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A global weak solution to the full bosonic string heat flow

Volker Branding

Abstract. We prove the existence of a unique global weak solution to the full bosonic string heat flow from
closed Riemannian surfaces to an arbitrary target under smallness conditions on the two-form and the scalar
potential. The solution is smooth with the exception of finitely many singular points. Finally, we discuss the
convergence of the heat flow and obtain a new existence result for critical points of the full bosonic string
action.

1. Introduction and results

The action functional for the full bosonic string is an important model in contempo-
rary theoretical physics. It is defined for a map from a two-dimensional domain taking
values in a manifold. The action functional consists of three contributions: Besides the
Polyakov action one considers the so-called B-field action and a Dilaton contribution.
For the physics background of the full bosonic string we refer to [11, p. 108].
This article is a sequel to previous work concerning the existence of critical points

of the full bosonic string action. In [2], an existence result was given in the case of
the domain being a closed Riemannian surface and the target a Riemannian manifold
having negative sectional curvature. Moreover, a second existence result has been
established in [3] for the domain being two-dimensional Minkowski space and the
target an arbitrary closed Riemannian manifold.
The aim of this article is to extend the existence result from [2] to arbitrary targets

without posing any curvature assumption. In addition, we prove a regularity result for
weak solutions of the critical points of the full bosonic string action.
Let us explain the geometric setup in more detail. Throughout this article (M, h)

is a closed Riemannian surface and (N , g) a closed, oriented Riemannian manifold
of dimension dim N ≥ 3. For a map φ : M → N , we consider the square of its
differential giving rise to the well-known Dirichlet energy, whose critical points are
harmonic maps. Let B be a two-form on N , which we pull back by the map φ and
V : N → R be a scalar function.
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In the physics literature, the full action for the bosonic string is given by

Sbos(φ, h) =
∫
M

(
1

2
|dφ|2 + φ∗B + V (φ)

)
dvolh . (1.1)

We explicitly state the dependence of the action functional on the metric of the domain
M since the scalar potential V (φ) is not invariant under conformal transformations.
Note that in the physics literature the scalar potential V (φ) often gets multiplied with
the scalar curvature of the domain.
In the mathematics literature, there have been several articles dealing with energy

functionals similar to (1.1). On the one hand, there is the notion of harmonic maps
with potential introduced in [7,8], which are critical points of (1.1) with B = 0. On
the other hand, there have been several studies of the heat flow of (1.1) with V = 0,
see for example [17,18] and [4]. For more references on the mathematical background
see the introduction of [2] and references therein. The tools that we use in this article
mostly originate from the theory of harmonic maps, see [13] and the book [14] for a
detailed presentation.
The Euler–Lagrange equation of the functional (1.1) is given by

τ(φ) = Z(dφ(e1) ∧ dφ(e2)) + ∇V (φ), (1.2)

where τ(φ) := Trh ∇dφ ∈ �(φ∗T N ) denotes the tension field of the map φ and the
vector-bundle homomorphism Z ∈ �(Hom(�2T ∗N , T N )) is defined by the equation

�(η, ξ1, ξ2) = 〈Z(ξ1 ∧ ξ2), η〉,

where � = dB is a three-form on N and {e1, e2} an orthonormal basis of T M . For a
derivation of (1.2) see [2, Proposition 2.1].

First of all, we analyze the regularity of weak solutions of (1.2) and prove the
following

THEOREM 1.1. Let (M, h) be a closed Riemannian surface and (N , g) a closed
Riemannian manifold with dim N ≥ 3. Suppose that φ ∈ W 1,2(M, N ) solves (1.2) in
a distributional sense. If V (φ) is smooth then φ ∈ C∞(M, N ).

The major part of this article is devoted to the study of the L2-gradient flow of the
functional (1.1), which is given by the following evolution equation

∂φ

∂t
(x, t) = τ(φ)(x, t) − Z(dφ(e1) ∧ dφ(e2))(x, t) − ∇V (φ)(x, t),

φ(x, 0) = φ0(x). (1.3)

This is a natural generalization of the harmonic map heat flow from surfaces. Al-
though most of the analytical results obtained in this article follow the ideas from the
standard harmonic map heat flow we will encounter several new phenomena due to
the presence of the scalar potential V (φ) in the action functional. For simplicity, we
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will mostly assume that the scalar potential is smooth. However, we will point out the
influence of a potential of lower regularity on the solution of (1.3) at several places.

By assumption the manifold N is compact, hence the potential V (φ) satisfies
−A1 ≤ V (φ) ≤ A2 for positive constants A1, A2. Exploiting this fact, we set

0 ≤ Ṽ (φ) := V (φ) + A1. (1.4)

We will prove the following

THEOREM 1.2. Let (M, h) be a closed Riemannian surface and (N , g) a closed
Riemannianmanifold.Moreover, suppose that |B|L∞ < 1

2 and that V (φ) ∈ C∞(N ,R)

satisfies
∫
M
Ṽ (φ)dvolh < δ (1.5)

for some small δ > 0.
Then for any initial data φ0 ∈ W 1,2(M, N ), there exists a global weak solution

φ : M × [0,∞) → N

of (1.3) on M × [0,∞), which is smooth away from at most finitely many singular
points (xk, tk), 1 ≤ k ≤ K with K = K (φ0, |V (φ)|L∞, |B|L∞ , M). Theweak solution
constructed here is unique, and the energy functional (1.1) is decreasing with respect
to time.
Moreover, there exists a sequence tk → ∞ such that φ(·, tk) converges weakly in
W 1,2(M, N ) to a solution of (1.2) denoted by φ∞ as k → ∞ suitably and strongly
away from finitely many points (xk, tk = ∞). The limiting map φ∞ is smooth on
M\{x1, . . . , xK }.
Let us give amore precise definition ofwhat ismeant by a singularity inTheorem1.2.

We say that (x0, t0) is a singular point of (1.3) if for any R > 0

lim sup
t→t0

∫
BR(x0)

|dφ|2dμ ≥ δ1,

where δ1 > 0 will be determined along the proof, and BR(x0) denotes the geodesic
ball around x0 with radius R.

