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Abstract

DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via commu-

nity phylogenetics, to investigate ecological and evolutionary processes that may be responsi-

ble for the community structure of forests. In this study, DNA barcodes for the two widely used

plastid coding regions rbcL and matK are used to contribute to identification of morphologically

undetermined individuals, as well as to investigate phylogenetic structure of tree communities

in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia).

The combined matrix (rbcL + matK) comprised 555 haplotypes (from�154 genera, 68 fami-

lies and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial

contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used

to reconstruct phylogenetic relationships using maximum likelihood, both with and without

constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phy-

logeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to

investigate the influence of phylogenetic resolution on results. Detection of non-random pat-

terns of community assembly was determined by net relatedness index (NRI) and nearest

taxon index (NTI). In most cases, community assembly was either random or phylogenetically

clustered, which likely indicates the importance to community structure of habitat filtering

based on phylogenetically correlated traits in determining community structure. Different phy-

logenetic trees gave similar overall results, but the Phylomatic tree produced greater variation

across plots for NRI and NTI values, presumably due to noise introduced by using an unre-

solved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits

over the traditionally used Phylomatic approach by increasing precision and accuracy and

allowing the incorporation of taxonomically unidentified individuals into analyses.
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Introduction

Understanding community assembly and processes that are responsible for community diver-

sity, species differentiation, and coexistence are important in the face of rapid global ecosystem

change [1]. Three mechanisms are often put forward as drivers of community assembly [1]:

(1) niche-related processes, in which community assembly is influenced by competition [2]

and/or abiotic filters [3], (2) neutral processes, in which species are ecologically equivalent [4,

5, 6], and (3) historical processes, which bring an evolutionary perspective into community

ecology [7, 8]. The relative importance of these processes for the assembly of communities and

coexistence of species has been often debated [1, 5, 6, 9, 10, 11, 12]. Quantification of the phy-

logenetic component of biodiversity has become important in studying community assembly

[13, 14] and holds promise to resolve the controversy over the relative importance of neutral

vs. niche-related processes [1]. Phylogenetic information permits an understanding of how

communities have evolved through time [15] and is being used increasingly to answer ques-

tions of community assembly e.g. [1, 13, 14, 16, 17, 18]. Community phylogenetic structure

can exhibit three basic forms, random, clustered and overdispersed [13], although these should

be viewed as part of a continuum. In a phylogenetically clustered community, co-occurring

species are more closely related than expected by chance. Conversely, a phylogenetically over-

dispersed community contains species that are more distantly related than expected by chance.

In turn, these forms are used as a proxy to suggest underlying mechanisms of community

assembly [14]. Phylogenetic clustering can hint at abiotic-driven assembly processes (habitat

filtering), which is based on the fact that under a given set of environmental conditions, closely

related species are more likely to be similar in abiotically adaptive traits (trait conservatism). In

contrast, in phylogenetically overdispersed communities, biotic interactions (e.g. interspecific

competition) may be important in structuring the local community e.g. [19, 20]. These biotic

factors can include herbivores and pathogens [21, 22, 23] because they are often specialized for

the chemistry of related plants and therefore host shifts in general tend to occur among plants

of similar chemistry [24]. Consequently, sharing of herbivores and pathogens could limit the

coexistence of closely related plants that are similar in morphology and chemistry but facilitate

coexistence of more distantly related plants with different traits.

Community phylogenetics uses phylogenetic trees of co-occurring species within a commu-

nity to calculate phylogenetic diversity statistics (e.g. phylogenetic diversity [25]), net relatedness

index (NRI; [13]), and nearest taxon index (NTI; [13]). Rapid construction of a community

phylogenetic tree is often achieved using the online interface Phylomatic [26], which trims a ref-

erence tree for plants (Angiosperm Phylogeny Group, APG) to taxa occurring in the commu-

nity. However, the Phylomatic procedure often provides little or no resolution of relationships

among closely related species or even genera [27]. Moreover, for analyses using Phylomatic, the

correct identification of individuals is mandatory, and this is often lacking in species-rich tropi-

cal forests. DNA barcoding has a high potential to reduce the number of unidentified individu-

als. DNA barcoding, besides its application in species identification and discovery of cryptic

species e.g. [28, 29, 30], has a potential role to play in community phylogenetics [31]. For exam-

ple, by using DNA barcode sequences to generate a phylogenetic hypothesis for a local species

assemblage of woody plants of a forest-dynamics plot, Kress et al. [32] investigated community

assembly on Barro Colorado Island, Panama. Since then, DNA barcode sequences have been

successfully applied in studying the phylogenetic community structure of forests and other eco-

systems e.g. [32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. For plants, portions of two plastid genes, matK
and rbcL, have been recommended by the Consortium for the Barcode of Life (CBOL) Plant

Working Group [42]. In addition, a third marker, the plastid intergenic spacer trnH-psbA was

proposed [43, 44] and has been used in phylogenetic community structure analyses [32, 33, 34,
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40]. A disadvantage of DNA barcode phylogenetic trees of a single community is that due to

sparse taxon sampling across the whole angiosperm tree (missing many families, genera, and

species), they can be incongruent in topology with the accepted Angiosperm Phylogeny Group

(APG) classification [45, 46]. Therefore, recently published studies e.g. [33, 39, 40] used the

ordinal-level topologies of the Phylomatic tree as constraints in phylogenetic analyses of the bar-

coding data. This allows resolution of the tips of the Phylomatic tree while the deeper APG rela-

tionships are retained.

In contrast to Neotropical forests, where phylogenetic clustering is consistently reported as

the predominant pattern [35, 47], most of the Southeast Asian forests are dominated by one

particular angiosperm family, Dipterocarpaceae [48]. Therefore, interactions between close

relatives that might promote overdispersion may be more important in structuring Southeast

Asian forests. Patterns of phylogenetic community structure and phylodiversity have been

investigated in a Southeast Asian forest before [13, 49] but using phylogenetic trees generated

via the Phylomatic procedure that does not resolve relationships among genera or among spe-

cies within genera, which is particularly important for detecting overdispersion. To date, no

studies have been conducted on the phylogenetic structure of tree communities in Southeast

Asia using DNA barcode sequences. Thus, such an analysis is imperative because the pattern

of community structure may contrast with the existing view that phylogenetic clustering is par-

amount in tropical rain forests.

