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Abstract
Ion beam radiotherapy is a modern form of cancer treatment that is offered in specialized facilities. Treatment consists of
multiple, almost daily irradiation appointments, followed by optional imaging and control assignments. The corresponding
problem of scheduling these recurring radiotherapy treatment appointments can be classified as a complex job shop scheduling
problem with custom constraints, such as recurring activities, optional activities, and special time window constraints. The
objective is to minimize the operation time of the bottleneck resource, the particle beam, while simultaneously minimizing any
penalties arising from violations of time window constraints. The authors model the problem mathematically and introduce
various customized constraints. Three metaheuristic solution approaches—namely a genetic algorithm with tailor-made
feasibility-preserving crossover operators, an iterated local search, and a combination of the two approaches—all perform
well on both small and large problem instances. However, the simple combination of the two stand-alone algorithms leads to
best results when applied to real-world inspired problem instances.

Keywords Patient scheduling · Recurring treatments · Optional activities · Stable starting times · Multi-encoded genetic
algoritm · Iterated local search

1 Introduction

Theworldwide number of patients diagnosedwith cancer has
steadily increased over the past decade, from approximately
10million cases (and 6million deaths) in 2003 to around 14.1
million cases (8.2 million deaths) in 2012 (Steward andWild
2014). Projections for 2030 range between 17.1 and 22.2
million cases, which equals an increase of 21.3–57.4% (see
Bray et al. 2012; World Health Organization 2012). Radia-
tion therapy, or short radiotherapy, is commonly prescribed
in addition to or instead of chemotherapy or surgery. The
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goal is to deliver a maximum amount of radiation to kill
the cancer while sparing the healthy tissue surrounding the
tumorous region (Washington and Leaver 2016). In classi-
cal photon radiotherapy, which is available in virtually every
hospital worldwide, radiation is delivered using a linear par-
ticle accelerator (linac) that supplies X-rays. More advanced
but less numerous ion beam centers [only roughly 70 cen-
ters exist in the world, 48 of which have multiple treatment
rooms, see PTCOG (2017)] use protons and/or carbon ions
to achieve superior dose conformity and thereby lower the
chances of patients developing secondary tumors later in life
(Ohno 2013). However, because these ion beam centers also
use significantly larger particle accelerators, their operations
are much more costly than is classical radiotherapy using
linacs and the efficient usage of the beam resource is crucial.

In this paper, we analyze and solve a real-world radio-
therapy scheduling problem arising in a recently opened,
specialized ion beam center close to Vienna, Austria, which
offers two particle types for radiation treatment: protons and
carbon ions. It plans to treat approximately 1000 patients per
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year. A radiation treatment consists of both a pre-treatment
phase and the irradiation treatment phase itself. During
the pre-treatment phase, multiple examinations take place,
followed by intensive treatment planning, during which
radio-oncologists (RO), together with medical physicists,
determine the dose of one treatment activity (called a “frac-
tion”) and the number of fractions a patient should receive.
They alsodefine theparticle typeused anddevelop a so-called
immobilization device, which helps the patient lie still during
the treatment. The treatment phase then consists of a fixed
number of daily treatment activities, imaging, and exami-
nation appointments, all of which require multiple resources
simultaneously. Assigning treatments to days and scheduling
the exact starting times of the activities to maximize facility
usage and thereby minimize patients’ waiting times before
they start treatment is of utmost importance.

The problem can be formalized as a complex job shop
scheduling problem with multiple custom constraints that
need to be considered. We introduce recurring optional
appointments that, to the best of our knowledge, have not
been considered in radiotherapy treatment scheduling before.
Furthermore, we consider time windows between each activ-
ity for a patient that guarantee stable start times during the
treatment phase. As solution techniques, we present three
metaheuristics, namely a genetic algorithm and an iterated
local search, whose operators are tailored to the problem at
hand, as well as a combination of these two approaches in
a third algorithm. In doing so, we achieve a highly effec-
tive method to solve the problem of scheduling recurring
radiotherapy appointments in the ion beam facility. The
time horizon of real-world problem instances reflects various
weeks and contains up to 10,000 activities to be scheduled.
Due to the high problem complexity of the long-term plan-
ning and the lack of reliable long-term stochastic data, we
solve the problem deterministically. Future research will be
dedicated to stochastic optimization of radiotherapy sched-
ules for a given day d, because various disruptions can occur
during the execution of a given schedule (e.g., room unavail-
ability for a longer period).More specific data on past activity
durations for a given patient then would be available (e.g.,
treatment duration of first five treatments took 12min instead
of estimated 8 min in the long-term planning) and could be
used to revise the long-term schedule.

This article is organized as follows: Sect. 2 presents
the formal problem statement of the radiotherapy patient
scheduling problem (RPSP) and discusses the constraints
that arise at ion beam facilities in particular. Section 3
gives insight into related work on the radiotherapy patient
scheduling problem. Section 4 is devoted to the mathemat-
ical programming formulation of the underlying scheduling
problem. In Sect. 5, we discuss the three heuristical solu-
tion methods—two stand-alone methods and one hybrid
algorithm—the results of which are in Sect. 6. Finally, Sect. 7

offers some conclusions and proposes possible extensions to
our work.

2 Problem statement

Ion beam facilities are typically equipped with one parti-
cle beam that serves multiple treatment rooms, as shown in
Fig. 1. It depicts the specific problem setting we address,
consisting of three treatment rooms with (1) horizontally
directed, (2) vertically and horizontally directed, and (3)
180-degree rotatable particle beams. The particle beam—
consisting of either protons or carbon ions—first moves
through a linear accelerator, followed by multiple circula-
tions through the synchrotron, where the beam gets acceler-
ated to two-thirds of the speed of light, until it finally moves
to one of the three treatment rooms. The beam can only serve
one room at a time though, so we consider the particle beam
the bottleneck resource in the irradiation process. Switch-
ing between the two mentioned particle types also requires a
setup time of 3 min.

The treatment of one patient p ∈ P consists of a
predefined number of recurring (almost) daily irradiation
appointments [daily treatments, (DTs)] with fixed duration
and resource requirements (e.g., treatment room, particle
type, assigned RO). A patient needs to attend, on average,
20 daily treatments with an average irradiation duration of
8–10min, depending on the particle type. Some patients need
to attend regular, additional imaging appointments [positron
emission tomography (PET)] directly after the DTs to ensure
the accuracy of the irradiation treatment. Between DTs,
patients regularly (i.e., once within a span of five consecutive
days during the treatment phase) see their assigned RO for
a control examination [weekly control examination (WCE)].
The sequence of these activities is fixed, as is shown by the
“activity chain” in Fig. 2, where “FDT” and “LDT” denote
the first and last DT, respectively. Note that both PET and
WCE are listed after each DT in the activity chain. These
activities are optional in the sense that they must take place
once within every span of five consecutive days, but the opti-
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Fig. 1 Facility plan of MedAustron, Wiener Neustadt, Austria
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DT WCEPET DT WCEPET LDTFDT WCEPET ……..

Fig. 2 Activity chain

Fig. 3 Phases of an irradiation
appointment
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Fig. 4 Example schedule

mization algorithm must determine which WCE and PET
activities should be scheduled andwhichones canbe skipped.

The FDT must be scheduled between the patient’s spe-
cific release date and due date. As mentioned, the irradiation
appointments then take place almost every day, and only one
DT can take place per day. Although the total number of DTs,
NDT

p , is fixed by the RO, the days to which the treatments
are assigned may vary slightly: starting from the FDT until
the day of the LDT, patients need at least four irradiation
treatments within every span of five consecutive days. The
treatment phase then corresponds to the time period between
the FDT and the LDT.

Each DT activity consists of three inseparable tasks: (1) a
setup time, in which the patient is prepared for the treatment
inside the treatment room; (2) the irradiation itself, which
requires the use of both the beam resource and the treatment
room; and (3) a teardown time, during which only the treat-
ment room is occupied. These three phases are depicted in
Fig. 3. Scheduling two patients that require the same treat-
ment roomconsecutively therefore causes extensive idle time
on the beam resource (teardown time of the first patient and
setup time of the second patient). Note, however, that the sum
of the setup and teardown times equals an average of 18 min,
whereas a treatment takes on average 8–12 min, depend-
ing on the particle type. Therefore, even alternating between
two rooms would lead to beam idle time. An ideal schedule
would interleave the three rooms, as depicted in Fig. 4. Here,
even though the proposed scheduling pattern applies in the
beginning, idle time on the beam resource between patient
4 and patient 5 is unavoidable, because patient 5 could not
have started his setup in room 2 earlier. (The room was still
blocked by the teardown of patient 2). The same applies to
the idle time between patients 6 and 7. This situation makes
it considerably harder to calculate a reasonable lower bound
for the objective value, reflecting the total operation time of
the beam (see Maschler et al. 2018, whose work is inspired
by the same real-world problem).

The treatment activities within the activity chain of one
patient are tied together using minimum and maximum time
lags (“finish-start relations”). For example, to deliver accu-
rate results, a PETappointmentmust start no later than 15min
after the preceding DT irradiation has finished. To maximize
the patient’s convenience, the DT activities also should take
place at approximately the same time on every treatment
day during a week. We therefore introduce a daytime win-
dow for each week a patient receives treatment, which is
defined by its midpoint. We call this midpoint the “stable
starting time,” as the approximate time a patient comes in for
treatment on each day of the given week. Only deviations
smaller than 30 min from the defined stable starting time
are accepted, creating an even tighter time window for the
DT activities. Furthermore, the stable starting times of two
consecutive weeks may only differ by a maximum of 4 h,
allowing for changed approximate treatment times between
weeks.Violations of the timewindows formed by both finish-
start relations and stable starting times result in penalties in
the objective function.

