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Abstract
The determination of acceptability prices of contingent claims requires the choice
of a stochastic model for the underlying asset price dynamics. Given this model,
optimal bid and ask prices can be found by stochastic optimization. However, the
model for the underlying asset price process is typically based on data and found by
a statistical estimation procedure. We define a confidence set of possible estimated
models by a nonparametric neighborhood of a baseline model. This neighborhood
serves as ambiguity set for a multistage stochastic optimization problem under model
uncertainty. We obtain distributionally robust solutions of the acceptability pricing
problem and derive the dual problem formulation. Moreover, we prove a general large
deviations result for the nested distance, which allows to relate the bid and ask prices
under model ambiguity to the quality of the observed data.
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1 Introduction

The no-arbitrage paradigm is the cornerstone of mathematical finance. The fundamen-
talworkofHarrison,Kreps andPliska [13–15,22] andDelbaen andSchachermayer [6],
to mention some of the most important contributions, paved the way for a sound the-
ory for the pricing of contingent claims. In a general market model, the exclusion of
arbitrage opportunities leads to intervals of fair prices.

Typically, the resulting no-arbitrage price bounds are toowide to provide practically
meaningful information.1 In practice, market-makers wish to have a framework for
controlling the acceptable risk when setting their spreads. Pioneering contributions
to incorporate risk in the pricing procedure for contingent claims were made by Carr
et al. [3] as well as Föllmer and Leukert [9,10], subsequent generalizations being
made, e.g., by Nakano [24] or Rudloff [42]. The pricing framework of the present
paper is in this spirit: by specifying acceptability functionals, an agent may control
her shortfall risk in a rather intuitive manner. In particular, using the Average-Value-
at-Risk (AV@Rα) will allow for a whole range of prices between the extreme cases of
hedging with probability one (the traditional approach) and hedging w.r.t. expectation
by varying the parameter α .

Nowadays, there is great awareness of the epistemic uncertainty inherent in setting
up a stochastic model for a given problem. For single-stage and two-stage situations,
there is a plethora of available literature on different approaches to account for model
ambiguity (see the lists contained in [31, pp. 232–233] or [45, p. 2]). Recently, balls
w.r.t. the Kantorovich–Wasserstein distance around an estimated model have gained
a lot of popularity (e.g., [7,8,11,12,25,46]), while originally proposed by Pflug and
Wozabal [34] in 2007. However, the literature on nonparametric ambiguity sets for
multistage problems is still extremely sparse. Analui and Pflug [1] were the first to
study balls w.r.t. the multistage generalization of the Kantorovich–Wasserstein dis-
tance, named nested distance,2 for incorporating model uncertainty into multistage
decision making. It is the aim of this article to further explore this rather uncharted ter-
ritory. The classic mathematical finance problem of contingent claim pricing serves as
a verywell suited instance for doing so. In fact, while in the traditional pointwise hedg-
ing setup only the null sets of the stochastic model for the dynamics of the underlying
asset price process influence the resulting price of a contingent claim, the full spec-
ification of the model affects the claim price when acceptability is introduced. Thus,
model dependency is even stronger in the latter case, which is the topic of this paper.

Stochastic optimization offers a natural framework to deal with the problems
of mathematical finance. Application of the fundamental work of Rockafellar and
Wets [35–41] on conjugate duality and stochastic programming has led to a stream of
literature on those topics. King [19] originally formulated the problem of contingent
claim pricing as a stochastic program. Extensions of this approach have been made,
amongst others, by King, Pennanen and their coauthors [18–21,26–28], Kallio and

1 For example, the superreplication price for a plain vanilla call option in exponential Lévy models is given
by the spot price of the underlying asset (see Cont and Tankov [4, Prop. 10.2]), which is a trivial upper
bound for the call option price.
2 The definition of the nested distance can be found in the “Appendix”.
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Ziemba [17] or Dahl [5]. The stochastic programming approach naturally allows for
incorporating features and constraints of real-world markets and allows to efficiently
obtain numerical results by applying the powerful toolkit of available algorithms for
convex optimization problems.

The main contribution of this article is the link between statistical model error and
the pricing of contingent claims,where the pricingmethodology allows for a controlled
hedging shortfall. The setup is inspired by practically very relevant aspects of decision
making under both aleatoric and epistemic uncertainty. Given the stochastic model
from which future evolutions are drawn, agents are willing to accept a certain degree
of risk in their decisions. However, it may be dangerously misleading to neglect the
fact that it is impossible to detect the true model without error. Thus, a distributionally
robust framework, which takes the limitations of nonparametric statistical estimation
into account, is required. In the statistical terminology, balls w.r.t. the nested distance
may be seen as confidence regions: by considering all models whose nested distance
to the estimated baseline model does not exceed some threshold, it is ensured that
the true model is covered with a certain probability and hence the decision is robust
w.r.t. the statistical model estimation error. In particular, we prove a large deviations
theorem for the nested distance, based on which we show that a scenario tree can be
constructed out of data such that it converges (in terms of the nested distance) to the
true model in probability at an exponential rate. Thus, distributionally robust claim
prices w.r.t. nested distance balls as ambiguity sets include a hedge under the true
model with arbitrary high probability, depending on the available data. In other words,
we provide a framework that allows for setting up bid and ask prices for a contingent
claim which result from finding hedging strategies with truly calculated risks, since
the important factor of model uncertainty is not neglected.

This paper is organized as follows. In Sect. 2 we introduce our framework for
acceptability pricing, i.e., we replace the traditional almost sure super-/ subreplication
requirement by the weaker constraint of an acceptable hedge. The acceptability con-
dition is formulated w.r.t. one given probability model. This lowers the ask price and
increases the bid price such that the bid–ask spread may be tightened or even closed.
Section 3 contains the main results of this article. We weaken the assumption of one
single probability model assuming that a collection of models is plausible. In partic-
ular, we define the distributionally robust acceptability pricing problem and derive
the dual problem formulation under rather general assumptions on the ambiguity set.
The effect of the introduction of acceptability and ambiguity into the classical pricing
methodology is nicely mirrored by the dual formulations. Moreover, we give a strong
statistical motivation for using nested distance balls as ambiguity sets by proving a
large deviations theorem for the nested distance. Section 4 contains illustrative exam-
ples to visualize the effect of acceptability and model ambiguity on contingent claim
prices. In Sect. 5 we discuss the algorithmic solution of theAV@R-acceptability pric-
ing problem w.r.t. nested distance balls as ambiguity sets. In particular, we exploit the
duality results of Sect. 3 and the special stagewise structure of the nested distance by
a sequential linear programming algorithm which yields approximate solutions to the
originally semi-infinite non-convex problem. In this way, we overcome the current
state-of-the-art computational methods for multistage stochastic optimization prob-
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lems under non-parametric model ambiguity. Finally, we summarize our results in
Sect. 6.

2 Acceptability pricing

2.1 Acceptability functionals

The terminology introduced in this section follows the book of Pflug andRömisch [33].
A detailed discussion of acceptability functionals and their properties can be found
therein. Intuitively speaking, an acceptability functionalAmaps a stochastic position
Y ∈ L p(Ω), 1 < p < ∞, defined on a probability space (Ω,F ,P), to the real
numbers extended by −∞ in such a way that higher values of the position correspond
to higher values of the functional, i.e., a ‘higher degree of acceptance’. In particular,
the defining properties of an acceptability functional are translation equivariance,3

concavity,monotonicity,4 and positive homogeneity.We assume all acceptability func-
tionals to be version independent,5 i.e., A(Y ) depends only on the distribution of the
random variable Y .