In this study, we assessed the phylogenetic structure for 70 subplots (10 × 10 m) within a

25-ha (500 × 500 m) of mixed dipterocarp forest in Kuala Belalong, Temburong, Brunei Dar-

ussalam, on the island of Borneo. An earlier study of a 1 ha plot in the same area as the research

plot revealed the presence of 231 tree species [50]. As identification is ongoing, the exact num-

ber of species is still unknown, but estimates range between 850–1050 species across the 25-ha,

making it among the most species-rich plots in Indomalayasia [51]. This high species-richness,

much of which is contributed by species from species-rich genera (i.e. Shorea, Syzygium, and

Diospyros) makes the Kuala Belalong plot an ideal location to assess the utility of DNA barcode

sequences in a community phylogenetic study.

In this paper, we address the following questions:

1. Do the standard DNA barcodes (rbcL and matK) contribute to identification of morphotaxa

occurring in the 70 subplots of the 25-ha forest-dynamics plot? We predict that the combi-

nation of conserved (rbcL) and a rapidly evolving (matK) barcoding regions allows identifi-

cation of morphotaxa at least to genus-level if their sequences are already available in

reference databases [52, 53], including the contributions to these from this study.

2. Does a community analysis based solely upon rbcL and matK barcoding sequence data

offer significant benefits over one based on a phylogenetic tree constructed using Phylo-

matic? We expect that the high resolution predicted in the barcode tree decreases the bias

and noise in NTI and NRI values, which have been commonly observed with Phylomatic

trees due to a decrease in phylogenetic resolution [32].

3. What are the patterns of phylogenetic community structure in this forest and what do they

tell us about drivers of community assembly? We suggest that Southeast Asian forests may

show greater phylogenetic overdispersion than Neotropical forests because they are often

disproportionately dominated by one clade of trees (in most cases, Dipterocarpaceae), thus

increasing the general intensity of interspecific competition [14, 54]. In addition, the Bru-

neian research plot receives a high mean annual precipitation (5203 mm per year), which

could allow for more natural enemies (pathogens) such as bacteria, fungi, and viruses that

can promote phylogenetic overdispersion [21, 22].
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Material and methods

Study site and sampling

All necessary permissions for this study were obtained in agreement with all relevant guide-

lines and policies as outlined in the collaboration agreement between Institute for biodiversity

and environmental research (IBER), Universiti Brunei Darussalam and University of Vienna,

Austria. The Biodiversity Research and Innovation Centre (BIORIC), Ministry of Industry

and Primary Resources Brunei Darussalam granted export of biological specimens for research

purposes under reference number BioRIC/HOB/TAD/51–30 and BioRIC/HOB/TAD/51–46.

The study was conducted in a long-term forest-dynamics plot (latitude: 4.634, longitude:

115.228, http://www.ctfs.si.edu/site/Kuala+Belalong, last accessed: 2017-08-19) that was estab-

lished at the Kuala Belalong Field Studies Centre (KBFSC) of Universiti Brunei Darussalam in

2009 following the protocols of Condit [55]. It is part of the Center for Tropical Forest Sci-

ence–Forest Global Earth Observatory (CTFS-ForestGEO; [50]) that includes 63 large-scale

demographic tree plots across the Americas, Africa, Asia, and Europe, focusing mainly on the

tropics [56]. The Bruneian plot is located in a primary, mixed dipterocarp forest in the Batu

Apoi Forest Reserve at Temburong. This region is characterized by a tropical climate with sig-

nificant year-round mean annual precipitation of 5203 mm and a mean annual temperature of

26.5˚C [51]. It has a steep topography and elevation ranging from 160 to 320 m. The dominant

soils are silty clay dominated by quartz and kaolinite (ultisoils). Besides being high in iron and

aluminium oxides, they are extremely low in basic plant nutrients [50]. The natural distur-

bance regime is characterized by landslides [57]. The plot is dominated by broadleaf evergreen

vegetation. The 25-ha plot is divided into 2500 subplots of 100 m2. All free-standing woody

stems� 1 cm diameter at breast height are tagged with individual numbers, measured, and

mapped spatially. Reference vouchers are deposited at the University of Brunei Darussalam

Herbarium (UBDH), and the tagged stem itself serves as an additional living voucher for the

individuals sampled. Morphological identifications of the individuals are on-going. Following

the CTFS standard protocol, specimens have been sorted to families, genera, and “morphospe-

cies” and in this case have been identified by author the S. Tan. However, these “morphotaxa”

have not yet been verified by comparison with vouchers at all pertinent herbaria, and a large

number remain unidentified to species level. Across the 25-ha plot, 70 subplots (100 m2 each)

were selected in a stratified random pattern including different topographical attributes.

According to the list of individuals provided by UBD-CTFS, there are 4348 tagged trees in the

70 subplots. However, several tree tags were not found during sampling (presumably fallen off

or removed by people). Leaf or bark material was sampled only from tagged individuals, lead-

ing to 3930 samples, which were dried in silica gel [58].

Topographical analyses

Topographical raw data were provided by the UBD-CTFS and generated following standard

protocols described by Condit [55]. Using the CTFS R package [59] a contour map was con-

structed (Fig 1). Three topographical parameters were calculated for each subplot (S2 Table):

elevation (E), slope (S), and convexity (C). Elevation was defined as the mean elevations at the

four corners of each quadrant [60]. Following Yamakura et al. [61], the convexity of each sub-

plot was determined by calculating the difference of the mean elevation of the focal quadrat

and mean elevation of 12 points along a grid of eight subplots surrounding the focal quadrat.

For subplots located at the edge of the 25-ha plot, convexity was the elevation of the center

point minus the mean of the four corners. Convex surfaces are indicated by positive values,

whereas negative values indicate concave surfaces. Slope was calculated for each subplot using
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the quadslope function of the CTFS R package [62]. The three topographical variables were

used to assign each of the 70 subplots to one of five habitats according to earlier studies e.g.