Finally, some activities can be executed on alternative
resource sets. For example, it might be preferable for the
patient’s assigned RO to perform theWCE, but if he or she is
busy, any other RO on duty can undertake the examination.

We aim to minimize the total operation time of the beam
resource, which consists of the active time and the induced
idle time and potential setup time due to particle switches,
while the actual number of patients to be treated is determined
by the doctors and is not part of the optimization. We thereby
produce tight schedules which allow for the machine to be
used for research in the field of medical physics and particle
physics during the times when no patients are treated. Simul-
taneously, we minimize penalties arising from the belated
starting times of activities that violate either general time
window constraints or the patient-specific stable treatment
starting time per week.

3 Related work

3.1 Radiotherapy scheduling

Appointment scheduling problems in health care systems
arise in different environments, such as operating room
scheduling, outpatient scheduling, and recurring treatment
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appointment scheduling (as in radiotherapy scheduling) (e.g.,
Gupta and Denton 2008). Radiotherapy scheduling in par-
ticular has attracted the interest of research groups during
the past two decades. It first appeared in the literature in a
review paper by Kapamara et al. (2008), followed by basic
algorithms for radiotherapy treatment booking proposed by
Petrovic et al. (2006). Various studies model this problem
mathematically and solve it using standard Mixed Integer
Programming (MIP) solvers (e.g., Conforti et al. 2008, 2010,
2011; Burke et al. 2011). The different heuristics applied to
the problem vary from pure constructive and hill climbing
approaches (Kapamara and Petrovic 2009) to greedy ran-
domized adaptive search procedures (GRASP) (Petrovic and
Leite-Rocha 2008a) and (multi-objective) genetic algorithm
(GA) approaches (Petrovic et al. 2009, 2011). Some authors
focus on scheduling activities within the pre-treatment phase
and use linear programming, simple dispatching rules, and
GAs to solve this appointment scheduling problem (Petrovic
andCastro 2011;Castro andPetrovic 2012). In a Ph.D. thesis,
Leite-Rocha (2011) summarizes research on radiotherapy
scheduling prior to 2011 and proposes various extensions
to their mathematical models.

More recent publications consider stochastic and dynamic
attributes of the radiotherapy scheduling problem. Sauré
et al. (2012) formulate the model as discounted infinite-
horizon Markov decision process to identify good policies
for allocating capacity to incoming demand and therebymin-
imizing patient waiting times. Legrain et al. (2015) integrate
stochastic patient arrival times into their model and develop
a hybrid stochastic and online optimization algorithm. Goc-
gun (2016) also considers stochastic patient arrival times
and introduces a simulation-based approximate dynamic pro-
gramming approach to solve the problem. The Ph.D. thesis
by Men (2009) centers the analysis on the optimal mix of
patients and diagnoses for an ion beam facility, to maxi-
mize the throughput of patients. Lately, Vieira et al. (2016)
published a literature review on radiotherapy resource plan-
ning and treatment scheduling and categorized the papers
according to their hierarchy level, methods used, the extent
of implementation and the potential impact on the perfor-
mance. They conclude that future research could incorporate
specialized clinical pathways and additional devices such as
PETs.

This mentioned research stream thus mainly focuses on
scheduling treatments for “classical” photon therapies, for
which each treatment room is equipped with a distinct linear
accelerator. Sequencingpatients per day and thereby schedul-
ing exact starting times for all patients is less crucial in these
settings, and accordingly, two main strategies for scheduling
activities within the treatment phase dominate prior litera-
ture:

1. Assign treatments to days. This approach incorporates
an average resource profile and does not schedule exact
starting times on each day. Therefore, it requires a sec-
ond step, namely patient sequencing per day (Petrovic
and Leite-Rocha 2008b; Men 2009; Conforti et al. 2010;
Burke et al. 2011; Sauré et al. 2012).

2. Split the day into time slots of predefined lengths (e.g.,
15 or 30 min) and allocate the treatments to these time
slots (i.e., “block scheduling,” Conforti et al. 2008, 2011;
Legrain et al. 2015). This approach allows for the imme-
diate consideration of stable activity starting times, but it
also assumes that the treatment duration will be more or
less equal to the length of the time slot, which is not the
case in ion beam therapy, for which treatment durations
vary substantially according to the diagnosis received by
the patient.

This vast variation in treatment durations, as well as the
bottleneck resource “particle beam” that is shared among
various treatment rooms, necessitates scheduling exact (“to-
the-minute”) starting times at ion beam facilities. Maschler
et al. (2016) propose a detailed scheduling approach using
both a GRASP procedure and an iterated greedy approach,
which incorporates interconnected day and time assignment
phases. They extend the latter approach in a subsequent study
and yield even better results on a midterm planning hori-
zon (Maschler et al. 2017). However, they do not incorporate
optional activities, and they focus on scheduling the core irra-
diation appointments. Using a surrogate model to estimate
the lower bound for the time the beam resource is required
if the patients treated on the specific day are known (i.e., the
day assignment phase has already finished), Maschler et al.
(2018) also apply this information iteratively to optimize the
day assignment.

4 Problem formulation

The objective function and constraints described in Sect. 2
can be formulated mathematically. Table 1 lists the symbols
and sets used in the formulation of the problem; Table 2 sum-
marizes all necessary input information; and Table 3 gives
an overview of the decision variables of the mathematical
modeling formulation.

The objective function minimizes the operation time and
thereby the idle time of the beam while simultaneously min-
imizing penalties arising from time window violations of
activity i of patient p and stable time violations for patient p
and day d. Here, fd denotes the operation time of the beam
resource on day d, γ̃pd describes penalty caused by violations
of the stable starting time [see Eq. (19)] and γ̂pi accounts for
general timewindow violations [see Eq. (11)]. All three parts
of the objective function are measured in time unites (min),
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Table 1 Sets of the
mathematical modeling
formulation

Notation Description

Sets

P Set of all patients, index p ∈ {1, . . . , P}
Op Set of operations/activities of patient p

R General set of resources, index r ∈ {1, . . . , R}
Kpi Set of resource requirements for patient p’s activity i

Rpik Set of eligible resources for activity i and patient p, and resource requirement k. If only one
(compulsory) resource is available, then |Rpik | = 1

D Set of days in the planning horizon, index d ∈ {1, . . . , D}
W Set of weeks in the planning horizon, index w ∈ {1, . . . , W }
Φp Set of activities belonging to the subgroup of daily treatment activities for patient p

Ψp Set of activities belonging to the subgroup of weekly control examination activities for
patient p

�p Set of activities belonging to the subgroup of PET activities for patient p

Table 2 Parameters and input
variables to the mathematical
modeling formulation

Notation Description

Parameters and input variables

u piq jr Setup time between activity i for patient p and succeeding activity j (patient q) on resource r

vpir Setup time of activity i for patient p on resource r

wpir Teardown time of activity i for patient p on resource r

λpi Processing time of activity i of patient p on all resources

FSmin
pi,p(i+δ) Minimum time from finish of activity i to start of activity i + δ

FSmax
pi,p(i+δ) Maximum time from finish of activity i to start of activity i + δ

dwd , dwd Begin and end of daytime window of day d

α′ Maximum intra-week variation from the stable starting time

α′′ Maximum inter-week variation from the stable starting time

rp Release day for patient p’s FDT

dp Due day for patient p’s FDT

M Large number

Table 3 Variables of the mathematical modeling formulation

Notation Description

Decision variables

h pikr Binary variable, set to 1 if activity i of patient p is assigned to resource r for resource requirement k

spir Starting time of activity i for patient p on resource r

s̄pi Starting time of activity i for patient p

ypiq jr Binary variable for immediate successor of activity i for patient p (namely q j) on resource r

opi Binary variable, indicating whether activity i for patient p takes place or not

θpid Binary variable, indicating whether activity i takes place on day d or not (= 1 if dwd ≤ s̄ pi ≤ dwd )

tpd Starting time of treatment for patient p on day d (independent of the activity i , time between the start of daytime window and
the scheduled starting time)

˜tpw Stable starting time of treatment for patient p in week w

x̄ pd Binary variable, indicating whether day d is within the treatment phase of patient p

z̄ pw Binary variable, indicating whether week w contains the treatment phase of patient p

fd Finish time of last activity on the beam resource on day d

γ̃pd Stable time violation on day d for patient p

γ̂pi Time window violation for patient p’s activity i
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i.e., 1 min of extra beam duration accounts for 1 min of delay
for the patient (either time window or stable time violation).
As will be shown in Table 10 in Sect. 6, the latter two parts
of the objective function tend to almost disappear during the
optimization process.

minimize
∑

d∈D
fd +

∑

d∈D

∑

p∈P
γ̃pd +

∑

p∈P

∑

i∈Op

γ̂pi . (1)

The model’s constraints can be categorized into various
subsections: resource constraints, sequencing and optional
activities, linking constraints, recurring activities, stable
activity starting times, and general treatment start time con-
straints.

