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Abstract
The effect of gravity and proper acceleration on the frequency spectrumof an optical resonator—both
rigid or deformable—is considered in the framework of general relativity. The optical resonator is
modeled either as a rod ofmatter connecting twomirrors or as a dielectric rodwhose ends function as
mirrors. Explicit expressions for the frequency spectrum are derived for the case that it is only
perturbed slightly and variations are slow enough to avoid any elastic resonances of the rod. For a
deformable resonator, the perturbation of the frequency spectrumdepends on the speed of sound in
the rod supporting themirrors. A connection is found to a relativistic concept of rigidity when the
speed of sound approaches the speed of light. In contrast, the corresponding result for the assumption
of Born rigidity is recoveredwhen the speed of sound becomes infinite. The results presented in this
article can be used as the basis for the description of optical and opto-mechanical systems in a curved
spacetime.We apply our results to the examples of a uniformly accelerating resonator and an optical
resonator in the gravitational field of a smallmoving sphere. To exemplify the applicability of our
approach beyond the framework of linearized gravity, we consider thefictitious situation of an optical
resonator falling into a black hole.

1. Introduction

In general relativity (GR), as coordinates have no physicalmeaning, there is no unique concept for the length of a
matter system. Some notion of length can be covariantly defined using geometrical quantities or properties of
matter. The ambiguity in the notion of length poses a problem for high accuracymetrological experiments,
where gravitational fields or acceleration have a significant role to play. For example, the frequency spectrumof a
resonator depends on its dimensions and hence knowledge of the precise values of these dimensions is of utmost
importance. Cases inwhich the effects of gravitational fields and accelerationmust be considered include those
inwhich the gravitational field is to bemeasured, such as in proposals for themeasurement of gravitational
waveswith electromagnetic cavity resonators [1–7] or other extendedmatter systems [8–14], tests of GR [15, 16]
or the expansion of the universe [17, 18]. Other situations are those inwhich themetrological system is
significantly accelerated [19–21]. A fundamental limit for the precision of a light cavity resonator as a
metrological system can even be imposed by the gravitational field of the light inside the cavity [22].

The twomost important concepts of length are the proper distance and the radar distance. The proper
distance is a geometrical quantity usually associatedwith the length of a rod that is rigid in the sense of that given
byBorn [23]. The radar distance is the optical length that can bemeasured by sending light back and forth
between twomirrors and taking the time between the two events as ameasure of distance. It is this radar length
that gives the resonance frequency spectrumof an optical resonator for large enoughwave numbers. However,
the resonators that are part of themetrological systems described in [1–22] are confined by solidmatter systems,
and therefore, the notion of proper length plays also a role.
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In section 2, we start our considerations bymodeling a one-dimensional resonator as a set of two end
mirrors connected by a rod ofmatter. If this rod is assumed to be rigid, the resonator is called a rigid optical
resonator. In section 3, we show that the resonance frequencies of an optical resonator are given by its radar
length. The general results derived in sections 2 and 3 are applied in the following sections.

Since proper length and radar length are generally different, it turns out that the resonance frequencies of a
Born rigid optical resonator change if the resonator is accelerated or is exposed to tidal forces. Furthermore, the
frequency of amode is dependent on the reference time, which, in turn, is dependent on the position of the
resonator in spacetime. Taking all this into consideration leads to an expression for the resonance frequencies of
a resonator that is dependent on acceleration and curvature. This is presented in section 4.

A realistic rod cannot truly be Born rigid; depending on its stiffness andmass density, it will be affected by the
gravitational field and its internal interactions have to obey the laws of relativistic causality. In section 5, we
derive expressions for the dependence of the resonance frequencies on the deformation of the rod and show that
the change in resonance frequencies depends only on the speed of sound in thematerial of the rod. In this article,
we restrict our considerations to cases where acceleration and tidal forces experienced by the optical resonator
vary slowly. This way, we can neglect elastic resonances of rod. At the end of section 5, we compare the change of
the resonance frequencies due to deformations of the rod to the change of the resonance frequencies due to the
relativistic effects presented in section 4. Additionally, we discuss the notion of a causal rigid resonatorwhich is
based on the definition of a causal rigid rod as one composed of amaterial inwhich the speed of sound is
equivalent to the speed of light.

The optical resonator can also befilledwith a dielectric, or equivalently, the rod that sets the length of the
resonator can be a dielectricmaterial and themirrors can be its ends. The case of homogeneous isotropic
dielectric is discussed in section 6, and it is shown that the relative frequency shifts are independent of the
refractive index of the dielectricmaterial. In section 7, we consider the case of a uniformly accelerated resonator,
in section 8we consider the case of a resonator that falls into a black hole and in section 9, we consider the
example of an optical resonator in the gravitational field of an oscillatingmassive sphere. In section 10we give a
summary and conclusions.

In this article,weassume that all effects on the optical resonator canbe described as small perturbations. In
section 5,wepresent a certain coordinate system x valid in a region around theworld line of the resonator’s center
ofmass inwhich the spacetimemetric takes the form   h= +g h , where h = -( )diag 1, 1, 1, 1 is
theMinkowskimetric and h is a perturbation. h is considered to be small in the sense that  ∣ ∣h 1 for
all , .

2. A rigid one-dimensional resonator in a curved spacetime

InGR, the gravitational field is represented by the spacetimemetric gμν on a smooth four-dimensionalmanifold
.We assume themetric to have signature (−1, 1, 1, 1). Then, for every vector vμ at a point p in, themetric
delivers a number = mn

m n( )g v v g v v, , which is either positive, zero or negative. These cases are called,
respectively, space-like, light like and time-like. For all space-like vectors vμ, the square root of the positive
number g(v, v) is called the length of this vector. A curve s(ς) parameterized by ςä[a, b] in the spacetime that
has tangents V V V¢ m( ) ≔ ( )s sd d that are always space-like is called a space-like curve. The geometrical distance

along this curve is the quantity ò V= ¢ ¢mn
m n( )L s g s sdp a

b
, which is called the proper distance. To define a

frequencywe need to knowhow tomeasure time. A timemeasurement inGR is defined onlywith respect to an
observer world line. An observer world line is a curve g ( )whose tangents   g g˙ ( ) ≔ ( )d d are always time-
like. The timemeasured along the observer world line g ( ) between the parameter values ñ1 and ñ2 is

  



ò g g= - mn

m n( ) ˙ ˙T g, dp 1 2
1

2 . This is the temporal counterpart to the proper distance, and it is called the

proper time. Additionally, at every point of aworld line γ(ñ), there is a corresponding set of spatial vectors v
called the spatial slice in the tangent vector space at γ(ñ)with respect to ġ ( ), which is defined by the
condition  g g =m n

mn˙ ( ) ( ( ))v g 0.
InGR, there exist different notions of rigidity as it turns out to be less than straightforward to formulate this

basic concept ofNewtonianmechanics in a relativistic way. Early attempts to understand rigidity in the
framework of electrodynamics date back to before Einstein’s formulation of the special theory of relativity
[24–28]. These approaches turned out to be inconsistent with Lorentz symmetry, which then led to the
formulation of a Lorentz invariant differential geometric definition of rigidity in [23] byMax Born after special
relativity was established. Formulated in amodernway, it is the condition of constant distance between every
two infinitesimally separated segments of a rigid body.Here, themeasure of distance is the infinitesimal proper
distance between the twoworld linesmeasured in the spatial slice defined by any of the twoworld lines. This
concept of rigidity is denoted as Born rigidity in literature. A short time after the publication by Born in 1909, it
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was found byHerglotz [29] andNöther [30] that Born rigidity is too restrictive. In particular, they found that,
with the exception of the singular case of uniform rotation, themotion of a Born rigid body is completely defined
by the trajectory of one of its points. Subsequently, therewere attempts to give a less restrictive definition of a
rigid bodywhich include the concept of quasi-rigidity inGR, a condition on themultipole-moments of a body
[31, 32], and themodel of a rigid body as a body inwhich the speed of sound is equal to the speed of light [33].
Here, wewill use, as our starting point, a definition of a rigid rod that is Born rigid, andwewill undertake a
perturbative analysis for small length scales, small accelerations, small velocities and small gravitational fields. In
this article, wewill show that two types of effects are found; those due to spacetime properties alone and those
due to small deformations of the rodwhich correspond to small deviations fromBorn rigidity. Since all effects
can be considered to be small, we remain in the linear regime, where the different effects can be assumed to be
independent.

Let us assume that we have a rod of very small diameter in comparison to its length, i.e., it is effectively one-
dimensional.We assume that theworld lines of the segments of the rod form a family of curves γς(ñ)
parameterized by ςwhichwe assume to be in the interval ςä[a, b]. The end points of the rod are γa(ñ) and γb(ñ).
The spacetime surface F(ñ, ς)=γς(ñ) can be called theworld sheet of the rod. See figure 1. for each curve, the
curve parameter ñ is chosen so that the curves  V V( ) ≔ ( )s F , are space-like geodesics in the sense of the auto-

parallel condition 
V ¢ =V¢ ( )( ) s 0s with respect to the Levi-Cevita connection∇of themetric g given as

z x z x z = ¶ + Gx
a b

b
a

bg
a b g for any two vectors ξ and ζ, where

G = ¶ + ¶ - ¶bg
a ar

b gr g br r bg( ) ( )g g g g
1

2
1

are theChristoffel symbols. Note that we do not assume that theworld lines of the segments of the rod be
geodesics. The segmentsmove under the interior forces of the rod.We also do not assume that ñ is the proper
time of all the segments. Later wewill assume that there is a single segment that has ñ as its proper time.

For every point of theworld sheet F(ñ, ς) of the rod, we assume that the tangent  V¢ ( )s lies in the spatial slice

defined by the tangent to the local segment’s world line gV˙ ( ), i.e.  g V¢ =V( ˙ ( ) ( ))g s, 0. Later, wewillfind that,

due to the condition that the curves sñ(ς) be geodesics, the condition  g V¢ =V( ˙ ( ) ( ))g s, 0 is fulfilled up to the
second order in the proper length of the rod divided by a length scale lvar, which is associatedwith local curvature
and acceleration.We say that the rod is rigid if the proper distance between every two points on the curve sñ(ς) is
independent of the parameter ñ. To further elucidate themeaning of the concept of a rigid rod thatwe use here,
we explain its relation to the concept of a rigid rod thatmay be familiar from special relativity in appendix A.