The following proposition is well-known. It follows directly from the Fenchel–
Moreau–Rockafellar Theorem (see [35, Th. 5] and [33, Th. 2.31]).

Proposition 1 An acceptability functionalA which fulfills the above conditions has a
dual representation of the form

A(Y ) = inf {E [Y Z ] : Z ∈ Z} ,

where Z is a closed convex subset of Lq(Ω), with 1/p + 1/q = 1 . We call Z the
superdifferential ofA.Monotonicity and translation equivariance imply that all Z ∈ Z
are nonnegative densities.

Assumption A1 There exists some constant K1 ∈ R such that for all Z ∈ Z it holds
‖Z‖q ≤ K1 .

This assumption implies that A is Lipschitz on L p:

|A(Y1) − A(Y2)| ≤ K1 ‖Y1 − Y2‖p. (1)

A good example for such an acceptability functional is the Average Value-at-Risk,
AV@Rα , whose superdifferential is given by

Z = {Z ∈ L1(Ω) : 0 ≤ Z ≤ 1/α and E(Z) = 1}.
3 A(Y + c) = A(Y ) + c for any c ∈ R.
4 X ≤ Y a.s. �⇒ A(X) ≤ A(Y ).
5 For version independent acceptability functionals, upper semi-continuity follows from concavity (see
Jouini, Schachermayer and Touzi [16]).
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The extreme cases are represented by the essential infimum (AV@R0(Y ) :=
limα↓0 AV@Rα(Y ) = essinf(Y )6) and the expectation (α = 1). Its superdifferen-
tials are given by the set of all probability densities and just the function identically 1,
respectively.

Other common names for the AV@R are Conditional-Value-at-Risk, Tail-Value-
at-Risk, or Expected Shortfall. The subtleties between these terminologies are, e.g.,
addressed in Sarykalin et al. [43]. All our computational studies in Sect. 4 and Sect. 5
will be based on some AV@Rα , while our theoretical results are general.

2.2 Acceptable replications

Let us now introduce the notion of acceptability in the pricing procedure for contingent
claims.

As usual in mathematical finance, we consider a market model as a filtered prob-
ability space (Ω,F ,P), where the filtration is given by the increasing sequence
of sigma-algebras F = (F0,F1, . . . ,FT ) with F0 = {∅,Ω}. The liquidly traded
basic asset prices are given by a discrete-time R

m+-valued stochastic process S =
(S0, . . . , ST ), where St = (S(1)

t , S(2)
t , . . . , S(m)

t ). We assume the filtration to be gen-
erated by the asset price process.

One asset, denoted by S(1), serves as numéraire (a risk-less bond, say). We
assume w.l.o.g. that S(1)

t = 1 a.s. If not, we may replace (S(1)
t , S(2)

t , . . . , S(m)
t ) by

(1, S(2)
t /S(1)

t , . . . , S(m)
t /S(1)

t ).
A contingent claim C consists of an F-adapted series of cash flows C =

(C1, . . . ,CT ) measured in units of the numéraire. The fact that the payoff Ct is con-
tingent on the respective state of the market up to time t is reflected by the condition
that C is adapted to the filtration F , for which we write C � F . A trading strategy
x = (x0, . . . , xT−1) is an F-adapted R

m-valued process with x � F .
To be more precise, let

Lm
p := R

m × Lm
p (Ω,F1) × · · · × Lm

p (Ω,FT ),

Lm∞ := R
m × Lm∞(Ω,F1) × · · · × Lm∞(Ω,FT−1),

and
L1
q := Lq(Ω,F1) × · · · × Lq(Ω,FT ).

We assume that S ∈ Lm
p , x ∈ Lm∞ and C ∈ L1

p. The norm in Lm
p is given by

‖Y‖p =
m∑

i=1

‖Y (i)‖p,

and similarly for Lm∞ . Notice that x0 and S0 are deterministic vectors.

6 Strictly speaking, Assumption A1 is not respected by AV@R0 . However, all our results on AV@R–
acceptability pricing will hold true also for AV@R0 . In fact, this is the special case which is well treated
in the literature.
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Assumption A2 We assume that all claims are Lipschitz-continuous functions of the
underlying asset price process S.

Definition 1 Consider a contingent claimC and fix acceptability functionalsAt , for all
t = 1, . . . , T . We assume that all functionalsA have a representation given by Propo-
sition 1. Then the acceptable prices are given by the optimal values of the following
stochastic optimization programs:

(i) the acceptable ask price of C is defined as

(P)

∥∥∥∥∥∥∥∥∥

πa(A1, . . . ,AT ) = min
x

x

0 S0

s.t. At (x


t−1St − x


t St − Ct ) ≥ 0

AT (x

T−1ST − CT ) ≥ 0 ,

(2a)

(2b)

(ii) the acceptable bid price of C is defined as

(P′)

∥∥∥∥∥∥∥∥∥

πb(A1, . . . ,AT ) = max
x

x

0 S0

s.t. At (x


t St − x


t−1St + Ct ) ≥ 0

AT (−x

T−1ST + CT ) ≥ 0 ,

(3a)

(3b)

where the optimization runs over all trading strategies x ∈ Lm∞ for the liq-
uidly traded assets. The constraints in (2a) and (3a) are formulated for all
t = 1, . . . , T − 1.

To interpret Definition 1, the acceptable ask price is given by the minimal initial
capital required to acceptably superhedge the cash-flowsCt , which have to be paid out
by the seller. On the other hand, the acceptable bid price corresponds to the maximal
amount of money that can initially be borrowed from the market to buy the claim,
such that by receiving the payments Ct and always rebalancing one’s portfolio in an
acceptable way, one ends up with an acceptable position at maturity.

In what follows we will mainly consider the ask price problem (P) and its variants.
The bid price problem (P′) is its mirror image and all assertions and proofs for the
problem (P) can be rewritten literally for problem (P′).

Let (Pβ) for β = (β1, . . . , βT ) be the problem (P), where the conditions (2a) and
(2b) are replaced by At (·) ≥ βt .

Assumption A3 The optima are attained and all solutions x to the problems (Pβ), for
β in a neighborhood of 0, are uniformly bounded, i.e., ∃K2 ∈ R s.t. ∀x : ‖x‖∞ ≤ K2.

We show the following auxiliary result for the problems (Pβ).

Lemma 1 Let vβ be the optimal value of (Pβ) and v∗ be the optimal value of (P).
Then, in a neighborhood of 0,

|vβ − v∗| ≤ 2β̄ · ‖S0‖1 (4)

where β̄ = ∑
t |βt |.
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Proof If vβ is the optimal value of (Pβ), then by inclusion of the feasible sets

v−|β| ≤ v∗ ≤ v|β|,
v−|β| ≤ vβ ≤ v|β|.