4.1 Resource constraints

Each activity i requires K pi resources simultaneously for
every patient p. For some resource requirements, there also
exist multiple alternative resources r , defined by the set of
eligible resources for resource requirement k, namelyRpik :

∑

r∈Rpik

h pikr = opi ∀p ∈ P, i ∈ Op, k ∈ Kpi . (2)

Constraint (2) assures that for each required resource, one
of the eligible resources is chosen if the activity takes place
(i.e., variable opi = 1). Then,

spir ≤ h pikr · M ∀p ∈ P, i ∈ Op, k ∈ Kpi , r ∈ Rpik, (3)
∑

r∈Rpik

spir = s̄ pi ∀p ∈ P, i ∈ Op, k ∈ Kpi . (4)

Constraint (3) fixes the starting timesof non-chosen resources
to 0. Constraint (4) assigns the exact same starting times s̄ pi

to all resources chosen for activity i of patient p, as the sum
over all starting times on all eligible resources has only one
positive entry per resource requirement k due to the previous
constraint. In turn,

∑

i ′∈Op
i ′>i

ypipi ′r +
∑

q∈P\{p}

∑

j∈Oq

ypiq jr = h pikr

∀p ∈ P, i ∈ Op, k ∈ Kpi , r ∈ Rpik, (5)
∑

j ′∈Oq
j ′< j

yq j ′q jr +
∑

p∈P\{q}

∑

i∈Op

ypiq jr = hq jkr

∀q ∈ P, j ∈ Oq , k ∈ Kq j , r ∈ Rq jk . (6)

Constraints (5) and (6) thus give the immediate successor
structure of activities on resource r . Finally,

DT1 WCEPET DT2

FSDT1,DT2

FSDT,WCE

FSPET,DT2

FSDT,PET FSPET,WCE FSWCE,DT2

Fig. 5 Finish-start relations among optional activities

spir + λpi + u piq jr · ypiq jr − (1 − ypiq jr ) · M ≤ sq jr

∀p ∈ P, i ∈ Op, q ∈ P, j ∈ Oq , r ∈ R, (7)

spir + λpi + wpir · ypiq jr + vq jr · ypiq jr

−(1 − ypiq jr ) · M ≤ sq jr

∀p ∈ P, i ∈ Op, q ∈ P, j ∈ Oq , r ∈ R. (8)

Constraints (7) and (8) confirm that both the sequence-
dependent setup times and the non-sequence-dependent
setup and teardown times are respected.

4.2 Sequencing and optional activities

Each activity i of patient p is associatedwith a binary variable
opi that indicates whether the activity takes place or not. It
is essential for optional activities (PETs and WCEs), and for
DTs, this variablemust equal 1. The starting time of activities
that do not take place is then set to 0, using Constraint (9):

s̄ pi ≤ opi · M ∀p ∈ P, i ∈ Op. (9)

The problem of scheduling the activities of patient p con-
sidering the precedence relations (finish-start, FS) is further
complicated by the optional activities within the activity
chain, as shown in Fig. 5. If, for example, a PET does not
take place, the DT and WCE need to be tied together using
the corresponding FS. However, if the PET is scheduled, the
link between the DT and the WCE should be deactivated. In
Constraints (10) and (11), successive activities that actually
take place are connected using the minimum and maximum
time lags between them.Constraint (11) further quantifies the
time window violation (belated scheduling) that is penalized
within the objective function. Furthermore,Δmax denotes the
maximum number of consecutive optional activities, in our
case, Δmax = 2.

s̄ p(i+δ) ≥ s̄ pi + λpi + FSmin
pi,p(i+δ) −

j=i+δ
∑

j=i

(M · (1 − opj ))

∀p ∈ P, i ∈ Op, δ ∈ {1, . . . , Δmax + 1}, (10)

s̄ p(i+δ) ≤ s̄ pi + λpi + FSmax
pi,p(i+δ)

+
j=i+δ
∑

j=i

(M · (1 − opj )) + γ̂pi

∀p ∈ P, i ∈ Op, δ ∈ {1, . . . , Δmax + 1}. (11)
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4.3 Linking constraints

Constraints (12) to (15) serve as linking constraints. If an
activity starts within a daytime window, the corresponding
assignment variable θpid equals 1. Constraint (13) also cal-
culates the general daily starting time by subtracting the day
start from the scheduled starting time. The treatment phase
(days between FDT and LDT) of patient p can be calculated
for both day d and week w using Constraints (14) and (15).
Note that we display these constraints as nonlinear indicator
constraints for better readability. The numeric tests in Sect. 6
use linearized versions of these constraints.

θpid = 1 ⇐⇒ dwd ≤ s̄ pi ≤ dwd

∀p ∈ P, i ∈ Op, d ∈ D, (12)

tpd =
∑

i∈Φp

s̄pi · θpid − dwd ⇐⇒
∑

i∈Φp

θpid = 1

∀p ∈ P, d ∈ D, (13)

x̄ pd = 1 ⇐⇒
∑

0≤d ′≤d

∑

i∈Op

θpid ′ ≥ 1

∧
∑

d≤d ′≤D

∑

i∈Op

θpid ′ ≥ 1 ∀p ∈ P, d ∈ D, (14)

z̄ pw = 1 ⇐⇒
5·w
∑

d=5·w−4

x̄ pd ≥ 1

∀p ∈ P, w ∈ W. (15)

4.4 Recurring activities

Constraint (16) ensures that at least four daily treatments
are scheduled on five consecutive days within the treatment
phase. Constraints (17) and (18) guarantee that at least one
WCE (PET) is performedwithin five consecutive days during
the treatment phase, respectively.

s+4
∑

d=s

∑

i∈Φp

θpid + M · (1 − x̄ pd) ≥ 4

∀p ∈ P, 1 ≤ s ≤ D − 4, (16)
s+4
∑

d=s

∑

i∈Ψp

θpid + M · (1 − x̄ pd) ≥ 1

∀p ∈ P, 1 ≤ s ≤ D − 4, (17)
s+4
∑

d=s

∑

i∈�p

θpid + M · (1 − x̄ pd) ≥ 1

∀p ∈ P, 1 ≤ s ≤ D − 4. (18)

4.5 Stable activity starting times

Inequalities (19) and (20) constrain the daily starting time for
each patient to the stable starting time of the corresponding
week and the stable starting times of two consecutive weeks,
respectively:

|tpd −˜tpw| − M · (1 −
∑

i∈Φp

θpid) ≤ α′ + γ̃pd

∀p ∈ P, w ∈ W, 5w − 4 ≤ d ≤ 5w, (19)

|˜tpw −˜tp(w+1)| − M · (1 − z̄ pw)

−M · (1 − z̄ p(w+1)) ≤ α′′ ∀p ∈ P, w ∈ W. (20)

4.6 Treatment starting time

No treatments can be assigned to patient p prior to his release
day rp, so

∑

i∈Φp

rp−1
∑

d=0

θpid = 0 ∀p ∈ P. (21)

However, there has to be at least one treatment scheduled for
patient p between his release day and due day, so

∑

i∈Φp

dp
∑

d=rp

θpid ≥ 1 ∀p ∈ P. (22)

4.7 Active time of beam resource

Finally, we calculate the active time of the beam according
to Constraint (23):

fd ≥ tpd +
∑

i∈Φp

λpi · θpid ∀d ∈ D, p ∈ P. (23)

5 Solutionmethods

In this section we present three metaheuristic approaches
to the proposed radiotherapy scheduling problem, to tackle
the problem efficiently (as we show in Sect. 6, solving the
exactMIP formulation, even for small tomedium-sized prob-
lem instances, is intractable). We compare two metaheuristic
paradigms, namely a population-based GA approach with a
trajectory-based local search heuristic and combine the two
to a simple hybrid algorithm.Bothmethods have successfully
been applied to related radiotherapy scheduling problems
[e.g., GAs have been used in Petrovic et al. (2009, 2011),
while local search has been performed in Petrovic and Leite-
Rocha (2008a) and Kapamara and Petrovic (2009)].
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Fig. 6 Solution encoding, 15 patients

Section 5.1 describes how we map the solution attributes
to a multi-encoded solution representation. Section 5.2 gives
some insight into the complexity of the problem and the pro-
posed encoding scheme. In Sect. 5.3, we describe a greedy
randomized method for creating initial solutions to the prob-
lem, followed by a detailed description of the decoding
algorithm that transforms the solution encoding into a sched-
ule with exact starting times in Sect. 5.4. Finally, Sects. 5.5
to 5.7 present the three distinct solution methods: a GA, an
iterated local search method (ILS), and a combination of the
two approaches (combined GA and ILS, briefly cGAILS).

5.1 Solution representation

A solution to the RPSP is represented by a multi-encoded
scheme that consists of three main parts. The first part (“DT
assignment”) contains, for every patient p ∈ P , an assign-
ment of treatments to days. Days prior to the release time
of the patient automatically remain unassigned. Between
the FDT and the LDT (i.e., treatment phase), at least four
treatments must be assigned to five consecutive days for the
solution to be feasible. In the second part, two binary vec-
tors for each patient p ∈ P indicate, when (i.e., after which
DT) a WCE and a PET is scheduled (“WCE/PET assign-
ment”). An entry at the i th position in these vectors implies
that a WCE (PET) has been added after the i th DT activity.
We must ensure a minimum of one WCE (PET) within each
span of five consecutive days, resulting in at least one entry
in the binary encoding over four consecutive DTs. Finally,
the third part of the solution encoding consists of a vec-
tor of patient indices that displays the sequence in which
the patients should be scheduled on a specific day (“patient
sequence”).

Figure 6 illustrates a solution of an RPSP for 15 patients
(P = 15), where NDT

p denotes the patient-specific number
of required DTs. The bold frame within the DT assignment
marks the treatment phase. The gray-shaded cells indicate
the release and due dates for the FDT. Out of space con-
siderations, we only display the WCE assignments; the PET
assignments would reveal different allocations but the same
sizes (NDT

p of the patient p). Here, patient 1 starts his treat-
ment on day 4.Directly after his firstDT, aWCE is scheduled.

The patient sequence lists patient 1 in the fifth position, so
all predecessors will be scheduled prior to patient 1 on day
d using the solution decoding algorithm (see Sect. 5.4).