There are two possibilities to construct a rigid resonator from the rigid rod defined above. One option is that
the rod itself is the resonator: for example, it could be a resonator for electromagnetic waves in different spectral
ranges or a resonator for themany different quasiparticles inside and on the surface of a solidmatter system such
as phonons, plasmons and polaritons, tomention just a few, all of whichmay resonate between the ends of the
rigid rod. The second option is to create a cavity resonator by attaching twomirrors at the end points of the rod
such that the light is reflected between themirrors. In practice, this would be achieved bymaximizing the quality
factor of the resonator.We denote such resonators as rigid resonators. The second option is the focus of this
article, and it is illustrated infigure 2. Thefirst option for a homogeneous isotropic dielectric is discussed in
section 6.

A realisticmatter system can only be rigid for negligible tidal forces and accelerations.Wewill discuss our
model for a deformable resonator affected by tidal forces and acceleration in section 5. In section 3, wewill

Figure 1.Theworld lines γς(ñ) of the segments of the rod are assumed to form a family of curves which give rise to the rod’s world
sheet. The curve parameter ñ, which is not necessarily equivalent to their proper time, is the parameter for a family of space-like curves
sñ(ς) that represent the rod.We assume that the curves sñ(ς) are space-like geodesics and cross theworld lines of each segment
orthogonally.
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derive an expression for the resonance frequency spectrumof a resonator, rigid or deformable, under the
condition that the timescale for light propagation between themirrors ismuch smaller than the timescale on
which the rigid resonator length is changing.

3. Resonance frequencies

In this section,wewill derive an expression for the resonance frequencies of the resonator described above. Aswe
are dealingwith an extended object inGR, the obtained resonance frequencies are ambiguous aswewill see in the
following:first, everymode k existing in the resonator evolveswith a certain phaseψk, this is a covariant quantity.
In order to extract a frequencyωk from the phase, we require a timeT such thatwe can express the phase as
ψk=ωkT. As stated in section 2, such a timemeasurement is defined onlywith respect to an observer and the
timemeasured by the observer along the curve γ(ñ) is the proper time   




ò g g= - mn

m n( ) ˙ ˙T g, dp 1 2
1

2 .

Through the family of curves associatedwith the rigid rod, we can define a family of observers along the curves
γς(ñ)=sñ(ς).We see that every point in the resonator corresponds to a different observer and, therefore, we
cannot give a proper time to thewhole resonator, therefore the frequencies of themodesmust depend on the
point in the resonatorwhere they are observed.

First, wewill consider the case of an optical resonator, discussing other cases at the end of the section. The
resonance frequencies can be obtained from the evolution of the phaseψk of a resonatormode. This can be
found by explicitly solvingMaxwell’s equations in the curved spacetime under consideration.However, we can
achieve the same resultmuch faster by implementing the short wavelength expansion or geometric optical limit.
The purpose of the following calculation is to prove the expression in equation (5), which gives the resonance
frequencies in terms of the radar distance between the two ends of the resonator. Some readersmaywant to
jump to equation (5) directly.

In the short wavelength expansion, the electromagnetic field strength tensor for a freely propagating,
monochromatic light wave is given as [34]

åf
l
a

=mn
a
l mn

=

¥
⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟( ) ( ) ( )( )F x xRe e , 2S x

n
n

n
i

0
,

where the complex valued second rank tensorsfn, μν(x) give the slowly varying amplitudes,λ is thewavelength,
α is the length scale of the slow changes of the properties of the lightfield and the real function S(x) is the eikonal
functionwhich describes the rapidly varying phase. In particular,α is the smallest of the length scales given by
thewaist of the resonatormode, the acceleration of the cavity and the spacetime curvature. This statement will
get its fullmeaning in section 5, where the effects of themotion of the resonator and the spacetime curvature on
the proper length of the resonator are considered explicitly by using a particular set of coordinates called the
proper detector frame.We assume that l a andλ<Lp.Wewill only consider linear polarization in the
following.Wefind that the results for the change of the frequency spectrumdo not depend on the polarization.
Therefore, the results also apply to circular and elliptic polarized fields as those can be obtained as superpositions
of linearly polarized fields.

The raised gradient of the eikonal function x ¶m mn
nˆ ( ) ≔ ( )x g S x is the normal vector field to thewave fronts

defined by S(x). Applying theMaxwell equations to the eikonal expansion in equation (2), wefind in leading

Figure 2. Illustration of ourmodel of an optical resonator consisting of twomirrors that are attached to the ends of a rod.We assume
that the resonator ismoved along a trajectory γ(ñ) by a support which is attached at a distance (1−β)Lp/2 frommirror A. Since
proper time depends on the position in the gravitational field so does themeasured frequency of a resonatormode.We assume the
frequency to bemeasured at a distanceσ Lp/2 from the center of the resonator towardsmirror B.
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order that xmˆ ( )x must be a light like vector field, i.e. x x =m n
mn

ˆ ( ) ˆ ( ) ( )x x g x 0 [35]5. Additionally, the light like

condition implies that the integral curves of the tangents xmˆ ( )x are light like geodesics. In other words, there

exist curves ξ(ς) that have the tangents x x Vmˆ ( ( )): the light rays of geometric optics. Furthermore, the light like

property implies x ¶ =m
mˆ ( ) ( )x S x 0, whichmeans that the phase a

l
( )S x is constant along the light rays.Wewill

use these properties of the eikonal function and its gradient to derive the frequency spectrumof the optical
resonator in the following.

Inside a resonator, we create standingwaves.Hence, wemust assume that, for the resonator, there are
stationary solutions ofMaxwell’s equations that fulfill the boundary conditions at themirrors. This assumption
is valid if we assume that coordinates exist in a small region containing the resonator such that the positions of
themirrors and themetric change only very slightly in the time span that light needs to propagate between the
mirrors. Assuming that linearly polarized standing cavitymode solutions exist, we consider the superposition of
two counter-propagating linearly polarized light waves = +mn mn mn( ) ( ) ( )F x F x F xr lres , where mn ( )F xr and mn ( )F xl

are as in equation (2)with the eikonal functions S r(x) and S l(x), respectively. mn ( )F xl represents thewave
propagating to the left (negative direction) and mn ( )F xr represents thewave propagating to the right (positive
direction).We obtain

å åf
l
a

f
l
a

= +mn
a
l mn

a
l mn

=

¥

=

¥
⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟( ) ( ) ( ) ( )( ) ( )F x x xRe e e . 3S x

n
n
r

n
S x

n
n
l

n
res i

0
,

i

0
,

r l

Wedefined a rigid cavity by assuming that there are twomirrors attached to the ends of a rigid rod.We
consider the gravitational attraction of the twomirrors, all atoms in the rigid rod and the light itself to be
negligible.We assume in the following that themirrors are so close to the ends and so tightly attached thatwe can
identify their world lines with those of the end points of the rod, i.e. γA(ñ)=γa(ñ) and γB(ñ)=γb(ñ). Starting at
ñ=ñ1 with themirror at γA(ñ1), we can define a curve ξ

r(ς)with ςä[ς1, ς2] such that x V g=( ) ( )r
1 A 1 and

x V g=( ) ( )r
2 B 2 for some ñ2 and x V V x x V x V= = ¶m m mn

n( ) ˆ ( ( )) ( ( ))g Sd dr r r, , (see figure 3 for an illustration).
Since all tangents of ξ r(ς) are light like, this is a light like curve and can be interpreted as the path of amassless
point particle, a single photon, frommirror A tomirror B. Atmirror B, the photon is reflected and the tangent of
its path becomes g¶mn

n ( ( ))g Sl
B 2 .We can define a curve ξ l(ς)withςä[ς2, ς3] such that x V g=( ) ( )l

2 B 2 and

x V g=( ) ( )l
3 B 3 for some ñ3 and x V V x x V x V= = ¶m m mn

n( ) ˆ ( ( )) ( ( ))g Sd dl l l, ,
. This is the light like curve

representing the path of the photon back to themirror A. Atmirror A, the photon is again reflected and the
tangent becomes g¶mn

n ( ( ))g Sr
A 3 .

Then, a condition can be formulated that is necessary to fulfill the boundary conditions at each of the
mirrors: the phases of the left propagating and the right propagating parts of gmn ( ( ))F res

A and gmn ( ( ))F res
B have

tomatch by amultiple of 2π. In appendix B, the derivation of this condition is given. Since the phase is constant
along the geodesics ξ r and ξ l, wefind that the change of the eikonal function at the position of themirrormust
have been  d g g p= - =a

l
a
l

( ( ( )) ( ( )))S S S m2A A 3 A 1 where Îm . An observer atmirror A canmeasure this

phase and associate it with a frequency and a change in proper time as  d w=a
l

( )S T ,pA A 1 3 . The proper time

differenceTp(ñ1, ñ3) is proportional to the radar lengthRA=cTp(ñ1, ñ3)/2 of the resonatormeasured at
ñ0=(ñ3+ñ1)/2 by an observer travelingwithmirror A. Therefore, wefind that the frequencies of themodes
of the resonatormeasured by an observer along theworld line ofmirror A are given as

w
p

= ( )cn

R
, 4nA,

A

wherewe assume n>0, i.e. we consider only positive frequencies. A similar analysis can bemade formirror B,
which leads to w = p

n
cn

RB,
B
. Accordingly, for any other observer inside the cavity, we obtain

Figure 3.The resonance frequencies of a resonator can be derived in the geometric optical limit by considering light bouncing back
and forth between the twomirrors of the optical resonator.

5
For anymatter field in the eikonal approximation, the gradient of the eikonal function has to fulfill the characteristic equationswhich

derive from the highest derivative part of thematter field equations. In the case ofMaxwells electrodynamics, the characteristic equations are
simply given by the light cone condition. Formore details about this analysis see [34, 36, 37].
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w
p

=g
g

( )cn

R
, 5n,

whereRγ is obtained by following a light like geodesic from the observer to one of themirrors, after reflection, to
the secondmirror and, after the second reflection, back to the observer. It is clear that this is an approximate
value; the notion of frequencymeans the rate of repetition of a signal. For this notion tomake sense, it has to be
constant at least for a few repetition cycles. Hence, the observermeasuring the frequency has tomove slowly in
comparison to the time that a light pulse needs to propagate between themirrorsRγ/c.