We have to bound v|β| − v−|β|. Let x∗
t be the solution of (P−|β|). x∗

t is not necessarily
feasible for (P|β|). We modify x∗

t in order to get feasibility for (P|β|). Let at , t =
1, . . . , T − 1 , be the vector with identical components 2

∑T
s=t+1 |βs | and let xt =

x∗
t + at . Then

E[(xt−1 − xt )

St Zt ] − E[(x∗

t−1 − x∗
t )


St Zt ]

= E[(at−1 − at )

St Zt ] = 2|βt |

m∑

i=1

E

[
S(i)
t Zt

]

≥ 2|βt | ·
(
inf

m∑

i=1

S(i)
t

)
· E[Zt ] ≥ 2|βt |

since
∑

i S
(i)
t ≥ S(1)

t = 1 and E[Zt ] = 1. By E[(x∗
t−1 − x∗

t )

St Zt ] ≥ −|βt |, one gets

that E[(xt−1 − xt )
St Zt ] ≥ |βt |, i.e., xt is feasible for (P|β|). Notice that a0 has all
components equal to

∑
t |βt | = β̄. Now

0 ≤ v|β| − v−|β| ≤ x

0 S0 − x∗


0 S0 = a

0 S0 = 2β̄

∑

i

S(i)
0 = 2β̄ · ‖S0‖1,

which concludes the proof. ��
Notice that the primal program (P) is semi-infinite, if the constraints are written in

the extensive form

E

[(
(xt−1 − xt )


St − Ct

)
Zt

]
≥ 0 for all Zt ∈ Zt ,

where Z = (Z1, . . . , ZT ) ∈ L1
q .

Lemma 2 below demonstrates the validity of an approximation with only finitely
many supergradients.

Since the L p spaces are separable, there exist sequences (Zt,1, Zt,2, . . .) that are
dense in Zt , for each t . Let

At,n(Y ) = min{E[Y · Zt,i ] : 1 ≤ i ≤ n}.

Since Z �→ E[Y Z ] is continuous in L p , for every Y in L p(Ω,Ft ) it holds that

At,n(Y ) ↓ At (Y ),

as n → ∞.
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Lemma 2 Let v∗ be the optimal value of the basic problem (P) and let v∗
n be the optimal

value of the similar optimization problem (Pn), whereAt are replaced byAt,n. Then

v∗
n ↑ v∗.

Proof Suppose the contrary, that is supn v∗
n ≤ v∗−3η < v∗ for some η > 0. Introduce

the notation

Yt (x) =
{

(xt−1 − xt )
 St − Ct for 1 ≤ t < T
x

T−1 ST − CT for t = T .

ByAssumption A1 and since x ∈ Lm∞, it holds that x �→ At (Yt (x)) and x �→ x

0 S0

are Lipschitz. Choose 0 < δ = η [2‖S0‖1K1(K2 + K3 + 1)]−1 with K3 ≥ ‖St‖p for
all t . Let x∗

t be the solution of (P). We may find finite sub-sigma-algebras F̃t ⊆ Ft

such that with

S̃t = E[St |F̃t ] (componentwise),

C̃t = E[Ct |F̃t ],
x̃∗
t = E[x∗

t |F̃t ] (componentwise),

we have that

‖St − S̃t‖p ≤ δ,

‖Ct − C̃t‖p ≤ δ,

‖x∗
t − x̃∗

t ‖∞ ≤ δ.

Denote by (P̃) the variant of the problem (P), where the processes (St ) and (Ct )

are replaced by (S̃t ) and (C̃t ). Similarly as before introduce the notation

Ỹt (x) =
{

(xt−1 − xt )
 S̃t − C̃t for 1 ≤ t < T
x

T−1 S̃T − C̃T for t = T .

Notice that

|At (Ỹt (x̃
∗
t )) − At (Yt (x

∗
t ))|

≤ K1‖Ỹt (x̃∗
t ) − Yt (x

∗
t )‖p

≤ K1

[
‖x̃∗

t − x∗
t ‖∞‖S̃t‖p + ‖x∗

t ‖∞‖S̃t − St‖p + ‖C̃t − Ct‖p

]

≤ K1[δK3 + δK2 + δ] = η [2‖S0‖1]−1 .

By Lemma 1 we may conclude that

v∗ ≤ ṽ∗ + η, (5)
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where ṽ∗ is the optimal value of (P̃). Let (P̃n) be the variant of problem (P̃), where
all At are replaced by At,n . The optimal value of (P̃n) is denoted by ṽ∗

n . In this finite
situation we may show that ṽ∗

n ↑ ṽ∗. Obviously, ṽ∗
n is a monotonically increasing

sequence with ṽ∗
n ≤ ṽ∗.

It remains to demonstrate that limn ṽ∗
n cannot be smaller than ṽ∗. For this, let x̃n∗

be a solution of (P̃n). Because of the finiteness of the filtration F̃ , the solutions of (P̃n)
as well as of P̃ are just bounded vectors in some high-, but finite dimensional RN and
are all bounded by K2. Let x̃∗∗ be an accumulation point of (x̃n∗), i.e., we have for
some subsequence that x̃ni∗ → x̃∗∗. We show that x̃∗∗ satisfies the constraints of (P̃).

Suppose the contrary. Then there is a t such that At (Ỹt (x̃∗∗)) < 0. This implies
that there is a Zt,m ∈ {Zt,1, Zt,2, . . .} such that E[Ỹt (x̃∗∗) · Zt,m] < 0. However, for
n ≥ m, by construction E[Ỹt (x̃n∗) · Zt,m] ≥ 0 and since x̃n∗ → x̃∗∗ componentwise,
then also E[Ỹt (x̃∗∗) · Zt,m] ≥ 0. Since the objective function is continuous in x̃ this
implies that limi ṽ

∗
ni = ṽ∗ and, by monotonicity, limn ṽ∗

n = ṽ∗. We have therefore
shown that we can find an index n such that

ṽ∗ < ṽ∗
n + η. (6)

Let xn∗ be the solution of (Pn) and let x̂n∗ = E[xn∗|F̃t ] . Analogously as before, one
may prove that |At (Ỹt (x̂n∗)| ≤ η [2‖S0‖1]−1 and hence, by Lemma 1,

ṽ∗
n ≤ v∗

n + η. (7)

Putting (5), (6) and (7) together one sees that

v∗ ≤ v∗
n + 3η,

which contradicts the assumption that v∗
n < v∗ − 3η . ��

We now turn to the duals of the problems (P) and (P′), called (D) and (D′), respec-
tively. It turns out that also in our general acceptability case a martingale property
appears in the dual as it is known for the case of a.s. super-/ subreplication.

Theorem 1 For all t = 1, . . . , T , letAt be acceptability functionals with correspond-
ing superdifferentials Zt . Then, the acceptable ask price is given by

(D)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

πa(A1, . . . ,AT ) = sup
Q

E
Q

⎡

⎣
T∑

t=1

Ct

⎤

⎦

s.t. EQ[St+1|Ft ] = St ∀t = 0, . . . , T − 1

dQ

dP

∣∣∣∣Ft

∈ Zt ∀t = 1, . . . , T ,

(8a)

(8b)
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and the acceptable bid price is given by

(D′)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

πb(A1, . . . ,AT ) = inf
Q

E
Q

⎡

⎣
T∑

t=1

Ct

⎤

⎦

s.t. EQ[St+1|Ft ] = St ∀t = 0, . . . , T − 1

dQ

dP

∣∣∣∣Ft

∈ Zt ∀t = 1, . . . , T .