5.2 Excursus on problem complexity

The presented solution representation already gives insight
into the complexity of the underlying problem. The number
of permutations of the DT assignment list for one patient p
depends strongly on the number of DTs to be scheduled for
this patient, namely NDT

p and can be calculated using Equa-
tion (24) (assuming the day of the FDT is fixed for patient
p), with hmax

p denoting the maximum number of unassigned
days allowed during the treatment phase. Given the above
information, we define:

g(p) :=
hmax

p
∑

r=0

(

NDT
p − 3 · r + 2

r

)

. (24)

On average, a radiotherapy treatment consists of 20 DTs,
which allows a maximum of five unassigned days during the
treatment phase (hmax

p = 5) and a total of 657 feasible DT-to-
day assignments, given the day of the FDT is fixed. A real-
world instancewould contain an average of 100patients, each
of which is assigned to an individual permutation list of DT
assignments. Additionally, for each patient p, there exist on
average four different “minimally occupied” WCE and PET
assignments and a multiplicity of “non-minimally occupied”
assignments. Finally, given P , or the number of patients to
receive radiotherapy, P! permutations of the patient sequence
exist. We then calculate the number of possible permutations
by multiplying the three parts: P! × ∏P

p=1 g(p) × 4P × 4P .
Therefore, instances including only five patients (P = 5)

with 20 treatments each (NDT
p = 20) and a fixed treatment

start day already would imply P! = 5! = 120 permutations
of the patient sequence, for each patient 657 feasible DT-
to-day assignments, i.e.,

∏5
p=1 657 = 1.22 × 1014 possible

assignments and both 45 = 1024 possible WCE and PET
assignments. This results in a total of 1.54 × 1022 solution
permutations.
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5.3 Initial solutions

Initial, partly randomized solutions can be created using sim-
ple construction rules. We apply different strategies to the
parts of the solution representation: For each patient, we first
randomly fix the day of his or her FDT, noting the release and
due days. Then, the subsequent treatment days are fixed, with
the premise that four treatments must be scheduled within
five consecutive days. The probability of leaving one specific
day d unscheduled (i.e., four prior days have aDT scheduled)
is rather small, ranging between 0 and 30%. The same strat-
egy applies for the WCE and PET assignments, where only
one activity must be assigned over four consecutive DTs.

Building the patient sequence requires a more sophisti-
cated method though. We build a “global” patient sequence
for all patients, inwhichweneglect the fact that somepatients
by definition will not be treated on the same day (because
their release time will be later than other patient’s LDT day,
resulting in non-overlapping treatment phases). Using the
assumption that all patients must be treated on a fictitious
day d∗, we choose a random patient, whom we add as the
first patient in the patient sequence. Then, we continuously
add one more patient, who minimizes the total idle time of
the beam, due to either room unavailability (i.e., the tear-
down time of the previous patient is not yet finished when
the setup of the current patient should start) or setup time
due to particle type switches (from proton to carbon ion or
vice versa). This strategy results in a starting solution; only
in rare cases are two patients requiring the same treatment
room scheduled successively.

5.4 Solution decoding and solution evaluation

Todecode this described solution representation into a sched-
ule that provides exact starting times and resource decisions
for each activity, we first transform the solution into a chrono-
logical (i.e., day-wise) prioritized activity list. Then, using
Algorithm 1, we determine the exact starting time and the
resource set on which the activity should be performed. We
begin the search for a feasible starting time on the “preferred”
resource set (n = 1). We use function FindStarting-

Time(i, n, s̄ pi , l pi ) to determine the earliest starting time for
activity i on resource set n, with s̄ pi as the earliest time to start
and as l pi the latest possible starting time. We first search all
Npi -eligible resource sets for a feasible starting time (i.e., a
smaller than or equal to l pi ). If no such starting time arises
from any resource set, the first non-feasible (i.e., belated)
starting time on the “preferred” resource set is accepted as
the starting time for activity i , though it results in a penalty
within the objective function.

Note that function FindStartingTime(i, n, s̄ pi , l pi ) in
Algorithm 2 does not necessarily add activities to resources
chronologically. Activities can be scheduled to fill up “holes”

Algorithm 1: Solution decoding algorithm

1 repeat
2 Determine next activity i to be scheduled from the activity

list;
3 n ← 1;
4 s̄ pi ← ∞;
5 l pi ← latest feasible starting time of activity i ;
6 while s̄ pi > l pi ∧ n < Npi do
7 s̄ pi ← earliest feasible starting time of activity i ;
8 s̄ pi ← FindStartingTime(i, n, s̄ pi , l pi );
9 n ← n + 1;

10 end
11 if s̄ pi > l pi then
12 s̄ pi ← FindStartingTime(i, 1, l pi ,∞);
13 end
14 Schedule activity i at the determined starting time s̄ pi ;
15 Update time windows of the successive activities;
16 until all activities scheduled;

Algorithm 2: FindStartingTime(i, n, s̄ pi , l pi )

1 while s̄ pi < l pi do
2 for all required resources r of resource set n do
3 check availability of resource r for the time period of the

processing time λpi including setup time vpir and
teardown time wpir : [s̄ pi − vpir , s̄ pi + λpi + wpir ];

4 if resource unavailable then
5 sr ← start of next idle time window of resource r ;
6 if s̄ pi < sr then
7 s̄ pi ← sr ;
8 end
9 end

10 end
11 end
12 return s̄ pi ;

in resources, such as might occur if we were to schedule
two treatment activities in the same treatment room succes-
sively and therefore face idle time on the beam resource
due to teardown and setup times. We then would aim to
schedule activities requiring any other treatment room in
between those activities to minimize the idle time on the
beam resource. This approach has been proven beneficial in
our problem setting (see Vogl et al. 2018).

The sequential nature of the decoding algorithm requires
a post-scheduling evaluation of the treatment starting times
to evaluate the stable time violations, because the stable time
for each patient p and each week w needs to be assigned
“globally” and not when scheduling the first activity of the
week. Therefore, we solve a small linear program for each
patient p to reveal stable time violations. The model con-
tains only two variable types, namely,˜tw, the stable time of
week w, and γd , the stable time violations on day d. The
daily starting time td , the day assignment variable θd , and
the weeks within the treatment phase W ′ have already been
fixed during the solution decoding phase and are therefore
input parameters. Accordingly,
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minimize
∑

d∈D
γd (25)

subject to:

|td −˜tw| − γd − M · (1 − θd) ≤ α′

∀w ∈ W ′, 5w − 4 ≤ d ≤ 5w, (26)

|˜tw −˜tw+1| ≤ α′′ ∀w ∈ W ′. (27)

The objective function is to minimize the sum of daily
deviations from the stable starting times. These deviations
are calculated using Constraint (26). Constraint (27) then
assures that the inter-week stable time variation is smaller
than the maximum allowed deviation, namely α′′.

5.5 Genetic algorithm

Genetic algorithms have been implemented successfully to
solve the radiotherapy patient scheduling problem (Petrovic
et al. 2009, 2011). In a preliminary study, we introduced the
solution decoding presented in Sect. 5.4 and presented ini-
tial tests of different decoding algorithms and GA settings,
applied within this research setting (Vogl et al. 2018). We
enhance this strategy here by introducing a more sophisti-
cated crossover mechanism, in addition to the patient-wise
crossover presented in the previous work. Algorithm 3 gives
an overview of the mentioned GA components. Note that the
algorithm contains two sets of solutions: Pt forms the cur-
rent population during iteration t and C B contains children
that did not reach the success criterion of being better than
at least their worst parent (see line 12 in the algorithm) and
therefore do not immediately contribute to the next genera-
tion. The latter solutions are potentially used if by producing
five times the population’s size as offspring is not sufficient
to build the new population from successful children.
Crossover(p1,p2) The multi-encoded solution represen-
tation demands specific crossover and mutation operators
for the individuals to remain feasible throughout the evo-
lutionary process. We use two crossover operators: (1) The
patient-wise crossover operator presented by Vogl et al.
(2018), where the whole DT assignment as well as the
whole PET and WCE lists of one patient p is randomly
inherited either by the first or the second parent. This sim-
ple crossover only leads to limited variety in the binary
encodings, because the combinations of the initial population
dominate the search. So we developed a (2) a tailor-made,
day-wise crossover operator for the DT assignment part of
the multi-encoded chromosome, illustrated in Fig. 7. The
day-wise crossover chronologically compares entries of the
parents on a specific day d. If both parents have aDTassigned
on day d, we naturally assign a treatment on this day (white

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
DT[pa�ent 1] - Parent #1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
DT[pa�ent 1] - Parent #2 0 0 1 1 0 1 1 1 1 0 1 1 1 0 0

= = = = = = = = = = =
DT[pa�ent 1] - Child 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0

Fig. 7 Day-wise crossover

entries). The same applies for the cases inwhich no treatment
is planned on day d, observable by two “0” entries in the
parent chromosomes. Gray-shaded cells indicate days with
different allocations among the parents. The assignment of
every yet undecided day d is fixed randomly, again defining
the allocations chronologically. We first have to determine
if leaving day d unassigned leads to an infeasible solution
regarding the constraint of assigning four treatments within
every five consecutive days. If so, we assign a treatment to
this day in any case.

The probability of assigning a treatment to day d depends
on the number of still missing DTs for patient p, nmissing,
and the number of undecided days, nundecided: P(DTd) =

nmissing
nundecided

. We call this crossover strategy the “day-wise
crossover operator.”

The day-wise crossover and patient-wise crossover then
are chosen randomly during the genetic evolution of the
DT assignments with equal probabilities. The WCE and
PET assignments use only the patient-wise crossover opera-
tor. Finally, we apply the position-based crossover operator
(PBX) to the patient sequences of two parent solutions to
receive the child’s patient sequence (Syswerda 1996).
Mutate(c) To enhance the search, we apply mutation oper-
ators to 10% of the descendants in each generation. The
DT assignment per patient is mutated by inverting the list
within the treatment phase. The WCE and PET assignments
are completely reversed, and the patient sequence is mutated
using the well-known shift mutation operator, such that one
random patient p is removed from the current sequence and
reinserted at a random position within the sequence.