REMARK 1.3. (1) Note that we can always perform a conformal rescaling of
the metric h on the domain to achieve the smallness condition (1.5). Such a
conformal transformation does not affect the other two terms in (1.1) since they
are invariant under conformal transformations.

(2) In the case of the standard harmonic map heat flow from surfaces to general
targets, one can blow up the singular points that form along the flow. This pro-
cedures makes use of the fact that the harmonic map heat flow is invariant under
parabolic rescaling. The inclusion of the scalar potential in the action functional



1822 V. Branding J. Evol. Equ.

(1.1) breaks the conformal invariance, as a consequence the critical points of
(1.1) do not scale nicely. Hence, we cannot expect to blow up the singular points
that form along (1.3).

(3) If we compare the results obtained in this article with the main results from [2]
we can make the following observations: In [2], an existence result for (1.2)
could be obtained under the assumption that the target manifold has negative
curvature. In this article, we do not impose any curvature condition on the target
instead we have to make strong assumption on the scalar potential V (φ).

This article is organized as follows: In Sect. 2, we study the regularity of weak
solutions to (2.1). Afterward, in Sect. 3, we study the heat flow associated with (2.1)
and prove Theorem 1.2.

Whenever employing local coordinates, we will use Greek indices for coordinates
on the domain and Latin indices for coordinates in the target. In addition, wewill make
use of the usual summation convention, that is we will sum over repeated indices.

2. Analytic aspects of the full bosonic string

In this section, we want to analyze several analytical properties of solutions of (1.2).
To this end, we make use of the Nash embedding theorem and assume that N ⊂ R

q .
Then, (1.2) acquires the form

�u = II(du, du) + Z(du(e1) ∧ du(e2)) + ∇V (u), (2.1)

where u : M → R
q and II denotes the second fundamental form of N in R

q . For the
equivalence of (1.2) and (2.1) see [2, Lemma 3.8].

In particular, we want to address the question how the regularity of the scalar
potential V (u) influences the regularity of the solution of (1.2). To this end, we will
make the following definition:

DEFINITION 2.1. We call u ∈ W 1,2(M, N ) a weak solution if it solves (2.1) in a
distributional sense.

A similar study has already been performed in [5,6] for harmonic maps with poten-
tial, that is critical points of (1.1) with B = 0. Fortunately, by now there exist powerful
tools that are well-adapted to (2.1). We will make use of the following regularity result
from [12].

THEOREM 2.2. Suppose that u ∈ W 1,2(D,Rq) is a weak solution of

−�u = A · ∇u + f, f ∈ L p(D,Rq), (2.2)

where A ∈ L2(D, so(q) ⊗ R
2) and p ∈ (1, 2). Then u ∈ W 2,p

loc (D). In particular, if

f = 0, then u ∈ W 2,p
loc for all p ∈ [1, 2) and u ∈ W 1,q

loc for all q ∈ [1,∞). Moreover,
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for U ⊂ D, there exist η0 = η0(p, q) > 0 and C = C(p,m,U ) < ∞ such that if
‖A‖L2(D) ≤ η0, then the following estimate holds

‖u‖W 2,p(U ) ≤ C(‖ f ‖L p(D) + ‖u‖L1(D)). (2.3)

In order to be able to apply Theorem 2.2 we need to rewrite the right hand side
of (2.1). We denote coordinates in the ambient space R

q by (y1, y2, . . . , yq). Let
νl , l = n + 1, . . . , q be an orthonormal frame field for the normal bundle T⊥N . For
X,Y ∈ TyN and ∇Y νk = Y i ∂νk

∂yi
we express the second fundamental form as

IIy(X,Y ) = 〈X,∇Y νl〉νl = XiY j ∂νil

∂y j
νl .

Let D be a domain in M and consider a weak solution of (2.1). We choose local
isothermal coordinates z = x + iy, set e1 = ∂x , e2 = ∂y and use the notation
uα = du(eα). Moreover, note that uα ∈ T N and νl ∈ T⊥N , which implies that

uiανil = 0 (2.4)

for all α. Hence, we may write

IIm(uα, uα) = uiαu
j
α

(
∂νil

∂y j
νml − ∂νml

∂y j
νil

)
, m = 1, . . . , q, (2.5)

where we used (2.4) in the second term on the right hand side. In addition, we note
that

Zm(du(e1) ∧ du(e2)) = Zm(∂yi ∧ ∂y j )uixu
j
y, m = 1, . . . , q.

By the definition of Z and exploiting the skew symmetry of the three-form �, we
find (see also [1])

Zk(∂yi ∧ ∂y j ) = −Zi (∂yk ∧ ∂y j ). (2.6)

We are now in the position to show that solutions of (2.1) have a structure such that
Theorem 2.2 can be applied.

PROPOSITION 2.3. Let (M, h) be a closed Riemannian surface, and let (N , g) be
a compact Riemannian manifold. Assume that u : D → N is a weak solution of (2.1).
Let D be a simply connected domain of M. Then, there exists Ai

j ∈ L2(D, so(q)⊗R
2)

such that

−�um = Am
i · ∇ui + (∇V (u))m (2.7)

holds.
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Proof. By assumption N ⊂ R
q is compact, we denote its unit normal field by νl , l =

n + 1, . . . , q. Using (2.5) and (2.6), we denote

Am
i =

(
Fm

i
Gm

i

)
, i,m = 1, . . . , q

with

Fm
i :=

(
∂νil

∂y j
νml − ∂νml

∂y j
νil

)
u j
x + Zm(∂yi ∧ ∂y j )u

j
y,

Gm
i :=

(
∂νil

∂y j
νml − ∂νml

∂y j
νil

)
u j
y − Zm(∂yi ∧ ∂y j )u

j
x .

The skew symmetry of Am
i can be read of from its definition and the properties of Z ,

see (2.6). By assumption u is a weak solution of (2.1), hence Am
i ∈ L2(D, so(q)⊗R

2)

completing the proof. �

First, we will assume that the scalar potential V (u) may have as little regularity as
possible.