(9a)

(9b)

Proof The acceptable ask/ bid price corresponds to a special case of the distributionally
robust acceptable ask/ bid price introduced in Definition 2 below, namely when the
ambiguity set reduces to a singleton. Hence, the validity of Theorem 1 follows directly
from the proof of Theorem 2. ��
Remark 1 (Interpretation of the dual formulations) The objective of the dual formula-
tions (D) and (D′) is to maximize (minimize, resp.) the expected value of the payoffs
resulting from the claim w.r.t. some feasible measureQ. The constraints (8a) and (9a)
require Q to be such that the underlying asset price process is a martingale w.r.t. Q.
This is well known from the traditional approach of pointwise super-/ subreplication.
The acceptability criterion enters the dual problems in terms of the constraints (8b) and
(9b), which reduce the feasible sets by a stronger condition than the two probability
measures just having the same null sets. Making the feasible sets smaller obviously
lowers the ask price and increases the bid price and thus gives a tighter bid–ask spread.

Proposition 2 For fixed acceptability functionals A1, . . . ,AT , consider the
acceptable ask price πa(P) as a function of the underlying model P . This function is
Lipschitz.

Proof The assertion follows from Theorem 5 in the “Appendix”, considering the Lips-
chitz property of claims (Assumption A2) and the problem formulation resulting from
Theorem 1. ��

3 Model ambiguity and distributional robustness

Traditional stochastic programs are based on a given and fixed probability model for
the uncertainties. However, already since the pioneering paper of Scarf [44] in the
1950s, it was felt that the fact that these models are based on observed data as well as
the statistical error should be taken into account when making decisions. Ambiguity
sets are typically either a finite collection of models or a neighborhood of a given
baseline model. In what follows we study the latter case and, in particular, we use the
nested distance to construct parameter-free ambiguity sets.

3.1 Acceptability pricing under model ambiguity

In Sect. 2.2 we defined the bid/ ask price of a contingent claim as themaximal/minimal
amount of capital needed in order to sub-/ superhedge its payoff(s) w.r.t. an accept-
ability criterion. However, the result computed with this approach heavily depends
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on the particular choice of the probability model. This section weakens the strong
dependency on the model. More specifically, acceptable bid and ask prices shall be
based on an acceptability criterion that is robust w.r.t. all models contained in a certain
ambiguity set.

Definition 2 Consider a contingent claim C . Then, for acceptability functionals At ,
t = 1, . . . , T , and an ambiguity set Pε of probability models,

(i) the distributionally robust acceptable ask price of C is defined as

(PP)

∥∥∥∥∥∥∥∥∥

πPε
a (A1, . . . ,AT ) = min

x
x

0 S0

s.t. AP
t (x


t−1St − x

t St − Ct ) ≥ 0 ∀P ∈ Pε

AP
T (x


T−1ST − CT ) ≥ 0 ∀P ∈ Pε ,

(10a)

(10b)

(ii) the distributionally robust acceptable bid price is defined as

(PP′)

∥∥∥∥∥∥∥∥∥

π
Pε

b (A1, . . . ,AT ) = max
x

x

0 S0

s.t. AP
t (x


t St − x

t−1St + Ct ) ≥ 0 ∀P ∈ Pε

AP
T (−x


T−1ST + CT ) ≥ 0 ∀P ∈ Pε ,

(11a)

(11b)

where the optimization runs over all trading strategies x ∈ Lm∞ for the liquidly traded
assets. The constraints in (10a) and (11a) are formulated for all t = 1, . . . , T − 1 and
AP

t denotes the value of the acceptability functional when the underlying probability
model is given by P.

Theorem 2 Let Pε be a convex set of probability models, which is spanned by a
sequence ofmodels (P1,P2, . . .) . Moreover, letPε be dominated by somemodelP0 and
assume all densities w.r.t. P0 to be bounded. For t = 1, . . . , T , let At be acceptabil-
ity functionals with corresponding superdifferentials ZAt . Then, the distributionally
robust acceptable ask price is given by

(DD)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

π
Pε
a (A1, . . . ,AT ) = sup

Q

E
Q

⎡

⎣
T∑

t=1

Ct

⎤

⎦

s.t. EQ
[
St+1

∣∣Ft
] = St ∀t < T

∀ t ∃P ∈ Pε : dQ

dP

∣∣∣∣Ft

∈ ZAP
t

,

(12a)

(12b)

and the distributionally robust acceptable bid price is given by

(DD′)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

π
Pε
b (A1, . . . ,AT ) = inf

Q
E
Q

⎡

⎣
T∑

t=1

Ct

⎤

⎦

s.t. EQ
[
St+1

∣∣Ft
] = St ∀t < T

∀ t ∃P ∈ Pε : dQ

dP

∣∣∣∣Ft

∈ ZAP
t
.

(13a)

(13b)

123



M. Glanzer et al.

Proof Define

Dt :=
{
Zt ft : ∃ P ∈ Pε s.t. Zt ∈ ZAP

t
,
dP

dP0

∣∣∣∣Ft

= ft

}
.

Then, the constraints in (PP′) can be written in the form

E
P0 [(xt−1 − xt )


St − Ct )dt ] ≥ 0 ∀dt ∈ Dt .

Since all densities ft are bounded by assumption,7 Lemma 2 holds true if we replace
Zt ∈ Zt by dt ∈ Dt . It can easily be seen that for each t there are sequences
(dt,1, dt,2, . . .) which are dense inDt . Let us define

Dn
t :=

⎧
⎪⎨

⎪⎩

n1∑

i=1

ni2∑

j=1

λi, j Z
j ,i
t f it :

n1∑

i=1

ni2∑

j=1

λi, j = 1,
∣∣∣
{
(i, j) : 1 ≤ i ≤ n1, 1 ≤ j ≤ ni2

}∣∣∣ = n

⎫
⎪⎬

⎪⎭
.

Then, it holds that Dn
t ⊆ Dn+1

t and
⋃

n D
n
t = Dt . Thus, by Lemma 2 we may

approximate (PP) by a problem of the form

(PPn)

∥∥∥∥∥∥∥∥∥∥∥

min
x

x

0 S0

s.t. EP0
[
(−x


t−1St + x

t St + Ct ) · Zi, jt f it

]
≤ 0 ∀t < T ; ∀i ≤ n1; ∀ j ≤ ni2

E
P0
[
(−x


T−1ST + CT ) · Zi, jT f iT

]
≤ 0 ∀i ≤ n1; ∀ j ≤ ni2.

Rearranging its Lagrangian leads to the following representation of (PPn) :∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

inf
x

sup
λ0≥0,λi, jt ≥0

{
x

0

(
λ0S0 − E

P0
[
S1W

n
1
])

+
T−1∑

t=1

E
P0
[
x

t

(
StW

n
t − E

P0
[
St+1W

n
t+1

∣∣∣Ft

])]

+
T∑

t=1

E
P0
[
CtW

n
t
]}

,

(14)

where

Wn
t :=

n1∑

i=1

ni2∑

j=1

λ
i, j
t Z i, jt f jt .