Tochoose individuals for reproduction [Perform Selec-

tion(Pi )], we employ the rank selection operator. Because
offspring selection (Affenzeller and Wagner 2004) is ben-
eficial in our problem setting (Vogl et al. 2018), we again
incorporate this strategy into our GA. We aim to build 70%
of the offspring population from children that outperform
their worse parent (see line 7 and lines 12–17 in Algo-
rithm 3). The number of reproductive steps is limited to
five times the population size in each iteration (see line
7). The rest of the population is then filled up with ran-
dom individuals that did not outperform their worse parent
(lines 19–23). In addition, 1% of the offspring population
is composed of the best individuals of the parent population
[GetElites(Pi )].
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Algorithm 3: GA; see Affenzeller and Wagner (2004)

1 P0 ← CreateInitialPopulation();
2 sbest ← argminp∈P0 (ObjVal(p));
3 i ← 0;
4 repeat
5 Pi+1 ← GetElites(Pi );
6 C B ← ∅;
7 while |Pi+1| < 0.7 · |Pi | ∧ |Pi+1| + |C B | < 5 · |Pi | do
8 p1 ← PerformSelection(Pi );
9 p2 ← PerformSelection(Pi );

10 c ← Crossover(p1,p2);
11 c ← Mutate(c);
12 if ObjVal(c) < min(ObjVal(p1),ObjVal(p2)) then
13 Pi+1 ← Pi+1 ∪ {c};
14 else
15 C B ← C B ∪ {c};
16 end
17 end
18 while |Pi+1| < |Pi | do
19 c ← ChooseRandomElement(C B );
20 Pi+1 ← Pi+1 ∪ {c};
21 C B ← C B\{c};
22 end
23 if argminp∈Pi+1 (ObjVal(p)) < ObjVal(sbest ) then
24 sbest ← BestOfPopulation(Pi+1);
25 end
26 i ← i + 1;
27 until termination criterion met;

Algorithm 4: ILS; see Lourenço et al. (2010)

1 s0 ← GenerateInitialSolution;
2 s∗ ← LocalSearch(s0);
3 sbest ← s∗;
4 repeat
5 s′ ← Pertubation(s∗);
6 s∗′ ← LocalSearch(s′);
7 if ObjVal(s∗′)<ObjVal(sbest ) then
8 sbest ← s∗′
9 end

10 s∗ ← AcceptanceCriterion(s∗, s∗′);
11 until termination condition met;

5.6 Iterated local search

As an alternative approach to the GA, we introduce an ILS
to solve the RPSP, where the local search step of the algo-
rithm is formed by a variable neighborhood descent (VND).
Algorithm 4 gives an overview of the classic ILS (Lourenço
et al. 2010) components, all of which are described in more
detail in the following paragraphs.
GenerateInitialSolution The initial solution of the ILS
is defined by the best solution found within a pool of ran-
domly generated solutions, which are constructed using a
partly greedy, partly random approach described in Sect. 5.3.
The pool size depends o the instance size with larger, real-
world inspired instances in Sect. 6 having a pool of 200 initial
solutions to choose from.

LocalSearch The local search part of the algorithm is
formed by a VND, which operates on different parts of
the solution representation in Sect. 5.1. Traditionally, the
VND contains various different neighborhoods with increas-
ing degree of disruptiveness, which allows the algorithm to
leave potential local minima. Preliminary tests have shown
that in our specific case, the following kd = 6 neighborhoods
contribute to the search for improvements to the solution fit-
ness. For details on these preliminary tests please refer to
Sect. 6.2.

1. Perform a random shift of a patient within the patient
sequence (N1).

2. Invert the DT assignment of a random patient (N2).
3. Invert both the WCE and PET assignments of a random

patient (N3).
4. Swap two random patients within the patient sequence

(N4).
5. Rebuild the DT, WCE, and PET vectors for a random

patient from scratch (random assignment, as in the start-
ing solutions, (N5).

6. Invert a random subsequence of a size between 2 and 5
of the patient sequence (N6).

If a better solution is found, the VND continues its search
within the first neighborhood. In case no better solution can
be found in any of the listed neighborhoods, we reach a local
minimum, leading to the termination of the VND. Because
the high complexity of the underlying problem leads to vast
neighborhood sizes, we impose a limit on the number of eval-
uated neighbors in each iteration of the VND (see Sect. 6 for
details). Experiments have shown that the best improvement
policy during the neighborhood search of the VND is bene-
ficial, which is why we follow this scheme.
Perturbation If the local search gets stuck in a local mini-
mum, a perturbation of the current solution is performed, to
leave the local minimum and restart the local search phase
from another starting point. We use two different perturba-
tion strategies, one less and one more invasive method. Any
time a local minimum is found that improves the global best,
we use the less invasive perturbation method. Otherwise, we
alternate these approaches.

The less invasive method inverts the DT, WCE, and PET
assignments of a random patient, and it also inverts a ran-
dom part of the patient sequence of size P/7. The second
perturbation strategy rebuilds a completely new assignment
of DTs, WCEs, and PETs for a random patient (as in neigh-
borhood 5 of the VND) and inverts a random part of the
patient sequence of size P/5.
AcceptanceCriterion The acceptance criterion deter-
mines whether solution s∗′, found by the latest local search
step, replaces the current incumbent solution s∗. Lourenço
et al. (2010) describe two extremes of acceptance criteria dur-
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ing ILS.Either the newsolution is acceptedonly if it improves
s∗ (i.e., “better” acceptance criterion), or it is accepted in
any case (i.e., “random walk”). Between these extremes,
many intermediate acceptance criteria can be found in prior
literature, such as threshold-based or probabilistic ones (sim-
ulated annealing). Preliminary results have shown that in our
case, the “better” criterion outperforms all other mentioned
approaches.

5.7 Combined GA and ILS

Combinations of genetic algorithms and local search-based
algorithms, so-called memetic algorithms or genetic local
search metaheuristics, have proven to be beneficial in the lit-
erature (see, e.g., Neri et al. (2012), who summarized work
on memetic algorithms or Vela et al. (2010), who success-
fully interleaved a GA with a local search and called this
hybrid form “genetic local search”). Because the power of
ILS in our case highly depends on the quality of the ini-
tial solution, we investigated further into hybrids of the two
presented approaches. However, classic memetic approaches
that perform a local search on children in the GA were not
competitive. Therefore, we present a simple but effective (see
Sect. 6) combination of the two described stand-alone meta-
heuristics in a way that we first run the GA and afterward,
taking the best solution of the GA, we perform the proposed
ILS approach. The available CPU time is distributed equally
among the approaches.

6 Results

We implemented and tested the solution approaches with
a set of randomly generated problem instances of varying
sizes. After a brief description of the instances and environ-
ment used for our computational study (Sect. 6.1), we give
insight into preliminary tests conducted in order to measure
the impact of the neighborhoods listed in Sect. 5.6. Then, we
proceed with the analysis of small, toy instances to assess
the performance of the metaheuristic solution approaches
in comparison with the exact MIP formulation in Sect. 6.3.
Finally, we discuss the computational results for large and
medium-sized problem instances in Sect. 6.4 and compare
the algorithms on various key figures associated with the
solutions.

6.1 Experimental setup

The instances were generated using the knowledge of
MedAustron staff about the underlying distribution func-
tions. Patient-specific random variables came from the dis-
tributions summarized in Table 4. Small toy examples with
3–25 patients are created to assess the quality of the heuris-

Table 4 Probability distributions of instance specifics

Attribute Probabilities

Beam type P(BeamTypep = P) = 0.5

P(BeamTypep = C) = 0.5

Duration irradiation
λpi ∀i ∈ Φp

∼ N (12, 5) ⇐⇒ BeamTypep = P

∼ N (8, 5) ⇐⇒ BeamTypep = C

Room P(Room = 1) = 0.33

P(Room = 2) = 0.33

P(Room = 3) = 0.33

Duration in-room setup P(vpir = 12) = 0.8

P(vpir = 22) = 0.2

Duration in-room teardown P(wpir = 3) = 0.7

P(wpir = 6) = 0.3

aRO P(aRO = 1) = P(aRO = 2) =
P(aRO = 3) = P(aRO = 4) = 0.25

PET P(PET = true) = 0.5

tic methods in comparison with exact solution methods; the
larger, more realistic instances include 35–175 patients.

Additional instance settings are as follows:

u piq jr =

⎧

⎪

⎨

⎪

⎩

3,
if p and q have different beam

types and r is the beam resource,

0, otherwise.

λpi =
{

30, if i ∈ �p,

10, if i ∈ Ψp.

α′ = 30 min

α′′ = 120 min

FSmin
pi,p(i+δ) =

⎧

⎪

⎨

⎪

⎩

0, if i ∈ Φp ∧ (i + δ) ∈ �p,

15, if i ∈ Φp ∧ (i + δ) ∈ Ψp,

15, if i ∈ �p ∧ (i + δ) ∈ Ψp.

FSmax
pi,p(i+δ) =

⎧

⎪

⎨

⎪

⎩

15, if i ∈ Φp ∧ (i + δ) ∈ �p,

60, if i ∈ Φp ∧ (i + δ) ∈ Ψp,

60, if i ∈ �p ∧ (i + δ) ∈ Ψp.