There is anotherway to understand equation (5): electrodynamics in a Lorentzian spacetime can be
interpreted as electrodynamics in a non-dispersive, bi-anisotropic, impedancematchedmediumusing the
Plebanski constitutive equations [38]

e e= + ( )D E
c

w H
1

, 6i ij
j

ijk
j k0

m m= - ( )B H
c

w E
1

, 7i ij
j

ijk
j k0

wherewe define the spatial co-vector as ≔w g gi i0
00 and the permittivity and permeabilitymatrices

e m= -≔ ∣ ∣g g gdetij ij ij
00.Maxwell’s equations in the curved spacetime gμν take the formofMaxwell’s

equations in this effective dielectricmedium inflat spacetime.Note that the spatial co-vectorwj, whichmixes the
electric andmagnetic field components, is defined by the spacetimemixing components of themetric. If the
metric is orthogonal in the chosen set of coordinates,wj vanishes andwe are left with a normal anisotropic
medium.

Let us assume that the coordinate systemwas chosen such that the coordinate time t coincides with the
proper time atmirror A and that z is the coordinate along the light ray. In this case, wefind that the radar length
of the resonatormeasured by an observer atmirror A can bewritten as

ò ò

ò ò

= - = ¢ =

= =

-
⎜ ⎟⎛
⎝

⎞
⎠( )

( )

R
c

t t
c

t c
z

t
z

c

v
z n z

2 2
d

d

d
d

d d , 8

t

t

z

z

z

z

z

z

z

A 2 1

1

ph

a

b

a

b

a

b

1

2

where vph=dz/dt is the coordinate dependent phase velocity of the light and nz=c/vph can be understood as
an effective index of refraction. Equation (8) shows that the radar length can be understood as the optical path
lengthmeasured by a ray sent frommirror A tomirror B.Hence, equation (5) is the condition that the
frequenciesmeasured atmirror Amust bemultiples of the speed of light divided by the optical path length.

At the end of this section, wewould like to discuss the effect of higher order terms in the eikonal expansion.
We derived the frequency spectrum (4) and (5) from anecessary condition for the existence of linearly polarized
standingwave solutions of the electromagnetic field in the resonator. This is the condition at the leading order in
the eikonal expansion. Terms in the eikonal expansion of higher ordermay be complex functions in general, this
can lead to additional phase shifts at the boundaries which, in turn, can lead to frequency shifts. Such additional
frequency shifts can be either considered as systematical errors that limit the predictive power of our approach or
have to be evaluated independently to be subtracted from the result of themeasurement. One particular source
of additional frequency shifts is rotation of the resonator about an axis orthogonal to its optical axis. For
earthbound experiments, such rotationwill be induced by the rotation of the Earth, for example, which can be
measured independently and taken into account explicitly. The effect of rotationmay be calculated by taking
higher orders of the eikonal expansion into account or using othermethods of electrodynamics such as the
paraxial wave equation.Herewe assume that the optical resonator is non-rotating andwe restrict our
considerations to the expression for the frequency spectrum given in equation (5). In the next section, wewill
look at its application.

4. Born rigid optical resonators

In this section, wewill derive the resonance frequencies of a Born rigid resonator in terms of its constant proper
length. For this purpose, we choose towork in a particular coordinate systemwhichwewill introduce in the
following.

Along theworld line of an observer γ(τ), an orthonormal, co-rotating tetrad  tm ( ) ( Î { }0, 1, 2, 3 , all
calligraphic capital letters will run from0 to 3 in the following) can be definedwhere  g t=m m˙ ( )0 is the tangent
to theworld line of the observer,  tm ( )J (Jä{1, 2, 3}, all capital non-calligraphic letters will run from1 to 3 in
the following) are space-like,     t t g t h=m n

mn( ) ( ) ( ( ))g and h = -( )diag 1, 1, 1, 1 . There also

exists a corresponding co-tetrad em with   
e d=m

m . The proper distance along the space-like geodesics
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extending from γ(τ) in the spatial directions generated from  tm ( )J and the proper time τ along theworld line of
the observer generate a coordinate system that is associatedwith the observer (see figure 4). This coordinate
systemonly exists in the vicinity of the observer’s world line, as it can only here be ensured that the spatial hyper-
planes generated by  tm ( )J at different τ do not intersect. In these coordinates, the spacetimemetric seen by a
non-rotating observer can be given simply in terms of: the Riemann curvature tensor along γ(τ) given as

       t t t t t g t g t= a b g d
as

s
bgd( ) ( ) ( ) ( ) ( ) ( ( )) ( ( ))R g R where

= ¶ G - ¶ G + G G - G Ga
bgd g bd

a
d bg

a
gr
a

bd
r

dr
a

bg
r ( )R ; 9

and the non-gravitational accelerationwith respect to a local freely falling frame, represented by the spatial
vector em m≔ aaJ J , where g= m

g
m( ˙ )˙a .

This coordinate system is called Fermi normal coordinates for a freely falling, non-rotational observer (a=0)
[39] or the proper detector frame if proper acceleration occurs [9, 40]. The proper detector frame of a non-rotating
observer is accurate for proper distances [40]








 

=
⎧⎨⎩

⎫⎬⎭∣ ∣
∣ ∣ ∣ ∣

∣ ∣
∣ ∣

( )l
c

R

R

R
x

a
min ,

1
, . 10

Jvar

2

1 2
,

In the following, wewill assume that the length of the resonator Lp is small in comparison to the scale lvar.We
consider γ(τ) to be theworld line of the point at which the rod that holds the resonator is supported.We assume
that this point is somewhere inside the resonator. If it is not attached to any device, we assume that the center of
acceleration is the rod’s center ofmass.We also assume that the resonator is not rotating in the frame of the
observer.We orient the spatial geodesic representing the rigid rod along the z-direction at γ(τ), i.e.

V¢ =t ( ) ( )s 0, 0, 0, 1 . By construction of the proper detector frame, the geodesics sτ(ς) run along the z-coordinate.
Then, we consider two cases; for the first case we assume that


⎧⎨⎩

⎫⎬⎭∣ ∣ ∣ ∣
( )

R

c

a

1
min , 11

z z
J0

0
1 2

2

andwe take curvature into consideration. For the second case,weneglect curvature. In the following,we treat the
first case directly and the second case canbe obtainedby setting the contributions of curvature to zero in the
equations for the relative frequency shift. In particular, in both cases, we are allowed to consider onlyfirst order
contributions of theproper acceleration.With this assumption,we can consider themetric in theproper detector
frame as a linearly perturbedflat spacetimemetric.Wedefine themetric perturbation   h-≔h gP P . For
example, in the gravitationalfield of the Earth, the inverse of the square root of the spatial curvature in thedirection
away from the center of theEarth is of the order of 1011 m,while the length scale given by c2 over the gravitational
acceleration is of the order of 1016 m.Therefore, the condition (11) is fulfilled by four orders ofmagnitude for the
acceleration.

Neglecting quadratic terms in the acceleration, we obtain for the following components of the spacetime
metric in the proper detector frame of a non-rotating observer [40] (as above, Latin indices are used for the
spatial components with respect to the tetrads and spatial indices are raised and loweredwith the spatialmetric

Figure 4.The proper detector frame can be defined along any time-like curve γ. The time coordinate is the proper time τmeasured
along the curve. The spatial coordinates at a proper time τ0 are constructed from the proper distances along space-like geodesics that
originate at γ(τ0). The pointwith coordinates (cτ0, x, y, z) is found by following the spatial geodesic with tangent  mxa

a a proper
distance + +( )x y z2 2 2 1 2 from γ(τ0).
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δIJ=diag(1, 1, 1))

t t t

t t

t d t

»- + +

»-

» -

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )

( ) ( )

( ) ( ) ( )

g c
c

R

g c R

g c R

x a x x x

x x x

x x x

, 1
2

,
2

3

,
1

3
. 12

P
J

J
I J

I J

J
P

KJL
K L

IJ
P

IJ IKJL
K L

00 2 0 0

0 0

Since we assumed V¢ =t ( ) ( )s 0, 0, 0, 1 and by construction of the proper detector frame, the proper length of
the geodesics sτ(ς) is Lp=b−a, where the spatial positions of themirrors are (0, 0, b) and (0, 0, a)with b 0
and a 0. Then, we find from equation (12) that t »( )g c z, 0, 0, 0

z
P

0 for all τ and z along the resonator.
Furthermore, by construction, all segments of the rod remain at fixed coordinate positions along the z-axis
andwe find that  g =V

-˙ ( ) (( ) )g , 0, 0, 0P
00

1 2 . Since V¢ =t ( ) ( )s 0, 0, 0, 1 , we obtain  
 g V¢ =V˙ ( ) ( )g sP

t V-( ) ( ( ) ( ))g g c z, 0, 0,P
z

P
00

1 2
0 . From equation (12) and one of the symmetries of the Riemann tensor

 = -R R follows that the condition  
 g V¢ =V˙ ( ) ( )g s 0P , whichwe assumed in our definition

of a rigid resonator in section 2, is approximately fulfilled for a small proper length of the resonator6.
To obtain the frequency of the rigid resonatormeasured by an observer at xusing equation (5), we have to

calculate the corresponding radar distance between themirrors. The radar distance is obtained from the
trajectories x i( ) of light like particles bouncing back and forth between themirrors as described in section 3 and
illustrated infigure 3. In section 3, we already assumed that acceleration and curvature only change very slowly
with τ. Under this assumption, we can replace acceleration and curvature in equation (12) by their values at τ0.
The trajectories x i( ) have to fulfill the null condition 


 x i x i x i =( ( )) ˙ ( ) ˙ ( )g 0P and the geodesic equation

that governs themotion of test particles 

  x i x i x i x i= -G( ) ( ( )) ˙ ( ) ˙ ( )¨ . Infirst order in hP , onefinds for

theChristoffel symbols


 

     hG = ¶ + ¶ - ¶( ) ( )h h h
1

2
, 13P P P

which shows that the Christoffel symbols are of the same order as h
P . Then, tofirst order in h

P , the
trajectories are given by  x i i i i d i= +  +  ( ) ( ) ( )c , 0, 0,0, , where i 0, are constants and the functions
d i ( ) are of the same order as h

P .With  = -R R , wefind that »g 1
zz
P and = »g g 0

z
P

z
P

0 0 along

x i( ), andwe obtain that d i i i»  
˙ ( ) ( )ch c c, 0, 0,P0

00 0, and d i i i»   
˙ ( ) ( )ch c c, 0, 0, 2

z P
00 0, solve the light

cone condition and the geodesic equation. The difference in coordinate time τ between sending and receiving
the light pulse is given as

