
Fencing Apparently Infinite Objects
Defining productive object boundaries for performative digital objects

Dragan Espenschied
Rhizome

New York, USA
dragan.espenschied@rhizome.org

Klaus Rechert
University of Freiburg
Freiburg, Germany

klaus.rechert@rz.uni-freiburg.de

ABSTRACT
Todays digital preservation practice focuses mostly on fixed or com-
plete objects, which are defined by their manifestation as files or
records with the assumption that if one has the file(s) at hand, the
preservation or curatorial effort can be focused on these materials
only. With increasing importance of networked objects or software,
object boundaries appear increasingly “blurry”: for instance, many
software applications are staged to look and behave like locally run-
ning binaries, when in fact an orchestration of networked processes
is required for their operation. To cope with such apparently infi-
nite objects and their increasing complexity, this paper explores an
expanded definition of object boundaries for performative objects.

1 INTRODUCTION
The digital preservation discipline has traditionally worked with
object definitions in which object boundaries are mostly based on
established metaphors like “files” and “records,” which seem largely
self-explanatory, and help with establishing systems for measuring
completeness and preservation success.

As performative digital objects—“software” in the broadest sense
rather than digital simulacra of documents—are sought to be pre-
served, object boundaries appear increasingly “blurry”: for instance,
many software applications are staged to look and behave like lo-
cally running binaries, when in fact an orchestration of networked
processes is required for their operation. This ranges from simple
software installers checking for license servers to desktop appli-
cations presenting networked resources such as maps, videos, or
communication messages exclusively or mixed with local artifacts.

Furthermore, creating such performative objects has become
increasingly accessible to general computer users, for example
via popular frameworks like React Native, Electron, or Jupyter
Notebooks,[7] and is already an established practice in many areas
like digital humanities, net art, and computer games.

It appears that the good old “desktop application” is becoming
a metaphor similar to “files” and “records”: it quickly approaches
the limits of its usefulness and is creating conceptual limitations to
preservation practice.

Hence, this paper explores an expanded definition of object
boundaries for performative objects.

2 BOUND, BLURRY, AND BOUNDLESS
OBJECTS

The demarcation of a digital object is usually done in an “at rest”
state, during storage, i.e. a static representation of data while no
computing activity is happening, and is therefore shaped by units
of storage alone, such as files and storage media. As part of this

practice, the term “object” is usually used synonymously with “file”
or a collection thereof. Even the simplest file, however, is dependent
on technical performance to transform it from a static bitstream-
preserved artifact into a an active object that is fit for human con-
sumption or interaction. [3]

For that reason, we propose to examine such objects in a “switched-
on” state and to identify components based on their effect on the
performative potentials of the object.

When it comes to software in the form of executables, it can
be assumed that any binary that is fully locally available can be
executed or performed via hardware emulation, re-creating the the
same potentials as if the binary was made to run on actual hardware.

Software preservation frameworks like EaaS [8] have demon-
strated that productive abstraction layers can be drawn by gradually
separating “common” or “mass-produced” artifacts from “unique”
ones, and when put together, each component changes a system’s
performance. For instance, every basic installation of a Microsoft
Windows operating system offers the same capabilities, such as
hardware abstraction and the possibility to execute a wide range of
binaries; adding a copy of the popular QuickTime 6 player extends
these with capabilities to replay certain types of media files; finally,
a specific QuickTime movie is added which can be enacted by the
previously combined components. Each artifact in this example is
clearly bound and therefore all potentials, known and unknown,
can be reproduced.

A blurry boundary is introduced once a locally kept artifact
is performing interactions with remote objects or reacts to states
specific to the context of the actual execution. Remote APIs or re-
sources could be required on every abstraction layer: the operating
system might query a license server (Windows XP), the QuickTime
player’s installer might attempt to download system-dependent
components (QuickTime 6.01), the QuickTime movie itself might
embed remote resources via SMIL (supported since QuickTime 4).
All of the technical interfaces designed to interact with remote
resources in this example have changed over time or disappeared
completely.

If an object is in its entirety located remotely, exposing an un-
known range of possible performances, it must be considered bound-
less. A typical examples might be any social media platform like
Twitter, which provides many modes of access to items with com-
plex relationships inside the platform and further remote sources,
but offers no way to inspect the defining processes or even creating
an index of provided items from an outside perspective.

In some cases, the executable instructions that cause interactions
with remote resourcesmight be removed from a digital artifact. Skip-
ping calls to obsolete usage tracking services or licensing checks



could remove a major blockade and make a piece of software us-
able again. However, commercial, closed-source software (esp. in
binary form) cannot be easily modified or adapted. Even if the ef-
fort might be economically justified— when it happens on a high
abstraction layer like an operating system, positively affecting the
re-performance of many other objects—, simple (binary) patches
that, let’s say, redirect requests to a different network target may
not be sufficient to re-enable the object’s original behavior; more
sophisticated patches may have unpredictable side effects.