COROLLARY 2.4. Let (M, h) be a closed Riemannian surface, and let N be a
compact Riemannian manifold. Assume that u : D → N is a weak solution of (2.1).
Fix p ∈ (1, 2) and assume that the scalar potential is of class V ∈ W 1,p(N ,R). Then,

u ∈ W 2,p(M, N ) and u ∈ W 1, 2p
2−p (M, N ).

Proof. This follows from Theorem 2.2 applied to (2.7) and the Sobolev embedding
theorem in dimension two. �

One cannot expect to gain more regularity unless one assumes that the potential
V (u) has a better analytical structure. In the case of a smooth potential V (u), we
directly obtain Theorem 1.1.

Proof of Theorem 1.1. This follows from elliptic regularity and a standard bootstrap
argument. �

We conclude this section with the following “gap-type” theorem.

PROPOSITION 2.5. Let u be a smooth solution of (2.1) with small energy
‖du‖L2 < ε. Then, the following inequality holds

‖u‖
W 2, 43 (M,N )

≤ C‖∇V ‖
L

4
3 (M,N )

, (2.8)

where the positive constant C depends on M, N , ε, |Z |L∞ .

Proof. We estimate (2.1) as

‖�u‖
L

4
3 (M,N )

≤ C‖|du|2‖
L

4
3 (M,N )

+ ‖∇V ‖
L

4
3 (M,N )

≤ C‖du‖2L2(M,N )
‖du‖L4(M,N ) + ‖∇V ‖

L
4
3 (M,N )

.
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The claim follows by applying the Sobolev embedding theorem and choosing ε

sufficiently small. �

This allows us to draw the following

COROLLARY 2.6. If ‖du‖L2 is sufficiently small and
‖∇V ‖

L
4
3 (M,N )

≤ δ‖u‖
W 2, 43 (M,N )

for δ sufficiently small then u must be trivial.

Note that we do not have to make any assumption on V (u) but only on its gradient.

3. The heat flow for the full bosonic string

In this section, we study the heat flow associated to (1.2) and prove Theorem 1.2.
First, we will rewrite the action functional (1.1) in order to obtain a functional that

is easier to handle from an analytical point of view.
Shifting the potential V (φ) as defined in (1.4) we obtain the transformed energy

functional

S̃bos(φ, h) =
∫
M

(
1

2
|dφ|2 + φ∗B + Ṽ (φ)

)
dvolh . (3.1)

Note that S̃bos(φ, h) ≥ 0 if we also assume that |B|L∞ ≤ 1
2 .

REMARK 3.1. The critical points of S̃bos(φ, h) and Sbos(φ, h) coincide since both
action functionals only differ by a constant. This fact is well known in physics: The
Lagrangian/Hamiltonian of a mechanical system can be changed by adding a constant
since it does not contribute to the equations of motion.

In order to deal with the analytic aspects of (1.3), we again isometrically embed the
target manifold N into Rq . Then, the corresponding heat flow acquires the form

∂ut
∂t

= �ut − II(dut , dut ) − Z(dut (e1) ∧ dut (e2)) − ∇V (ut ), (3.2)

u(x, 0) = u0(x),

where ut : M ×[0, T ) → R
q . We will use a subscript t to denote the t-dependence of

u. For a derivation of (3.2) see [2, Lemma 4.1]. The existence of a short-time solution
can be obtained by standard methods, see for example [16, Chapter 15].

3.1. Energy estimates

In this subsection, we will derive the necessary energy estimates for the study of
(3.2).
Let us introduce the following notation

E(ut ) :=
∫
M

|dut |2dvolh,

E(ut , BR(x)) :=
∫
BR(x)

|dut |2dμ.
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Here, BR(x) denotes the geodesic ball of radius R around the point x and by ιM we
will denote the injectivity radius of M . Note that both these energies are conformally
invariant.
In addition, we introduce the following function space with Q = M × [0, T ) and

dQh = dvolhdt :

W :=
{

sup
0≤t≤T

E(ut ) +
∫
Q

(|∇2ut |2 + ∣∣∂ut
∂t

∣∣2)dQh < ∞
}

Due to the variational structure of our problem, we have the following

LEMMA 3.2. Let ut ∈ W be a solution of (3.2). Then, the following equality holds

∫
M

(
1

2
|duT |2 + u∗

T B + Ṽ (uT )

)
dvolh +

∫ T

0

∫
M

∣∣∂ut
∂t

∣∣2dQh

=
∫
M

(
1

2
|du0|2 + u∗

0B + Ṽ (u0)

)
dvolh . (3.3)

Proof. We calculate

d

dt

1

2

∫
M

|dut |2dvolh = −
∫
M

〈∂ut
∂t

,�ut 〉dvolh

=
∫
M

( − ∣∣∂ut
∂t

∣∣2 − 〈∂ut
∂t

, II(dut , dut )

+ Z(dut (e1) ∧ dut (e2)) + ∇ Ṽ (ut )〉
)
dvolh

= −
∫
M

∣∣∂ut
∂t

∣∣2dvolh −
∫
M

(
∂

∂t
u∗
t B + ∂

∂t
Ṽ (ut )

)
dvolh,

where we used that II ⊥ ∂ut
∂t . The claim follows by integration with respect to t . �

The next Lemma is the analogue of Lemma 3.6 from [13].

LEMMA3.3. Let ut ∈ W bea solution of (3.2). For R ∈ (0, iM )andany (x, t) ∈ Q
there holds the estimate

∫
BR

(
1

2
|dut |2 + u∗

t B + Ṽ (ut )

)
dμ ≤ C

R2

∫
Q

|dut |2dQh

+
∫
B2R

(
1

2
|du0|2 + u∗

0B + Ṽ (u0)

)
dμ, (3.4)

where the constant C only depends on M.