ò òdt x i i x i i= +
i

i

i

i

+ -
+

+

-

-˙ ( ) ˙ ( ) ( )d d , 14
0 0

a

b

b

a

,

,

,

,

where i a, and i b, are the parameter values at which the ray intersects with theworld lines ofmirror A and
mirror B, respectively. A transformation of the integration variable to x i= ( )z z leads to

ò òdt
x i

x i
x i
x i

= ++ +

+ +
+

- -

- -
-

˙ ( ( ))
˙ ( ( ))

˙ ( ( ))
˙ ( ( ))

( )
z

z
z

z

z
zd d , 15

a

b

z
b

a

z

0 0

ò ò
d
d

d
d

»
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+
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c z c
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z

c z c

c z c
zd d , 16

a

b

z
b

a

z

0 0

which reduces to

ò

ò

dt
t

t t

t
b

t
b

» +

» - +

» - - +
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a

b P

a

b
z

z z

p

z

p
z z

p

00 0

2 0 0 0 0
2

0
2

0 0 0 2 2

wherewe defined b -≔ b L2 1p and used a=(β−1)Lp/2.Under the assumption of slowly changing
acceleration and curvature, the coordinate time δ τneeded for a round trip of a light pulse inside the resonator is
independent of the point on the z-axis where it was sent from and received at, as long as it is sent and received at
the same point. Therefore, we can calculate the radar length of the resonatormeasured at a given position

6
Here small proper lengthmeans that the proper detector framemetric (12) is still a valid approximation to the actual spacetimemetric.
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z0=(σ+β)Lp/2 along the z-axis inside the resonator (σä[−1, 1]) as

t dt

t
s

t
s sb

» -

= + + + -

s

⎡
⎣⎢

⎤
⎦⎥

(( ))

( ) ( ) ( ) ( )

R g z
c

L
c

L
R

L
a

, 0, 0,
2

1
2 24

3 6 1 . 18

P

p

z

p
z z

p

00 0 0

0
2

0 0 0 2 2

Equation (18)was calculated for a given time τ0 tomake our assumption of slow changes of acceleration and
curvature explicit. Of course, we are free to choose the value of τ0. Therefore, we can replace τ0 in equation (18)
with τ. Then, the relative change of the resonance frequenciesmeasured at z0=(σ+β)Lp/2 is given as

d
w
w

t
s

t
s sb- » - - + -w s ≔

¯
( ) ( ) ( ) ( )
c

L
R

L
a

1
2 24

3 6 1 , 19n

n

z

p
z z

p, 2
0 0 2 2

where w̄n is the nth resonance frequency of the resonator for vanishing acceleration and curvature.
Wefind that the only linear contribution of the acceleration az to the resonance frequency spectrum in

equation (19) is via a position-dependent red shift. It vanishes forσ=0, which corresponds to a frequency
measurement in the center of the resonator. The term3σ2 corresponds to a pure red shift with respect to the
center of the cavity. The term 6βσ is due to the displacement of the resonator’s support from its center. In order
tomove the support along the trajectory γ(τ), while keeping the proper length of the resonator constant, the
acceleration t t t b= +( ) ( ) ( )c R La a 2z z

z z pcm
2

0 0 must be applied to the center ofmass of the resonator7. Based
on these considerations, we can rewrite equation (19) as

d
t

s
t

s» - - -w s
( ) ( ) ( ) ( )

c
L

R
L

a

2 24
3 1 . 20

z

p
z z

p,
cm

2
0 0 2 2

However, a realistic rod can never be rigid. In the next section, wewill consider the first order deviations from
the rigid rod by taking the deformation of the rod due to small inertial and gravitational forces into account.

5.Deformable optical resonators

In the proper detector frame, every segment of the rod has aworld line with constant spatial components. The
acceleration of a segment of the rod at x=(cτ, 0, 0, z), in comparison to a freely falling test particle initially at
rest at the same position as that segment, can be derived from the geodesic equation



  g t g g t g t= -G( ) ( ) ˙ ( ) ˙ ( ) ( )¨ , 21x x x xrest, rest rest, rest, rest rest, rest

where, infirst order in themetric perturbation, the tangent for a test particle at rest is
g = - -˙ ( ( ( )) )c g x , 0, 0, 0P

xrest, 00
1 2 with t- » +-( ( )) ( )g h zx 1 , 0, 0, 2P P

00
1 2

00 . The dotmeans the derivative

with respect to the curve parameter τrest. Infirst order in hP , the Christoffel symbols are given by equation (13)
and are proportional to themetric perturbation. Therefore, expanding equation (21) infirst order in themetric
perturbation, wefind  g » - Gc¨ xrest,

2
00 . Since t t g t= » +˙ ( )c h zd d 1 , 0, 0, 2P

xrest rest,
0

00 , we obtain

» - GcaP
J J2

00 for the proper and tidal accelerations.
We consider the effect of aP on the resonator’s endmirrors and the resulting deformation of the rod to be

negligible in comparison to the direct effect of aP on the rod. Then, we obtain the inertial and tidal forces on the
rod bymultiplication of aPwith themass density ρ. These forces give rise to stresses within the rod, represented
by the stress tensorσKL. For static forces and forces that change very slowly, the stresses are related to the strain
viaHooke’s law as

e s= -( ) ( ), 22IJ IJKL KL
1

where -1 is the inverse of the stiffness tensor for thematerial the rod is composed of. From the strain, we can
calculate the deformation of the rod by integration along the length of the rod from its center ofmass. Since the
change of diameter of the rod and its deformations in the x–y-plane are not of interest for us, we can restrict our
considerations to εzz, εxz and εyz.We assume a constant cross sectionA of the rod, andwe assume that the
diameter of the rod ismuch smaller than its length. The contribution of εxz and εyz on the length of the rod are of
second order in themetric perturbation and can be neglected (see appendix C) if

á ñ á ñ { ∣ ∣ ∣ ∣ } ( )L c w L c wa a amax , . 23P
z

p P
x

s x p P
y

s y,av
5

max
2 2 4 5

max
2 2 4

where aP
x

max and aP
y

max are themaxima of proper acceleration in the x-direction and y-direction, respectively,
wx andwy are the diameters of the rod in the x-direction and y-direction, respectively, and aP

z
,av is the largest of

7
This result can be directly obtained by considering the differential acceleration between the support and the center of the cavity by use of

the geodesic deviation equation.

9

New J. Phys. 20 (2018) 053046 DRätzel et al



the values given by b tá ñ∣ ( )∣az and b tá + ñ( ) ∣ ( )∣L c R3 1 6p z z
2 2

0 0 , where áñdenotes the averaging over the
observation time (see appendix C for the derivation).With these considerations, the tidal accelerations in the
proper detector frame in the transversal direction can be neglected if the following conditions hold

 á ñ á ñ{ ∣ ∣ ∣ ∣ } ( )w c R w c Ra max , , 24P
z

x x x y y y,av
2

0 0
2

0 0

Additionally, we assume that the various contributions to the transversal tidal acceleration do not oscillate on
resonancewith any elasticmode of the rod that is not already on resonancewith the oscillations of the
longitudinal acceleration and the longitudinal tidal acceleration. Inmost situations of interest, it should be easy
to fulfill these conditions by choosing an appropriate orientation of the resonator and appropriate values forwx

andwy. In particular, the conditions are fulfilled for the examples given in sections 7–9.
Under the above conditions, the only non-zero component of the stress tensor of interest for us isσzz and its

relation to the strain is given as

e s= ( )
Y

1
. 25zz zz

whereY is the Young’smodulus of the rodmaterial. If we assume a constantmass density, the force along the rod
in the positive z-direction can be obtained as

òt r t r t t= ¢ ¢ - - + ++ 
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wherewemade use of t t t t- G = - +( ) ( ) ( ( ) ( ) )z c z c R za a, ,P
z z z

z z
2

00
2

0 0 . For the force along the rod in the
negative z-direction, we find
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2
. 27z z
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Since the support of the resonator is inside the resonator, we obtain the total deformation of the resonator by
integrating the strains e =+

+F Azz
z and e =-

-F Azz
z on the two sides of the resonator from z= 0 to the ends,

respectively. The effective change of the proper length is

ò òd e e
t

b
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where r=c Ys is the speed of sound in the rodmaterial. The acceleration induces a contraction of one side of
the resonator and an expansion of the other. Therefore, the acceleration amounts to a change of the proper
length, proportional to the displacementβ Lp/2 of the support with respect to the center of the resonator. The
change of the proper length proportional toR0z0z(τ) can be split into two terms. The termproportional toβ2

corresponds to the acceleration t t t b= +( ) ( ) ( )c R La a 2z z
z z pcm 0 0

2
0 0 of the center ofmass of the resonator that

we discussed at the end of section 4. For a freely falling resonator (β=0=az(τ)), only the second term in the
brackets remains.

From equations (19) and (28), wefind for the relative change of the resonance frequencies of the deformable
resonator

d
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Note that the deformation of the resonator changes the coordinate position of every point inside the resonator8.
This leads to a change in the trajectory of a light pulsewithin the resonator, and thewhole calculationwemade in
section 4would be changed.However, this changewould only amount to a change of the resonance frequencies
in second order in themetric perturbation andwe can neglect it.

Again, we canwrite the relative shift of the resonance frequencies in a neater way using the center ofmass
acceleration as

d
t

b s
t

s» - + + -w s

⎛
⎝⎜

⎞
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cm
2

2

2
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2

2
2 2

As expected, wewould obtain the result in equation (20) for the Born rigid rod from equation (30) if the speed of
sound in thematerial was infinite. This coincides with the observation that a Born rigid rod violates causality, as

8
Any deformation of the rod also leads to a change of density and the speed of sound in the rodwhich, in turn, leads to amodulation of the

deformation of the rod.We consider this effect to be negligible here. In particular, it corresponds to a nonlinear correction ofHook’s law.
Therefore, the result in equation (29) can be considered accurate as long asHook’s law can be applied. As the deformations considered are
supposed to be small, Hook’s law should holdwith a very good accuracy.
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its segments would need to interact with an infinite speed. Amore realistic definition of a rigid rodwas given in
[33] as a rod inwhich the speed of sound is equivalent to the speed of light. In appendixD,we show that the
approach of [33] leads to the same expression of the change of the length of the rigid rod as our equation (28).
The relative shift of the resonance frequencies for such a causal rigid rod is found from equation (30) in the limit
c cs as

d
t

b s
t

s» - + -w s
( ) ( ) ( ) ( ) ( )

c
L

R
L

a

2 8
1 . 31

z

p
z z

p,
cm

2
0 0 2 2

In particular, wefind that the contribution of curvature to the relative frequency shift vanishes if the frequency is
measured at one of themirrors corresponding toσ=±1.