This is a finite-dimensional bilinear problem. Notice that (PPn) is always feasible.8

We may thus interchange the inf and the sup. Carrying out explicitly the minimiza-

7 It would be sufficient to assume ZAt ⊆ Ls and ft ∈ Lr such that 1
r + 1

s = 1
q . However, for simplicity,

we keep ZAt ⊆ Lq and assume ft ∈ L∞.
8 This follows from the fact that a feasible solution (x0, . . . , xT−1) of (PPn) can easily be constructed in
a deterministic way, starting with xT−1 .
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tion in x , the unconstrained minimax problem (14) can be written as the constrained
maximization problem∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

sup
λ
i, j
t ≥0

T∑

t=1

E
P0
[
CtW

n
t
]

s.t. StW
n
t = E

P0
[
St+1W

n
t+1

∣∣∣Ft

]
∀t = 1, . . . , T

Wn
t =

n1∑

i=1

ni2∑

j=1

λ
i, j
t Z i, jt f jt ∀t = 1, . . . , T .

Introducing a new probability measureQ defined by the Radon–Nikodým derivative
dQ
dP0

= Wn
T , the problem can be rewritten in terms of Q in the form

(DDn)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

sup
Q

E
Q

⎡

⎣
T∑

t=1

Ct

⎤

⎦

s.t. EQ
[
St+1

∣∣Ft
] = St , ∀t = 0, . . . , T − 1

dQ

dP0

∣∣∣∣Ft

∈ Dn
t .

It is left to show that there is no duality gap in the limit, as n → ∞ . Assume that the
dual problem (DD) has an optimal value π ′

a �= πa . By the primal constraints in (PP),
for any dual feasible solution Q it holds

E
Q

[
T∑

t=1

Ct

]
≤ E

P

[
T−1∑

t=1

(x

t−1St − x


t St ) · Zt ft + x

T−1ST · ZT fT

]
= x


0 S0.

Thus, the optimal primal solution πa is also greater than or equal to the optimal dual
solution π ′

a . Now assume π ′
a < πa . Then, since πn

a ↑ πa by Lemma 2, there must
exist some n such that πn

a > π ′
a . Moreover, there exists some Q

n , which is dual

feasible and such that EQn
[∑T

t=1 Ct

]
= πn

a . This is a contradiction to π ′
a being the

limit of the monotonically increasing sequence of optimal values of the approximate
dual problems of the form (DDn). Hence, π ′

a = πa , i.e., it is shown that there is no
duality gap in the limit.

Finally, considering the structure of Dt , the condition dQ
dP0

∣∣∣Ft
∈ Dt means that

it is of the form Zt ft , where there exists some P ∈ Pε such that Zt ∈ ZAP
t
and

dP
dP0

∣∣∣Ft
= ft . This completes the derivation of the dual problem formulation (DD). ��

3.2 Nested distance balls as ambiguity sets: a large deviations result

In order to find appropriate nonparametric distances for probability models used in the
framework of stochastic optimization, one has to observe that a minimal requirement
is that it metricizes weak convergence and allows for convergence of empirical dis-
tributions. The Kantorovich–Wasserstein distance does metricize the weak topology
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on the family of probability measures having a first moment. Its multistage general-
ization, the nested distance, measures the distance between stochastic processes on
filtered probability spaces. The “Appendix” contains the definition and interpretation
of both, the Kantorovich–Wasserstein distance and the nested distance.

Realistic probability models must be based on observed data. While for single- or
vector-valued randomvariableswith finite expectation the empirical distribution based
on an i.i.d. sample converges in Kantorovich–Wasserstein distance to the underlying
probabilitymeasure, the situation ismore involved for stochastic processes. The simple
empirical distribution for stochastic processes does not converge in nested distance
(cf. Pflug and Pichler [32]), but a smoothed version involving density estimates does.

As we show here by merging the concepts of kernel estimations and transportation
distances, one may get good estimates for confidence balls and ambiguity sets under
some assumptions on regularity.

Let P be the distribution of the stochastic process ξ = (ξ1, . . . , ξT ) with values
ξt ∈ R

m . Notice that P is a distribution onR� with � = m ·T . Let Pn be the probability
measure of n independent samples from P. If ξ ( j) = (ξ

( j)
1 , . . . , ξ

( j)
T ), j = 1, . . . , n is

such a sample, then the empirical distribution P̂n puts the weight 1/n on each of the
paths ξ ( j). For the construction of nested ambiguity balls, the empirical distribution
has to be smoothed by convolution with a kernel function k(x) for x ∈ R

�. For a
bandwidth h > 0 to be specified later, let kh(x) = 1

h� k(x/h). In what follows we will

work with the kernel density estimate f̂n = P̂n ∗ kh , where ∗ denotes convolution.

Assumption A4 1. The support of P is a set D = D1 × · · · × DT , where Di are
compact sets in Rm ;

2. P has a Lebesgue density f , which is Lipschitz on D with constant L;
3. f is bounded from below and from above on D by 0 < c ≤ f (x) ≤ c;
4. the kernel function k vanishes outside the unit ball and is Lipschitz with constant

L;
5. the conditional probabilities Pt (A|x) = P(ξt ∈ A|(ξ1, . . . , ξt−1) = x) satisfy

d (Pt (·|x) ,Pt (·|y)) ≤ γt ‖x − y‖ , x, y ∈ D (15)

for some γt > 0. Here, d denotes theWasserstein distance for probabilities onRm .

Remark 2 The proof of Theorem 3 below relies on the lower bound c of the density.
As the denominator of the conditional density f (x |y) = f (x, y)/ f (y) has to be
estimated by density estimation as well, the bound ensures that the denominator does
not vanish. In fact, the assumptions on the compact cube (point 1.) can be weakened
to D being a compact set; the proof, however, is slightly more involved then. For the
other technical assumptions (under point 5.) we may refer to Mirkov and Pflug [23].

Theorem 3 (Large deviation for the nested distance)UnderAssumptionA4 there exists
a constant K > 0 such that

P
n
(
dI
(
P, P̂n ∗ kh

)
> ε

)
< exp(−Knε2�+4), (16)
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for n sufficiently large and appropriately chosen bandwidth h. Here, dI denotes the
nested distance.

The proof of (16) is based on several steps presented as propositions below. To start
with we recall two important results for density estimates f̂n = P̂n ∗ kh for densities
f on R

�.

Proposition 3 Under the Lipschitz conditions for f and k given above, it holds that

P
n
(
sup
x∈D

∣∣∣ f (x) − f̂n(x)
∣∣∣ > ε

)
≤ P

n
(
d
(
P̂n,P

)
>
( ε

2L

)�+2
)

. (17)

if the bandwidth is chosen as h = ε/(2L).

Proof See Bolley et al. [2, Prop. 3.1]. ��
Proposition 4 Let f and g be densities vanishing outside a compact set D and set
P

f (A) = ∫
A f (x)dx resp. Pg(A) = ∫

A g(x)dx . Then their Wasserstein distance d is
bounded by

d
(
P

f ,Pg
)

≤ 2λ(D) ‖ f − g‖∞ . (18)

Here  is the diameter of D and λ(D) is the Lebesgue measure of D.