Proof. We choose a smooth cutoff function η with the following properties

η ∈ C∞(M), η ≥ 0, η = 1 on BR(x0),

η = 0 on M\B2R(x0), |∇η|L∞ ≤ C

R
,
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where again BR(x0) denotes the geodesic ball of radius R around x0 ∈ M and C a
positive constant. In addition, we choose an orthonormal basis {eα, α = 1, 2} on M
such that ∇eαeβ = ∇∂t eα = 0 at the considered point. By a direct calculation we
obtain

∂

∂t

1

2
|dut |2 = d

〈
∂ut
∂t

, dut

〉
−

〈
∂ut
∂t

,�ut

〉
.

Multiplying by the cutoff function η2 and using the evolution Eq. (3.2), we find

d

dt

1

2

∫
M

η2|dut |2dvolh =
∫
M

(
η2d

〈
∂ut
∂t

, dut

〉
+ η2

(
− ∣∣∂ut

∂t

∣∣2

−
〈
∂ut
∂t

, Z(dut (e1) ∧ dut (e2))

〉
−

〈
∂ut
∂t

,∇ Ṽ (ut )

〉 )
dvolh

=
∫
M

(
η2d

〈
∂ut
∂t

, dut

〉
− η2

∂

∂t
u∗
t B

− η2
∂

∂t
Ṽ (ut ) − η2

∣∣∂ut
∂t

∣∣2
)
dvolh .

Using integration by parts, we derive
∫
M

η2d

〈
∂ut
∂t

, dut

〉
dvolh ≤ 2

∫
M

|η||dη||∂ut
∂t

||dut |dvolh .

Applying Young’s inequality and by the properties of the cutoff function η, we find

d

dt

∫
M

η2
(
1

2
|dut |2 + u∗

t B + Ṽ (ut )

)
dvolh ≤ C

R2

∫
M

|dut |2dvolh .

Integration with respect to t yields the result. �

PROPOSITION 3.4. Let ut ∈ W be a solution of (3.2). Moreover, suppose that
|B|L∞ < 1

2 .
Then, the following monotonicity formulas hold

E(ut ) ≤ δ2 S̃bos(u0, h)

≤ δ3E(u0) + δ2

∫
M
Ṽ (u0)dvolh, (3.5)

E(ut , BR) ≤ Cδ22
T

R2 S̃bos(u0, h) + δ2 S̃bos(u0, B2R)

≤ δ3E(u0, B2R) + Cδ22
T

R2 S̃bos(u0, h) + δ2

∫
B2R

Ṽ (u0)dμ, (3.6)

where

δ2 := 1
1
2 − |B|L∞

, δ3 :=
1
2 + |B|L∞
1
2 − |B|L∞

.

Here, Sbos(u0, B2R) denotes the action functional at time 0 restricted to the ball B2R.
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Proof. This follows from combining (3.3) and (3.4) and making use of the assump-
tions. �

In the following, we want to control the energy of ut locally.

LEMMA 3.5. Let ut ∈ W be a solution of (3.2). Moreover, suppose that
|B|L∞ < 1

2 . Then for any δ1 > 0, there exist R1 ∈ (0, iM ) and T1 > 0 such that

sup
x∈M

0≤t≤T1

E(ut , BR1) < δ1. (3.7)

Proof. Given any u0 we can always find some R1 > 0 such that

S̃bos(u0, B2R1) <
δ1

2δ2

for a positive constant δ1. The statement then follows from (3.6) by choosing

T1 = δ1

2

R2
1

Cδ22 S̃bos(u0, h)
.

�

Let X ∈ R
2 be a bounded domain. Then, Ladyzhenskaya’s inequality holds, that is

LEMMA 3.6. Assume that v ∈ W 1,2(X). Then, the following inequality holds:

‖v‖4L4(X)
≤ C‖v‖2L2(X)

‖dv‖2L2(X)

In the following, we need a local version of Ladyzhenskaya’s inequality from above.

LEMMA 3.7. Assume that v ∈ W. Then, there exists a constant C such that for
any R ∈ (0, iM ) the following inequality holds:

∫
M

|dv|4dvolh ≤ C sup
x∈M

∫
BR(x)

|dv|2dvolh
( ∫

M
|∇2v|2dvolh + 1

R2

∫
M

|dv|2dvolh
)

.

(3.8)

Proof. A proof can for example be found in [15, Lemma 6.7]. �

Making use of the Ricci identity, we obtain the following formula for v : M → R
q

∫
M

|�v|2dvolh =
∫
M

|∇2v|2dvolh − 1

2

∫
M
Scal |dv|2dvolh . (3.9)

Here, Scal denotes the scalar curvature of M .
As a next step, we will control the L2-norm of the second derivatives of ut .
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LEMMA 3.8. Let ut ∈ W be a solution of (3.2) and suppose that (3.7) holds
with δ1 sufficiently small. Moreover, suppose that |B|L∞ < 1

2 . Then, the following
inequality holds ∫

Q
|∇2ut |2dQh ≤ C

(
1 + T

R2

)
, (3.10)

where the constant C depends on M, N , δ1, |Z |L∞ , |B|L∞ , |Hess V |L∞ .

Proof. By a direct calculation we find

d

dt

1

2

∫
M

∣∣dut |2dvolh = −
∫
M

〈
�ut ,

∂ut
∂t

〉
dvolh

=
∫
M

(−|�ut |2 + 〈�ut , II(dut , dut )

+ Z(dut (e1) ∧ dut (e2)) + 〈�ut ,∇V (ut )〉)dvolh
≤ −1

2

∫
M

|�ut |2dvolh + C
∫
M

|dut |4dvolh

−
∫
M
Hess(dut , dut )dvolh .

By assumption N is compact andwe can estimate the Hessian of V by its maximum.
Making use of (3.8) and (3.9), we obtain

d

dt

1

2

∫
M

∣∣dut |2dvolh = −1

2

∫
M

|∇2ut |2dvolh + C
∫
M

|dut |2dvolh

+ C sup
x∈M

∫
BR(x)

|dut |2dvolh
(∫

M
|∇2ut |2dvolh

+ 1

R2

∫
M

|dut |2dvolh
)

.