In order to keep a blurry object operational, three different tech-
nical approaches are possible:

(1) Auxiliary machines, e.g. databases, web-servers, or even
license-servers may be preservable using an emulation strat-
egy, and included into an execution environment for a class
of software or a single specific artifact.

(2) If auxiliary machines are not within the curator’s reach, stub-
interfaces, emulating the original external interface, could
be implemented to allow a reduced but functional set of
communication with a locally available software object.

(3) Finally, if a software is sending a countable amount of queries
in a fixed range to a remote system, the occurring network
traffic could be recorded and bundled with the software. For
instance, a software installer that downloads components
from the web would be stored with a web archive containing
the required resources.

The option to fully preserve a computational service via emula-
tion (1) seems to be the most desirable, as it offers the full range
of potentials of the original setup. For bound units, emulating and
orchestrating such services is technically within reach.

When it comes to web-based services such as YouTube, twit-
ter, etc, technical complexity and size poses limits. These objects
are to be regarded as boundless, there is no way to preserve them
while ensuring the continuous availability of all provided inter-
faces and potentials. Even if the technical infrastructure to create
a complete copy of YouTube would be available, the main pur-
pose of preservation—reducing the actively maintained surface and
maintenance frequency of an object by abstracting its complexity—
would be economically unattainable. YouTube the service requires
YouTube the organization to provide its full performative potential.

Even a small to mid scale web service under the control of the
organization that seeks to preserve it might turn out to be spread
across several virtual machines or making use of external microser-
vices, requires new strategies and concepts.

Web archiving as a discipline has probably the longest devel-
opment history with the preservation of black-box networked re-
sources: storing only requests and responses occurring between
a client and servers on the HTTP protocol layer, web archiving
is abstracting any software running on remote servers, and there-
fore effectively creating documentary rather than performative
resources.

Still, concepts for object boundaries have not been articulated
with too much clarity in web archiving. Either the web as a whole
is defined as a single object, or, in the common scenario of crawler-
based web collecting, object boundaries are assumed to technically
match a hierarchical structure of URLs pointing to web resources,
usually being located under a single domain.

Both assumptions are problematic. “The whole web” doesn’t
really exist, since the most relevant web sites today are interactive
and customizable so they appear different on each access for each
user’s (or robot’s) context. The responses to a request for data from
a URL such as https://twitter.com naturally has to differ for
each user in order for the service to make any sense. As twitter
in itself has no generalizable form, it remains boundless from the
perspectives of web archiving, and, as previously laid out, software
preservation.

Additionally, in today’s web, within a single session, static re-
sources, services, and complex JavaScript building blocks are pulled
in from from dozens of CDNs, service providers, social media sites,
advertising networks, and more, in order to create the impression
of a single web page object by the browser. Many web sites, such
as Instagram, do not implement a hierarchical URL scheme at all.

Even if all URLs under a single domain could be accessed and
stored, blurriness would occur under a host-centric boundary def-
inition when the amount of meaningful requests and responses
approaches infinity; this can easily be the case with for example
database-driven sites where the relationship of request and response
is dependent on computation of complex or unknown states on
client and server. For instance, while given enough time and re-
sources, it is possible to preserve every map tile graphic and its URL
from a mapping service such as Google Maps by web archiving
practices, it is impossible to store all possible requests and responses
for lat/long coordinate queries to the Google Maps service.

New web collecting mechanisms and concepts, as implemented
by Rhizome’s tool Webrecorder [6] and described by Hawes as
“the act of archiving,” have introduced the possibility for creating
contextual object boundaries, taking into account the perspective
and intentions of the curator as a web user, shifting to storing
HTTP traffic occurring during time-bound web sessions rather
than namespace-defined delimiters. Actions performed in collecting
sessions are recallable in access sessions:

The recording represents the curator’s own vantage
point reflecting the specific “requests” made (com-
mands, clicks) — and tracing the actual path taken.
Unlike a traditional web-crawler, which is provided
with a seed URL and automated to explore a site in
full,Webrecorder is curator-operated: subjectivity and
selection replace automation and exhaustivity. [2]

This approach has the curator defining a synthetic boundary
inside a boundless object, consciously discarding any performative
potential outside of it, creating an attainable and verifiable goal:
the actions performed during the capturing of the object need to
be reproducible in the future.

