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Abstract
In a scenariowhere two parties share, act on and exchange some physical resource, the assumption
that the parties’ actions are ordered according to a definite causal structure yields constraints on the
possible correlations that can be established.We show that the set of correlations that are compatible
with a definite causal order forms a polytope, whose facets define causal inequalities.We fully
characterize this causal polytope in the simplest case of bipartite correlations with binary inputs and
outputs.We find two families of nonequivalent causal inequalities; both can be violated in the recently
introduced framework of processmatrices, which extends the standard quantum formalism by relaxing
the implicit assumption of a fixed causal structure. Ourwork paves theway to amore systematic
investigation of causal inequalities in a theory-independent way, and of their violationwithin the
framework of processmatrices.

1. Introduction

In our commonunderstanding of theworld, we typically perceive events as being embedded in some causal
structure, where events happening earlier can influence events happening later but not vice versa. Correlations
can be established in such a picture by physical systems thatmay be shared or exchanged by different parties, and
whichmay be used to communicate or convey causal influences.

It is well known, however, that this view is challenged by quantum correlations: Bell’s theorem [1] shows for
instance that these conflict with Reichenbach’s common cause principle [2, 3], so that quantummechanics
forces us to generalize the notion of causal influence [4–9]. Another implication of this picture is that if one
assumes that the parties interact only oncewith the physicalmedium, then only one-way influences (i.e., one-
way signalling) are possible, which restricts—independently of any assumptions on the physics of the involved
systems—the possible correlations that can be observed.

But is this view that events should complywith a definite causal structure, and causal influences can only be
unidirectional, necessary in any physical theory?Or could one envisage theories where the causal relations
between events are not necessarily well defined [10, 11]? To answer these questions, Oreshkov, Costa and
Brukner developed the framework of processmatrices as an extension of quantum theory, where the assumption
of afixed causal structure is relaxed [12]. Processmatrices describe the physical resource that allows different
parties to establish correlations. Oreshkov et al showed that certain so-called causally nonseparable process
matrices indeed do not complywith a definite causal structure.

The incompatibility of a certain causally nonseparable processmatrix with a definite causal structure was
proven in [12] by its ability to generate correlations that are incompatible with a definite causal order, as
demonstrated by the violation of a so-called causal inequality. This can be tested in a device-independent
manner, by just looking at the statistics observed in an experiment. It was recently shown that causal
nonseparability could also be detected in a device-dependentmanner by using so-called causal witnesses [13].
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This approach ismore powerful as it can detect all causally nonseparable processmatrices, while not all causally
nonseparable processmatrices can violate a causal inequality [13, 14]. Furthermore, physical implementations
of certain (multipartite) causally nonseparable processmatrices, and of corresponding causal witnesses that
detect their causal nonseparability, have been proposed [13–15] and even realized experimentally [16], while it is
still not knownwhether there actually exist any physically realizable process that violates a causal inequality.
Nevertheless, the device-independent approach is still of interest as it relaxes the requirement to trust the
functioning and the operations implemented by one’s devices in an experiment. It is furthermore also theory-
independent: causal inequalities can in principle be tested, and correlations with no definite causal order can be
identifiedwhatever the description of the physical resource is—whether we use the processmatrix framework or
any other theory to be discovered in the future. A related open question is whether the ability to violate causal
inequalities can—in analogywith Bell nonlocality [17]—be exploited as a resource, just like causally non-
separable processmatrices provide advantages for information-theoretical [18], computational [19], and
communication complexity [20] tasks.

Our paper aims at providing a better understanding of the device-independent characterization of
correlations that are compatible with a definite causal order or not.We show that bipartite correlations with a
definite causal order form a convex polytope, whose facets correspond to causal inequalities (section 2).We
characterize this causal polytope in the simplest scenariowhere the two parties observe correlationswith binary
inputs and outputs, which gives us two families of new causal inequalities.We then investigate their possible
violation in the framework of processmatrices, andfind that these can indeed be violated (section 3). This
provides an example of ‘noncausal’ processmatrix correlations in a simpler scenario than that considered in [12],
where one party had two input bits, or in [21, 22], wheremore parties were involved.

2. Correlationswith definite causal order

2.1. ‘Causal correlations’
Weconsider an experiment with two parties, Alice and Bob, each of themhaving control over some closed
laboratory. They both open their lab, let some physical system in, interact with it and send a physical systemout,
only once during each run of the experiment. Alice and Bob are given some classical inputs labelled by x and y,
and return some classical outputs a and b, respectively.We assume that all inputs and outputs have afinite
number of possible values. The correlation that Alice and Bob establish in such an experiment is described by the
joint conditional probability distribution p a b x y, ,( ∣ ).

In a situationwhere at each run of the experiment Alice’s events precede Bob’s events (denoted A B ),
Alice could send her input and output to Bob, but not vice versa; hence, there cannot be any signalling fromBob
toAlice, and their correlation, whichwe shall denote in this case pA B , must therefore satisfy

x y y a p a x y p a x y, , , , , , , 1A B A B ( )( ∣ ) ( )" ¢ = ¢ 

with p a x y p a b x y, , ,A B
b

A B( ∣ ) ( ∣ )( ) ( )å=¢ ¢  . Similarly, in a situationwhere Bob’s events precede Alice’s

(B A ), their correlation pB A must satisfy the no-signalling-to-Bob constraint

x x y b p b x y p b x y, , , , , , , 2B A B A ( )( ∣ ) ( )" ¢ = ¢ 

with p b x y p a b x y, , ,B A
a

B A( ∣ ) ( ∣ )( ) ( )å=¢ ¢  . Note that nonsignalling correlations satisfy both equations (1)
and(2), and are compatible with both causal orders A B and B A .More generally, if the correlation is
compatible with the causal order A B with probability q, andwith B A with probability q1 - , then the
correlationwill be of the form

p a b x y q p a b x y q p a b x y, , , , 1 , , . 3A B B A( ∣ ) ( ∣ ) ( ) ( ∣ ) ( )= + - 

