terms, we
note that in the new variables theworld-line of the photon is

= + +
  
ℓ( ) ( ( )( ( )))x t ct U t R v ti bj t, ,z
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with tangent





a

a

a

= W + + + +

= + + + +

» ´ + +


   




     

    

⎜ ⎟

⎜ ⎟

⎛
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⎞
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⎞
⎠⎟

ℓ
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( ) ( ) ( )

( ) ( ) ( )

r

r
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R
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b

R
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v

c
i

b

c
k t

c cU t n
v

c
i

b

c
k t

,

,

, A.20

z z

z z

z

and four velocity h= -˙ ( ˙ ˙)u cx x x, . Setting

a w a= +( ) ( )t t t1

and denoting by ‘·’ the Euclidean scalar product and by ‘∣ ∣’ the Euclidean norm,we have





 



h
a

a a
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h
w
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n
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c
i

b

c
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v

c

b

c
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1 2 2 ,
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1

. A.21

z

z z

z z

z

b

c

v

c

b

c

v

c

b

c

2
2

2

2

2

2

2

2

2
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2

2

z
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2

2

2

2
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g
w

b
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w
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-
  

  

ℓ
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c
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a

v
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z z
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Using these variables, we canwrite





h g g
w
a y

h
g g

w
a y

- » - + +

-
» + + +

-
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
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⎛
⎝⎜

⎛
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b
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c

x x

b

c
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,
1 . A.23

0
1

0
2

2

2 1 1 2

0 0
2

2

2 1 1 2

Next, theworld-line xL of the lab is obtained by setting = =b v 0z above:

=

ℓ( ) ( ( ) )x t ct RU t, ,L

with tangent

= W = ´
  ℓ ℓ˙ ( ) ( ( ) ) ( ( )( )) ( )rx t c R U t c c U t n, , A.24L

and four velocity h= -˙ ( ˙ ˙ )u cx x x,L L L L .We have

h- = - ´ »
 ℓ( ˙ ˙ ) ∣ ∣x x c c n c, .L L

2 2 2 2

Todetermine the relative velocity of the photonwith respect to the labwe calculate

 h
w

y- » - ´ + » - +
   

⎜ ⎟⎛
⎝

⎞
⎠ℓ( ˙ ˙ ) ( ) · ( ) ( )x x c n

v

c
i

b

c
k a a, 1 1 , A.25z

L
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w
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⎠⎟
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x x x x
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2
2
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1 2

A constant velocity of the photonwith respect to the labmeans that

h
h h

w
a b y= - » +

⎛
⎝
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⎞
⎠
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d
. A.27L

L L

2

2 1 0
2

2

Integrating this equation once one obtains (A.17) at the current order of approximation, leading again to (A.18).
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Appendix B.Derivation of the detection probability for dispersivemedia

The commutation relation for the continuous-mode creation and annihilation operators formodes i and j is
given by [29]

w w d d w w¢ = - ¢[ ˆ ( ) ˆ ( ) ] ( ) ( )†a a, , B.1i j ij

where  is the identity operator. A single photon entering the first BS (figure 1) is split into a coherent
superposition between arm1 and arms 2 or 3 and recombines at themerging BS. Assigning the annihilation
operators for the inputs and outputs of themerging BS as defined infigure B1we get the relation9

w w w= +ˆ ( ) ˆ ( ) ˆ ( ) ( )a Ta Ra , B.24 1 2

whereR andT are the reflection and transmission coefficients. The spectral width of thewave function is
assumed to be small, such that the properties of the BS can be assumed to be independent of frequency.We can
calculate themean photon number in output-mode 4 for an arbitrary input state cñ∣ by [29]

òá ñ =ˆ ( ) ( )n tf td , B.34 4

where c cº á ñ º á ñ( ) ∣ ˆ ( ) ˆ ( )∣ ˆ ( ) ˆ ( )† †f t a t a t a t a t4 4 4 4 4 denotes themean photonflux. The Fourier-transformed
operators ˆ ( )a t4 and ˆ ( )†a t4 are defined by