3 PERFORMATIVE BOUNDARIES AND
REPRODUCIBLE PROPERTIES

Digital preservation practitioners have been dealing with variable
objects by defining “significant properties,” core attributes of objects
that should resist change over time even as performance environ-
ments change [4]. With blurry and boundless objects discussed
above, all of which expose aspects of infinity, unavailability, and
unknownness, significant properties cannot provide much guid-
ance for preservation purposes. For instance, countless works of

2



net art achieve their affect by performing computation on resources
from all over the web, and make use of or are fully located on black
box services. The same might be true for a modest Excel sheet that
attempts to load tabular data from a remote data source.

Describing significant properties of that kind means setting up
preservation projects for failure, as there isn’t a way tomeaningfully
address blurry or boundless objects within this framework. In the
field of art preservation, this often leads to “remakes,” in which
large parts of a dysfunctional piece are re-created from scratch.
This process represents a very large “actively maintained surface”
and therefore big economical demands.

This paper suggest to define reproducible properties, clearly defin-
ing what potentials or “paths” will be preserved from a curatorial
perspective, and then to take the required preservation actions.
These properties shall be reproducible in an objective manner, to
guide the development or adaptation of future preservation strate-
gies and technical systems.

The tighter such a performative boundary is drawn and the fewer
reproducible properties are included, the closer an object moves
from full performative preservation towards documentation.

The following curatorial measurements can be used to define
and preserve reproducible properties:

(1) Network traffic occurring during certain performance states
of a software could be recorded, bundled with the preserved
software, and be made available to the software during re-
performance.

(2) The breadth of possible execution paths varies throughout
performance sessions of an object. A curator could identify a
state in a session that is the most relevant and snapshot the
environment during performance, in a “switched-on state.”
With that snapshot being stored and used for re-enactments
later, the object becomes pre-configured with resources avail-
able and input occurred before the freeze, making it more
independent from these sources being available in the future.

(3) The access environment is modified to remove the ability
for the user performing certain actions; for instance, an em-
ulation framework would prevent local input events like
mouse clicks or key presses to be routed to the re-performed
environment under certain conditions, preventing the user
from bringing the system into undesired states.

(4) The environment used for re-performance is configured or
modified to reduce the potential breadth of certain compu-
tational performances by deactivating any interaction with
external entities that are determined to be not relevant for
the preservation goal.

(5) Finally, the mis-en-scène of a preserved object could high-
light certain affordances to the user inside the environment
that lead to a successfully bound re-performance, while not
technically preventing other paths from being explored. For
instance, a browser could be configured to launch with a
certain home page, a limited set of icons could be placed
in the center of an otherwise empty desktop, and so forth.
Rhizome has used this technique for its online exhibition
program Net Art Anthology1. Similar techniques have been

1Rhizome Net Art Anthology, https://anthology.rhizome.org/

successfully used for gallery space (“offline”) exhibitions of
net art [1].

None of these methods provides a generalized solution, but can
be applied in combination to reduce an objects performative com-
plexity for preservation purposes. Specifically, the shortcomings
are:

• Methods (1), (2) and (3) require a careful, transparent structur-
ing of artifacts, such as software components and recorded
network sessions, in order to allow for their orchestration to
be changed in the future. While single artifacts in such an
ensemble can be regarded as stable, it must be avoided that
future enhancements, e.g. due to unpredicted availability of
currently unavailable external resources, become difficult
to orchestrate or implement, or are risking to compromise
previously established reproducible properties.

• Additionally, whenever network traffic should be recorded
and replayed (1), detailed timing and cryptography might
prevent reliable reproducibility. Especially software using
security measurements like certificate pinning or authenti-
cation procedures that take the possibility of “replay attacks”
into account might be impossible to re-enact.

• Because detecting state changes in a running software en-
vironment is very unreliable, input fencing as described in
method (3) would need to be applicable during a complete
session with an object, or be changed based on very simple
measurements of for example time passing during the ses-
sion. It can in general not be applied to software performing
undesired function independent of user interaction.

• Changing an execution environment to reduce the breadth
of an object’s performance (4) works very well in the se-
mantically rich sphere of the web, but not necessarily for bi-
nary executables. For example, Webrecorder prevents video
streaming sites from switching in between low quality and
high quality versions of the same video mid-stream, and
instead forces loading a single, reproducible stream. Doing
similar things with binary executables is much harder and
potentially object-specific.

• While the mis-en-scène (5) is an easy, effective, and very
economical way of defining a performative boundary by es-
sentially guiding users during access, it might be technically
specific to the context of the re-enactment, or culturally spe-
cific to the time the re-enactment was staged. For instance,
if future users cannot understand a written hint to “click”
a mouse because they have never used a mouse, or cannot
interpret in what direction an arrangement of icons is sup-
posed to nudge them since that form of interaction has in
general fallen out of use, that boundary definition becomes
ineffective.