Following [13, 14, 23], we call the bipartite probability distribution p a b x y, ,( ∣ ) (or the correlation it
describes, equivalently) ‘causal’ if it can bewritten as in equation (3), with q 0, 1[ ]Î and pA B and pB A valid
(i.e., nonnegative and normalized) probability distributions satisfying equations (1) and(2), respectively. Causal
correlations are those that can be obtained in a situationwhere every run of the experiment is compatible with a
definite causal order (A B or B A ), whichmay however vary for each run, and is only determined
probabilistically. Note that the decomposition(3) is in general not unique, as nonsignalling contributions can be
included in either pA B or pB A .
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2.2. Causal polytopes and causal inequalities
Correlations that are compatible with the causal order A B satisfy nonnegativity
(p a b x y, , 0A B ( ∣ )  x y a b, , ," ) and normalization ( p a b x y, , 1

a b
A B

,
( ∣ )å = x y," ) constraints, together

with the no-signalling-to-Alice constraint(1). As these constitute afinite number of linear constraints on a
bounded probability space6, it follows that the set of correlations pA B is a (convex)polytope [24]. Similarly, the
set of correlations pB A that are compatible with the causal order B A is also a polytope. Now, according to
equation (3), the set of causal correlations is simply the convex hull of the sets of correlations pA B and pB A ,
and is therefore itself a polytope, whichwe call the causal polytope.

By construction, the extremal points of the causal polytope are extremal points of either the polytope of
pA B correlations, or of the polytope of pB A correlations (or of both polytopes); in appendix Awe show that
these correspond to deterministic correlations compatible with either causal order (or both, in the case of
nonsignalling correlations). From this ‘ -representation’ of the causal polytope in terms of its vertices, for a
given number of inputs and outputs, one can in principle determine its equivalent ‘-representation’ in terms
of its facets [24] (although in practice, this is a hard problem to solvewhen the number of inputs and outputs
increase). Some of its facets are trivial, in the sense that they only correspond to the nonnegativity constraints
p a b x y, , 0;( ∣ )  its other, nontrivial facets define so-called causal inequalities [12]—inequalities that are
satisfied by any causal correlation.

The above characterization hints of course at a strong analogywith Bell inequalities, whichmay be obtained
as facets of the ‘local polytope’ [1, 17, 25] (ormay not; in the sameway that not all Bell inequalities are facets of
the local polytope, not all causal inequalities are facets of the causal polytope, as they can also correspond to some
external hyperplanes7). Causal inequalities arewritten as linear combinations of the conditional probabilities
p a b x y, ,( ∣ ), constrained by some ‘causal bounds’. They can also be translated in the language of ‘causal games’
by considering for instance the linear combination to define the score, or possibly the probability of success (for
some specific distribution of inputs), of some game. They can be tested experimentally in a device-independent
way—i.e., by just considering the observed statistics, withoutmaking any assumptions on the functioning of the
physical devices used in the experiment: a violation of a causal inequality guarantees that the observed
correlation is incompatible with a definite causal order—or, in short, is noncausal.

2.3. The simplest causal polytope
To illustrate the previous discussion, we now turn to the characterization of the simplest nontrivial causal
polytope. Note that causal inequalities can only be nontrivial if each party has nontrivial inputs and outputs—
i.e., if they can take at least two different values. Indeed, if one party only has trivial inputs or outputs, then clearly
either(1) or(2) holds, so that any correlation is compatible with a definite causal order.

Hence, the simplest candidate for a nontrivial causal polytope is the case with a single bit of input and output
for each of the two parties8 (whichwe shall denote by 0 or 1), reminiscent of the scenario considered byClauser–
Horne–Shimony–Holt (CHSH) in the case of nonlocality [27].We generated the list of its 112 deterministic
vertices (see appendix A), and enumerated its 48 facets using the softwarelrs [28].

16 of these facets are trivial, corresponding to the nonnegativity constraints p ab xy 0( ∣ )  . By relabelling the
inputs and outputs, the 32 remaining, nontrivial facets can be grouped in two nonequivalent families of causal
inequalities: 16 facets are relabellings of the inequality

p a b x y
1

4
, ,

1

2
, 4

x y a b
a y b x

, , ,
, , ( ∣ ) ( )å d d

where i j,d is theKronecker delta, while the last 16 facets are relabellings of the inequality

p a b x y
1

4
, ,

3

4
, 5

x y a b
x a y y b x

, , ,
,0 ,0 ( ∣ ) ( )( ) ( ) å d dÅ Å

where⊕ denotes additionmodulo 2.

6
The probability space can for instance be understood geometrically as the set of points in a high enough dimensional space, whose

coordinates are the values p a b x y, ,( ∣ ). Clearly, the nonnegativity and normalization constraintsmake it bounded.
7
E.g., one can check that the original causal inequality of [12] is not a facet of the causal polytope for one input bit for Alice, two input bits for

Bob, and one output bit for each of them (the 320 vertices of the causal polytope that saturate that inequality, out of 5056 vertices, only span a
21-dimensional affine subspace, while a facet of this 24-dimensional polytope should have dimension 23). Likewise, the causal
inequalities(21)–(24) below are not facets of the causal polytope for binary inputs and outputs (they are only facets of its projection onto the
plane considered in section 3.3).
8
Actually, one also has a nontrivial causal polytope in a scenariowhere one of Alice and/or Bob’s input yields a binary output, while the

other always gives the same output (or has no output, equivalently). In such a case the only nontrivial causal inequalities are of the LGYNI
type, equations (5) or(7), and its analysis below—e.g. its violation by processmatrix correlations—remains valid (note on the other hand
that the local polytope for such scenarios is trivial [26]). For simplicity however, we choose to impose throughout the paper that all inputs
should have the same number of outputs.
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The causal inequality(4) can be interpreted as a bound on themaximal probability of success for a bipartite
‘guess your neighbor’s input’ (GYNI) game [29]with uniform input bits x y, (such that p x y, 1