òp
w w w

-¥

¥
-ˆ ( ) ≔ ˆ ( ) ( )a t a

1

2
d e , B.4ti

òp
w w w

-¥

¥
ˆ ( ) ≔ ˆ ( ) ( )† †a t a

1

2
d e . B.5ti

Inserting equation (B.2) into equation (B.4) gives

= +ˆ ( ) ˆ ( ) ˆ ( ) ( )a t Ta t Ra t . B.64 1 2

Theflux operator is thus given by

* *

* *

= + + =

+ + +

ˆ ( ) ˆ ( ) ( ˆ ( ) ˆ ( ))( ˆ ( ) ˆ ( )) ∣ ∣ ˆ ( ) ˆ ( )
∣ ∣ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )

† † † †

† † †
a t a t R a t T a t Ra t Ta t R a t a t

T a t a t R Ta t a t T Ra t a t , B.7

4 4 2 1 2 1
2

2 2

2
1 1 2 1 1 2

where an asterix (*)denotes the complex conjugate ofR andT. The input state is—due to the action of thefirst
BS—entangled and given by

cñ = ñ + ñ¢∣ ∣ ∣ ( )R T1 0 01 B.8f f

which is normalized by the condition + =∣ ∣ ∣ ∣R T 12 2 . The states ñ∣1f and ñ¢∣1f are defined by

òñ = ñ = ñ∣ ˆ ∣ ( ) ˆ ( )∣ ( )† †a tf t a t1 0 d 0 , B.9f f1 1

Figure B1.Representation of a symmetric lossless beam splitter showing the annihilation operators associatedwith the input and
output fields.

9
We restrict our analysis to output-mode 4.
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òñ = ñ = ¢ ñ¢ ¢∣ ˆ ∣ ( ) ˆ ( )∣ ( )† †a tf t a t1 0 d 0 , B.10f f1 1

where ñ∣0 denotes the vacuum state and f (t) and ¢( )f t denote the shape of thewave packet in the time domain for
the differentfibers used as arms in theMZI. In general ¹ ¢( ) ( )f t f t for different fibers although the input
single-photon state into the interferometer is the same. For a singlemodewe get from equations (B.1), (B.4) and
(B.5) the commutation relation d¢ = - ¢[ ˆ ( ) ˆ ( ) ] ( )†a t a t t t, that can be used to calculate themean photon flux
for equally transmissive arms

= + ¢( ) ∣ ∣ ∣ ∣ ∣ ( ) ( )∣ ( )f t R T f t f t . B.114
2 2 2

Weassume aGaussian spectral amplitude for the input single-photon state

w
ps

= w w- - - w w
s

-
⎜ ⎟⎛
⎝

⎞
⎠( ) ( )( ) ( )

f
1

2
e . B.12t

1 4
i 0 0

0 2

4 2

Fourier transformation gives

s
p

= = w s- -
⎛
⎝⎜

⎞
⎠⎟( ) ( )( )f z t0,

2
e e , B.13t t t

2 1 4
i 0

2
0

2

which describes the shape of the pulse in the time domain at the location of the first beam splitter andwhere t0 is
the time at which the peak of the pulse passes the coordinate origin z=0 [29]. The variance of the intensity given
by =∣ ( )∣f z t0, 2 is t º

s0
1

2
. To follow its evolution for ¹z 0 we canwrite [34]

òp
w w= w w f

-¥

¥
- +( ) ( ) ( )( ( ) ( ))f z t f,

1

2
e d , B.14t k z ti

where w( )k denotes the propagation constant and f ( )t denotes a possible noise term at position z and time t.
Expanding the propagation constant to second order around w0

w w
w
w

w w
w

w
w w w

w w r w w w

= + - + - +

= + - + - +

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k k
k k

O

k
v

O

d

d

1

2

d

d
1 1

2
, B.15

g

0
0

0

2

0
2 0

2 3

0 0 0
2 3

where º
w w w w=

d

d

d

d0
0

, vg denotes the group velocity of thewave packet and r º w
w w w=

( )kd

d

2

2
0

. Inserting this

expansion and the function for the spectral amplitude into equation (B.14) gives

pt
= - Ft

- -⎛
⎝⎜

⎞
⎠⎟

⎜ ⎟⎛
⎝

⎞
⎠

( )
( )