Choosing δ1 small enough, we get the following inequality

d

dt

1

2

∫
M

∣∣dut |2dvolh + C
∫
M

|∇2ut |2dvolh

≤ C
∫
M

|dut |2dvolh + C

R2

∫
M

|dut |2dvolh .

The claim follows by integration with respect to t . �

Using the bound on the second derivatives, we can apply the Sobolev embedding
theorem to bound

∫
Q |dut |4dQh .

COROLLARY 3.9. Let ut ∈ W be a solution of (3.2) with δ1 sufficiently small.
Moreover, suppose that |B|L∞ < 1

2 . Then we have for all t ∈ [0, T1)∫
Q

|dut |4dQh ≤ C f (T1) (3.11)

with f (T1) satisfying f (T1) → 0 as T1 → 0.
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Proof. The bound follows from (3.8) and the previous estimate. �

As a next step, we control the L2-norm of the derivatives of ut with respect to t .

LEMMA 3.10. Let ut∈W be a solution of (3.2). Moreover, suppose that
|B|L∞< 1

2 . If sup(x,t)∈M×[0,T1)E(ut , BR1(x))) < δ1 is small enough, we find for ξ > 0

sup
2ξ≤t≤T1

∫
M

∣∣∂u
∂t

(·, t)|2dvolh ≤ C(1 + ξ−1), (3.12)

where the positive constant C depends on M, N , δ1, u0, |B|L∞ , |Z |L∞ , |∇Z |L∞ ,

|Hess V |L∞ .

Proof. By a direct calculation using (3.2), we find

d

dt

1

2

∫
M

∣∣∂ut
∂t

∣∣2dvolh = −
∫
M

∣∣∇ ∂ut
∂t

∣∣2dvolh −
∫
M

〈 ∇
∂t

(
II(dut , dut )

)
,
∂ut
∂t

〉
dvolh

−
∫
M

( 〈 ∇
∂t

(
Z(dut (e1) ∧ dut (e2))

)
,
∂ut
∂t

〉

− Hess V

(
∂ut
∂t

,
∂ut
∂t

))
dvolh .

Again, we can estimate the Hessian of the potential V (ut ) by its maximum since N
is compact. Consequently, we obtain

d

dt

1

2

∫
M

∣∣∂ut
∂t

∣∣2dvolh ≤ −
∫
M

∣∣∇ ∂ut
∂t

∣∣2dvolh
+ C

∫
M

(
|dut |2

∣∣∂ut
∂t

∣∣2 + |dut |
∣∣∇ ∂ut

∂t

∣∣∣∣∂ut
∂t

∣∣+∣∣∂ut
∂t

∣∣2
)
dvolh

≤ −1

2

∫
M

∣∣∇ ∂ut
∂t

∣∣2dvolh + C
∫
M

|dut |2
∣∣∂ut

∂t

∣∣2dvolh
+ C

∫
M

∣∣∂ut
∂t

∣∣2dvolh .
To control the second term on the right hand side, we use another type of Sobolev

inequality (similar to (3.8) for |t − s| ≤ 1), that is∫ t

s

∫
M

|dut |2|∂ut
∂t

|2dQh

≤
( ∫ t

s

∫
M

|dut |4dQh

) 1
2
(

sup
s≤θ≤t

∫
M

|∂u
∂t

(·, θ)|2dvolh

+
∫ t

s

∫
M

|∇ ∂ut
∂t

|2dQh

)
.

Using (3.11) and integrating over a small time interval t − s < z, we can absorb
part of the right hand side in the left and obtain∫

M
|∂u
∂t

(·, t)|2dvolh ≤ inf
t−z≤s≤t

C
∫
M

|∂u
∂t

(·, s)|2dvolh + δ2 S̃bos(u0, h).
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Finally, we estimate the infimum by the mean value, more precisely

sup
2ξ≤t≤T1

∫
M

|∂u
∂t

(·, t)|2dvolh ≤ C(1 + ξ−1)

∫ t

s

∫
M

|∂ut
∂t

|2dQh + C ≤ C(1 + ξ−1).

Hence, we get the desired bound. �

LEMMA 3.11. Let ut ∈ W be a solution of (3.2) with |B|L∞ < 1
2 . As long as δ1

is sufficiently small we have the following bound

∫
M

|∇2ut |2dvolh ≤ C. (3.13)

The constant C depends on M, N , δ1, u0, |B|L∞ , |Z |L∞ , |∇Z |L∞ , |∇V |L∞ ,

|Hess V |L∞ .

Proof. Using (3.2) and (3.9), we obtain the following inequality

∫
M

|∇2ut |2dvolh ≤
∫
M

|�ut |2dvolh + C
∫
M

|dut |2dvolh

≤ C
∫
M

(∣∣∂ut
∂t

∣∣2 + |dut |4 + |∇V (ut )|2 + |dut |2
)
dvolh .

Since we are assuming the potential V (u) to be smooth and N to be compact we can
easily estimate |∇V (u)|2. Applying (3.8) and (3.12) with δ1 sufficiently small yields
the claim. �

PROPOSITION 3.12 (Higher Regularity). Let ut ∈ W be a solution of (3.2). As
long as δ1 is small enough the solution ut of (3.2) is smooth.

Proof. This follows from standard regularity theory arguments, see for example [15,
Lemma 6.11] and references therein for more details. �

Let us close this section with the following remarks.

REMARK 3.13. (1) The fact that ut is smooth as long as δ1 is sufficiently small
relies on the fact that we have a smooth scalar potential V (u). If we would
assume lower regularity of V (u) then ut would also have less regularity. We can
use the parabolicity of (3.2) to smoothen out distributional initial data, but the
parabolicity cannot compensate for a potential of bad regularity.
In order to achieve that u ∈ W 2,2(M, N ) we have to require that V ∈

C2(N ,R). By the Sobolev embedding theorem, we then get that u is contin-
uous, to gain more regularity we need better regularity of V (u).