4
( ) = ), where Alice

and Bob’s task is to guess each other’s input, i.e., to output a= y and b= x. Implicitly assuming uniform
input bits9, inequality(4) can indeed bewritten in amore compact form as

p p a y b x,
1

2
. 6GYNI ≔ ( ) ( )= =

This causal bound on the probability of success pGYNI can easily be understood: assuming that the correlation is
compatible with the causal order A B , Alice cannot know anything about Bob’s input bit and can therefore
onlymake a randomguess, so that p a y 1

2
( )= = and therefore p a y b x, ;1

2
( ) = = a similar reasoning

holds for the causal order B A , and a convexmixture cannot increase the bound on pGYNI.
Similarly, the causal inequality(5) can be interpreted as a bound on themaximal probability of success for

whatwe shall call a ‘lazyGYNI’ (LGYNI) game, still with uniformly random input bits, where Alice and Bob’s
task is now to guess each other’s input only when their respective input is 1 (for an input 0, their output can be
arbitrary). Implicitly assuming uniform input bits, inequality(5) can then also bewritten in amore compact
form as

p p x a y y b x0, 0
3

4
. 7LGYNI ≔ ( ( ) ( ) ) ( )Å = Å =

This causal bound on the probability of success pLGYNI can also easily be understoodwith a similar reasoning as
above (taking into account that Alice for instance is only asked to guess Bob’s input half of the time, when her
input is 1).

3. Processmatrix correlationswith no definite causal order

In this sectionwe study the violation of our simplest causal inequalities in the framework of process matrices,
introduced recently byOreshkov, Costa and Brukner [12]. Let usfirst start with a brief overview of this
framework.

3.1. The processmatrix framework
The basic assumption of the framework is that quantum theory correctly describes what happens locally in Alice
and Bob’s laboratories; however, no assumption is beingmade about the global causal structure inwhich the
parties operate.

More specifically, it is assumed that Alice and Bob can perform any operation allowed by the standard
formulation of quantum theory, as described by quantum instruments [30] from some inputHilbert spaces AI
and BI (for Alice and Bob, respectively) to some outputHilbert spaces AO and BO . An instrument is a set of
completely positive (CP), trace nonincreasingmaps from XI( )  to XO( )  (for X A B,= ), where XI( ) 
and XO( )  are the spaces of linear operators over theHilbert spaces XI and XO . EachCPmap of a given
instrument is associatedwith a given classical output, whichwe shall again denote by a and b for Alice and Bob,
and all CPmaps of an instrumentmust sumup to a trace-preservingmap. The various instruments that the
parties can choose to apply shall be labelled by some classical ‘inputs’ x and y.

Using theChoi–Jamiołkowski (CJ) isomorphism [31, 32], one can represent Alice’smaps as some
operators10Ma x

A AI O on the tensor product space A AI O( )  Ä . The conditions for the collection of operators

Ma x
A A

a
I O{ } (for some fixed input x) to be a valid instrument translate to

M a M0 and tr , 8a x
A A

A
a

a x
A A AI O

O
I O I ( )∣ ∣  å" =

where trAO
denotes the partial trace over Alice’s output system, and AI is the identity operator in Alice’s input

Hilbert space. Similarly, Bob’smaps can be represented as operators Mb y
B BI O on B BI O( )  Ä , and a collection

of operators Mb y
B B

b
I O{ } (for some fixed input y)must satisfy analogous constraints to equation (8) to be a valid

instrument.
As shown in [12], the assumption of local consistencywith quantum theory implies that the probability

p a b x y, ,( ∣ ) of observing the classical outputs a b, for a choice of instruments labelled by x y, is a bilinear
function of Alice andBob’smaps, which can bewritten as

9
Note that the assumption of uniform inputs is only necessary to justify the shorthand notation p a y b x,( )= = for the left-hand side of

equation (4), and to interpret it as the success probability for theGYNI game.Whether an inequality written as a combination of conditional
probabilities (like (4) or (5) for instance) defines a causal inequality or not depends of course in noway on the distribution of inputs.
10

Throughout the paper, superscripts on operators refer to theHilbert space they act on.
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p a b x y M M W, , tr , 9a x
A A

b y
B BI O I O( )( ∣ ) · ( )∣ ∣

⎡⎣ ⎤⎦= Ä

for some hermitianmatrixW A A B BI O I O( )    Î Ä Ä Ä . Requiring that the probabilities given by(9)
are nonnegative and normalized for all possible choice of quantumoperations (including operations involving
possibly entangled ancillary systems) imposes some restrictions on the possibleWmatrices [12]. As shown in
[13], these constraints can be expressed as follows:

W a0, 10( )
W d d btr , 10A BO O ( )=

W W c, 10B B A B BI O O I O ( )=

W W d, 10A A A A BI O I O O ( )=

W W W W e, 10B A A BO O O O ( )= + -

where the last three conditions are written using the operation X·defined by

W
d

Wtr 11X

X

X
X ( )

= Ä

for X A A B B, , ,I O I O= , with X and trX denoting the identity operator and the partial trace over theHilbert
space X , respectively, and dX denoting its dimension.