( )( )( )f z t
z

,
1

2
e e , B.16z t

2

1 4
i ,

t z
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t

z

0
2

4 2

where

t t
r
t

t t= + + D
⎛
⎝⎜

⎞
⎠⎟( ) ≔ ( )z

z
1

4
B.172

0
2

2 2

0
2 0

2 2

describes the temporal width (measured as square root of the variance) of the photon at a distance z away from
the origin. The dispersion coefficient as given in the standard formof the temporal broadening for an arbitrary
spectral shape t lD = DD lm , is related to theGaussian shape used in this derivation via = - p r

l
D 10m

c2 6
2

(ps km–1 nm–1). The quantity
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2

0

0
2 2

0 0

g

represents the phase, where the term inversely proportional to t ( )z 2 leads to the phenomenon of chirping [34].
Using equation (B.3), inserting (B.16) into (B.11) and neglectingΞ in the phase termdue to its negligible
contribution as compared to the gravitational phase results for different broadening in the two noise-reduced
fibers in equation (7) of section (3)
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2 2 2

where fD º D
g

l

vg
in this context.
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AppendixC.Derivation for the estimated integration time

The single-photon source is assumed to produce on average N̄ photons per unit time interval.We consider
symmetrical beam splitters where a single photon can be found in both outputmodes with equal probability.
The arms of theMZI are assumed to be equally transmissive and the attenuation coefficient can be calculated
from a aS + =l 10 logi i

P

P10
in

out
with l in km andPin andPout representing the input and output power,

respectively. After themerging BS there are now ¯ ·N a photons detectable per unit time. The detector has a
probability ofP to observe a photonwith a quantum efficiency of η and a dark count rate of nd. Thus the total
number of photons expected to produce a signal at the detector after a time t is given by

hº +¯ ( ) ( ¯ ) ( )n t N a P n t. C.1d

To estimate the integration time, we assume that we are Poisson noise limited, resulting in the inequality

¯ ( ) ¯ ( ) ( )n t n t . C.2sig

If we denote the detection probability in the absence of gravitational effects byA, we can calculate the expected
number of photons indicating the gravitational phase shift within a time interval t by

h= -¯ ( ) ( ¯ ( ))n t N a A P tsig . Solving equation (C.2) for t results in an estimated time after which the
gravitational effect is visible over Poissonian noise given by

 h
h

+
-

¯
( ¯ ( ))

( )t
Na P n

Na A P
. C.3d

2

In order to give a quantitative number for twedenote the SPD at the end of arm2 byD1 and the detectors at the
end of arm3 byD2 andD3 respectively. Because of the optical switch—effectively creating two 2-armMZIs—
and the interferometer being calibrated to the quadrature point in the horizontal orientation, the probability of
detecting a photon in either detector depends on the arms composing theMZI at a given time. In particular, if
the noise is suppressedwith themethods described in themain text, the detection probability forD1 is 1/2 (arms
1 and 2) or 1/4 (arms 1 and 3). Similarly the probability of detecting a photon inD2 orD3 is 1/4 if arm 2 is open
and 3/8 if arm 2 is closed. The integration time is therefore estimated by usingA=1/4 in order to get a lower
bound. To calculate Pwe can use equation (2)with 1/2 replaced by 1/4 for the 3-armMZI, fD g as given by

equation (1), f p=( )t 2 to account for the noise suppressed quadrature point, =l 105 m, h=1 m, n=1.468
and l = 1550 nm. Using =N̄ 106 s−1, a = 17 dB km−1, aS = 0.5i i dB, h = 0.9 and nd=1 s−1 we can
calculate the estimated time (equation (8)) for the gravitational effect to be visible over Poissonian noise to be
almost 2 days. For other inclination angles the integration time is substantially longer, e.g. for q p= 2 and
equal values for the other parameters the integration time is almost 4 days.
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