[63]. These habitat types are (Fig 1, Table 1): valley (S < Smean, E< Emean); low slope (S

�Smean, E< Emean); high slope (S� Smean, E� Emean, convexity > 0); high gully

(S� Smean, E� Emean, convexity < 0); ridge top (S� Smean, E� Emean).

DNA barcode reference database and identification of morphologically

unidentified individuals

DNA extraction, PCR amplification and sequencing. Prior to DNA extraction, samples

were frozen in liquid nitrogen and ground into fine powder. Subsequently, genomic DNA was

extracted from approximately 20 mg of material using the DNeasy 96 Plant Kit (QIAGEN,

Fig 1. Contour map of the 25 ha plot in Kuala Belalong-Brunei Darussalam and location of the 70

subplots sampled in this study. Habitat types are given for each subplot: valley (green), low slope (dark

blue); high slope (light blue); high gully (red); ridge top (orange).

https://doi.org/10.1371/journal.pone.0185861.g001

Table 1. Habitat classification.

Habitat

High gully (hg) High slope (hs) Low slope (ls) Ridge top (rt) Valley (v)

Number of plots 6 10 25 19 10

Slope (˚) � 27.5 � 27.5 � 27.5 � 27.5 < 27.5

Elevation (m) � 243.5 � 243.5 < 243.5 � 243.5 < 243.5

Convexity (˚) < 0 > 0 All all all

Criteria (slope, elevation, and convexity) used for habitat classification are given.

https://doi.org/10.1371/journal.pone.0185861.t001
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Hilden, Germany) following the manufacturer’s protocol. Working stocks of 10× diluted DNA

were prepared. In total 3300 individuals were included. Two coding plastid regions, rbcL and

matK, were amplified. For amplification of the rbcL region primers rbcLa_f [64] and rbcL

724R [65] were used. PCR reactions included 5 μL of 2× ReddyMix PCR Master Mix with 1.5

mM MgCl2 (#AB-0575/DC/LD/A; Thermo Fisher Scientific, Vienna, Austria), 0.1 μl 4.0%

bovine serum albumin, 0.1 μl each primer (0.32 μM), 1 μl template DNA and H20 up to a final

volume of 10 μl. Thermal cycle conditions were as follows: initial denaturation at 98˚C for 30

sec, 35 cycles of denaturation at 98˚C for 10 sec, annealing at 63˚C for 30 sec and extension at

72˚C for 30 sec, followed by final extension of 5 min at 72˚C. At the beginning of the study,

there were three frequently used matK primer pairs available to amplify approximately the

same region of the gene: 390F and 1326R [66, 67], XF and 5R [68], and 1R_KIM and 3F_KIM

[42, 69]. Initially, all three primer pairs were used in this study following the authors’ protocols.

In the course of generating matK sequences, a universal set of primers that can be multiplexed

in one PCR reaction was developed (C_MATK_F and C_MATK_R, [70]). This set of primers

was then used as follows: 5 μL of 2× ReddyMix PCR Master Mix with 1.5 mM MgCl2 (#AB-

0575/DC/LD/A; Thermo Fisher Scientific, Vienna, Austria), 0.1 μL of forward and reverse

primer cocktail each at 50 μM (final concentration 0.5 μM), 1 μL of template DNA, and H2O

up to a final volume of 10 μL. Thermocycler conditions were as follows: 95˚C for 2 min: five

cycles of 95˚C for 25 s, 46˚C for 35 s, and 70˚C for 1 min; 35 cycles of 95˚C for 25 s, 48˚C for

35 s, and 70˚C for 1 min; and a final extension at 72˚C for 5 min. For samples that did not

amplify using the above-mentioned protocol, the 2× Phusion Green HS II Hi-Fi PCR Master

Mix with 1.5 mM MgCl2 (#F-566S, Thermo Fisher Scientific, Vienna, Austria) was used with

the following thermocycler conditions: 98˚C for 30 s; five cycles of 98˚C for 10 s, 53˚C for 30 s,

and 72˚C for 30 s; 35 cycles of 98˚C for 10 s, 55˚C for 30 s, and 72˚C for 30 s; and a final exten-

sion at 72˚C for 5 min. PCR products were cleaned with 1.5 μL exonuclease I and FastAP ther-

mosensitive alkaline phosphatase mixture (7 U Exo I, 0.7 U FastAP, Thermo Fisher Scientific,

Vienna, Austria) at 37˚C for 45 min and 85˚C for 15 minutes. Sequencing reactions were per-

formed with the BigDye Terminator Kit v3.1 (Thermo Fisher Scientific, Vienna, Austria)

using the amplification primers according to the manufacturer’s instructions. Sanger sequenc-

ing was carried out using a 3730 DNA analyzer (Thermo Fisher Scientific, Vienna, Austria) at

the Department of Botany and Biodiversity Research, University of Vienna.

Sequence assembly, editing, and alignment. Bidirectional sequences were trimmed,

assembled into contigs, and edited in Geneious (version 8.0.5, [71]). Edited sequences were

checked for contamination using BLAST [72]. Contaminated sequences, as well as samples

that failed to produce quality reads for matK and rbcL were removed from the dataset, leading

to a total of 3118 sequences for rbcL and 2598 sequences of matK. A local reference database

for taxa occurring in the 70 subplots of the 25-ha plot was built by uploading all sequences to

the Barcode of Life Datasystem [53] under code DS-PCSBRU1. Sequences were sorted accord-

ing to their haplotypes by aligning them with MAFFT version 7.017 implemented in Geneious

version 8.0.5 [71]. A representative for each haplotype was blasted against the Barcode of Life

reference (BOLD) database [53] as well as to the National Center for Biotechnology Informa-

tion (NCBI) reference database Genbank [52]. The resulting identifications were compared

with the preliminary morphological identifications. Morphologically unidentified individuals

were identified to family or generic level according to their DNA sequence. To decrease com-

putation time in subsequent analyses, a pruned data matrix using one representative per haplo-

type and morphotaxon was used. If the same morphotaxon exhibited different haplotypes, a

representative for each haplotype was included (S1 Table). Due to the absence of indel varia-

tion, rbcL sequences were aligned directly in BioEdit v.7.0.4 [73]. Following translation into

amino acids, matK sequences were aligned in BioEdit. The translated matK matrix was then
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edited manually. Both alignment files for each marker were combined. For analysis, unse-

quenced regions and gaps were coded as missing data.