(2) In the case of a smooth heat flow, one can also consider the case of a non-compact
target N and use the potential V (u) to constrain the image of M under ut to a
compact set. However, this argument makes use of the maximum principle,
which we cannot apply in our case.
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3.2. Longtime existence

In this section, we establish the existence of a unique global weak solution to (3.2)
for all times t ∈ [0,∞). Moreover, we will show that only finitely many singularities
will occur along the flow. First, we will give a uniqueness result.

PROPOSITION 3.14. Let ut , vt ∈ W be two solutions of (3.2) and suppose that
|B|L∞ < 1

2 . If their initial data coincides, that is u0 = v0, then ut = vt for all
t ∈ [0, T ).

Proof. Throughout the proofC will denote a universal constant that may change from
line to line. Let ut , vt be two solutions of (3.2). We setwt := ut −vt . By projecting to
a tubular neighborhood II(ut )(dut , dut ), Z(ut )(dut (e1) ∧ dut (e2)) and ∇V (ut ) can
be thought of as vector-valued functions in R

q , for more details see [2, Lemma 4.8].
Exploiting this fact, a direct computation yields

∂wt

∂t
= �wt + 〈II(ut )(dut , dut ) − II(vt )(dvt , dvt ), wt 〉

+ 〈Z(ut )(dut (e1) ∧ dut (e2)) − Z(vt )(dvt (e1) ∧ dvt (e2)), wt 〉
+ 〈∇V (ut ) − ∇V (vt ), wt 〉.

Rewriting

II(ut )(dut , dut ) − II(vt )(dvt , dvt ) = (II(ut ) − II(vt ))(dut , dut )

+ II(vt )(dut − dvt , dut ) + II(vt )(dvt , dut − dvt )

and similarly for the terms containing Z , we find

d

dt

1

2

∫
M

|wt |2dvolh ≤ −
∫
M

|dwt |2dvolh + C
∫
M

(|wt |2|dut |2 + |wt |2|dvt |2)dvolh

+ C
∫
M

(|wt ||dwt ||dut | + |wt ||dwt ||dvt |)dvolh

+
∫
M

|〈∇V (ut ) − ∇V (vt ), wt 〉|dvolh .

This leads to the following inequality

1

2
‖wt‖2L2(M)

+ ‖dwt‖2L2(Q)
≤ C

(‖wt‖2L4(Q)
‖dvt‖2L4(Q)

+ ‖wt‖2L4(Q)
‖dut‖2L4(Q)

+ ‖wt‖L4(Q)‖dut‖L4(Q)‖dwt‖L2(Q)

+ ‖wt‖L4(Q)‖dvt‖L4(Q)‖dwt‖L2(Q)

+ ‖|∇V (ut ) − ∇V (vt )||wt |‖L1(Q)

)
.

By assumption the scalar potential V (u) is smooth such that we can apply the
mean-value theorem and estimate

‖|∇V (ut ) − ∇V (vt )||wt |‖L1(Q) ≤ C‖wt‖2L2(Q)
.
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Using (3.11) we obtain

1

2

∫
M

|wt |2dvolh + 1

2

∫ T

0

∫
M

|dwt |2dQh

≤ C f (T )

( ∫
Q

|wt |4dQh

) 1
2 + C

∫
Q

|wt |2dQh

≤ C f (T )

(
sup
[0,T ]

∫
M

|wt |2dvolh +
∫ T

0

∫
M

|dwt |2dQh

)
+ C

∫
Q

|wt |2dQh

with f (T ) → 0 as T → 0. Taking the limit T → 0 and applying the Gronwall
inequality allows us to conclude the claim. �

REMARK 3.15. The proof of the previous Proposition requires the potential V (φ)

to be sufficiently regular such that we can apply the mean-value theorem. If we would
allow for a potential with less regularity it does not seem to be possible to prove
uniqueness of the solution of (3.2).

By the same strategy as in the case of standard harmonic maps we can establish the
longtime existence of (3.2).

PROPOSITION 3.16. (Longtime Existence) Let ut ∈ W be a solution of (3.2).
Moreover, suppose that |B|L∞ < 1

2 . Then, (3.2) admits a unique weak solution for
0 ≤ t < ∞.

Proof. The first singular time T0 is characterized by the condition

lim sup
t→T0

E(ut , BR(x)) ≥ δ1.

Since we have ∂t ut ∈ L2(M × [0, T0)) and also E(ut ) ≤ δ2 S̃bos(u0, h) for
0 < t < T0, there exists

u(·, T0) ∈ W 1,2(M, N )

such that

u(·, t) → u(·, T0)
weakly in W 1,2(M, N ) as t approaches T0. In particular, we have

E(uT0) ≤ lim inf
s→T0

E(us) ≤ δ2 S̃bos(u0, h), 0 ≤ t ≤ T0.

Let ũt : M×[T0, T0+T1) → N be a solutionof (3.2).Assume that ũ(x, t) = u(x, t).
We define

ût =
{
u, 0 ≤ t ≤ T0,

ũt , T0 ≤ t ≤ T0 + T1.
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Now ût : M×[0, T0+T1) → N is a weak solution of (3.2). By iteration, we obtain
a weak solution ut on a maximal time interval T0 + δ for some δ > 0. If T0 + δ < ∞
the above argument shows that the solution ut may be extended to infinity, hence
T0 + δ = ∞. The uniqueness of the solution follows from Proposition 3.14. �

PROPOSITION 3.17. Let ut ∈ W be a solution of (3.2). Suppose that |B|L∞ < 1
2

and that the scalar potential V (u) is sufficiently small, that is
∫
M
Ṽ (ut )dvolh ≤ δ1

δ2
. (3.14)

Then, there are only finitely many singular points (xk, tk), 1 ≤ k ≤ K. The number
K depends on M, |V (u)|L∞ , |B|L∞ , u0.

Proof. We follow the presentation in [10, p.138] for the harmonic map heat flow. We
assume that T0 > 0 is the first singular time and define the singular set as

Z(u, T0) =
⋂
R>0

{
x ∈ M | lim sup

t→T0
E(ut , BR(x)) ≥ δ1

}
.