However, the speed of sound cs in every realisticmaterial is alwaysmuch smaller than the speed of light: for
example the speed of sound in aluminum is of the order 5×103m s−1. To date, thematerial with the highest
ratio of Young’smodulus and density r =Y cs

2 is carbyne, with a value of the order of 109 m2 s−2 [41], which
would correspond to a speed of sound of the order of 3×104 m s−1. Therefore, wefind that the effect of the
deformation ofmatter is by far themost dominant and the rod is far from rigid (may it be Born rigid or causal
rigid) in all realistic situations. However, the relativistic effect of gravitational red shift gives a fundamental limit
on the definition of the frequency spectrumof an optical resonator as a property of the resonator alone; when
resonance frequencies of an optical resonator are to be specifiedwith a precision of the order of this relativistic
effect, the position of the frequencymeasurement has to specified.

Finally, wewant to point out that the ratio of Young’smodulus and density is called the specificmodulus. In
this sense, c2 can be thought of as the specificmodulus of spacetime. It is interesting to note that this value is off
by a factor 4 from the value 4c2 given for the specificmodulus of spacetime in [42].

6.Deformable dielectric optical resonators

Up to this point, we have only discussed the case of an empty cavity resonator. Now, let us assume that the rod
itself is the optical resonator. In particular, we assume that it consists of an isotropic homogeneous dielectric
medium (seefigure 5). In [43], it was shown that light rays in an isotropic dielectric follow light like geodesics
with respect to the dielectricmetric tensor (see also [34, 44])
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where m= -( )cdiel
2 1 is the speed of light inside themedium and  

=u g uP is the normalized tangent
vector to theworld line associatedwith the local segments of the dielectric. In our case, these are the segments of
the resonator, and therefore,  = +( ) ( )u z h1 2, 0, 0, 0P
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equation (32), we obtain themetric

t t t

t t

t d t

»- + +

»-

» -

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )

( ) ( )

( ) ( ) ( )

g c
c

c c
R

g c
c

c
R

g c R

x a x x x

x x x

x x x

, 1
2

,
2

3

,
1

3
. 33

P
J

J
I J

I J

J
P

KJL
K L

IJ
P

IJ IKJL
K L

00
,diel diel

2

2 2 0 0

0
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2
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Now, all of the considerationsmade for the empty resonator above can also bemade for a resonator composed of
an isotropic, homogeneous dielectric by using themetric 

g P,diel for the propagation of the phase fronts given by
the eikonal function.Hence, we obtain the resonance frequencies in an isotropic homogeneous dielectric by

Figure 5. In the case of a dielectric optical resonator, we consider the rod itself to be the resonator.
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multiplying the result for the empty resonatorwith cdiel/c. This factor cancels in the relative frequency
perturbation so that

d d=w s w s ( ). 34,
diel

,

A similarmetric as in (32) has been shown to arise for particles or quasiparticles in othermatter systems, e.g. for
electrons in graphene [45]. Our analysismay also apply to these situations.

7. Example: uniform acceleration

To illustrate the applicability of our results, wewill consider some examples in the following. A particularly
straightforward example is the situation of a non-rotating resonator that is uniformly accelerated along the
optical axis. From the equivalence principle follows that this situation is similar to the situation of an optical
resonator kept vertically at a fixed position in the gravitational field of amassive object like the Earth.However,
sincewe are considering an extended object, the curvature of the gravitational fieldwould also enter the
frequency spectrumof the resonator as in equation (30). Hence, the effect of uniform acceleration and a
gravitational field do only coincide if the effect of curvature can be neglected. For uniform acceleration, wefind

d
b s

» -w s

⎛
⎝⎜

⎞
⎠⎟ ( )

c c
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2
. 35

s
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, 2 2

Forβ=±1, a length of the resonator of Lp∼2 cm, an acceleration of the order of 10 ms−2, which is similar to
the gravitational acceleration of the Earth, and a speed of sound in the rod of the order of -10 ms3 1 (similar to the
speed of sound in aluminum), we obtain a relative frequency shift of the order of 10−7. This frequency shift is
given only by the first term in equation (35) as the second term is smaller by about 11 orders ofmagnitude. Since
thefirst term is due to the deformation of the resonator it is aNewtonian effect.

For the caseβ=0 thefirst term in (35) vanishes.What remains is a purely relativistic effect, the gravitational
red shift, due to a difference in proper time between the center of the resonator and every other point along the
optical axis. Setting the parameterσ to−1 and+1means that the frequency ismeasured at themirror A and
mirror B, respectively.Wefind a relative frequency shift of the order of -10 18. Themeasurement of such a
small frequency shift seems to be experimentally challenging butmay be feasible with state of the art technology.
For example, currently, optical clocks reach a relative precision of 10−18 over an integration time of 1 s [46, 47].
Of course, higher frequency shifts can be reachedwith longer cavities and larger accelerations. In particular, the
effect of gravitational red shift was alreadymeasured on the length scale of about 33 cm [48]. As argued above,
the effect of gravitational red shift gives a limit on the validity of the concept of the frequency spectrum as a
property of the optical resonator itself. For the parameters of the example above, we find that a reference for the
frequencymeasurement has to be givenwhen the frequency spectrum is to be specifiedwith a relative precision
of 10−18.

8. Example: plunge into a black hole

Weconsider the results derived in this article as a basis for optomechanics in relativity and gravity which implies
their application to experiments in laboratories on the surface of the Earth or in space. However, our approach is
not limited to spacetimes that only bearweak gravitational effects. It is the spacetimemetric seen by the optical
resonator in its proper detector frame that has to be a linearizedmetric. This is ensured by the condition

l Lpvar . To illustrate the applicability of our results to spacetimeswith strong gravitational effects, we consider
the situation of a non-rotating resonator that falls into a non-rotating black hole (seefigure 6). To this end, we
consider the Schwarzschildmetric in spherical Schwarzschild coordinates (ct, r,ϑ,f)

J= -
⎛
⎝⎜

⎞
⎠⎟( )

( )
( ) ( )g f r

f r
r rdiag ,

1
, , sin , 362 2 2

where f (r)=1−rS/r and rS is the Schwarzschild radius.We assume that the support of the resonator falls
radially from r= R into the center of the black hole atf=0 andϑ=π/2. The corresponding trajectory is
given in [49] as

 =( ) ( ) ( )r R cos 2 , 372

  t = +
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )c

R R

r2
sin , 38

S

1 2

parameterized by ñ.We see that r= 0 for ñ=π, whichmeans that the singularity at the center of the black hole
is reached infinite proper time t p= R cr2 S

3 2 1 2. The tangent to theworld line of the falling support of the
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resonator is
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where ñ=ñ(τ) is implicitly given by equation (38), ġ1 can be obtained directly from equations (37) and (38) and
ġ0 can be found from the normalization condition g g = -m n

mn˙ ˙ ( ( ))g r c2. Then, the time line can be found as

γ=(ct(τ), r(ñ(τ)),π/2, 0), where òt t g t= ¢ ¢
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along the time-like geodesic γ is given as
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All other orthonormal tetrads can be obtained by orthogonal transformations in three-dimensions on the spatial
part of the tetrad (40). Due to the spherical symmetry of the spacetime and the radial trajectory of the resonator
atϑ=π/2 andf=0, we can restrict our considerations to rotations in the  m1 –

m
3 -plane. Then, we define the

rotated frame

    

    

j j
j j

= = +
= = -

m m m m m

m m m m m
˜ ˜ ˜

˜ ˜ ˜ ˜ ( )
, cos sin ,
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0 0 1 1 3

2 2 3 3 1

where the anglejä[0,π/2] gives the orientation of the resonator in the  m1 – m3 -plane. From the tetrad (41), we
obtain the proper detector frame. The z-direction is defined by  m3 andwefind from equation (29) that

d
t
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where no proper acceleration appears since the resonator is assumed to be freely falling. The curvature tensor
componentR0z0z(τ) is explicitly given as
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Here, we used that =f f¯R 0r0 for the Schwarzschildmetric. The expressions for the other curvature tensor
components appearing in equation (42) atϑ=π/2 are given as

=- =

= -

f f
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Figure 6.Artistic representation of the optical resonator plunging radially into a black hole.
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Weobtain


t

j
= -

+( ) ( ( ))
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( )R
r

r

1 3 cos 2

4
, 45z z

S
0 0 3

andwefind that the specification of the angle of orientation of the rodj gives rise to a numerical factor which
vanishes only atj = -( )arccos 1 3 2. Hence, forj ¹ -( )arccos 1 3 2, the frequency shift is proportional to
the frequency shift atj=0, which corresponds to vertical orientation. For a vertically oriented causal rigid
resonator supported at its center, we find the relative frequency shift at its center is given by


d t » -w ( )

( )
( )

r L

r8
. 46

S p
,0

2

3

The time evolution of this frequency shift is plotted infigure 7.We see that the frequency shift in equation (46)
staysfinite until r= 0 is reached at ñ(τ)=π. In particular, there is no effect due to the crossing of the event
horizon at rS. As stated at the beginning of this section, our approach is accurate only for l Lpvar . From

equation (45), wefind that = ( )l r rSvar
3 forj=0. The stellar black hole has a Schwarzschild radius of the

order of 103 m. For an optical resonator of a length of the order of 10−2 m, this implies that that our approach
breaks downwhen a radius of the order of 1 m is reachedwhich is far beyond the event horizon at r=rS.

The effect of the event horizon can be seen by considering a situation inwhich themeasured frequency is
imprinted on a signal at the center of the resonator and sent out radially to an observer that stays at constant
coordinate r=R>rS. This observer receives a signal with frequency
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where r(t) and τ(t) are given implicitly by the time line γ(τ). Thefirst factor on the right-hand side of
equation (47) corresponds to the gravitational red shift and the second factor to theDoppler shift due to the
relative velocity between the emitter and the receiver. The red shift factor f (r(t))1/2 vanishes when the resonator
passes the event horizon and becomes imaginary.

The above result can be applied aswell to an optical resonator falling towards the Earth. For a distance from
the center of the Earth of the same order as its radius, wefind that the relative frequency shift in equation (46) is
of the order of 10−27 for an optical resonator of 2 cm length. This relativistic effect ismostly gravitational red
shift due to curvature. It is far frombeing observable with state of the art technology.However, it gives a
fundamental limit of the validity of the concept of frequency spectrum as a property of the optical resonator
without any reference as discussed above.