4 OUTLOOK
A major category of software prone to preservation will be (mo-
bile) “apps.” Most apps have been designed to run on “always-on”
network-enabled devices, whereas the locally available executable
only provides a viewer for remote content. Additionally, some apps
rely on an extended user-context such as GPS data. An out-of-
context execution of apps would then result in a defunct application.

3

https://anthology.rhizome.org/


These circumstances are not tied to the rise of mobile apps: Defining
object boundaries based on locally running binaries has already
caused the effective loss of software created in the late 1990’s, when
Windows’ OLE architecture made web resources easily available to
developers. [5]

Also, the “traditional” software industry is changing, as app
stores for desktop computers (e.g. Apples OSX App Store), so called
in-application purchases with only basic software versions shipped
to customers and further features being added on-demand, as well
as remote applications like Office365 or rolling releases like Win-
dows 10 are becoming more popular. These new kinds of objects
form a huge body of novel challenges to the preservation commu-
nity, requiring not only technical analysis but increasingly cura-
torial agency. The aspiration of fully preserving any type of com-
putational performance has to meet a reality of highly complex,
networked ensembles, limited access to core components, highly
context-dependent operation, and—as always—limited resources
for preservation.

To address these challenges the concept of object boundaries and
reproducible properties can help to define preservation intentions
and to measure the (future) success of preservation actions.

Working with boundless objects entails the option and some-
times need of future changes, additions or adaptation of preser-
vation strategies. Reproducible object properties are therefore im-
portant to protect the results of past preservation activities. Fur-
thermore, boundless objects require closer collaboration—different
preservation initiatives may be contribute different aspects or views
on the same object.

Similar, (better) orchestration of different preservation strategies
is a precondition. It is difficult to imagine that there is a single
strategy or technological solution to preserve complex, distributed
and multi-faceted objects. Web archiving, emulation and migration
are all able to contribute to an object’s fidelity and future quality of
access. A coherent way of orchestrating such objects—time context,
technologies used, etc.—is yet to be defined.

REFERENCES
[1] Dragan Espenschied, Klaus Rechert, Thomas Liebetraut, and Oleg Stobbe. 2016.

Exhibiting Digital Art via Emulation. In Proceedings of the 13th International
Conference on Digital Preservation, iPRES 2016, Bern, Switzerland, October 3-6, 2016.
http://hdl.handle.net/11353/10.503174

[2] Anisa Hawes. 2018. Collecting and Curating Digital Posters: a collaborative
pilot study using Rhizome’s Webrecorder. Accelerated Art History: Tools and
Techniques for a Fast-Changing Art World, panel at CAA 2017, New York. (2018).

[3] Davis S Heslop, H and A Wilson. 2002. An approach to the preservation of digital
records. (2002).

[4] Pip Laurenson. 2014. Old Media, New Media? Significant Difference and the Con-
servation of Software-Based Art. In New collecting, Beryl Graham (Ed.). Ashgate
Publishing Limited, Surrey (UK) / Burlington (USA), 73–96.

[5] Lynsey Jane Moulds. 2017. Christmas as a Service. (2017). https://rhizome.org/
editorial/2017/dec/21/christmas-as-a-service/ [Online; posted 2017-12-21].

[6] Anna Perricci. 2017. Web archiving for all! Web archiving with Webrecorder.
(2017). https://dpconline.org/blog/webrecorder-blog [Online; posted 2017-09-11].

[7] M Ragan-Kelley, F Perez, B Granger, T Kluyver, P Ivanov, J Frederic, and M Bus-
sonnier. 2014. The Jupyter/IPython architecture: a unified view of computational
research, from interactive exploration to communication and publication.. In AGU
Fall Meeting Abstracts.

[8] Klaus Rechert, Isgandar Valizada, Dirk von Suchodoletz, and Johann Latocha.
2012. bwFLA – A Functional Approach to Digital Preservation. PIK - Praxis der
Informationsverarbeitung und Kommunikation 35, 4 (2012). https://doi.org/10.
1515/pik-2012-0044

4

http://hdl.handle.net/11353/10.503174
https://rhizome.org/editorial/2017/dec/21/christmas-as-a-service/
https://rhizome.org/editorial/2017/dec/21/christmas-as-a-service/
https://dpconline.org/blog/webrecorder-blog
https://doi.org/10.1515/pik-2012-0044
https://doi.org/10.1515/pik-2012-0044

	Abstract
	1 Introduction
	2 Bound, blurry, and boundless objects
	3 Performative Boundaries and Reproducible Properties
	4 Outlook
	References