Reconstruction of phylogenetic community trees

To compare resolution and node support of different phylogenetic approaches, three trees

were constructed in this study. A tree based on the most recent reference tree R20120829

(APG III, [45]) was built using the online version of Phylomatic [26]. For this, a list of taxa

occurring in the barcode matrix was submitted to the program, which tries to match the taxa

to the most resolved position in a stored tree. This rapid phylogenetic reconstruction repre-

sents a classic and widely used approach in community phylogenetics [74, 75, 76]. Trees were

also inferred from the barcode data. Substitution rates were estimated independently for each

gene. Here, the rapid bootstrapping algorithm (1000 replicates), which does a complete analy-

sis (ML search and bootstrapping) in one step was conducted using RaxML v8.2.0 [77]. The

general time reversible model with six substitution rates (one for each pair of nucleotides) and

gamma-distributed rate variation across sites (GTRGAMMA) was chosen for the analysis

based on jModeltest2 [78]. The tree constructed by Phylomatic mostly resolves relationships at

family level, whereas the barcode data helps to resolve relationships at generic or even species-

level. An additional analysis was conducted here because deep nodes in a community phyloge-

netic tree based on barcodes may not resolve relationships correctly because of taxon-sampling

issues. To correct this, deep-level phylogenetic relationships were fixed using a constraint tree

based on the APG classification e.g. [33, 39, 40] and the terminal tips were resolved using the

barcode sequences. This constraint tree was built using the package “ape” [79] with the R pro-

gramming language. All taxa were present in the constraint tree, but within each order species

were arrayed as polytomies. The constraint tree was implemented in a RaxML analysis as

described above, and only trees concordant with ordinal relationships of the APG tree were

retained (S1 Text).

For phylogenetic community structure analyses, ultrametric trees are normally used. For

the Phylomatic tree, this is typically done using the command “bladj” in Phylocom [80]. This

command was used to obtain a pseudo-chronogram with adjusted branch lengths based on

the node calibrations of Wikström et al. [81]. Both the unconstrained as well as the constrained

trees obtained from the maximum likelihood analyses were transformed into ultrametric chro-

nograms with the mean-path-length method (MPL, [82]) in PATHd8 [83] using age con-

straints of Magallón & Castillo [84]. They included one fixed age for the angiosperm crown

group and 28 (unconstrained tree, S2 Text) or 29 (constrained tree, S3 Text) minimal age

estimates.

Phylogenetic community structure analyses

To enable a direct comparison among the phylogenetic approaches (Phylomatic and the two

ML analyses with barcode sequences, unconstrained and constrained), all three chronograms

were used to quantify the phylogenetic structure of 70 communities in the 25-ha forest

research plot. If species showed more than one haplotype, we aimed at sequencing all individu-

als of those species in the plot to assign them to a single tip in the phylogenetic tree. Represen-

tatives (3241 individuals in total) for most of the morphotaxa were sequenced. Based on the

assumption that the individuals of the same morphotaxon will have identical sequences for

matK and rbcL, unsequenced individuals with a morphological identification were assigned to

the haplotype (i.e. tip in the tree) corresponding to sequenced individuals with the same mor-

phological identification. Thus, only taxa that lacked either morphological or sequence infor-

mation (only 3.3% of the total number of individuals) were excluded from the community
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data matrix (S4 Text). In order to determine if our results were consistent without making this

assumption, we repeated phylogenetic community structure analyses using only sequenced

individuals (75% of individuals in the 70 communities). Results of this analysis are referred to

as “Barcode only” in the text. In this sensitivity analysis, only 68 subplots were included, as in

two subplots, most individuals lacked sequences. The reduced community data matrix with

only sequenced individuals is given in S5 Text. Common phylogenetic diversity metrics were

estimated with the remaining data using the package “picante” [85] in R. The widely used

quantitative measure of phylogenetic diversity, PD, [25] was calculated on the basis of a chro-

nogram using the “pd” function. In this approach, the branch lengths of a phylogenetic tree, in

units of time, are measured and summed. To compare each of the three trees, PDs were com-

pared for subplots using a paired t-test. The phylogenetic trees were then converted into an

interspecific phylogenetic distance matrix using the “cophenetic” function in "picante”. Based

on this distance matrix, mean pairwise distance (MPD; [14]) and mean nearest taxon distance

(MNTD; [86]) were calculated. The function “mpd” calculates the mean pairwise distance

between all species or individuals in each community, and “mntd” calculates the mean nearest

taxon distance, the average distance separating each species or individual in the community

from its closest heterospecific relative. MPD and MNTD were weighted by species abundance.

Using the functions “ses.mpd” and “ses.mntd”, a standardized effect size (SES) of the metric

within each local community was calculated based on a comparison of observed MPD/MNTD

(obs) values with the distribution of MPD/MNTD expected under a null model of community

assembly where subplots have the same species richness, but species identities are randomised

by randomly shuffling tip labels across the entire tree (rand; number of randomizations: 1000).

To test for phylogenetic clustering and overdispersion, the net relatedness index (NRI) and the

nearest taxon index (NTI) were calculated [13]. NRI and NTI are defined as [-(metricobs−mean

(metricrand))/sd (metric)rand], where the metric is either MPD (for NRI) or MNTD (for NTI).

Thus, they are equivalent to the inverse of ses.MPD and ses.MNTD. Positive indices indicate

that co-occurring species are more closely related than expect by chance (phylogenetically

clustered), whereas negative indices indicate that co-occurring species are more distantly

related than expected by chance (phylogenetically overdispersed). NRI and NTI were com-

pared between the different habitats. To investigate if there is a correlation between the envi-

ronmental variables (mean elevation, slope, convexity) and community structure metrics (PD,

NRI, NTI), Pearson product-moment correlation tests were conducted.

Results

DNA barcode reference database and identification of morphologically

unidentified individuals

DNA barcode sequence recovery and abundance of families. A DNA barcode reference

database was successfully built for individuals occurring in the studied subplots of the 25-ha

forest-dynamics plot. In total, DNA barcode sequence data was successfully recovered from

95.5% (rbcL), 78.7% (matK), and 71.6% (rbcL + matK) of sequenced individuals. The com-

bined data matrix represented 555 haplotypes (from� 154 genera, 68 families, 25 orders).