Proof Cf. [32, Prop. 4]. ��
The next result extends the previous for conditional densities.

Proposition 5 Let f and g be bivariate densities on compact sets D̄1 × D̄2 bounded
by 0 < c ≤ f , g ≤ c < ∞ which are sufficiently close so that ‖ f − g‖D̄1×D̄2

≤
cλ(D̄1 × D̄2)[2�]−1 . Then there is a universal constant κ1, depending on the set
D̄ := D̄1× D̄2 only, so that the conditional densities are close as well, i.e., they satisfy

| f (x |y) − g(x |y)| ≤ κ1 sup
x ′∈D̄1,y′∈D̄2

∣∣ f (x ′, y′) − g(x ′, y′)
∣∣

for all x ∈ D̄1 and y ∈ D̄2, i.e.,

sup
y∈D̄2

‖ f (·|y) − g(·|y)‖D̄1
≤ κ1 ‖ f − g‖D̄1×D̄2

. (19)

Proof To abbreviate the notation set ε := supx,y | f (x, y) − g(x, y)| and note that
ε ≤ cλ(D̄)[2�]−1 . Consider the marginal density f (y) := ∫

D̄1
f (x, y)dx (g(y) :=∫

D̄1
g(x, y)dx , resp.). It holds that

| f (y) − g(y)| ≤
∫

D̄1

| f (x, y) − g(x, y)| dx ≤
∫

D̄1

ε dx ≤ � · ε.
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Clearly | f (y)| ≥ cλ(D̄1), where λ(D̄1) is the Lebesgue measure of D̄1 and therefore

∣∣∣∣
f (y) − g(y)

f (y)

∣∣∣∣ ≤ �

cλ(D̄1)
· ε ≤ 1

2
. (20)

The elementary inequality 1
1+x ≤ 1 + 2 |x | is valid for x ≥ −1/2. With (20) it

follows that

g(x |y) − f (x |y) = g(x, y)

g(y)
− f (x, y)

f (y)
= g(x, y)

f (y)
· 1

1 + g(y)− f (y)
f (y)

− f (x, y)

f (y)

≤ g(x, y)

f (y)

(
1 + 2

|g(y) − f (y)|
f (y)

)
− f (x, y)

f (y)

= g(x, y) − f (x, y)

f (y)
+ 2

g(x, y)

f (y)

|g(y) − f (y)|
f (y)

≤ ε

cλ(D̄1)
+ 2

c

cλ(D̄1)

�

cλ(D̄1)
· ε ≤ κ1ε

with κ1 = 1
cλ(D̄1)

+ 2c�

(cλ(D̄1))2
. The assertion of the proposition finally follows by

exchanging the roles of the densities f and g. ��
Theorem 4 Given Assumption A4 there exists a constant κ2 such that

P
n

(
sup
y∈D̄2

d
(
P

f (·|y),P f̂n(·|y)
)

> ε

)
≤ exp(−κ2nε2�+4) (21)

for all ε > 0 and n sufficiently large.

Proof It follows from (18) and (19) that

d
(
P

f (·|y),P f̂n(·|y)
)

≤ κ3

∥∥∥ f (·|y) − f̂n(·|y)
∥∥∥∞ ≤ κ3

∥∥∥ f − f̂n
∥∥∥∞

for κ3 = 2λ(D)κ1. Recall the large deviation result from [2, Th. 2.8], which is given
by

P
n(d(P̂n,P) > η) ≤ exp(−nκ ′η2),

for some universal constant κ ′ depending on the Lipschitz constants of f and k only.
With (17) it follows that

P

(
sup
y∈D̄2

d
(
P

f (·|y),P f̂n(·|y)
)

> ε

)
≤ P

(∥∥∥ f − f̂n
∥∥∥∞ >

ε

κ3

)

≤ P
n
(
d
(
P̂n,P

)
>

ε�+2

(2Lκ3)�+2

)
≤ exp

{
−κ ′n

(
ε�+2

(2Lκ3)�+2

)2}
.
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Setting κ2 := κ ′(2Lκ3)
−2�−4 in (21) reveals the result. ��

Proof of Theorem 3 The previous theorem will be applied to the conditional densities
of ξt given the past ξ1, . . . , ξt−1. Thus the sets D̄i are interpreted as D̄1 = Dt and
D̄2 = D1 × · · · × Dt−1. For the probability measure P satisfying (15) and any other

measure P̃ satisfying d
(
Pt (·|x) , P̃t (·|x)

)
≤ εt at stage t we have that

dI
(
P, P̃

)
≤

T∑

t=1

εtγt

T∏

s=t+1

(1 + γs),

see [31, Sec. 4.2] or [23].
We employ the results elaborated above for P̃ := P̂n ∗ kh . Then

P
n
(
dI
(
P, P̂n ∗ kh

)
> ε

)

≤ P
n

(
T∑

t=1

d
(
Pt (·|xt ) , P̃t (·|xt )

)
γt

T∏

s=t+1

(1 + γs) > ε

)

=
T∑

t=1

P
n

(
d
(
Pt (·|xt ) , P̃t (·|xt )

)
>

ε

T γt
∏T

s=t+1(1 + γs)

)
.

We employ (21) to deduce that

P
n
(
dI
(
P, P̂n ∗ kh

)
> ε

)
≤

T∑

t=1

e−κ2nε2�+4
t

with εt := ε[T γt
∏T

s=t+1(1 + γs)]−1.
The desired large deviation result follows for n sufficiently large for any K <

mint∈{1,...,T } κ2

[(
T γt

∏T
s=t+1(1 + γs)

)2�+4
]−1

. ��

The smoothed model P̂n ∗ kh is not yet a tree, but by Theorem 6 of the “Appendix”
one may find9 a finite tree process P̄n , which is arbitrarily close to it. Therefore, by
eventually increasing the probability bound in (16) by another constant factor, it holds
true also for P̄n .

Remark 3 From a statistical perspective, the results contained in this section represent
a strongmotivation to use nested distance balls as ambiguity sets for general stochastic
optimization problems on scenario trees constructed from observed data. In particular,
the distributionally robust acceptable ask price allows the seller of a claim to invest in
a trading strategy which gives an acceptable superhedge of the payments to be made
under the true model with arbitrary high probability, given sufficient available data.

9 See [31, Chap. 4] for methods to efficiently construct multistage models/ scenario trees from data.
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4 Illustrative examples

One may summarize the results of the previous sections in the following way: If
the martingale measure is not unique (‘incomplete market’), then typically there is a
positive bid–ask spread in the (pointwise) replicationmodel. This spreaddoes also exist
in the acceptability model. However, if the acceptability functional is the AV@Rα ,
then by changing α we can get the complete range between the replication model
(α → 0) and the expectation model (α = 1). At least in the latter case, but possibly
even for some α < 1 , there is no bid–ask spread and thus a unique price. On the other
hand, model ambiguity widens the bid–ask spread: The more models are considered,
i.e., the larger the radius of the ambiguity set, the wider is the bid–ask spread. For
illustrative purposes, let us look at the simplest form of examples which demonstrate
these effects.