OperatorsW that satisfy these conditions are called process matrices. They generalize the notions of ‘quantum
strategies’ [33] and of ‘quantum combs’ [34] (which do assume a causal order), and represent themost general
way to ‘connect’ the output spaces A BO O Ä to the input spaces A BI I Ä (see figure 1) in away that is
locally consistent with quantum theory.While the above conditions do not impose a global causal order a priori
and therefore allow in general for two-way signalling, the nonnegativity and normalization constraints on the
probabilities guarantee that no logical paradoxes, like the grandfather paradox for instance [35, 36], appear. In
the followingwewill refer to correlations of the form(9), withAlice and Bobʼs instruments satisfying
equation (8) (together with its analogous form for Bob) andW satisfying the conditions (10), as process matrix
correlations.

3.2. Violation of the simplest causal inequalities by processmatrix correlations
It was shown in [12] that certain processmatrices11 could generate correlationswith no definite causal order. A
specific processmatrix and specific instruments were indeed found, which violate a particular causal inequality
with one input bit for Alice and two for Bob, and one output bit for each. Remarkably, one of Bobʼs input bits
could be used to distinguish some runs of the experiment where signalling happened in one direction, and some
runswhere it happened in the other direction. It remained an open question, whether this special input bit for
Bobwas necessary to obtain noncausal correlations in the processmatrix framework, or whether any simpler
causal inequality (with fewer inputs) could be violated.Herewe answer this question positively, by exhibiting
violations of both ourGYNI and LGYNI inequalities(6, 7) by processmatrix correlations.

Figure 1.AprocessmatrixW represents the physical resourcewhich connects Aliceʼs ( AO ) andBobʼs ( BO ) outputHilbert spaces
to their inputHilbert spaces ( AI , BI ) in such away that what happens inAlice and Bobʼs labs is locally consistent with quantum
theory [12]. Processmatrices generalize in particular quantum states and quantum channels.

11
A necessary condition for a processmatrix to allow for a causal inequality violation is that it is causally nonseparable [12]—i.e., that it is

itself incompatible with a definite causal order. In themultipartite case this is known however not to be a sufficient condition [13, 14]. It
remains an open questionwhether there can be bipartite causally nonseparable processmatrices that only generate causal correlations.

5
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Let us start with a simple examplewith two-dimensional input and output systems—‘qubits’—for Alice and
Bob (i.e., d d d d 2A A B BI O I O

= = = = ). One can check that thematrix

W
Z Z Z Z X X1

4 2
, 12

A A B B A A B B
4

I O I O I O I O

( )
 ⎡

⎣⎢
⎤
⎦⎥= +

+Ä

whereZ andX are the Paulimatrices andwhere tensor products are implicit, satisfies the constraints (10), so that
it defines a valid processmatrix.We choose Alice and Bobʼs operations to be the same, defined by

M M 0, 13A A B B
0 0 0 0

I O I O ( )∣ ∣= =

M M 2 , 14A A B B
1 0 1 0

I O I O ( )∣ ∣= = F F+ +

M M 0 0 0 0 , 15A A B B
0 1 0 1

I O I O ∣ ∣ ∣ ∣ ( )∣ ∣= = ñá Ä ñá

M M 1 1 0 0 , 16A A B B
1 1 1 1

I O I O ∣ ∣ ∣ ∣ ( )∣ ∣= = ñá Ä ñá

with 0 , 1{∣ ∣ }denoting the computational basis (i.e., the eigenbasis ofZ), and : 00 11 2(∣ ∣ )F = ++ .
These indeed satisfy(8), and thus constitute valid instruments. These operations can be interpreted as follows:
when their input is 0, Alice and Bob simply transmit their incoming physical system, untouched (2 F ñáF+ +

being indeed theCJ representation of an identity channel), and output the value 1; when their input is 1, Alice
and Bob perform ameasurement in theZ basis, whose result defines their classical output, and send out the fixed
state 0 0∣ ñá .With these definitions, one can calculate the success probabilities of theGYNI and LGYNI games
using equations (6) and (7)—ormore explicitly(4) and (5)—and equation (9). Onefinds

p
5

16
1

1

2
0.5335

1

2
, 17GYNI ( )

⎛
⎝⎜

⎞
⎠⎟= + » >

p
5

16
1

1

2

1

4
0.7835

3

4
, 18LGYNI ( )

⎛
⎝⎜

⎞
⎠⎟= + + » >

which indeed violate the causal inequalities(6) and (7).
Onemay nowwonder, what the largest possible violation of these two causal inequalities by processmatrix

correlations is. To optimize the violations for some input and outputHilbert spaces of a given dimension, we
used a see-saw algorithm inspired by that ofWerner andWolf [37], as described in appendix B.Note that
because the optimization problem is nonconvex, the algorithm is not guaranteed to converge to a global
maximum.Nevertheless, for small enough dimensions (at least, for qubits), the repeatability of our results for
different random starting points of the algorithmmakes us confident that we indeed found the globalmaxima.
Fromour numerical results, we thus conjecture that themaximal violations of our causal inequalities achievable
with qubit systems are

p 0.5694
1

2
, 19d

GYNI
max, 2 ( )» >=

p p0.8194
1

4

3

4
. 20d d

LGYNI
max, 2

GYNI
max, 2 ( )» = + >= =

In appendix Cwe give an analytical description of the processmatrices that reach these values.
Going to larger dimensions, we found that themaximal value of pGYNI could increase, as summarized in

table 1 for dimensions up tofive; however, we did notfind any larger value for pLGYNI than p d
LGYNI
max, 2= above,

which—provided our see-saw algorithmdid find the globalmaxima—reveals some fundamental difference
between the two inequalities, despite their similarities (and in addition to the fact that contrary toGYNI, the
outputs corresponding to certain inputs are irrelevant in the LGYNI game; see also footnote 3). It remains an
open question, which values are the true ‘Tsirelson bounds’ [38] for these two causal inequalities, in the sense of
the largest possible values for pGYNI and pLGYNI reachable with quantumprocessmatrices of any dimension.