9. Example: an oscillatingmass

As a third example, we consider the situation of a non-rotating resonator in the gravitational field of an
oscillating solid sphere ofmassivematter. The result could be used to consider the possibility of detecting the
gravitational field of a small sphere of densematerial, like gold or tungsten (see figure 8). This situation is similar
to the one considered in [50, 51], where the resonator is a secondmassive sphere on a support with restoring
force.Here wewill restrict ourselves to the derivation of the resonance frequency spectrum and an evaluation of
its relative change for certain realistic experimental parameters. Also, we assume that the solid sphere is the only

Figure 7.The frequency shift of a vertically oriented optical resonator falling into a black hole is plotted over the normalized proper
timemeasured at the center of the resonator.
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source of a gravitational field affecting the optical resonator. Tomodel an earthbound experiment, the
gravitational field of the Earthwould have to be taken into account aswell. To derive ourmodel of the
gravitational field of amassive sphere, we start from the Schwarzschildmetric, which is given as

= +
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in isotropic Cartesian coordinates =( ˜ ˜ ˜ ˜ ˜)x ct x y z, , ,0 , where ≔r GM c2S
2 is the Schwarzschild radius of the

sourcemass and + +≔ ( ˜ ˜ ˜ )R x y z2 2 2 1 2. Tofirst order in rS/R, the difference of (48) from theMinkowski
metric diag(−1, 1, 1, 1)has only four non-zero components, namely = = = =˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜h h h hS

xx
S

yy
S

zz
S r

R00
S . Let us

assume that the spheremovesmuchmore slowly than the speed of light and that we are close enough to the
sphere so that all changes of the gravitational field can be considered to be instantaneous.With this, we can
model themetric perturbation for themoving sphere by replacingR by g-(˜) ≔ (( ˜ (˜))˜R t x tM

x 2 g+ -( ˜ (˜))˜y tM
y 2

g+ -( ˜ (˜)) )˜z tM
z 2 1 2, where gm (˜)tM is the trajectory of the sourcemass. The resultingmetric perturbation
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Weassume that the support of the resonator is at rest in the isotropic coordinates on the z̃ axis in the negative z̃
direction. To be completely accurate, wewould need tofix the proper distance between the support of the
resonator and the average position of the sphere, as this corresponds to the assumption that the distance isfixed
by anothermatter system. Furthermore, in every realistic situation, the proper distancewould change as the
matter system is affected by the gravitational field of the sphere and the gravitational force experienced by the
resonator.However, any small error in the position of the resonator will be negligible, as it corresponds to a
small change of the acceleration and curvature that we already assumed to be small. From equation (13), wefind
that an acceleration t g t t=  » G » -g t( ) ( ˙ ( )) ( )˜

˙ ( )
˜a c c r R2z z z

S
2

00
2 2 along the z̃ -axis is necessary to keep the

resonator at a fixed position <z̃ 00 on the z̃ -axis, i.e. g t t=( ) ( ˜ )z, 0, 0, 0 . For the linearly perturbedmetric,
the curvature tensor is given as

h ¶ ¶ - ¶ ¶ - ¶ ¶ + ¶ ¶bgd
a ar

b g dr b d gr g r bd d r bg ( ) ( )R h h h h
1

2
. 51M M M M

Weassume that the resonator isfixed along the z̃ -axis. From the equation (51), we obtain the curvature
component t t= -( ) ( )˜ ˜ ˜ ˜R r Rz z S0 0

3.
To construct the proper detector frame, we need tofix the tetrad corresponding to the observer at the

support of the cavity. Sincewe assume that the support stays at rest in the coordinates ( ˜ ˜ ˜ ˜)x x y z, , ,0 , we have
 =m -(( ) )˜ ˜g , 0, 0, 0S

0 00
1 2 .We define the three spatial vectors of the tetrad  mJ with J= 1, J= 2 and J= 3 such

that they point in the x̃-direction, ỹ-direction and z̃ -direction, respectively. Therefore, wefind
 =m -( ( ) )˜ ˜g0, , 0, 0

xx
S

1
1 2 ,  =m -( ( ) )˜ ˜g0, 0, , 0

yy
S

2
1 2 and  =m -( ( ) )˜˜g0, 0, 0,

zz
S

3
1 2 .We conclude that the

transformation to the proper detector frame is a linearized coordinate transformation. A linearized coordinate
transformation leaves the curvature tensor invariant andwe obtain t t= -( ) ( )R r Rz z S0 0

3. Furthermore,
t e t t= »m

m( ) ( ) ( )˜a a az z z tofirst order in themetric perturbation.
Let us assume that themotion of the sphere can be described as t d t= + W( )R R R sin0 0 , whereR0 is the

average distance between the sphere and the position of the support of the resonator, δR0 is the amplitude of the
sphere’s oscillation and 2πΩ its frequency. If we assume that δR0 ismuch smaller thanR0, the proper
acceleration and the curvature can bewritten as

Figure 8. Illustration (not to scale) of the resonator placed in front of a gold sphere that oscillates by a lever with frequencyΩ/2π. The
gravitational field of the sphere induces a change of the resonance frequencies of the resonator.
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Thefirst terms in (52) and (53) are constant, andwe can calculate their effect on the frequency spectrumusing
equation (29). The resulting time dependent resonance frequencies are given by equation (29) as
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Let us assume that the sphere is of gold or tungsten, that themass of the sphere is 100 g (corresponding to a
radius of the order of rsph∼1 cm), which corresponds to a Schwarzschild radius of the order of 10−27 m, the
amplitude of the oscillations δR0 is of the order 1 mm,while the length of the resonator andRmin, theminimal
distance between the resonator and the sphere, are of the order of 1 cm. Then, wefind thatR0=rsph+δ
R0+Rmin+Lp(1+β)/2 takes values between 2 and 3 cm. This results in values for acceleration and spacetime
curvature of the order of - -10 ms10 2 and 10−25 m−2, respectively.Wementioned above that the speed of sound
in a rod of aluminum is about 5×103m s−1. Therefore, the relative change of the resonance frequencies of a
resonatorwith its lengthfixed by an aluminum rod, in the gravitational field of themovingmass, yields
d ~w

-10 18 forβ=±1, where the acceleration is dominant, and d ~w
-10 19 forβ=0, where only the

curvature contributes. The relativistic effects in equation (54) are ten orders ofmagnitude smaller. Hence, to
detect them, thewhole experimental setupwould need to be under control with this precision.

For oscillation frequenciesΩ far below any elastic resonances of the resonator rod, we can also derive the
effect of the sinusoidallymodulated terms in (52) and (53)with equation (29).Wefind
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For the parameters used above, we find forβ=±1 an amplitude of the frequency oscillations of the order of
10−19. The temporalmodulation of the frequency shiftmay be an advantage in experimental situation as itmay
be used to increase sensitivity. As for the example of uniform acceleration, the values for the frequency shifts that
we found for this setup seem to be challenging but not out of reach of state of the art experimental techniques.
Oscillations of the sourcemass on resonancewith the elasticmodes of the resonator rodmay be used to increase
the effect on the frequency spectrum significantly. However, the consideration of this situation is beyond the
framework developed in this article. It will be treated in a future article.

10. Conclusions and outlook

Wederived an expression for the resonance frequencies of an optical resonatormoving in aweak gravitational
field in a relativistic setup. Firstly, we considered a Born rigid resonator, whichwe assumed to be constructed
fromaBorn rigid rod. Secondly, we considered a deformable resonator, wherewe assumed the rod to consist of a
realisticmaterial withfinite Young’smodulus. In this context, we discussed the concept of a causal rigid rod.
Besides gravitational effects, the expressions that we derived take proper acceleration of the resonator into
account. Aswell as empty optical resonators, we considered optical resonators filledwith a homogeneous
dielectricmaterial.

Our investigation revealed three fundamentally different effects. One is a simple gravitational red shift: the
resonator is an extended object and time runs differently at different points inside the resonator. Therefore, the
resonance frequencies of the resonator are not a global property of the resonator, but depend also on the position
inside the resonator at which it ismeasured. The second effect is due to the difference between proper length and
radar length, which leads to a shift of the resonance frequencies in the presence of non-zero curvature and
acceleration even for a Born rigid resonator. The third effect is the deformation of the resonator due to curvature
and acceleration, when the resonator is deformable. The deformation of the resonator is governed by only one
parameter, the speed of sound cs in the rod. It turns out that the effects of deformations are larger than the
relativistic effects, red shift and difference between proper length and radar length, by a factor c cs

2 2. A causal
rigid rod can be considered to be onewith the speed of sound equivalent to the speed of light, overcoming the
problems of Born rigidity [33].We gave an expression for the resonance frequency spectrumof a causal rigid rod
in equation (31). Since the largest speed of sound in anymaterial is still many orders smaller than the speed of
light, the deformations of realisticmaterials will dominate over the relativistic effects significantly. Therefore, a
very high degree of control over thematerial parameters would be necessary to observe the relativistic effects.
However, the relativistic effect of gravitational red shift can be seen as posing a fundamental limit on the validity
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of the concept of the frequency spectrum as a property of the optical resonator alone; when resonance
frequencies are to be specifiedwith a precision of the order of the gravitational red shift, the position of
frequencymeasurement has to be specified additionally.

The results derived in this article can be applied to general spacetime geometries if acceleration and tidal
forces in the proper detector frame of the resonator are small enough. This includes freely falling resonators in
strong gravitational fields like a black hole beyond the Schwarzschild radius or a uniformly accelerated cavity
whichwe gave as examples in this article. As a third example calculation, we considered the gravitational effect of
an oscillating tungsten or gold sphere on the resonance frequencies of an optical resonator in section 9. This
situation is similar to the one considered in [50, 51], where the resonator is a secondmassive sphere on a support
with a restoring force.

Note that our results can be applied to oscillating gravitational fields like that due to the oscillating source
mass as long as the oscillation frequency ismuch smaller than the elastic resonances of the rod that constitutes
the optical resonator. In the particular situation of an aluminum rod of a few centimeters and an oscillating
sourcemass of a few gram, this is a very good approximation as the elasticmodes of the rod have frequencies of
the order of 100 kHz, which is hard to achieve with a sourcemass of this size. However, for longer resonators,
smaller sourcemasses or other oscillating gravitational fields like gravitational waves, elastic resonancemay be
achievedwhich can amplify the effect on the frequency spectrum significantly. A gravitational wave is a
particular example of a situation inwhich the acceleration vanishes and only an oscillating curvature remains9.
Sincewe already identified the deformation effects of a realistic rod as the dominant effect, the effect of
oscillating curvature on the rod can be treated similar to the effect of a gravitational wave on the antenna of a
resonantmass detector (see for example [9] and chapter 37 of [49] as a reference for the latter). A detailed
description for a resonantly driven optical resonator as a follow up of this article will be given in a future
publication.