Example 1 Consider a three-stage ternary tree, where the paths are uniformly dis-
tributed and given by the columns of the matrix

⎡

⎣
100 100 100 100 100 100 100 100 100
110 110 110 100 100 100 90 90 90
112 110 108 102 100 98 92 90 88

⎤

⎦ .

Since infinitely many equivalent martingale measures can be constructed on this
tree, there is a considerable bid–ask spread for the pointwise replication model, which
corresponds to the AV@Rα-acceptability pricing model with α = 0. However, by
increasing α for both contract sides, the bid–ask spread gets monotonically smaller.
For α = 1, there is no bid–ask spread, since all martingale measures coincide in their
expectation and both buyer and seller only consider expectation in their valuation.
Figure 1a visualizes this behavior for the price of a call option struck at 95%: the bid
price increases with α, while the ask price decreases. For α = 1 they coincide.

Computationally, AV@R–acceptability pricing on scenario trees boils down to
solving a linear program (LP). It is thus straightforward to implement and the problem
scales with the complexity of LPs.

Example 2 In contrast, one may consider a three-stage binary tree model with uni-
formly distributed scenarios given by the columns of the matrix

⎡

⎣
100 100 100 100
105 105 95 95
108 102 98 92

⎤

⎦ .

This tree can carry only one single martingale measure. In such a model, the change
of acceptability levels does not change the price, since also under weakened accept-
ability the price is determined by a martingale measure, namely the unique one (in
case α is small enough such that it is feasible). However, in an ambiguity situation, a
bid–ask spread may appear, since there are typically many martingale measures con-
tained in ambiguity sets. We consider nested distance balls around the baseline tree,
where we keep the uniform distribution of the scenarios for simplicity, but allow the
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Fig. 1 Distributionally robust acceptability pricing: the bid–ask spread as a function of the acceptability
level α and the ambiguity radius ε

values of the process to change.10 The result for a call option struck at 95% can be
seen in Fig. 1b. While there is a unique price for small radii ε of the nested distance
ball, an increasing bid–ask spread appears for larger values of ε.

5 Algorithmic solution

The nested distance between two given scenario trees can be obtained by solving
an LP. However, the distributionally robust AV@R–acceptability pricing problem
w.r.t. nested distance balls as ambiguity sets results in a highly non-linear, in general
non-convex problem. Therefore, we assume the tree structure to be given by the base-
line model. In particular, it is assumed that different probability models within the
ambiguity set differ only in terms of the transition probabilities; state values and the
information structure are kept fixed.

Still, distributionally robust acceptability pricing is a semi-infinite non-convexprob-
lem. The only algorithmic approach available in the literature for similar problems is
based on the idea of successive programming (cf. [31, Chap. 7.3.3]): an approximate
solution is computed by starting with the baseline model only and alternately adding
worst case models and finding optimal solutions. However, for typical instances of
tree models this is computationally hard, as it involves the solution of a non-convex
problem in each iteration step.

Hence, we tackle the dual formulation presented in Theorem 2. The structure of
the nested distance enables an iterative approach. Algorithm 1 finds an approximate
solution by solving a sequence of linear programs. Based on duality considerations
and algorithmic exploitation of the specific stagewise transportation structure inherent

10 This is a non-convex problem. The results in Fig. 1b are based on the standard nonlinear solver of a
commercial software package (MATLAB 8.5 (R2015a), The MathWorks Inc., Natick, MA, 2015.), which
finds (local) optima for our small instance of a problem.
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to the nested distance, the algorithm approximates the solution of a semi-infinite non-
convex problemby a sequence of LPs. The current state-of-the-artmethod, on the other
hand, requires the solution of a non-convex program in each iteration step. Clearly,
a sequential linear programming approach improves the performance considerably.11

Moreover, our algorithm turned out to find feasible solutions in many cases where our
implementation of a successive programming method fails to do so.

Let us extend the concept of the nested distance to subtrees, iteratively from the
leaves to the root (‘top-down’). For two scenario trees (here with identical filtration
structures), define dIT (i, j) as the distance of the paths leading to the leave nodes
i, j ∈ NT . Moreover, define

dIt (k, l) :=
∑

i∈k+

∑

j∈l+
π(i, j |k, l)dIt+1(i, j),

for all nodes k, l ∈ Nt , where 0 ≤ t < T . Then, the nested distance between the two
trees is given by dI0(1, 1) . This stagewise backwards approach (cf. [31, Alg. 2.1]) is
the basic idea of Algorithm 1. As we assume the tree structure to be fixed, Algorithm 1
iterates through the tree in the same top-downmanner and searches for the optimal solu-
tion in each stage, while ensuring that the nested distance constraint remains satisfied.
The variables are the conditional transition probabilities underQ, i.e., qi := Q[i |i−],
as well as the transportation subplans π(i, j |i−, j−), as defined in the “Appendix”.
We use the notation n− for the immediate predecessor of some node n. As themeasure
P is in fact not needed explicitly since it is given by the transportation plan from P̂ ,
condition (4.3) in Algorithm 1 serves to ensure that it is still well-defined implicitly
(note that always some node k̃ ∈ Nt−1 needs to be fixed). Condition (1) ensures that
Q is a martingale measure, Q represents conditional probabilities by condition (2),
condition (3) corresponds to the constraint on the measure change (dQ/dP ≤ 1/α)
resulting from the primalAV@Rα–acceptability conditions, and (4.1)–(4.3) represent
the constraint that there must be one P contained in the nested distance ball such that
condition (3) holds.

The algorithm optimizes the variables stagewise top-down. The optimal solution at
stage t + 1 depends on the values of the variables for all stages up to stage t , which
result from the previous iteration step. Therefore, the algorithm iterates as long as
there is further improvement possible at some stage, given updated variable values for
the earlier stages of the tree. Otherwise, it terminates and the optimal solution of our
approximate problem is found.

Algorithm 1 Acceptability pricing under model ambiguity.

Start with some feasible model P in the nested distance ball around P̂. Initialize πold by assigning the
optimal transportation plan between P and P̂ and initialize ’oldprice’.

1: Iteration
2: [newprice, πnew] ← GetPrice(πold)
3: if (oldprice == newprice) then
4: return oldprice
5: else

11 For our implementations, the speed-up factor for a test problem was on average about 100. However,
this may depend heavily on the implementation and the problem.
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6: oldprice ← newprice, πold ← πnew
7: Iterate
8: end if
9: EndIteration

10: function GetPrice(π̃ )
11: for t from T to 1 do solve

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

max{qi , π(i, j |k,l) : i, j∈Nt }
EQ

⎡

⎣
T∑

τ=t

Cτ

∣∣∣∣∣∣
Ft−1

⎤

⎦

s.t.