3.3. Boundary of the set of processmatrix correlations
Tofinishwith, let us picture the set of processmatrix correlations versus that of causal correlations. In order to
visualize the two, we shall project themonto the planewith coordinates p a y p b x,( ( ) ( ))= = , wherewe again

Table 1.Maximal values of pGYNI found through numerical
optimization, as a function of the dimension of Alice and Bobʼs
input and outputHilbert spaces d d d d dA A B BI O I O= = = = .

d 2 3 4 5

p d
GYNI
max, 0.5694 0.6104 0.6201 0.6218
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implicitly assume uniformly random inputs for ease of notations12. In this plane the complementarity between
the two directions of signalling, fromAlice to Bob and fromBob toAlice, is conspicuous; the projected causal
polytope is bounded here by the four causal inequalities13 (see figure 2)

p a y p b x
1

2

1

2

3

4
, 21( ) ( ) ( )= + =

p a y p b x
1

2

1

2

1

4
, 22( ) ( ) ( )= - =

p a y p b x
1

2

1

2

1

4
, 23( ) ( ) ( )- = + =

p a y p b x
1

2

1

2

1

4
. 24( ) ( ) ( )- = - = -

To obtain a lower bound for the boundary of the set of processmatrix correlations, we again used the see-saw
algorithmdescribed in appendix B tomaximize quantities of the form p a y p b x( ) ( )a b= + = , with various
weights ,a b . Different runs of the algorithm gave us different lower bounds (recall that the see-saw algorithm is
not guaranteed to always find the global optimum), whichwe combined to obtain the bounds represented on
figure 2 for dimensions d 2, 3= and 4 of the input and outputHilbert spaces—andwhichwe believe are close
to the actual boundaries of the processmatrix correlations for these dimensions. The largest violations of the

causal inequality(21)we found are p a y p b x 0.77151

2

1

2
( ) ( )= + = = for d= 2; 0.7892 for d= 3; and

0.8001 for d= 4.
A surprising feature of the set of processmatrix correlations for dimension two is that it does not seem to be

convex (see figure 2, red region).We believe this is a true characteristic of it, not only a numerical artifact due to
some failure tofind global optima.Note, nevertheless, that the boundary of the set of processmatrix correlations
for arbitrary dimensions is convex, as proven in appendixD.

Figure 2.Projection of the probability space for binary inputs and outputs onto the plane p a y p b x,( ( ) ( ))= = (seemain text). The
causal polytope is projected onto the blue diamond, delimited by the causal inequalities(21)–(24). The red, green and purple regions
correspond to processmatrix correlations that are reachable with input and outputHilbert spaces of dimensions d 2, 3= and 4,
respectively. The outer dashed square delimits all valid probabilities p a y p b x, 0, 1( ) ( ) [ ]= = Î . Its upper right corner corresponds
for instance to a correlation such that Aliceʼs output is always equal to Bobʼs input (a y= ) andBobʼs output is always equal to Aliceʼs
input (b x= ), which requires perfect two-way signalling and violates equations (6), (7) and(21) up to their algebraicmaximum. This
correlationmay somehowbe thought of as being analogous to the Popescu–Rohrlich (PR) box considered in the context of nonlocal
correlations [39] (one difference, however, is that this correlation is deterministic, while the PR box correlations are not).

12
Without assuming uniformly random inputs, p a y( )= and p b x( )= in equations (21)–(24) and infigure 2 should be replaced by

p a b x y, ,x y a b a y
1

4 , , , , ( ∣ )då and p a b x y, ,x y a b b x
1

4 , , , , ( ∣ )då , respectively.
13

Note that inequality(21) looks quite similar toOreshkov et alʼs original causal inequality [12] (whichmotivated us in particular towrite it
with the

1

2
factors). Oreshkov et alʼs inequality includes some additional conditioning on a second input bit for Bob. Averaging that

inequality with its equivalent versionwhere Bobʼs second input bit isflipped yields inequality(21). Similarly, Bruknerʼs ‘Tsirelson-like
bound’ forOreshkov et alʼs inequality [39] (for a limited set of possible instruments) also yields the sameTsirelson-like bound

0.85361 1 2

2

+  for inequality(21) (with the same restriction); there remains a large gap between that bound and the lower boundswe
obtained numerically for dimensions two, three and four.

7

New J. Phys. 18 (2016) 013008 CBranciard et al



4. Conclusion

Wehave shown that the set of correlations compatible with a definite causal order (‘causal correlations’) forms a
convex polytope, whichwe fully characterized in the simplest nontrivial bipartite scenario with binary inputs
and outputs. Twononequivalent families of causal inequalities were obtained, equations (6) and (7)), for which
we gave intuitive interpretations in terms of ‘causal games’. These allow for a device-independent
characterization of correlations with orwithout definite causal order, and can be tested independently of the
physical theory under consideration.We exhibited in particular violations of these inequalities by processmatrix
correlations, which generalize standard quantum correlations. Because of their simplicity (and despite the
violationswe found being somewhat less intuitive), we expect these new inequalities—in particular the first one,
interpreted as a ‘guess your neighborʼs input’ game—to become archetypical examples of causal inequalities,
just like theCHSH inequality is the archetype of Bell inequalities [17, 27].