The DNA barcode sequences were useful for determinations of taxa morphologically unidenti-

fied to family or genus, which is necessary for inclusion in phylogenetic reconstruction using

Phylomatic. For 500 morphological unidentified individuals, DNA barcodes gave clear identi-

fication at genus or family level. Among the 69 families detected by both morphology and

molecular identification, Dipterocarpaceae and Euphorbiaceae are dominant, with 16% and

9% of stems, respectively in the study plot. Other frequent families were Rubiaceae (7%) and

Achariaceae (6%). The most abundant families are shown in Fig 2.
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Characteristics of the alignments. The two-gene alignment included a total of 1820 base

pairs (bp), 697 bp from rbcL and 1123 from matK. The number of variable characters of the com-

bined data matrix was 1087, and the proportion of gaps and completely undetermined characters

was 21.17%. Variable characters observed for each marker were 304 (rbcL) and 783 (matK). The

number of gaps and undetermined characters were 0.54% for rbcL and 26.68% for matK. Popula-

tion-level variation was detected in one or both loci for only 15 “morphospecies”. Additionally,

six taxa (Koompassia excelsa and five species of Xanthophyllum) exhibited stop codons in the

matK barcode region and were therefore classified as pseudogenes, but they were included in the

analysis because these taxa fell in phylogenetic positions reflecting their taxonomy.

Reconstruction of phylogenetic community trees

All trees produced in this study are given in S1 Text. The trimmed APG reference tree

(R20120829) obtained by Phlylomatic includes 186 resolved nodes, mainly at ordinal and family

level, but in some cases resolving relationships among genera within families. Other than Pro-

teales, all other orders were monophyletic. The two families of Proteales were unresolved, a result

in common with many other analyses e.g. [87]. Bootstrap support (BS) for this placement was not

strong in earlier studies ([88]: BS: 59; [89]: BS: 63), even with complete plastid genomes. In the

ML tree constructed using the barcode data, 42.7% of the nodes exhibited high bootstrap support

(BS> 85) and a majority (52.4%) showed at least moderate support (BS� 70). Contrary to the

Phylomatic tree, the DNA barcode markers were able to resolve relationships at all taxonomic lev-

els, with better resolution at generic and especially species level. Examples of these fine-scale rela-

tionships are the genera Diospyros and Shorea for which species relationships remain completely

unresolved in the Phylomatic tree (S1 Text). Furthermore, all families were grouped into the same

orders as in APG III [45] and APG IV [46], Sabiaceae and Proteaceae (Proteales). However, the

topology of the tree differed from the accepted APG classification at the ordinal level (Fig 3). The

constrained tree successfully resolved relationships at all taxonomic levels. Compared to the Phy-

lomatic and the unconstraint barcoding trees, the constrained tree showed the highest percentage

of highly supported nodes (BS> 85: 43.6% and BS� 70, 53.8%). Proteales were paraphyletic in

the constrained analysis, and all other families clustered in the APG IV orders [46]. Three families,

Olacaceae (Santalales), Anacardiaceae (Sapindales) and Loganiaceae (Gentianales) were not

monophyletic, but monophyly of the remaining families was highly supported (BS� 85), except

for Euphorbiaceae (BS 46; Fig 4).

Assessment of phylogenetic community structure

Phylogenetic diversity (PD). Mean PD of the subplots varied among the different trees

(Fig 5, S3 Table). It was highest when calculated based on a constrained ML tree (4980.46

myrs; Barcode only: 4479.02 myrs), followed by the unconstrained ML tree (4891.62 myrs;

Barcode only: 4401.81 myrs) and the tree constructed using Phylomatic (4519.63 myrs: Bar-

code only: 3956.84 myrs). Using paired t-tests, differences in PD between the calculations

based on the unconstrained and constrained ML analyses were significant (t = 8.7228, df = 69,

p-value = 9.544e-13; Barcode only: t = 8.5322, df = 67, p-value: 2.646e-12). Highly significant

differences were detected between calculations using Phylomatic and the unconstrained (t =

-9.7575, df = 69, p-value = 1.271e-14; t = -14.686, Barocode only: df = 67, p-value < 2.2e-16),

as well as the constrained (t = -12.365, df = 69, p-value < 2.2e-16; Barcode only: t = -17.857,

df = 67, p-value < 2.2e-16) barcoding ML analyses (Fig 5).

Phylogenetic community structure. Comparing the NRI and NTI metrics, similar pat-

terns of phylogenetic community structure were observed. In some cases, patterns of phyloge-

netic community structure varied with respect to the tree used for calculation (Fig 6, S3 Table).
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Looking at the NRI metric of each subplot, the Phylomatic tree detected significant phylogenetic

clustering in 16 subplots (Barcode only: nine) and significant phylogenetic overdispersion in

two subplots (Barcode only: two). Using the barcode tree, significant clustering was detected in

13 (constrained, Barcode only: eight) and 12 (unconstrained, Barcode only: eight) subplots.

Overdispersion was detected in one subplot using the unconstrained barcode tree. For the NTI

metric, phylogenetic clustering was detected in 14 subplots (Barcode only: seven) using the Phy-

lomatic tree, whereas the barcoding trees detected clustering in nine (constrained, Barcode

only: nine) or eight (unconstrained, Barcode only: six) subplots. The unconstrained barcode

tree revealed phylogenetic overdispersion in one subplot. Overall, the Phylomatic tree not only

exhibited a higher mean for NTI and NRI, but also a much greater variance (variance of NRI:

Phylomatic: 1.19 (Barcode only: 0.88), Barcode.con: 0.56 (Barcode only: 0.41), Barcode.uncon:

0.42 (Barcode only: 0.46); variance of NTI; Phylomatic 0.96 (Barcode only: 0.83), Barcode.con:

0.71 (Barcode only: 0.66), Barcode.uncon: 0.76 (Barcode only: 0.67)). A summary of subplots

exhibiting significantly phylogenetic structuring with respect to different trees is given in S3

Table. Although there were differences in detecting phylogenetic structure with different phylo-

genetic trees and community data matrices, no reversed inferences for NRI and NTI were

observed. Furthermore, phylogenetic clustering was detected in all habitats (Fig 7). To conclude,

other than a few cases of significant phylogenetic overdispersion, the general pattern of either

random structuring or phylogenetic clustering did not differ with respect to phylogenetic tree,

habitat or community matrix (Fig 6, Fig 7).