For instances with P ≥ 35, we acknowledge that several
patients probably have already started their treatment, prior
to the beginning of the planning horizon. According to our
project partner, patients require an average of 20 treatments,
resulting in the following scheme: For any day in the planning
horizon, approximately 1/4 of patients will be having their
first week of treatments; another quarter is within the second
treatment week. Finally, 1/4 of patients has already had two
treatment weeks and is currently in the third week of treat-
ments and the last quarter of patients is finishing treatment
after the current week. We follow this systematic approach
when generating our real-world inspired problem instance.
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Table 5 DT Specifics of Larger Instances

Cat. wFDT NDT
p rp dp

1 – ∼ U(4, 5) 0
P(dp = 0) = 0.8
P(dp = 1) = 0.22 – ∼ U(8, 10) 0

3 – ∼ U(12, 15) 0

4 0 ∼ U(16, 20) 0 1

5 1 ∼ U(12, 15) 5 6

6 2 ∼ U(8, 10) 10 11

7 3 ∼ U(4, 5) 15 16

We therefore create seven types of patients, as in Table 5. The
first three categories have already started their treatment prior
to the beginning of the planning horizon and have between 4
and 15 treatments left. Therefore, the release date for these
patients is 0. For 20% of these patients, we assume that they
could have a day off on day 0, resulting in a due date of 1
instead of 0. In categories 4–7, patients start their treatment in
weeks 0–3, respectively. Because we plan a total of 4 weeks,
we assign only a limited number of DTs to these patients.
The release and due dates of these patients equal Monday to
Tuesday of the given starting week wFDT.

Instances with P ∈ {9, 15, 25} follow a similar pattern
but use only 3, 5, and 5 categories and planning horizons of
10, 15, and 15 days, respectively. Patients in instances with
P ∈ {3, 4, 5} all have equal release dates (day 0) and due
dates (day 1) and every patient needs the same number of
DTs. The total number of DTs for these instances is given in
Table 7.

The calculation of tight lower bounds is hardly possible
for the RPSP, so we manipulated the activity durations of the
DTs of randomly generated instances so that there exists an
(optimal) solution to the problem for which no unavoidable
idle time of the beam resource is necessary. These optimal
solutions also do not contain time window violations. The
objective value then consists of the total durations of the
DTs, that is, the minimum time the beam is used in total. For
non-manipulated instances (see Table 9), we use the same
measure as a lower bound to the problem.

All algorithms have been implemented in C++. The MIP
was solved using Gurobi 7.0.2. The experiments have been
carried out on the Vienna Scientific Cluster (VSC3), whose
compute nodes are equippedwith two IntelXeonE5-2650v2,
2.6 Ghz, 8 core CPUs each.

6.2 Experimental evaluation of VND neighborhoods

We conducted preliminary experiments in order to assess
the impact of all six neighborhoods used within the VND
part of the ILS. Therefore, we formed multiple subsets of
the kd = 6 neighborhoods and performed randomized com-

all N1,N5 N1,N2,N3 N4,N5 N5,N6 N2,N3,N4 N2,N3,N6

1
2

3
4

5
6

7

R
an

ki
ng

Fig. 8 Boxplot of seven subsets of neighborhoods containing ranked
results averages among 16 replications on 20 different instance-
neighborhood size combinations

putational tests on 10 problem instances including 35–175
patients. Five instances are randomly generated, while the
remainingfive are again “manipulated” instanceswith known
lower bound. Seven subsets have been chosen such that each
subset still operates on all three parts of the solution repre-
sentation. These subsets are:

1. All kd = 6 neighborhoods N1, N2, N3, N4, N5, and N6
2. Neighborhoods N1, N2, and N3
3. Neighborhoods N1, and N5
4. Neighborhoods N4, and N5
5. Neighborhoods N5, and N6
6. Neighborhoods N2, N3, N4
7. Neighborhoods N2, N3, N6

On all 10 instances and two neighborhood sizes (small,
“SN” and large, “LN”), 16 replications of the ILS were run,
equaling 20 × 16 runs for each of the neighborhood sub-
sets mentioned above. Then, concerning the average results
obtained by the 16 replications, the rank of the neighborhood
subset was calculated for each of the 10 problem instances
and the two neighborhood sizes. The best neighborhood sub-
set obtained rank 1, while the worst one obtained rank 7 (see
e.g., Hemmelmayr et al. 2012 for a similar comparison of
neighborhood subsets). Figure 8 depicts the results of the
ranking for all neighborhood subsets in form of box plots.
The results show that for some of the tested instances, a sub-
set of the six neighborhoods, more specifically the subset
containing N1 and N5, performs best and is therefore ranked
number 1. However, averaged over all instances (see the bold
line in the boxes representing the median rank), the proposed
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Table 6 Success rates of each
neighborhood during the
optimization of five instances
and two algorithmic settings
(small, large neighborhood)
each

P SN/LN N1 (%) N2 (%) N3 (%) N4 (%) N5 (%) N6 (%)

35 SN 44 31 18 17 49 32

35 LN 44 31 18 17 50 32

70 SN 50 32 21 19 57 45

70 LN 52 32 21 20 59 43

105 SN 50 40 28 18 69 57

105 LN 53 40 29 19 73 57

140 SN 52 40 35 19 77 64

140 LN 56 38 36 21 81 65

175 SN 53 36 45 20 84 73

175 LN 58 34 48 23 86 74

Table 7 Results of small instances

MIP Heuristics

P NDT Opt. Full Time-to (s) Vars Cons Reduced Time-to (s) Vars Cons GA ILS Time

Small instances

3 12 184 184* 4/33 580 850 184* 2/13 358 508 184 184 60

4 16 240 240* 82/5797 923 1276 240* 1/122 623 812 240 240 60

5 20 248 248ˆ 7609 1226 1647 248ˆ 4369 876 1078 248 248 60

3 27 414 414ˆ 3326 2596 3818 414ˆ 1184 1359 1411 414 414 60

5 30 372 372ˆ 22,432 3026 4416 376 1518 1745 1704 372 372 60

4 36 540 540ˆ 79,853 4609 6862 540ˆ 54,769 4148 6507 540 540 60

5 45 558 591 3173 6743 9736 563 26,121 5567 7836 558 558 60

9 60 720 759 84,633 13,250 20,364 – 86,400 11,201 17,336 720 720 1800

15 135 1410 – 86,400 57,409 72,971 – 86,400 46,785 59,587 1414 1410 3600

25 225 2295 – 86,400 156,304 184,960 – 86,400 120,699 140,088 2353 2296 5400

*Gurobi has found the optimal solution, and optimality was proven.ˆGurobi has found the optimal solution, but optimality could NOT be proven
Best found solutions of over all solution methods are in bold

version of the algorithm containing the full set of neighbor-
hoods, is clearly better than all the remaining subsets.

Additionally, we analyzed the success rate of each neigh-
borhood during the optimization by dividing the number of
times the neighborhood lead to a better solution through the
number of times the neighborhoodwas called during the opti-
mization, i.e., nsuccess/ncalled. The corresponding results are
summarized in Table 6. All six neighborhoods have con-
siderable success rates, indicating once more that all six
neighborhoods contribute to the search of the best solution.
Furthermore, the success rate of each neighborhood appar-
ently increases with the instance size. Hence, larger instances
seem to profit even more from the whole range of neigh-
borhoods, which is why we have chosen to include all six
neighborhoods in the more extensive experimental tests of
small and large instances.

6.3 Small instances

The initial tests entail small instances with known optimal
solution (see Table 7, column “opt.”). We compare results
from two versions of the linearized variant of the MIP model
presented in Sect. 4: The full model contains all variables
and constraints described in Sect. 4, whereas in the reduced
model, optional activities are assigned prior to the optimiza-
tion, thereby radically decreasing the number of variables
and constraints in the model (see Table 7, columns “vars”
and “cons,” respectively). The “time-to” column indicates the
running time needed to achieve the best found solution (and
to prove the optimality of this solution),with amaximum run-
ning time for bothMIP versions of 24 h. Furthermore, the two
basic versions of the GA and ILS (large neighborhood) are
listed. The results show that the optimal solution was found
almost for all problem instances in a reasonable time span
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Table 8 Results of large, manipulated instances (one instance per P with 16 replications each)

P Av. NDT Opt. Time limit Initial GA ILS cGAILS

Average Gap (%) Average Gap (%) Av. SN Av. LN Gap (%) Average Gap (%)

Large instances

35 400 3920.0 7200 5143.0 31.2 4153.9 6.0 4065.3 4068.2 3.7 4097.8 4.5

70 800 7580.0 14,400 10,515.8 38.7 8143.6 7.4 8209.3 8196.4 8.1 8163.3 7.7

105 1200 11,240.0 21,600 14,463.8 28.7 12,279.2 9.2 12,507.1 12,457.9 10.8 12,252.0 9.0

140 1600 14,900.0 28,800 20,309.6 36.3 16,426.7 10.2 16,792.3 16,630.8 11.6 16,490.1 10.7

175 2000 18,560.0 36,000 27,057.9 45.8 20,631.7 11.2 21,104.4 20,956.6 12.9 20,686.4 11.5

Best found solutions of over all solution methods are in bold

Table 9 Results of large, real-world-inspired instances (16 instances per P with 16 replications each)

P Av. NDT LB Time limit Initial GA ILS cGAILS

Average Gap Average Gap (%) Av. SN Av. LN Gap (%) Average Gap (%)

Large instances

35 400 3717.6 7200 5145.7 38.4 4544.2 22.2 4476.2 4473.3 20.3 4459.6 20.0

70 800 7107.4 14,400 10,522.0 48.0 8638.9 21.5 8577.7 8572.0 20.6 8520.6 19.9

105 1200 10,603.0 21,600 14,442.9 36.1 13,070.1 23.3 12,995.2 12,997.9 22.6 12,820.4 20.9

140 1600 13,976.7 28,800 20,315.3 45.4 17,212.8 23.2 17,267.1 17,369.9 23.5 16,930.7 21.1

175 2000 17,734.8 36,000 27,016.5 52.3 22,205.6 25.2 22,288.7 22,422.1 25.7 21,946.5 23.7

Best found solutions of over all solution methods are in bold

by the GA and the ILS, with a small advantage for the latter
method. The smaller instances with NDT = ∑

p NDT
p ≤ 36

also could be solved to optimality by Gurobi (marked by )̂.
However, Gurobi was only capable of proving optimality for
the two smallest instances (marked with *). Furthermore, the
running time to find (the optimal) solutions is already vast
for the small instances; those with 45 or more DTs likely
could not be solved to optimality by Gurobi. For instances
with 15 and 25 patients, not even a single feasible solution
was found after 24 h of running time. We therefore conclude
that solving the RPSP to optimality using mathematical pro-
gramming techniques is beyond the scope for larger problem
instances.