Our approach can be used to characterize (non)causal correlations inmore complex scenarios as well. It
should be noted that because of the large dimension of the probability space and the large number of vertices of
the causal polytope (see appendix A), and because of the high complexity of the facet enumeration problem,
listing all causal inequalities rapidly becomes intractable in practice as the number of inputs and outputs
increases beyond the simplest binary case. Nevertheless, one could adapt some of the tricks developed for the
derivation of Bell inequalities (see [17] for a review) to construct new causal inequalities for various scenarios of
interest. Violations of these inequalities in the processmatrix framework can then be investigated using our see-
saw algorithm. An interesting question is whether it would also be possible to derive nontrivial bounds on such
violations from certain information-theoretic principles [41], along analogous lines to the research program that
aims at restricting quantumnonlocal correlations from various principles [17].

In the present paperwe focused for simplicity on the bipartite case. Ourwork can naturally also be extended
to the case ofmore parties.With a proper generalization of the concept of noncausal correlations (see for
instance [14]), it can also be shown thatmultipartite noncausal correlations form a convex polytope. Similar
techniques can be used to characterize this polytope, construct causal inequalities and investigate their possible
violation.Note that a remarkable new feature in themultipartite case is that violations are also possible with
‘classical processmatrices’ [22].

One of themain open questions along the line of research presented here is whether it would actually be
possible, in practice, to observe correlationswith no definite causal order and a violation of a causal inequality.
As an extension of standard quantum theory, the framework of processmatrices—which does indeed predict
such violations theoretically—appears as a good candidate to provide such a possibility. However, to the best of
our knowledge, no practical implementation has been identified for any of the processmatrices that are known
to violate a causal inequality [12, 21, 22] (including the ones presented here)—while in contrast, a causally
nonseparable quantumprocess has been recently demonstrated experimentally [16]. It is likely thatmore
complex scenarios need to be considered, and a systematic investigation of causal inequalities and their violation
by processmatrix correlationsmight prove useful tofind practical violations—or, should it be the case, to clarify
why such violations cannot be observed in practice. Ourworkmakes the first crucial step in this direction.

Note added—Whilefinishingwriting up thismanuscript, we became aware that the concept of causal
polytopes introduced herewas also referred to (with proper reference to ourwork) in [14], where the emphasis
was put onmultipartite scenarios, and in [42], where the authors also introduced, for themultipartite case as
well, larger polytopes of logically consistent but possibly noncausal classical processes.
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AppendixA. Characterization of the causal polytope

A.1. Vertices of the causal polytope
As explained in themain text, the causal polytope, defined as the set of causal correlations of the form(3), is the
convex hull of the polytope of correlations compatible with the causal order A B (which cannot signal to
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Alice) and the polytope of correlations compatible with the order B A (which cannot signal to Bob), so that its
vertices are vertices of at least one of these two polytopes.

Let us characterize the vertices of the polytope of correlations pA B . Using Bayes’ rule, we canwrite

p a b x y p a x y p b x y a p a x p b x y a, , , , , , , ,A B ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ )= =

where the last equality follows from the no-signalling-to-Alice constraint(1). No further constraint is imposed
on p a x( ∣ ) and p b x y a, ,( ∣ ) (except that theymust be valid probability distributions); these can bewritten as
convex combinations of deterministic distributions, in the form

p a x q

p b x y a q

,

, , ,

a x

b x y a

,

, , ,

( ∣ )

( ∣ )

( )

( )

å

å

d

d

=

=
a

a a

b
b b

with q q, 0a b , q q 1å å= =a a b b , where theαʼs denote deterministic functions of Alice’s input x, and the

βʼs denote deterministic functions of bothAlice andBob’s inputs x y, and of Alice’s output a. Combining them,
we get

p a b x y q q

q q

q

, ,

,

A B
a x b x y a

a x b x y

a x b x y

,
, , , ,

,
, , ,

,
, , , ,

( ∣ ) ( ) ( )

( ) ( )

( ) ( )

å

å

å

d d

d d

d d

=

=

=

a b
a b a b

a b
a b a b

a b
a b a b

¢
¢ ¢

a



where x y x y x, , ,( ) ( ( ))b b a=a and q q q, =a b a b a¢ ¢ with q q,å d=b a b b b b¢ ¢a , such that q 0, a b¢ and

q 1
, ,å =a b a b¢ ¢ . Hence, any correlation pA B can bewritten as a convex combination of deterministic

correlations compatible with the order A B —which thus correspond to the vertices of the corresponding
polytope of correlations pA B .

If Alice and Bob’s inputs can takemA andmB different values, respectively, and their outputs can take kA and
kB values, respectively, then there are kA

mA different deterministic functions x( )a and kB
m mA B functions x y,( )b¢ ,

so that the polytope of correlations pA B has k kA
m

B
m mA A B´ vertices. Note that kB

mB of the functions x y,( )b¢ do
not depend on x; hence, out of all the vertices, k kA

m
B
mA B are non-signalling, while the other k k kA

m
B
m m

B
mA A B B( )- are

signalling to Bob.
Similarly, the vertices of the polytope of correlations pB A are the k kA

m m
B
mA B B deterministic correlations

compatible with the order B A , of which k kA
m

B
mA B are nonsignalling and are thus common to the previous

polytope of correlations pA B , while the other k k kB
m

A
m m

A
mB A B A( )- are signalling to Alice. The vertices of the

causal polytope are all the deterministic correlations14 compatible with either the order A B , or the order
B A , or both—whichmakes a total of k k k k k kA

m
B
m m

A
m m

B
m

A
m

B
mA A B A B B A B+ - vertices.

A.2.Dimensions
Because of the m mA B normalization constraints p a b x y, , 1

a b,
( ∣ )å = , the probability space of correlations

p a b x y, ,( ∣ ) is of dimension m m k k 1A B A B( )- .With the no-signalling-to-Alice and no-signalling-to-Bob
constraints(1) and (2), the dimensions of the polytopes of correlations pA B and pB A are reduced to
m m k k m m k1 1 1A B A B A B A( ) ( )( )- - - - and m m k k m m k1 1 1A A B A B BB ( ) ( ) ( )- - - - , respectively.
However, the causal polytope—i.e., their convex hull—remains of the same dimension as the full probability
space.