Fig 2. Abundance of plant families. Abundance of frequent plant families in the 70 subplots of the 25 ha forest dynamics plot in Kuala Belalong.

https://doi.org/10.1371/journal.pone.0185861.g002

Phylogenetic community structure of a tropical forest (Borneo)

PLOS ONE | https://doi.org/10.1371/journal.pone.0185861 October 19, 2017 10 / 24

https://doi.org/10.1371/journal.pone.0185861.g002
https://doi.org/10.1371/journal.pone.0185861


Processes responsible for community assembly. Patterns of phylogenetic structuring are

often used as a proxy for the mechanism responsible for community assembly. Phylogenetic

clustering can suggest the influence of abiotic factors on community assembly [14]. Conse-

quently, three environmental variables (mean elevation, slope, and convexity) were tested for

correlations between PD, NRI, and NTI. Pearson product-moment correlations detected a

weak positive correlation between the PD and mean elevation when calculated on basis of the

unconstrained barcoding tree (Table 2). A moderate positive correlation between mean eleva-

tion and NRI was observed when calculated using the Phylomatic tree and the constrained bar-

coding tree. Significant, albeit generally weak, positive correlations between convexity and PD,

as well as between convexity and NRI, were observed in analyses of all three phylogenetic

trees. Analysis based on the barcode data only revealed a positive correlation between NRI and

elevation, as well as between NRI and convexity when the Phylomatic and the constrained bar-

code tree were used, whereas the unconstrained barcode tree showed positive correlation

between NRI and convexity only (Table 2).

Discussion

DNA barcode reference database and identification of morphologically

undetermined individuals

The first step in DNA barcoding and DNA-based community structure analyses is develop-

ment of a comprehensive barcode sequence library. In this study, a regional plant rbcL and

matK barcode reference database was successfully generated 3241 individuals reported in the

Fig 3. Comparison of ordinal-level topologies of the trimmed APG tree obtained by Phylomatic (APG) and the barcode tree (rbcL + matK; BRU)

obtained from maximum likelihood analysis. Orders are connected by arrows. *: The order Gnetales represents the gymnosperms, whereas all other

orders are angiosperms.

https://doi.org/10.1371/journal.pone.0185861.g003
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studied subplots of the 25-ha forest research plot. DNA barcode recovery rates were higher for

rbcL (95.1% of individuals sequenced) than for matK (88.5% of individuals sequenced). One

reason for this is that the rbcL primers worked well across all angiosperms, whereas matK is

much more difficult to amplify across a wide range of species. However, the use of recently

published primer cocktails [70] increased amplification and sequencing of the matK barcode

Fig 4. Cladogram of phylogenetic relationships of the woody plant taxa in the Kuala Belalong forest dynamics plot, Brunei Darussalam (BRU).

Best-scoring tree obtained from maximum likelihood analysis of the barcode data (rbcL+matk) with application of an APG III-based ordinal-level constraint

tree. The tree is collapsed to family level. For presentation purposes a cladogram is given. An uncollapsed tree including branch lengths is given in S1 Text.

Nodes with an * have bootstrap support < 70.

https://doi.org/10.1371/journal.pone.0185861.g004
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compared to earlier studies (e.g. [32]: 69% of species, [33]: 70.4% of species). In total, 69 fami-

lies were detected by morphology and molecular (barcode) identification. The abundance of

these families represents the typical composition of tropical rain forests in Southeast Asia [48,

90, 91]. As expected, the dominant tree family in the examined plots was Dipterocarpaceae

with 16% of individuals followed by Euphorbiaceae with 9% (Fig 2). DNA barcodes are espe-

cially important when some individuals have not been identified, which is often the case in

species-rich tropical forests where it is difficult to obtain flowers and or fruits, which are criti-

cal for morphological identification yet often not present when sampling takes place. Using

DNA barcodes, phylogenetic trees can be constructed that include morphologically unidenti-

fied individuals as long as sequences have been obtained. In addition, families and genera of

unidentified individuals can be extracted from BOLD and/or GenBank based on sequence

similarity. Here, accessions were successfully assigned to generic or family level using the

BOLD Identification System for rbcL and matK as well as GenBank. However, identification to

species level was not achieved because of two issues. Firstly, DNA barcodes, especially rbcL,

could not distinguish closely related species, leading to more than one high match with the

sequences in reference databases. Similar results were observed by Gonzales et al. [92] in their

study on Amazonian trees, in which neither of the plastid markers tested (including rbcL and

matK), alone or combined, achieved a rate of correct identification greater than 70%. This was

especially true for a few species-rich clades that showed little or no variation in these markers.

Secondly, some sequences had poor matches in reference databases, reflecting lack of

sequences from some species in clades included in our study. Such lack of sequence availability

in the reference databases, such as BOLD and GenBank, demonstrates the need for more

exhaustive and accurate databases including more species and intra-specific haplotype

Fig 5. Pairwise comparison of phylogenetic diversity (PD). PD was calculated based on three different phylogenetic hypotheses (Phylomatic:

APG classification, Barcode.con: constrained barcode tree, Barcode.uncon: unconstrained barcode tree). A: Calculations based on sequenced and

morphologically identified individuals. B: Calculations based on sequenced individuals only.

https://doi.org/10.1371/journal.pone.0185861.g005
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Fig 6. Net relatedness index (NRI) and nearest taxon index (NTI). NRI and NTI were calculated based on

three different phylogenetic hypotheses (Phylomatic: APG classification, Barcode.con: constrained barcode

tree, Barcode.uncon: unconstrained barcode tree). The number of subplots showing significant phylogenetic

structuring (clustering/overdispersion) is given in brackets. A: Calculation based on sequenced and

morphologically identified individuals. B: Calculations based on sequenced individuals only.

https://doi.org/10.1371/journal.pone.0185861.g006
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diversity [93]. Our newly generated sequences make a good contribution to the expansion of

these databases.