Now, let {x j }Kj=1 be any finite subset of Z(u, T0). Then, we have for R > 0

lim sup
t→T0

∫
BR(x j )

|dut |2dμ ≥ δ1, 1 ≤ j ≤ K .

We choose R > 0 such that all the B2R(x j ), 1 ≤ j ≤ K are mutually disjoint.
Then, we have by (3.6)

K δ1 ≤
K∑
j=1

lim sup
t→T0

E(ut , BR(x j ))

≤
K∑
j=1

(
δ2 lim sup

t→T0
S̃bos(uξ , B2R(x j )) + δ1

2

)

≤ δ2 S̃bos(uξ , h) + K δ1

2

≤ δ2 S̃bos(u0, h) + K δ1

2

for any ξ ∈ [T0 − R2

Cδ22 S̃bos (u0,h)
, T0]. We conclude that

K ≤ 2δ2
δ1

S̃bos(u0, h),

which implies the finiteness of the singular set Z(u, T0). Next, we show that there are
only finitely many singular spatial points. We set

M̃ = M\
⋃

1≤ j≤K

B2R(x j )
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and calculate

E(uT0) = lim
R→0

E(uT0 , M̃)

≤ lim
R→0

lim sup
t→T0

E(ut , M̃)

= lim sup
t→T0

E(ut ) − lim
R→0

K∑
j=1

lim inf
t→T0

E(ut , B2R(x j ))

≤ δ2 S̃bos(u0, h) − lim
R→0

K∑
j=1

lim sup
t→T0

E(ut , BR(x j ))

≤ δ2 S̃bos(u0, h) − K δ1

≤ δ3E(u0) + δ2

∫
M
Ṽ (u0)dvolh − K δ1. (3.15)

Suppose T0 < · · · < Tj are j singular times and by K0, . . . , K j we denote the
number of singular points at each singular time. Set

ui = lim
t→Ti

ut , Vi = lim
t→Ti

∫
M
Ṽ (ut )dvolh 0 ≤ i ≤ j.

By iterating (3.15) we get

E(u j ) ≤ δ3E(u j−1) + δ2Vj−1 − δ1K j−1

≤ δ23E(u j−2) − δ1(K j−1 + δ3K j−2) + δ2(Vj−1 + δ3Vj−2)

≤ · · ·

≤ δ
j
3 E(u0) +

j−1∑
i=0

δ
j−i−1
3 (δ2Vi − δ1Ki ),

which can be rearranged as

j−1∑
i=0

δ−i−1
3 (δ1Ki − δ2Vi ) ≤ E(u0).

In order to conclude that the number of singularities is finite we have to ensure that

δ1Ki − δ2Vi ≥ 0

for all 0 ≤ i ≤ j , which is equivalent to

δ2

δ1
Vi ≤ Ki ,

where Ki ≥ 1. Making use of the assumptions, we obtain the claim. �
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REMARK 3.18. (1) A careful analysis of the last proof reveals that the condition
on the smallness of the scalar potential (3.14) is actually only needed at the
singular times Ti , that is

lim
t→Ti

∫
M
Ṽ (ut )dvolh ≤ δ1

δ2
.

However, it seems rather unlikely that this condition can be satisfied in general.
(2) In the case of the standard harmonicmapheat flowwehave δ3 = 1 andV (ut ) = 0

such that the bound on the number of singularities reduces to

j−1∑
i=0

Ki ≤ E(u0)

δ1
.

Moreover, in contrast to the harmonic map heat flow the number of singularities
also depends on the metric on M .

(3) We want to emphasize that we require the potential V (u) itself to be sufficiently
small and do not demand any smallness of its gradient. This is what one expects
from a mathematics perspective since the potential itself enters the action func-
tional (1.1). However, from a physics perspective the important quantity is the
gradient of the potential since it corresponds to the force acting on a system.

REMARK 3.19. There is a second way of controlling the number of singularities.
Instead of requiring the potential V (ut ) to be sufficiently small as in (3.14) we can
exploit the fact that (1.1) is not conformally invariant. More precisely, if we perform a
rescaling of the metric h̃ = ah, where a is supposed to be a positive real number, then
the first two terms of (1.1) are not affected, whereas the scalar potential gets rescaled.
More precisely, we find

S̃bos(h̃, u) =
∫
M

(
1

2
|du|2 + u∗B

)
dvolh +

∫
M

1

a2
Ṽ (u)dvolh̃ .

In terms of the rescaled metric h̃ = ah the smallness condition (3.14) can be
expressed as

δ2

δ1

∫
M
Ṽ (ut )dvolh̃ ≤ a2.

Choosing a2 large enough we can achieve to have a finite number of singularities
without posing any smallness condition on the scalar potential V (φ). However, the
finiteness of the number of singularities now depends on the rescaled metric on the
domain M .

3.3. Convergence

In this subsection, we address the issue of convergence of (3.2).
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PROPOSITION 3.20. Let ut ∈ W be a solution of (3.2) and suppose that
|B|L∞ < 1

2 . Then, there exists a sequence tk such that utk converges weakly in

W 1,2(M, N ) and strongly in the space W 2,2
loc (M\{xk, tk = ∞}) to a solution of (2.1).

The limiting map u∞ is smooth on M\{x1, . . . , xk}.
Proof. First, we suppose that T = ∞ is non-singular, that is

lim sup
t→∞

( sup
x∈M

E(ut , BR(x))) < δ1

for some R > 0. Since we have a uniform bound on the L2-norm of the t derivative
of ut by Lemma 3.3, we can achieve for tk → ∞ suitably that∫

M

∣∣∂ut
∂t

∣∣2dvolh∣∣t=tk
→ 0.

By (3.13), we have a bound on the second derivatives∫
M

|∇2ut |2(·, tk)dvolh ≤ C.