The precision ofmetrological experiments with resonators depends strongly on the knowledge of the
resonance frequencies of these resonators. On the one hand, the effects of acceleration and curvature on the
resonance frequencies can be seen as an experimental systematic errorwhich has to be taken into account. On
the other hand, these effects can be used tomeasure a proper acceleration or spacetime curvature. In such
experimental situations, themodel we usedwill certainly not be fully valid and the effects have to be calculated
for the precise apparatus that is used.However, the results of this article can serve as a basis for investigations of
the accessibility of spacetime parameters and parameters of states ofmotion in themore advanced framework of
quantummetrology [16].

In our analysis, the only non-Newtonian effects are the relativistic red shift and time dilation and the
difference between radar length and proper length.However, the formalism employed here contains further
relativistic effects (see table I of [40]) such as the Sagnac effect andmagnetic type gravitational effects such as
frame dragging, which induces the Lens–Thirring effect in gyroscopes. It would be interesting to include these
effects in amore detailed analysis. Oneway could be an extension to three-dimensional optical resonator
geometries and the inclusion of the polarization of the lightfield.

In the future, it would be desirable to have a description beyond the restrictions to small accelerations and
curvatures. For that purpose, a fully relativistic description of elasticity has to be used such as those presented in
[32, 33, 52]. For significant variations of the curvature on the length scale of thewavelength of the resonator
modes, it would be necessary to abandon the eikonal approximation and to derive the resonance frequencies
directly from solutions of theMaxwell equations in a curved spacetime. This is the case if the effect of the
gravitational field of the light inside the resonator is to be considered in full generality [22]. Furthermore, the
effect of rotation of the resonator has to be considered in the future. This can be done by considering higher
orders of the eikonal expansion or usingmethods of electrodynamics like the paraxial approximation.
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AppendixA. Relation to the concept of a rigid rod in special relativity

In special relativity, the proper length of a rod is given as the coordinate distance between its endpoints, calculated
in the coordinate systemdefinedby the rest frameof the rod.Here, we callLp(sñ) the proper length of the rod and
describe it in the following. By definition, for everyñ0 and every point  V( )s 00

of the space-like curve  V( )s
0

representing the rod, there is a space-like tangent  V V V¢ V( ) ≔ ( ) ∣s sd d00 0 0
. For every point of the curve  V( )s

0

representing the rod, there is an associated vector in the tangent space 
 V( )Ts 0 0

via the inverse of the exponential

map,where the exponentialmap is given as  
 

V V( ) ( )Texp :s s
0 0 0 0

and  
V V V V- ¢ =V (( ) ( )) ( )( ) s sexps 0 0

0 0 0 . In

particular, the twoendpoints of the rod  ( )s a
0

and  ( )s b
0

are associatedwith the vectors V V- ¢( ) ( )a s0 00
and

V V- ¢( ) ( )b s0 00
. Since  V( )s

0
is a space-like geodesic (in the sense of the auto-parallel property), the proper distance

from  V( )s 00
to  ( )s a

0
and  ( )s b

0
is equivalent to thenormof V V- - ¢( ) ( )a s0 00

and V V- ¢( ) ( )b s0 00
, respectively,

with respect to themetric gμν at  V( )s 00
. Hence, for every point  V( )s 00

on the rod, there is a representationof the

rodas a straight line V V¢ ( )s 00
in the tangent space to this point and the sumof the proper distances in both

directions of the rod is equivalent to the length of the line given as  
V V- ¢ ¢V( ) ( ( ) ( ))( )b a g s s,s 0 0

0 0 0 0
.We canfind

coordinates such that


h=V mn mn( )( )gs 0 0
. This is called a local Lorentz frameat  V( )s 00

. In the local Lorentz frame, the

coordinate distance (in tangent space)between the endpoints of the line V V¢ ( )s 00
is equivalent to its length

 
V V- ¢ ¢V( ) ( ( ) ( ))( )b a g s s,s 0 0

0 0 0 0
. In special relativity, the spacetime and the tangent space to every point canbe

identified since spacetime isflat. Then, the length of the line representing the rod in tangent space is also the proper
length of the rod. Therefore,we can identify Lp(sñ) as the generalizationof the proper length of a rigid rod inGR.

Appendix B. Boundary conditions

In the following, wewill will applyMaxwell’s equations to the eikonal expansion in equation (2) along the same
lines as in [35].Wewill write z z =m

r r
m; for the covariant derivative. In the following, wewill apply the Lorenz

gauge condition andMaxwell’s equations to the eikonal expansion in equation (2).Maxwell’s equations in
vacuum imply that [35]

+ - + =mn l
l s

m ns
s
n ms abmn

ab( ) ( )F R F R F R F 0, B1;
;

whereRμν is the Ricci tensor.We have

å a
l
f x f

l
a

= +mn l
a
l mn l mn l

=

¥
⎜ ⎟⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟

ˆ ( )( )F Re e i and B2S x

n
n n

n

;
i

0
, , ;

å a
l

f x x
a
l

f x f x f
l
a

= - + + +mn l
l ls a

l mn l s mn l s mn l s mn ls
=

¥
⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎞
⎠⎟

ˆ ˆ ( ˆ ˆ ) ( )( )F g Re e i 2 . B3S x

n
n n n n

n

;
; i

0

2

, , ; , ; , ;

In leading order, wefind the null condition x x =ls
l s

ˆ ˆg 0. By taking the covariant derivative of the null condition

and taking into account that x = ¶m mˆ ( )S x , wefind

x x x x x x x= = = =ls
l s m

s
s m

s
sm

s
m s( ˆ ˆ ) ˆ ˆ ˆ ( ) ˆ ˆ ( )g S x0 2 2 2 B4; ; ; ;

whichmeans that the integral curves of the vector field xsˆ are light like geodesics. These are the light rays of
geometrical optics. In the next to leading order, wefind

f x f x= +mn l
l

mn l
lˆ ˆ ( )0 2 . B50, ; 0, ;

Wedefine the scalar

*f f fag bd
ab gd≔ ( ) ( )g g , B60 0, 0,

1 2

and the polarization tensor f0,μν=f0,μν/f0.Wefind that

x x f f f f f= -l
mn l

l
mn l mn l

- -ˆ ˆ (( ) ( ) ) ( )f B70, ; 0
1

0, ; 0
2

0, 0;
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* *x f f f f f f f f= - +l
mn l mn

ag bd
ab l gd ab l gd

- -⎜ ⎟⎛
⎝

⎞
⎠ˆ ( ) ( ) ( ) ( )g g

1

2
B80

1
0, ; 0

3
0, 0, ; 0, 0, ; 0,

f f x f f x= + =mn l
l

mn l
l- -( ) ˆ ( ) ˆ ( )1

2
0. B90

1
0, ; 0

1
0, ;

Thismeans that the zeroth order polarization tensor is parallel transported along the light rays. Furthermore, for

linear polarization, we canwrite j=mn mn( ) ¯f fexp i0, 0 0, , wheref and mnf̄0, are real. From x =mn l
lˆf 0; , wefind

thatj x =l
lˆ 00, . Therefore, the phase of the zeroth order amplitude function does not change along the light ray.

In particular, we can assume thatf0,μν is real everywhere aswe can set the initial conditions accordingly.
With these considerations,we can investigate the boundary conditions at themirrors. To express theboundary

conditions in a covariant form,wedefine the frames of themirrors in the following.The tangents g m˙ ( )A and
g m˙ ( )B of theworld lines of themirrors define a spacetime split; the spatial slice at themirror (i)=A,B is defined

as the set of vectors r( i)μ such that g =mn
m n˙ ( )( )

( )g r 0i
i (no summation of i). Inside these spatial slices, we can

define three orthonormal vectors  m( )
j
i such that the vector  m( )i

3 is orthogonal to themirror and the normal vectors

 m( )i
1 and  m( )i

2 are tangential to themirror10. Furthermore,we choose  m( )i
1 to be directed in the polarization

directionof the right propagating lightfield at themirror (i). Togetherwith   g g=m m˙ ( ) ∣ ˙ ( )∣( )
( ) ( )

i
i i0 , the vectors

 m( )
J
i (Jä {1, 2, 3}) formanorthonormal tetrad.Using the tetrads, the components of thefield strength tensor in the

frameof themirror are given as       g= m n
mn( ) ( ( ))( ) ( ) ( )

( )F Fi i i
i . Then, the boundary conditions at themirrors

are that the electricfield is perpendicular and themagneticfieldparallel to themirrors, i.e.  = =( ) ( )( ) ( )F F0i i
01 02

and  =( )( )F 0i
12 .

The tetrads were defined such that the polarization direction of the lightfield is in the direction of  m( )i
1 .We

define    f f gm n
mn( ) ≔ ( ( ))( ) ( ) ( )

( )n
i r l i i

n
r l

i,01 0 1 , which are non-zero andwefind the boundary conditions

   å åf
l
a

f
l
a

= = +
a
l

g a
l

g

=

¥

=

¥
⎜ ⎟ ⎜ ⎟

⎛
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⎛
⎝

⎞
⎠
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⎞
⎠

⎞
⎠⎟( ) ( ) ( ) ( )( ) ( ( )) ( ) ( ( )) ( )( ) ( )F0 Re e e . B10i S

n
n
i r

n
S

n
n
i l

n

01
res i

0
,01

i

0
,01

r
i

l
i

From the lowest order inλ/α, wefind that

  f f= +
a
l

g a
l

g( ( ) ( )) ( )( ( )) ( ) ( ( )) ( )( ) ( )0 Re e e . B11S i r S i li
0,01

i
0,01

r
i

l
i

Above, we found that the zeroth order amplitude tensors are real. Then, the boundary condition (B11) can only
be fulfilled for all ñ if  f f=( ) ( )r l

0,01 0,01 and  g g p= +a
l

a
l

( ( )) ( ( ))( ) ( ) ( )S S m2r
i

l
i i , where Î( )m i .