A.3. For binary inputs and outputs
In the case where bothAlice and Bob’s inputs and outputs take binary values, the ten-dimensional polytopes of
correlations pA B and pB A both have 64 vertices, amongwhich 16 are nonsignalling vertices common to both
polytopes. The twelve-dimensional causal polytope thus has 64 64 16 112+ - = different vertices.

We enumerated the facets of the causal polytope for binary inputs and outputs by solving the convex hull
problemusing the softwarelrs [28]. As described in themain text, we obtained 48 facets, which can be grouped
into three families of equivalent facets (up to relabellings of inputs and outputs). Explicitly, these are

• 16 trivial facets of the form p a b x y, , 0( ∣ )  for all x y a b, , , 0, 1;=

14
Note that the fact that the causal polytope has deterministic vertices was not trivial a priori; this contrasts for instancewith the no-

signalling polytope, which has nondeterministic vertices like the PR-box [40].
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• 16 facets of theGYNI type, which can bewritten (in the same form as (6), implicitly assuming uniform input
bits) as

p a x y b y x,
1

2
,1 0 1 0( ) a a b bÅ Å = Å Å =

for all , , , 0, 1;0 1 0 1a a b b =

• 16 facets of the LGYNI type, which can bewritten (in the same form as (7), implicitly assuming uniform input
bits) as

p x a y y b x0, 0
3

4
,1 0 1 0( )( )( ) ( )( ) a a b bÅ Å Å = Å Å Å =

for all , , , 0, 10 1 0 1a a b b = .

Note that this causal polytope for binary inputs and outputs coincides with the polytope of correlations
obtained from a localmodel augmentedwith one bit of communication, as described in [43]. This is because the
use of just one bit of (one-way) communication is of course compatible with a definite causal order, either
A B or B A , and for binary inputs one bit is enough for one party to send all the information about her
input to the other party. In general however, the polytopes described in [43] are different from causal polytopes.

Appendix B. See-saw algorithm

Maximizing the violation of a causal inequality over the processmatrix and the instruments is a nonlinear
problem,whichmakes it intractable directly. To address this problem,we used an approach inspired by the see-
saw algorithmofWerner andWolf [37]. The idea is that if Alice and Bob’s instruments arefixed, then the
combination of probabilities that enters the causal inequality is a linear function of the processmatrix, and
maximizing it is a semidefinite programming (SDP) problem [44] that can be solved efficiently. In the same
spirit, if the processmatrix and the instruments of one party arefixed, then the value of interest is a linear
function of the instruments of the other party, and again its optimization is a SDP problem.Hence, one can try to
approach themaximumviolation of a causal inequality by optimizing over the processmatrix and the parties’
instruments in an iterativemanner.

More specifically, let W , ,( ) w be the value taken by the combination of probabilities in the causal
inequality, considered as a function of the processmatrixW and the sets of instruments Ma x

A A
x a,

I O{ } = and

Mb y
B B

y b,
I O{ } = (in their CJ representation).We start the algorithmby generating random sets of instruments

0 and 0 , and for thesefixed instruments wemaximizeω considered as a function ofW, via the following SDP
problem:

W

W W d d

W W W W

W W W W

maximize , ,

subject to

0, tr ,

, ,

.

A B

B B A B B A A A A B

B A A B

0 0

O O

I O O I O I O I O O

O O O O

( ) 



w

=
= =

= + -

With the optimal processmatrixW0 thus obtained and thefixed set of instruments 0 for Bob, we proceed to
optimizeω as a function of Alice’s instruments, via the SDPproblem

W

x a M M

maximize , ,

subject to

, , 0, tr .a x
A A

A
a

a x
A A A

0 0

I O
O

I O I

( )

∣ ∣ 

 

 å

w

" =

With the optimal set of instruments 0 obtained now and the previously obtained processmatrixW0, we do the
analogous optimization over Bob’s set of instruments  , and iterate the three optimization steps of the algorithm
until it converges.

One can see that at each step of the algorithm the value ofω can only increase, so it is guaranteed to converge
to a localmaximum.One does not, however, always get the globalmaximum, and in practice onemust repeat
the algorithm several times to get a good lower bound on themaximal value ofω.

Note that this see-saw algorithm can of course straightforwardly be adapted tomore than two parties.
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AppendixC.Maximal violations for qubits

The best violations of ourGYNI and LGYNI causal inequalities that we found, for local dimensions
d d d d d 2A A B BI O I O
= = = = = (i.e., for ‘qubits’), is reached by any convex combination

q W q W1d dmax, 2 max, 2( )+ - ¢= =

(with q0 1  ) of the two processmatricesW dmax, 2= andW dmax, 2¢ = defined as

W a Z Z a Z Z

a Z Z ZZ a Z ZZ ZZZ

a Z XX Z YY XXZ YYZ

1

4
,

,

,

dmax, 2
4

0 1

2 3

4

( )

( ) ( )

( )

( ) ( ) ( )

( ) ( )

( )

     

    

   

⎡⎣

⎤⎦

= + - +

- + + +

+ - + -

=
¢ Ä ¢ ¢

¢ ¢

¢

(with implicit tensor products and implicit superscripts), where the coefficients a a a a, , ,0 1 2 3, and a4 are,
respectively, real roots of the polynomials

x x x x

x x x x

x x x x

x x x x

x x x x

4 608 1 575 525 117 1,

221 184 142 479 19 701 15 603 2 363,

9 216 16 857 11 724 3 660 430,

221 184 50 895 16 200 1 368 602,

221 184 16 335 37 008 11400 3 440,

4 3 2

4 3 2

4 3 2

4 3 2

4 3 2

- + - -
+ - - +

- + - +
- - + +
+ - - +

and the primed coefficients a a a a, , ,0 1 2 3¢ ¢ ¢ ¢, and a4¢ are, respectively, real roots of the polynomials

x x x x

x x x x

x x x x

x x x x

x x x x

4 608 8 595 5 583 873 43,

221 184 101 601 1 701 2 745 305,

3 072 2 229 540 60 4,

221 184 294 975 145 080 31 224 2 492,

221 184 16 335 37 008 11 400 3 440.