Comparison of Phylomatic versus barcode trees

Previous studies have shown that the degree of resolution in community phylogenetic trees

plays an important role in detecting non-random patterns of phylogenetic community struc-

ture [32, 33, 34, 40, 94]. A high degree of phylogenetic resolution is necessary in phylogenetic

community structure analysis because poorly resolved trees can reduce statistical power for

detecting non-random forms of community structure, especially when deeper nodes are unre-

solved [94]. In this study, several approaches were used for phylogenetic reconstruction and

compared with respect to resolution and topology: (1) Phylomatic, (2) ML analysis of DNA

barcode sequences, and (3) ML analysis with application of a constraint tree (ordinal-level

APG topologies). Although time and cost efficient, the Phylomatic approach has disadvan-

tages, for example requiring accurate morphological species identifications at least to family/

genus level, because the online phylogenetic query tool requires a list of identified individuals.

Furthermore, Phylomatic often provides little or no resolution of phylogenetic relationship

among closely related taxa [27]. Compared to the tree obtained by Phylomatic, the barcoding

trees yielded better resolution at generic and species levels. An earlier study in a Panamanian

forest plot by Kress et al. [32] has shown that DNA barcode data alone are sufficient to build

phylogenetic trees that closely agree with the APG classification. However, a follow up study in

a Puerto Rican forest-dynamics plot showed significantly less concordance with APG [33].

Fig 7. Comparison of net relatedness index (NRI) and nearest taxon index (NTI) in different habitats.

NRI and NTI were calculated based on three different phylogenetic hypotheses (Phylomatic: APG

classification, Barcode.con: constrained barcode tree, Barcode.uncon: unconstrained barcode tree) in

different habitats (hg: high gully, hs: high slope, ls: low slope, rt: ridge top, v: valley). A: Calculation based on

sequenced and morphologically identified individuals. B: Calculations based on sequenced individuals only.

https://doi.org/10.1371/journal.pone.0185861.g007
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Phylogenetic trees constructed by the use of DNA barcodes often represent single geographic

areas, with limited taxon sampling, and therefore lack representatives of many angiosperm

families. One could expect such analyses with limited taxon-sampling to differ in topology [95,

96] from the APG classification.

Parallel to the observations in Puerto Rican forest [33], our study showed ordinal-level dis-

crepancies between the tree constructed by Phylomatic and that resulting from ML analysis

(Fig 3). In order to build a community tree resolved both at deep and shallow nodes, the ordi-

nal-level APG tree was incorporated as a constraint tree for ML analysis. Many polytomies in

the Phylomatic tree were resolved with the barcode data (Fig 4). Proteales were non-monophy-

letic in the constrained barcode analysis. Although monophyly of the most families was highly

supported in our results, three families, Olacaceae, Loganiaceae, and Anacardiaceae (Fig 4),

and some genera (e.g. Shorea, Dipterocarpaceae; S1 Text) were not monophyletic. This does

not mean that the phylogenetic tree reconstructed with the DNA barcodes is wrong, but in

many cases reflects non-monophyly of some taxonomic groups (e.g. paraphyly of Olacaceae

[97]; and Shorea [98]).

Assessment of phylogenetic community structure and implications

Substantially different results in detection of non-random community structure have been

inferred with different phylogenetic approaches (e.g. [32, 34, 40, 94]). For example, in a study

of a Chinese subtropical forest, analyses based on a more resolved molecular tree showed more

phylogenetic clustering than analyses using a Phylomatic tree [34]. Furthermore, a simulation-

based study has shown that measures of phylogenetic diversity and community structure are

more sensitive to loss of resolution basally in the tree and less sensitive to loss of resolution ter-

minally [94]. In our study, mean PD was underestimated when calculated based on the Phylo-

matic tree, which corresponds to Swenson’s observation [94]. Regarding NRI and NTI,

different phylogenetic trees gave the same overall result, but the Phylomatic tree detected

Table 2. Results of Pearson moment-product correlation test.

Environmental

variable

Phylomatic Barcode.con Barcode.uncon

PD NRI NTI PD NRI NTI PD NRI NTI

Mean elevation r = 0.18 r = 0.39 r = 0.1 r = 0.23 r = 0.35 r = -0.09 r = 0.23 r = 0.11 r = - 0.07

p = 0.13 p < 0.05 p = 0.41 p = 0.05 p < 0.05 p = 0.47 p = 0.049 p = 0.34 p = 0.54

Slope r = 0.04 r = 0.11 r = 0.03 r = 0.04 r = 0.11 r = -0.02 r = 0.02 r = 0.05 r = 0.005

p = 0.72 p = 0.35 p = 0.81 p = 0.77 p = 0.38 p = 0.87 p = 0.84 p = 0.66 p = 0.97

Convexity r = 0.38 r = 0.44 r = 0.08 r = 0.36 r = 0.46 r = 0.13 r = 0.37 r = 0.27 r = 0.14

p < 0.05 p < 0.05 p = 0.51 p < 0.05 p < 0.05 p = 0.29 p < 0.05 p < 0.05 p = 0.25

Environmental

variable

Phylomatic Barcode only Barcode.con Barcode only Barcode.uncon Barcode only

PD NRI NTI PD NRI NTI PD NRI NTI

Mean elevation r = 0.15 r = 0.36 r = -0.11 r = 0.19 r = 0.38 r = -0.12 r = 0.19 r = 0.23 r = -0.1

p = 0.21 p < 0.05 p 0.38 p = 0.1186 p < 0.05 p = 0.32 p = 0.13 p = 0.06 p = 0.4

Slope r = 0.05 r = 0.11 r = 0.02 r = 0.05 r = 0.10 r = -0.002 r = 0.04 r = 0.05 r = 0.01

p = 0.67 p = 0.39 p = 0.88 p = 0.68 p = 0.4 p = 0.99 p = 0.7 p = 0.67 p = 0.9

Convexity r = 0.33 r = 0.44 r = 0.11 r = 0.32 r = 0.4 r = 0.1 r = 0.32 r = 0.27 r = 0.11

p = 0.006 p < 0.05 p = 0.38 p = 0.006 p < 0.05 p = 0.4 p = 0.006 p < 0.05 p = 0.37