Moreover, by the Rellich–Kondrachov embedding theorem we have

u(·, tk) → u∞ strongly in W 1,p(M, N )

for any p < ∞. We get convergence of the evolution Eq. (3.2) in L2; consequently,
u∞ is a solution of (2.1) satisfying u∞ ∈ W 2,2(M, N ).
If T = ∞ is singular, that is at the points {x1, . . . , xk}

lim sup
t→∞

E(ut , BR(x j )) ≥ δ1, 1 ≤ j ≤ k

for all R > 0, then for suitable numbers tk → ∞ the family utk will be bounded in
W 2,2

loc (M, N ) on the set M\{x1, . . . , xk}. Consequently, the family utk will accumulate
as follows

u∞ : M\{x1, . . . , xk} → N .

We set M̃ := M\{x1, . . . , xk}. Since we have enough control over the energy of
u∞ by (3.5), that is E(u∞) ≤ C , we can apply Theorem 1.1 finishing the proof. �

This completes the proof of Theorem 1.2.

REMARK 3.21. In the case of a target with negative curvature, we have a good
understanding of the properties of the limiting map u∞, see [3, section 4]. However,
this requires that the second variation of the energy functional is positive, whichmakes
use of the target having negative curvature.
In the case of the full bosonic string and an arbitrary target, most of the methods

employed in the study of harmonic maps can no longer be applied. For this reason,
it seems difficult to obtain detailed information on the properties of the limiting map
u∞ such that this topic deserves further investigation.
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3.4. Blow-up analysis

In order to discuss a blow-up analysis of the singular points recall the definition of
the parabolic cylinder

Pr (z0) := {z = (x, t) ∈ M × (0,∞) | |x − x0| ≤ R, t0 − R2 ≤ t ≤ t0},
where 0 < R < min{ιM ,

√
t0}. Set

vk(x, t) := u(xk + rk x, tk + r2k t), (x, t) ∈ Pr−1
k

.

For simplicity, assume that (0, 0) is a singular point of u ∈ C∞(P1(0, 0)\{0, 0}, N ).
Then, there exist rk → 0 as k → ∞ and zk = (xk, tk)with xk → 0, tk → 0 as k → ∞.
It is easy to check that vk satisfies

∂vk

∂t
= �vk − II(dvk, dvk) − Z(dvk(e1) ∧ dvk(e2)) − 1

r2k
∇V (vk). (3.16)

In the limit k → ∞, we would have Pr−1
k

→ R
2 ×R−, but it is obvious that (3.16)

blows up as k → ∞.
This behavior should be expected since the scalar potential V (u) breaks the con-

formal invariance of the energy functional (1.1).
However, if V (u) = 0 the energy functional (1.1) is invariant under conformal

transformations on the domain and we find that

E(utk , Brk (xk)) = sup
z=(x,t)∈P1,−1≤t≤tk

E(ut , Brk (x)) = δ1

C

for C > 0 sufficiently large. Assume that tk − 4r2k ≥ −1. Moreover, we have

∫
P
r−1
k

∣∣∂vk

∂t

∣∣2dμ =
∫ t0

t0−R2

∫
M

∣∣∂ut
∂t

∣∣2dvolh → 0

and also

E(vk(t)) ≤ E(u0), −r−2
k ≤ t ≤ 0,

sup
(x,t)∈Pk

E(vk(t), B2(x)) ≤ C sup
(x,t)∈P1

E(ut , Brk (x)) ≤ δ1.

Consequently, we can take the limit k → ∞ and vk converges to some limiting map
ω. Then, ω ∈ C∞(R2 × (−∞, 0), N ) solves

0 = �ω − II(dω, dω) − Z(dω(e1) ∧ dω(e2))

since ∂tω = 0. Using the conformal invariance, we perform a stereographic projection
to S2 and obtain a solution of

τ(φ) = Z(dφ(e1) ∧ dφ(e2)),
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whereφ : S2 → N .Making use of a Theorem ofGrüter [9] we can remove the singular
points that we get from the stereographic projection. Hence, we get a variant of the
usual bubbling that is well known in the standard harmonic map heat flow.

REMARK 3.22. In the case that dim N = 3 and φ is an isometric immersion the
equation

τ(φ) = Z(dφ(e1) ∧ dφ(e2))

is known as prescribed curvature equation. Thus, the bubbling described above in the
case of V (φ) = 0 yields maps with prescribed mean curvature from S2. However,
the condition |B|L∞ < 1

2 that we needed to impose does not seem to have a natural
geometric interpretation.

3.5. Qualitative properties of the limiting map

Let us briefly discuss the qualitative behavior of solutions to (1.2).

PROPOSITION 3.23. Let φ : M → N be a smooth solution of

τ(φ) = Z(dφ(e1) ∧ dφ(e2)) + ∇V (φ).

By |κN | we denote an upper bound on the sectional curvature of N . If

Scal

2
≥

(
|Z |2L∞ + |κN |

)
|dφ|2 + |Hess V |L∞, (3.17)

then the map φ is trivial.

Proof. By a direct calculation, we find (see [2, Lemma 3.1] for more details)

�
1

2
|dφ|2 = |∇dφ|2 + Scal

2
|dφ|2 − 〈RN (dφ(eα), dφ(eβ))dφ(eα), dφ(eβ)〉

− 〈Z(dφ(e1) ∧ dφ(e2)), τ (φ)〉 + Hess V (dφ, dφ)

≥ |∇dφ|2 + Scal

2
|dφ|2 − |κN ||dφ|4

− |Z |L∞|dφ|2|τ(φ)| − |Hess V |L∞|dφ|2.
Using that |τ(φ)|2 ≤ 2|∇dφ|2 and applying Young’s inequality we deduce

�
1

2
|dφ|2 ≥ |dφ|2

(
Scal

2
− |Z |2L∞|dφ|2 − |κN ||dφ|2 − |Hess V |L∞

)
≥ 0,

where we used the assumptions in the last step. Consequently, |dφ|2 is a subharmonic
function and thus has to be constant. �

REMARK 3.24. If we integrate the condition (3.17) over the surface M we obtain

πχ(M) ≥ (|Z |2L∞ + |κN |)
∫
M

|dφ|2dvolh + |Hess V |L∞vol(M, h).

Note that this condition can only be satisfied on surfaces of positive genus.
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