6.4 Medium and large instances

Tables 8 and 9 summarize the results of computational tests
performed using larger problem instances that include 35–
175 patients. The combination of the day assignment and the
in-room setup and teardown times complicate the calculation
of a strict lower bound, because it makes assessing unavoid-
able idle time on the beam resource virtually impossible.
Therefore, we adopt two strategies to evaluate the quality
of the solutions. Table 8 lists five instances in which we

manually manipulated the proportion of time used for setup,
teardown, and treatment so that there exists an optimal solu-
tion without idle time on the beam. The calculated gaps for
these manipulated instances can be interpreted as optimality
gaps. Then, Table 9 contains averages over 16 randomly gen-
erated instances. Here, we compare the solution to a naive
lower bound consisting of the total time the beam is required
within the planning horizon, equal to the sum of all irradia-
tion durations of all patients.

The “Initial” column lists the objective value of the best
solution among the initial GA population, which also serves
as a starting solution to the ILS. The “average” column
reveals the average of best found solution fitnesses after the
time limit has been reached for all proposed methods. Note
that we limited the number of evaluated neighbors within the
local search of the ILS. We investigated two neighborhood
sizes: The first, “small” approach evaluates

√
N neighbors

per iteration, with N as the total number of potential activities
to be scheduled, which we abbreviate to “SN.” The second
approach allows us to examine P neighbors of the current
solution (denoted “LN”).

The results showa slight advantage of theGAand cGAILS
for the manipulated instances in Table 8. The correspond-
ing gaps from the optimal values increase slightly with the
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Fig. 9 Empirical cumulative distribution functions: 175 patients and
16 replications

instance size and the underlying problem complexity for
these manipulated instances.

The randomly generated instances in Table 9 clearly show
the benefits of combining GA and ILS, which for all problem
sizes delivers the best solutions. For the real-world, non-
manipulated instances, the gap from the lower bound remains
more or less stable, even with increasing problem size. The
dominance of the hybrid method over the stand-alone meth-
ods, for all 5 × 16 = 80 real-world-inspired instances, can
be verified statistically using both t tests andWilcoxon Rank
tests. Specifically, these tests yield significantly better results
for almost all instances: cGAILSproduces significantly supe-
rior results to GA in 78 of the 80 instances. Furthermore,
the combined method performs significantly better than ILS
with small neighborhood in 61 and better than ILS with large
neighborhood in 62 cases (tables of the results of all statistical
tests can be found in “Appendix”).

Figure 9 compares the empirical cumulative distribution
functions (ECDF) of the four methods: GA, ILS with small
neighborhood, ILS with large neighborhood, and cGAILS
for one specific instance including 175 patients. For these
functions, all 16 replications per solutionmethodwere sorted
according to their objective value. The graph displays the
percentage of solutions (y-axis) among these 16 replications
per method that lie below a given objective value (x-axis),
i.e., the midpoint of the y-axis gives the median performance
of the algorithms, whereas the upper line gives the worst case
and the lower line the best case performances. According to
this analysis, cGAILS performs better for all percentiles of
the ECDF. Although GA and ILS-small depict comparable
median performance, both the best and the worst solutions of
the GA are weaker than the best/worst of the ILS with small
neighborhood. Furthermore, ILS with large neighborhood

Table 10 Key figures of 175-patient instances

Method Av. Fit. Av.
Pen.

Av.
holes

Av. pS Av. sr2 Av. sr1b

GA 22,205.6 28.1 44.9 134.4 33.4 509.2

ILS-small 22,288.7 37.4 48.3 305.5 27.8 564.9

cGAILS 21,946.5 26.0 54.3 179.7 25.6 535.2

does not yield comparable results for this specific instance,
which is also evident for instances with 140–175 patients in
Table 9.

Table 10 gives an overview of some attributes of the
achieved solutions by the three metaheuristic approaches for
the 175 patients instances (last row in Table 9). The “av. Fit.”
column denotes the average fitness of the solutions, with
“av. Pen.” indicating the penalty term of the fitnesses. The
“av. holes” column lists the total number of unassigned days
over all patients, and “av. pS” sums the particle switches that
cause sequence-dependent setup on the beam resource. Fur-
thermore, “av. sr2” indicates how often the same room is
required for a DT consecutively, leading to immediate idle
time on the beam during the in-room setup and teardown
times. Finally, “av. sr1b” counts cases inwhich itwas not pos-
sible to iterate through all rooms, so only a switch between
two rooms occurred (e.g., room 1, room 2, and again room 1,
with only one patient treated in a different room between the
two times in the same room).We aim tominimize key figures
av. pS to av. sr1b to achieve solutions with less idle time. A
low number of unassigned days (“holes” within a patient’s
treatment plan) do not necessarily lead to better solutions;
instead, we anticipate some “optimal” number of unassigned
days for each instance.

Comparing the three methods according to the key figures
gives an initial impression of the advantages and drawbacks
of eachmethod. The averageGAsolution includes only small
time window penalties and particle switches, but the same
room is more often used consecutively, leading to higher idle
time on the beam. In contrast, ILS results in a higher num-
ber of particle switches, simultaneously reducing av. sr2 to
only 27.8. Then, cGAILS can further shorten this number
to 25.6, at the same time accepting somewhat more particle
switches than the GA solutions. However, particle switches
cause beam idle time of 3 min, whereas using the same room
twice consecutively, on average, leads to an idle time of
17.9 min. Therefore, if idle time is unavoidable, we would
rather switch beam types than use the same room twice in
a row. Finally, the average number of holes within the best
found solution is significantly higher than in GA and ILS.
Accordingly, we conclude that the optimal number of unas-
signed days over all patients lies between 50 and 60 for the
175-patient instances.
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7 Conclusion

Scheduling recurring radiotherapy treatment appointments
in ion beam facilities in which multiple rooms share one
particle beam represents a complex job shop scheduling
problem with custom constraints. We have introduced the
specific problem setting and formulated the problem math-
ematically. However, in realizing that solving the MIP for
real-world instances is intractable, we developed a GA and
an ILS approach, both of which build on a multi-encoded
solution representation and a chronological decoding algo-
rithm. The GA contains tailor-made, feasibility-preserving,
crossover operators, and an offspring selection strategy. The
local search within the ILS is composed of a VND that
operates on six different neighborhoods of the incumbent
solution. We have shown that the two stand-alone meta-
heuristic approaches lead to excellent solutions for small
problem instances, even highly dominating theMIP approach
with regard to running times and solution quality. For larger
instances, the combination of the population-based GA and
the individual-based ILS leads to significantly better results
than each of the approaches achieves individually, yielding
solutions that perform soundly on all measured key figures.

Future research on radiotherapy scheduling will be dedi-
cated to stochastic optimization techniques;manyparameters
of the underlying problem are subject to intense uncertainty.
For example, some patients might not be capable of getting
the planned irradiation treatment if their condition becomes
very severe. Sometimes the treatment start needs to be post-
poned for patients to recover from short-term illnesses. Such

requirements might be assessed by either robust scheduling
techniques on a long-term basis and/or intelligent intra-
day optimization approaches that handle disruptions to the
planned schedule on the fly.
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Appendix: Statistical tests

To prove the superiority of the hybrid method cGAILS
relative to the stand-alone methods GA, ILS with small
neighborhood, and ILS with larger neighborhood, we con-
ducted various statistical tests, the results of which are
presented in the following Tables 11 and 12. We performed
both t tests (two-sided) andWilcoxonRank tests and obtained
comparable results, as both tests support the hypothesis that
the hybrid method achieves significantly better outcomes.
***, **, and * denote p values ≤ 0.001, ≤ 0.01, and
≤ 0.05, respectively, whereas “ns” indicates cases with p
value > 0.05. For each of the 5 × 16 = 80 instances, 16
replications were run.

Table 11 Results of t tests of 80
instances, batched by number of
patients P per instance

cGAILS versus GA cGAILS versus ILS-SN cGAILS versus ILS-LN

P *** ** * ns *** ** * ns *** ** * ns

t test (two-sided)

35 16 16 16 0 2 5 6 10 1 2 5 11

70 16 16 16 0 4 9 13 3 4 10 12 4

105 16 16 16 0 12 14 15 1 12 12 14 2

140 15 16 16 0 15 16 16 0 16 16 16 0

175 4 11 14 2 9 11 11 5 12 14 15 1
∑

P 67 75 78 2 42 55 61 19 45 54 62 18

Table 12 Results of Wilcoxon
rank tests of 80 instances,
batched by number of patients P
per instance

cGAILS versus GA cGAILS versus ILS-SN cGAILS versus ILS-LN

P *** ** * ns *** ** * ns *** ** * ns

Wilcoxon Rank test

35 16 16 16 0 2 4 6 10 0 2 4 12

70 15 16 16 0 3 8 12 4 4 8 12 4

105 16 16 16 0 9 13 16 0 12 12 15 1

140 13 16 16 0 14 16 16 0 16 16 16 0

175 4 8 15 1 9 10 11 5 12 14 15 1
∑

P 64 72 79 1 37 51 61 19 44 52 62 18

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Journal of Scheduling

References

Affenzeller, M., &Wagner, S. (2004). SASEGASA: A new generic par-
allel evolutionary algorithm for achieving highest quality results.
Journal of Heuristics, 10(3), 243–267.