4 3 2

4 3 2

4 3 2

4 3 2

4 3 2

+ + + -
- - + +

- + - +
- + - +
+ - - +

Numerically, their values are

a a

a a

a a

a a

a a

0.2744, 0.0390,

0.2178, 0.3355,

0.3628, 0.2451,

0.3114, 0.4291,

0.2097.

0 0

1 1

2 2

3 3

4 4

= ¢ =

= ¢ =

= ¢ =

= ¢ =

= ¢ =

Using the same instruments for Alice and Bob as those defined in equations (13)–(16), ourmaximal
probability p d

GYNI
max, 2= of winning theGYNI gamewith qubits is then found to be the smallest real root of the

polynomial

x x x x1 769 472 2 884 032 1 630 800 380 052 34 087,4 3 2- + - +

and ourmaximal probability p d
LGYNI
max, 2= ofwinning the LGYNI gamewith qubits is p p 1 4d d

LGYNI
max, 2

GYNI
max, 2= += = .

Numerically, we obtain

p p0.5694
1

2
, 0.8194

3

4
.d d

GYNI
max, 2

LGYNI
max, 2» > » >= =

It is somewhat surprising that thesemaximal violations of theGYNI and LGYNI inequalities with qubits
have such complicated expressions–contrary for instance to the case ofOreshkov et alʼs original causal
inequality (for which the violation exhibited in [12]was proven, under certain constraints, to be optimal [39]), or
to the case of thewell knownCHSHBell inequality [27, 38]. Note also that, asmentioned in themain text, we
could find higher violations of theGYNI inequality using higher-dimensional quantum systems (see table 1),
while we could notfind any higher violations of the LGYNI inequality.

AppendixD. The set of processmatrix correlations is convex

In this appendixwe show that the set of processmatrix correlations is convex.
Let p a b x y, ,0 ( ∣ ) and p a b x y, ,1( ∣ ) be two correlations realized by the (valid) processmatrices and

instruments W M M, ,a x
A A

b y
B B

0 0; 0;
I O I O{ }and W M M, ,a x

A A
b y

B B
1 1; 1;

I O I O{ }, respectively, so that
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p a b x y M M W

p a b x y M M W

, , tr ,

, , tr .

a x
A A

b y
B B

a x
A A

b y
B B

0 0; 0; 0

1 1; 1; 1

I O I O

I O I O

( )
( )

( ∣ ) ·

( ∣ ) ·

∣ ∣

∣ ∣

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

= Ä

= Ä

Without loss of generality we assume that Alice and Bob’s input and output systems in W M M, ,a x
A A

b y
B B

0 0; 0;
I O I O{ }and

in W M M, ,a x
A A

b y
B B

1 1; 1;
I O I O{ }have the same dimensions (one can indeed always embed lower-dimensional systems

into larger-dimensional ones). Let us now introduce some ancillary two-dimensional input systemswithHilbert
spaces AI ¢ and BI ¢ and define, for any q 0, 1[ ]Î ,

W q W

q W

0 0 0 0

1 1 1 1 1 ,

A B

A B

0

1

I I

I I

∣ ∣ ∣ ∣
( ) ∣ ∣ ∣ ∣

= ñá Ä ñá Ä

+ - ñá Ä ñá Ä

¢ ¢

¢ ¢

M M M

M M M

0 0 1 1 ,

0 0 1 1 .

a x
A A A A

a x
A A A

a x
A A

b y
B B B B

b y
B B B

b y
B B

0; 1;

0; 1;

I I O I I O I I O

I I O I I O I I O

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣
∣ ∣ ∣

∣ ∣ ∣

= ñá Ä + ñá Ä

= ñá Ä + ñá Ä

¢ ¢ ¢

¢ ¢ ¢

One can easily check thatW thus defined is a valid processmatrix, and that Ma x
A A AI I O¢ and Mb y

B B BI I O¢ define valid
instruments. Furthermore, a straightforward calculation shows that for these processmatrix and instruments

p a b x y M M W

q M M W

q M M W

q p a b x y q p a b x y

, , tr ,

tr ,

1 tr ,

, , 1 , , .

a x
A A A

b y
B B B

a x
A A

b y
B B

a x
A A

b y
B B

0; 0; 0

1; 1; 1

0 1

I I O I I O

I O I O

I O I O

( )
( )

( )

( ∣ ) ·

·

( ) ·

( ∣ ) ( ) ( ∣ )

∣ ∣

∣ ∣

∣ ∣

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

= Ä

= Ä

+ - Ä

= + -

¢ ¢

Thus, any convex combination q p q p10 1( )+ - of processmatrix correlations can also be realizedwith a
processmatrix and suitable instruments, which shows that the set of processmatrix correlations is indeed
convex. It is straightforward to generalize the proof to a scenario withmore parties.

Note that our construction only shows that the convex hull of the set of correlations produced by process
matrices of dimensions d d d dA A B BI O I O

´ ´ ´ is contained in the set of correlations produced by process
matrices of dimensions d d d d2 2A A B BI O I O

´ ´ ´ , opening up the possibility that the set of processmatrix
correlations is not convex for anyfixed input dimension (seefigure 2), analogously to the set of (nonsignalling)
quantum correlations forfixed dimensions [45].
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