Bold values show significant positive correlations between environmental variables and phylogenetic diversity metrics with respect to different trees

(Phylomatic: APG tree, Barcode.con: constrained barcode tree, Barcode.uncon: unconstrained barcode tree) and community data matrices.

https://doi.org/10.1371/journal.pone.0185861.t002
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greater phylogenetic clustering (Fig 6). The well-resolved barcode trees are more likely to

influence the inference of patterns of community structure at low taxonomic levels. If competi-

tion or interaction with natural pests and diseases is influencing the assembly of co-occurring

species, the DNA sequence trees are expected to exhibit lower values of NRI and NTI. The

Phylomatic tree not only revealed bias (an upwardly shifted mean in values for NRI and NTI),

but also a much greater variance due to noise introduced with the decreased resolution. This

corresponds with the results of Kress et al. [32], where only two of the five cases of significant

phylogenetic structuring detected with analysis using a Phylomatic tree were supported by a

barcode tree. On the other hand, analyses based on their barcode tree identified significant

phylogenetic structure in five cases for which the Phylomatic approach did not.

In this study, analyses were conducted applying two different community data matrices. To

obtain information of the relatedness measures of most individuals, a community data matrix

was created based on the assumption that the same morphospecies have identical sequences.

This standard approach allows inclusion of individuals for which molecular information is not

available. Morphological species identifications in the 25-ha forest dynamics plot are not yet

complete, and a large number of species (especially species-rich genera, such as Aglaia, Syzy-
gium) remain unidentified at the species level (Stuart Davies, personal comm.). However, spe-

cies-level identification is not an essential aspect of this study, because it is not needed for

community structure analysis if DNA sequences are available for a large number of individu-

als. Therefore, a second analysis was conducted without any morphological identifications, i.e.

including only individuals that were sequenced in the community matrix data file. Regardless

of which community data matrix was used, having all the individuals from the plot (identified

or not at species level) or taking only the sequenced individuals, the general pattern inferred

for forest community phylogenetic structure was clustering.

Studies on scale dependence in community phylogenetic analysis of plant communities

have shown that phylogenetic clustering increases with spatial scale [47, 99, 100] because this

usually includes greater environmental heterogeneity. This leads closely related species sharing

environmental factors to sort across contrasting environments [1]. Although there is no stan-

dard plot size, we acknowledge that the size of the subplots under investigation (10 × 10 m) is

small compared to other studies on phylogenetic community assembly. In our study, six sets of

four of the examined 10 × 10 m subplots are adjacent, forming six plots of 20 × 20 m (Fig 1).

We compared NRI and NTI of each of the six 20 × 20 m plots with the metrics of the corre-

sponding 10 × 10 m plots and found equivalent results (not shown). Furthermore, as phyloge-

netic clustering was the general pattern observed in this study, we conclude that the small size

of the plots did not negatively bias the detection of phylogenetic clustering.

A central focus in community ecology is the investigation of processes responsible for com-

munity assembly, and much research has focused on the phylogenetic consequences of com-

petitive interaction and environmental filtering [101]. We observed phylogenetic clustering in

many subplots (S3 Table), contrary to our prediction of phylogenetic overdispersion, which

was based upon the dominance of Dipterocarpaceae in Southeast Asian rain forests. Our

results of phylogenetic clustering may reflect that Dipterocarpaceae actually account only for

16% (Fig 2) of all trees with� 1 cm diameter in breast height occurring in the studied subplots.

Although this is the first study on phylogenetic community assembly in a Southeast Asian for-

est based on DNA barcode sequences, traditional approaches (i.e. Phylomatic) have been used

to explore the phylogenetic structure of tree communities on Indonesian Borneo. Webb [13]

found evidence that co-occurring species were more closely related than expected by chance

(phylogenetically clustered). Moreover, Webb et al. [21], detected overdispersion at seedling

level in the same forest, suggesting that sharing of herbivores is important at that life stage but

maybe not for adult trees.
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Phylogenetic clustering is often used as a proxy for habitat filtering [14]. It has been

reported that the floristic composition of mixed dipterocarp forests varies with precipitation,

soil nutrients and topography [102, 103]. Moreover, in a study of a species-rich mixed diptero-

carp rain forest in Indonesian Borneo, Webb and Peart [104] have shown that distribution and

abundance of many species are influenced by local heterogeneity in physical habitat variables.

Considering our observations, all three phylogenetic trees revealed significant phylogenetic

clustering in most habitats (Fig 7, S3 Table). Furthermore, PD and NRI showed significantly

positive correlations with convexity (Table 2), indicating that dynamics of Bruneian forest are,

at least partly, shaped by environmental filtering at the community scale. This supports the

hypothesis that habitat filtering is an important mechanism responsible for phylogenetic clus-

tering in tropical forests, in accordance with results from most tropical tree communities [13,

35, 41, 47]. On the other hand, those predictions have to be taken with caution because compe-

tition might promote phylogenetic clustering [105]. Phylogenetically conserved traits might

determine whether a species is a good competitor, which possibly leads to overrepresentation

of a clade of good competitors, resulting in phylogenetic clustering [18]. However, further

investigations including data on functional niche-associated traits and additional environmen-

tal factors (e.g. soil composition) are needed for solid conclusions.

Conclusion

Although DNA barcodes cannot always be used for species-level identification because refer-

ence databases often lack species and haplotype diversity, they can still be useful in species-

diverse communities such as tropical rain forests where morphological identification is chal-

lenging. In this study, phylogenetic information from two DNA barcoding plastid regions was

successfully combined with the APG tree by incorporating ordinal-level constraints on topol-

ogy. This approach led to a highly resolved tree, which when used in community structure

analyses, decreased false positive and false negative observations. The pattern of phylogenetic

clustering observed in this study, one of the first using a barcode phylogenetic trees in a South-

east Asian tropical rain forest, gives insights into phylogenetic community structure and corre-

sponds to earlier findings in other tropical forests. Once morphological identification is

completed and names of the taxa are validated, the phylogenetic trees constructed here can be

used in further studies, and mechanisms responsible for the observed phylogenetic structuring

can be identified once niche-associated plant functional traits are integrated.
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