Bray, F., Jemal, A., Grey, N., Ferlay, J., & Forman, D. (2012). Global
cancer transitions according to the Human Development Index
(2008–2030): A population-based study. The Lancet Oncology,
13(8), 790–801.

Burke, E. K., Leite-Rocha, P., & Petrovic, S. (2011). An integer lin-
ear programming model for the radiotherapy treatment scheduling
problem. CoRR abs/1103.3, arXiv:1103.3391v1

Castro, E., & Petrovic, S. (2012). Combined mathematical program-
ming and heuristics for a radiotherapy pre-treatment scheduling
problem. Journal of Scheduling, 15, 333–346.

Conforti, D., Guerriero, F., & Guido, R. (2008). Optimization models
for radiotherapy patient scheduling. 4OR, 6, 263–278.

Conforti, D., Guerriero, F., & Guido, R. (2010). Non-block schedul-
ing with priority for radiotherapy treatments. European Journal of
Operational Research, 201, 289–296.

Conforti, D., Guerriero, F., Guido, R., & Veltri, M. (2011). An optimal
decision-making approach for the management of radiotherapy
patients. OR Spectrum, 33(1), 123–148. https://doi.org/10.1007/
s00291-009-0170-y.

Gocgun, Y. (2016). Simulation-based approximate policy iteration
for dynamic resource-constrained project scheduling. Health
Care Management Science,. https://doi.org/10.1007/s10729-016-
9388-9 (to appear).

Gupta, D.,&Denton, B. (2008). Appointment scheduling in health care:
Challenges and opportunities. IIE Transactions, 40, 800–819.

Hemmelmayr, V., Schmid, V., & Blum, C. (2012). Variable neighbour-
hood search for the variable sized bin packing problem.Computers
and Operations Research, 39(5), 1097–1108. https://doi.org/10.
1016/j.cor.2011.07.003.

Kapamara, T.,&Petrovic,D. (2009)Aheuristics and steepest hill climb-
ing method to scheduling radiotherapy patients. In Proceedings of
the international conference on operational research applied to
health services (ORAHS), Catholic University of Leuven, Leuven,
Belgium

Kapamara, T., Sheibani, K., Haas, O., Petrovic, D.,&Reeves, C. (2008).
A review of scheduling problems in radiotherapy. In Proceedings
of the international control systems engineering conference (ICSE)
(pp. 207–211)

Legrain, A., Fortin, M. A., Lahrichi, N., & Rousseau, L. M. (2015).
Online stochastic optimization of radiotherapy patient scheduling.
Health Care Management Science, 18, 110–123.

Leite-Rocha, P. (2011). Novel approaches to radiotherapy treatment
scheduling. Ph.D. thesis, University of Nottingham

Lourenço, H. R., Martin, O. C., & Stützle, T. (2010). Iterated local
search. In F. Glover & G. A. Kochenberger (Eds.), Handbook of
metaheuristics (pp. 363–397). Norwell: Kluwer Academic Pub-
lishers.

Maschler, J., Riedler, M., Stock, M., & Raidl, G. R. (2016). Particle
therapy patient scheduling: First heuristic approaches. In: E. K.
Burke (Ed.), PATAT2016: Proceedings of the 11th international
conference of the practice and theory of automated timetabling
(pp- 223–244)

Maschler, J., Hackl, T., Riedler, M., & Raidl, G. R. (2017). An
enhanced iterated greedy metaheuristic for the particle therapy
patient scheduling problem. In: A. Duarte, A. Viana, J. Angel, B.
Mélian, & H. Ramalhinho (Eds.), Proceedings of the MIC and
MAEB 2017 conferences, Barcelona (pp. 465–474)

Maschler, J., Riedler, M., &Raidl, G. R. (2018). Particle therapy patient
scheduling: Time estimation for scheduling sets of treatments. In
R.Moreno-Díaz, F. Pichler, &A. Quesada-Arencibia (Eds.),Com-

puter aided systems theory—EUROCAST 2017 (pp. 364–372).
Berlin: Springer International Publishing.

Men, C. (2009). Optimization models for radiation therapy: Treatment
planning andpatient scheduling. Ph.D. thesis,University of Florida

Neri, F., Cotta, C., & Moscato, P. (Eds.). (2012). Handbook of memetic
algorithms. Berlin: Springer. https://doi.org/10.1007/978-3-642-
23247-3.

Ohno, T. (2013). Particle radiotherapy with carbon ion beams. The
EPMA Journal,. https://doi.org/10.1186/1878-5085-4-9.

Petrovic, D., Morshed, M., & Petrovic, S. (2009). Genetic algo-
rithm based scheduling of radiotherapy treatments for cancer
patients. Proceedings of the Conference on Artificial Intelligence
in Medicine (AIME), 5651, 101–105.

Petrovic, D., Morshed, M., & Petrovic, S. (2011). Multi-objective
genetic algorithms for scheduling of radiotherapy treatments for
categorised cancer patients. Expert Systems with Applications,
38(6), 6994–7002.

Petrovic, S., & Castro, E. (2011). A genetic algorithm for radiotherapy
pre-treatment scheduling. In Lecture notes in computer science
(including subseries Lecture notes in artificial intelligence and
lecture notes in bioinformatics), LNCS(PART 2) (Vol. 6625, pp.
454–463).

Petrovic, S., & Leite-Rocha, P. (2008a). Constructive and
GRASP approaches to radiotherapy treatment scheduling.
In Proceedings—Advances in electrical and electronics
engineering—IAENG special edition of the world congress
on engineering and computer science 2008, WCECS 2008 (pp.
192–200)

Petrovic, S., & Leite-Rocha, P. (2008b). Constructive approaches to
radiotherapy scheduling. In World Congress on Engineering and
Computer Science (WCECS) (pp. 722–727)

Petrovic, S., Leung, W., Song, X., & Sundar, S. (2006). Algorithms
for radiotherapy treatment booking. In 25th Workshop of the UK
planning and scheduling special interest group (pp. 105–112)

PTCOG (2017) Particle therapy co-operative group. https://www.ptcog.
ch/index.php/facilities-in-operation. Accessed 15 Jan 2018.

Sauré, A., Patrick, J., Tyldesley, S., & Puterman,M. L. (2012). Dynamic
multi-appointment patient scheduling for radiation therapy. Euro-
pean Journal of Operational Research, 223, 573–584.

Steward, B. W., & Wild, C. P. (2014). World cancer report 2014. Tech-
nical report, World Health Organization, International Agency for
Research on Cancer.

Syswerda, G. (1996). Schedule optimization using genetic algorithms.
In L. Davis (Ed.), Handbook of genetic algorithms (pp. 332–349).
London: International Thomson Publishing Services.

Vela, C. R., Varela, R., & González, M. A. (2010). Local search
and genetic algorithm for the job shop scheduling problem with
sequence dependent setup times. Journal of Heuristics, 16(2),
139–165. https://doi.org/10.1007/s10732-008-9094-y.

Vieira, B., Hans, E.W., VanVliet-Vroegindeweij, C., VanDeKamer, J.,
& Van Harten, W. (2016). Operations research for resource plan-
ning and -use in radiotherapy: A literature review. BMC Medical
Informatics and Decision Making, 16(149), 1–11. https://doi.org/
10.1186/s12911-016-0390-4.

Vogl, P., Braune, R., & Doerner, K. F. (2018). A multi-encoded genetic
algorithm approach to scheduling recurring radiotherapy treatment
activities with alternative resources, optional activities, and time
window constraints. In: R.Moreno-Díaz, F Pichler, &A.Quesada-
Arencibia (Eds.), Computer aided systems theory—EUROCAST
2017, Springer International Publishing (pp. 373–382)

Washington, C. M., & Leaver, D. (2016). Principles and practice of
radiation therapy. Maryland Heights: Mosby.

World Health Organization. (2012). GLOBOCAN 2012. http://
globocan.iarc.fr/Default.aspx. Accessed 1 Oct 2017.

123

http://arxiv.org/abs/1103.3391v1
https://doi.org/10.1007/s00291-009-0170-y
https://doi.org/10.1007/s00291-009-0170-y
https://doi.org/10.1007/s10729-016-9388-9
https://doi.org/10.1007/s10729-016-9388-9
https://doi.org/10.1016/j.cor.2011.07.003
https://doi.org/10.1016/j.cor.2011.07.003
https://doi.org/10.1007/978-3-642-23247-3
https://doi.org/10.1007/978-3-642-23247-3
https://doi.org/10.1186/1878-5085-4-9
https://www.ptcog.ch/index.php/facilities-in-operation
https://www.ptcog.ch/index.php/facilities-in-operation
https://doi.org/10.1007/s10732-008-9094-y
https://doi.org/10.1186/s12911-016-0390-4
https://doi.org/10.1186/s12911-016-0390-4
http://globocan.iarc.fr/Default.aspx
http://globocan.iarc.fr/Default.aspx

	Scheduling recurring radiotherapy appointments in an ion beam facility
	Considering optional activities and time window constraints
	Abstract
	1 Introduction
	2 Problem statement
	3 Related work
	3.1 Radiotherapy scheduling

	4 Problem formulation
	4.1 Resource constraints
	4.2 Sequencing and optional activities
	4.3 Linking constraints
	4.4 Recurring activities
	4.5 Stable activity starting times
	4.6 Treatment starting time
	4.7 Active time of beam resource

	5 Solution methods
	5.1 Solution representation
	5.2 Excursus on problem complexity
	5.3 Initial solutions
	5.4 Solution decoding and solution evaluation
	5.5 Genetic algorithm
	5.6 Iterated local search
	5.7 Combined GA and ILS

	6 Results
	6.1 Experimental setup
	6.2 Experimental evaluation of VND neighborhoods
	6.3 Small instances
	6.4 Medium and large instances

	7 Conclusion
	Acknowledgements
	Appendix: Statistical tests
	References