AppendixC.Deformations of a rod

For isotropicmedia, the stiffness tensor depends only on the Young’smodulusY, the shearmodulusG and the
Poisson ratio ν.We have

e s n s s= - +( ( )) ( )
Y

1
, C1xx xx yy zz

e s n s s= - +( ( )) ( )
Y

1
, C2yy yy xx zz

e s n s s= - +( ( )) ( )
Y

1
, C3zz zz xx yy

e e s= = ¹ ( )
G

i j
1

2
for . C4ij ji ij

Since the change of thickness of the rod holding the resonator and its deformations in the x–y-plane are not of
interest for us, we can restrict our considerations to εzz, εxz and εyz. The elements of the strain tensor εxz and εyz
lead to a deformation of the curve s(ς) in the x and y-direction, respectively. Since the corresponding forces are
always transversal to the line elements of the rod, they only bend the rod and do not change its proper length. In
the proper detector frame, the proper length of the part of the rod in the positive z-direction of the support is
approximately given as

10
We only need the latter to be defined up to rotations around  m( )i

1 in the spatial slice.
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0

1 2 2 2
p

where δ b is the shift of the z-coordinate of the position ofmirror B. For the analysis of the transversal
deformations, let us assume that the rodhas a rectangular cross sectionwith side lengthswx andwy. Furthermore,
let us consider the extreme case ofβ=1. An expression for the transversal deformation of such a rod can be
found, for example, in equation (2.2) [53]. For the x-direction, we find

 r -( )
( )s

z Y

L z

w
a

d

d
6 , C6

x

P
x p

x

2

2 max

2

2

where aP
x

max is themaximal acceleration in x-direction experienced by a part of the rod.With V¢ = =s sd d 0 at
z= 0, we obtain that

 r¢
¢

=
- -( )

( )s

s

s

z Y

L L z

w
a

d

d
2 . C7

x

z

x

P
x p p

x
max

3 3

2

A similar expression can be found for ¢ ¢s sy z .With equation (C5), we obtain the approximate upper bounds for
the change of the z-position of themirror B

d +
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Then, the newposition ofmirror B is approximately d-( ( ) ( ) )s L s L L b, ,x
p

y
p p , wherewe get

 ( ) ( ) ( )s L
L

c w
s L
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c w
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2
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2
, C9x
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4

2
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2

4

2
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2

by integration equation (C7) and the corresponding expression for the y-direction. Since δb, ( )s Lx
p and ( )s Ly

p

are already of second and first order in themetric perturbation, respectively, the change of the round trip time
can be calculated as

d d» - + + -((( ) ( ) ( ) ) ) ( )T
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Let us define aP
z

,av as the larger of the values of b tá ñ∣ ( )∣az and b tá + ñ( ) ∣ ( )∣L c R3 1 6p z z
2 2

0 0 , where áñdenotes the
averaging over the interaction time. Comparison of equation (C8)with equation (28) shows that the effect of the
transversal bending on the length of the rod can be neglected in comparison to the effect of the longitudinal
deformations if

á ñ á ñ { ∣ ∣ ∣ ∣ } ( )L c w L c wa a amax , . C12P
z

p P
x

s x p P
y

s y,av
5

max
2 2 4 5

max
2 2 4

In the gravitationalfieldof a smallmassive sphere of 100 gof the example in section 9, anobserver at rest experiences
an accelerationof the orderof 10−10 ms−2. Sowe assume = - -a 10 msP

z
,av

10 2, á ñ - -∣ ∣a 10 msP
x

max
10 2 and

á ñ - -∣ ∣a 10 msP
y

max
10 211. Let us consider an aluminumrodwhere = ´ -c 5 10 mss

3 1. For a rodof length 1 cm,we
find that L w 10p x

3 and L w 10p y
3 is sufficient to fulfill the conditions in equation (C12). Let us consider the

situation for accelerations of the order of 10ms−2 as they are experienced in the gravitationalfieldof theEarth. Sowe
assume = -a 10 msP

z
,av

2, á ñ -∣ ∣a 10 msP
x

max
2 and á ñ -∣ ∣a 10 msP

y
max

2. For an aluminumrodof length 10 cm,
the conditions in equation (C12) are fulfilled for L w 10p x and L w 10p y . For larger accelerations, the
orientationhas tobe chosen such that a aP

x
P
z

max ,av and a aP
y

P
z

max ,av to fulfill the conditions and still use a rod.

Now, let us consider the longitudinal deformation. From » - G » ¶c c haP
j j

j
2

00
2

00, we obtain the inertial and
tidal forces on the rod bymultiplicationwith themass density ρ. Since h00 contains terms that are independent of
z and terms that are proportional to z and z2, we canwrite the acceleration as

11
We consider themassive sphere as the only source of a gravitational field here. In an earthbound laboratory, the effect of the Earth’s

gravitational field has to be taken into account aswell.
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Let us assume that the rod has a constant cross sectionA and a constantmass density. Then, the sumof inertial
forces and gravitational force along the rod acting on a segment of the rod at z>0 can be approximated as
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where, by considering the acceleration only at x=0=y, we neglected terms proportional to thewidth of the
rod. For the force along the rod acting on a segment of the rod at z<0, we find

t r t r t» - + --
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Due to the support, this corresponds to the stresses

s t
t

=  ( ) ( ) ( )z
F z

A
,

,
. C16zz

z

The differential force in the x-direction acting on a one-dimensional segment of the rodwith coordinates x, y
and z induced by all one-dimensional segments with the same z-coordinate, the same y-coordinate and ¢ >x x
can bewritten as

òt r t= ¢ ¢+( ) ( )F x y z z x w x y zad , , , d d , , , .x

x

w

y P
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Furthermore, we find

òt r t= ¢ ¢-
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( ) ( )F x y z z x w x y zad , , , d d , , ,x

w
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y P
x

2x

for the differential force induced by all one-dimensional segments with the same z-coordinate, the same y-
coordinate and ¢ <x x. Since themetric (12) contains constant, linear and quadratic terms in the spatial
coordinate and » - GcaP

j j2
00, we conclude that t( )x y z xad , , , dP

x cannot depend on y infirst order in the
metric perturbation, andwefind that the acceleration in the x-direction can bewritten as
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Thefirst term corresponds to an acceleration that all segments feel in the sameway. Therefore, it does not lead to
a stress. Hence, the stress on a segment of the rod at z becomes
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An equivalent expression can be derived for the stressσyy. The length change of the rod is given as
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Weobtain that
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Since the highest polynomial order of terms in themetric perturbation in the coordinates is 2,
t =( )∣x za , , 0,

x P
x

x
d

d 0 can only contain terms that are independent of z and terms that are linear in z. Hence, we
find

ò
n
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xx yy
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Therefore, the effect of acceleration and curvature on the proper length viaσxx andσyy is suppressed by a factor
nw Lx p and νwy/Lp, respectively, in comparison to the effect viaσzz. Formostmaterials ν<1 andwe can

assume that w L 1x p . Therefore, if b t( )a , 0, 0, 0P
z or b t+ =( ) ( )∣L za3 1 , 0, 0, 6p z P

z
z

2 d

d 0 is of the same order

or larger than t =( )w xa , , 0, 0 4x x P
x

x
d

d 0 and t =( )∣w ya , 0, , 0 4y y P
y

y
d

d 0 and if the oscillations of the transversal

stresses are not on resonant with any elasticmode of the rod that the longitudinal stresses are not on resonance
with, we can neglect the effect of the transversal stresses andwe can restrict our considerations to s+zz and s

-
zz .

Then, we canwrite the conditions as

 á ñ á ñ{ ∣ ∣ ∣ ∣ } ( )w c R w c Ra max , . C24P
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x x x y y y,av
2

0 0
2

0 0

AppendixD. The causal deformable rod from relativistic elasticity

In [33], a covariant formulation of the relativistic elastic rodwas given. In this section, we show that the
definitions of [33] lead to our result equation (31) for the causal rigid rodwhen applied to themetric in
equation (12) in the proper detector frame.

The author of [33] formulates the theory of one-dimensional relativistic elastic bodies by considering a
motion of a one-dimensional continuummoving in a 1+1-dimensional spacetime.Our arguments from
sections 2, 4 and 5 lead exactly to such a situation. The rod is dragged along theworld line of its support or its
center ofmass is assumed tomove along a geodesic. All accelerations of the rod segments are encoded in the
metric in the proper detector frame given by equation (12). Furthermore, our rod is assumed to lie along a spatial
geodesic andwe neglect all transversal accelerations.What remains is only gravitational effects along the rod
encoded by themetric corresponding to the line element

t t= - - +( ( )) ( )s h z zd 1 , d d . D1P2
00

2 2

Due to our assumption that acceleration and curvature only change very slowly, wefind that this situation
corresponds to equation (22) of [33]. The coordinate transformation in equation (23) of [33], =˜ ( )z f z with

ò= ¢ - -( ) ( )f z z hd 1
z P

0 00
1 2 leads to

t t t t» - - + » - - +-( ( ( ˜)))( ˜ ) ( ( ˜))( ˜ ) ( )s h f z z h z zd 1 , d d 1 , d d . D2P P2
00

1 2 2
00

2 2

infirst order in themetric perturbation since =- ( ˜) ˜f z z1 in zeroth order in themetric perturbation. The rigid
rod of [33] has constant coordinate length in the coordinates t( ˜)z, , which are called conformal coordinates
because the line element differs from the that ofMinkowski space only by a conformal factor f ( ˜)e z2 , where in our
case, t= -f ( ( ˜))( ˜) h ze 1 ,z P2

00 . This rigid rod can be called a causal rigid rod because the speed of sound in the
rodmaterial is equivalent to the speed of light. In contrast, a Born rigid rodwould correspond to an infinite
speed of sound.

The square root of the conformal factor is the stretch constant of [33].We obtain the proper length of the
causal rigid rod by integrating the stretch constant fromone end of the rod to the other.However, we have to
note that the stretch factor also contains boundary conditions of the rod; every point at which f ( ˜)z vanishes
corresponds to a free end of the rod. Therefore, we cannot just use the expression for h P

00 that we used in
section 5.We have to consider the two sides of our rod separately, and in each situation, add a constant to h P

00

such that the free end is at a or b. Adding a constant to themetric does not change any dynamics andwe are free
to do such an operation.We define

t t t-( ˜) ≔ ( ˜) ( ) ( )h z h z h a, , , and D3P P
00
A

00 00

t t t-( ˜) ≔ ( ˜) ( ) ( )h z h z h b, , , . D4P P
00
B

00 00

The proper length becomes
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andwe reproduce the result of equation (28) for cs=c.
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