(1)
∑

i∈k+
qi · xi = xk ∀k ∈ Nt−1

(2)
∑

i∈k+
qi = 1 ∀k ∈ Nt−1

(3) −
∑

i∈k+
π(i, j |k, l) + α · q j ≤ 0 ∀ j ∈ Nt

(4.1)
∑

i∈Nt

∑

j∈Nt

π(i, j |i−, j−) · π̃(i−, j−) · dIt (i, j) ≤ ε

(4.2)
∑

j∈l+
π(i, j |k, l) = P̂[i |k] ∀l ∈ Nt−1,∀i ∈ Nt

(4.3)
∑

i∈k+
π(i, j |k, l) =

∑

i∈k̃+
π(i, j |k̃, l) ∀k ∈ Nt−1, ∀ j ∈ Nt

(5) qi , π(i, j |i−, j−) ∈ [0, 1] ∀i, j ∈ Nt

12: end for
13: price ← E

Q[∑T
t=1 Ct ], construct transportation plan π(·, ·) from subplans π(·, ·|·, ·)

14: return [price, π ]
15: end function

Example 3 Consider the price of a plain vanilla call option struck at 95, in the Black–
Scholes model with parameters S0 = 100, r = 0.01, σ = 0.2, T = 1. Applying
optimal quantization techniques (see, e.g., [31, Chap. 4] for an overview) to discretize
the lognormal distribution, we construct a scenario tree with 500 nodes. While there
exists a unique martingale measure (and thus a unique option price) in the Black–
Scholesmodel, the discrete approximation allows for severalmartingalemeasures (and
thus a positive bid–ask spread). Figure 2 visualizes the bid–ask spread as a function of
the AV@R–acceptability level α and the radius ε of the nested distance ball used as
model ambiguity set. For α → 1 and ε = 0, the spread closes and the resulting price
approximates the true Black–Scholes price up to 4 digits. For illustrative purposes,
the spread between the bid and the ask price surface is shown from two perspectives.

6 Conclusion

In this paper we extended the usual methods for contingent claim pricing into two
directions. First, we replaced the replication constraint by amore realistic acceptability
constraint. By doing so, the claim price does explicitly depend on the stochastic model
for the price dynamics of the underlying (and not just on its null sets). If the model is
basedonobserveddata, then the calculation of the claimprice canbe seen as a statistical
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Fig. 2 The bid–ask spread as a function of acceptability and ambiguity

estimate. Therefore, as a second extension, we introduced model ambiguity into the
acceptability pricing framework and we derived the dual problem formulations in the
extended setting. Moreover, we used the nested distance for stochastic processes to
define a confidence set for the underlying pricemodel. In thisway,we link acceptability
prices of a claim to the quality of observed data. In particular, the size of the confidence
region decreases with the sample size, i.e., the number of observed independent paths
of the stochastic process of the underlying. For a given sample of observations, the
ambiguity radius indicates how much the baseline ask/ bid price should be corrected
to safeguard the seller/ buyer of a claim against the inherent statistical model risk, as
Sect. 5 illustrates.
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Appendix

Distances for random variables and stochastic processes. Recall the definition of
the Kantorovich–Wasserstein distance d(P, P̃) for two (Borel) random distributions
P and P̃ on Rm :

∥∥∥∥∥∥∥∥∥∥

d(P, P̃) := inf
π

∫∫
‖ω − ω̃‖ π(dω, dω̃)

s.t. π
(
A × R

m) = P(A)

π
(
R
m × B

) = P̃(B).

Here, π runs over all Borel measures on R
m × R

m with given marginals P resp. P̃ .
These measures are called transportation plans. If ξ and ξ̃ are R

m-valued random
variables, then their distance is defined as the distance of the corresponding image
measures Pξ resp. P ξ̃ .
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Pflug and Pichler [29,30] introduced the notion of the nested distance as a general-
ization of the Kantorovich–Wasserstein distance for Rm-valued stochastic processes
ξ = (ξ1, . . . , ξT ) and its image measures P on R

mT . Let F = (F1, . . . ,FT ) be the
filtration composed of the sigma-algebras Ft generated by the component projections
(ξ1, . . . , ξT ) �→ (ξ1, . . . , ξt ) . Moreover, let for ξ = (ξ1, . . . , ξT ) ∈ R

mT the distance
be defined as ‖ξ − ξ̃‖ := ∑T

t=1 ‖ξt − ξ̃t‖.
Definition 3 The nested distance dI for distributions P and P̃ is defined as

∥∥∥∥∥∥∥∥∥∥∥∥

dI(P, P̃) := inf
π

∫∫
‖ξ(ω) − ξ̃ (ω̃)‖ π(dω, dω̃)

s.t. π
(
A × R

m
∣∣∣Ft ⊗ F̃t

)
= P

[
A
∣∣∣Ft

]
A ∈ FT ; t = 1, . . . , T

π
(
R
m × B

∣∣∣Ft ⊗ F̃t

)
= P̃

[
B
∣∣∣F̃t

]
B ∈ F̃T ; t = 1, . . . , T .

To interpret this definition, the nested distance between two multistage probability
distributions is obtained by minimizing over all transportation plans π , which are
compatible with the filtration structures. For a single period (i.e., T = 1), the nested
distance coincides with the Kantorovich–Wasserstein distance. The following basic
theorem for stability of multistage stochastic optimization problems was proved by
Pflug and Pichler [30, Th. 6.1].

Theorem 5 Let P and P̃ be nested distributions with filtrations F and F̃ , respectively.
Consider the multistage stochastic optimization problem

v(P) := inf
{
E
P[Q(ξ, x)] : x ∈ X, x � F

}
,

where Q is convex in the decisions x = (x1, . . . , xT ) for any ξ fixed, and Lipschitz
with constant L in the scenario process ξ = (ξ1, . . . , ξT ) for any x fixed. The set X is
assumed to be convex and the constraint x�F means that the decisions can be random
variables, but must be adapted to the filtration F , i.e., must be nonanticipative. Then
the objective values v(P) and v(P̃) satisfy

∣∣∣v(P) − v(P̃)

∣∣∣ ≤ L · dI(P, P̃).

Finite scenario trees aremuch easier to workwith than general stochastic processes.
For finite trees, where every node m has a unique predecessor, we write m+ for the
set of its immediate successors. Denote byNt the set of all nodes at stage t of the tree
model P. For a node i ∈ m+ let P[i |m] be the conditional transition probability from
m to i .
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Definition 4 The nested distance for scenario trees P and P̃ is defined as
∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

dI(P, P̃) := min
π≥0

∑

i

∑

j

πi, j · Di, j

s.t.
∑

j∈l+
π(i, j |k, l) = P[i |k] ∀i ∈ k+; ∀(k, l) ∈ (Nt × Ñt ); 1 ≤ t < T

∑

i∈k+
π(i, j |k, l) = P̃[ j |l] ∀ j ∈ l+; ∀(k, l) ∈ (Nt × Ñt ); 1 ≤ t < T

πi, j ≥ 0 and
∑

i

∑

j

πi, j = 1.

(22)

The matrix π of transportation plans and the matrix D carrying the pairwise distances
of the paths are defined on NT × ÑT . The conditional joint probabilities π(i, j |k, l)
in (22) are given by π(i, j |k, l) = πi, j · [∑i ′∈k+

∑
j ′∈l+ πi ′, j ′ ]−1.

Approximation of random processes by finite trees The subsequent result follows
from [31, Prop. 4.26].

Theorem 6 If the stochastic process ξ = (ξ1, . . . , ξT ) satisfies the Lipschitz condition
given in Assumption A4.5 in Sect. 3.2, then for every ε > 0 there is a stochastic process
with distribution P̃, which is defined on a finite tree and which satisfies

dI(P, P̃) ≤ ε,

where P is the distribution of ξ on the filtered space (Ω,F).
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