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Abstract. This paper addresses a computational method aimed at obtaining the isothermal compressibility
of ferrofluids by means of molecular dynamics (MD) simulations. We model ferrofluids as a system of dipolar
soft spheres and carry out MD simulations in the NPT ensemble. The obtained isothermal compressibility
computed via volume fluctuations provides us with a strong evidence that dipolar interactions lead to a
higher compressibility of dipolar soft sphere systems: the stronger the dipolar interactions, the bigger is
the deviation of the compressibility from the one of a system with no dipoles. Furthermore, we use the
isothermal compressibility to calculate the structure factor of ferrofluids at low values of wave vectors,
i.e. in the range where it is difficult to predict its behaviour because of a problem with accounting for
long-range particle correlations that give the main contribution to the structure factor in this range. Our
approach based on the interpolation of the structure factor and the computed isothermal compressibility
allows us to obtain the smooth structure factor in the range of low wave vectors and the reliable fractal

dimension of the clusters formed in the system.

1 Introduction

Nowadays many applications of soft matter heavily rely
on the structural behaviour of their compounds. In turn,
the structural behaviour of these materials is usually very
sensitive to both external stimuli and intrinsic character-
istics of their compounds. One of the classical examples of
dipolar soft matter materials with a large variety of phase
and structural transitions is a ferrofluid, also addressed
sometimes as a magnetic fluid [1]. Ferrofluids represent a
class of fluids consisting of single-domain magnetic par-
ticles suspended in a nonmagnetic liquid carrier. Mag-
netic and steric interaction between particles in ferrofluids
might result in their self-assembly even in the absence of
an external magnetic field.

The two past decade can be fairly called as a boom
in studying the microstructure of ferrofluids and the ma-
jor contributions aimed at understanding microstructural
properties were published [1-23]. The experimental tech-
nique usually used for this purpose is the small angle neu-
tron scattering (SANS) [1,2,5,10,13,14]. The scattering
pattern obtained in these experiments transforms into a
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structure factor which carries information about the sam-
ple microstructure. In order to be consistent with experi-
mental measurements, many following computational and
theoretical works put an effort to obtain structure factors
of ferrofluids as this property can be compared to real
experiments [15-20, 22]. The structure factor S(q) with
the wave vector q is usually analytically calculated by
evaluating a Fourier transform of the radial distribution
function g(r). Nowadays, there are two known theoretical
approaches to calculate g(r) for ferrofluids. The first one is
based on the diagram expansion [19], which gives accurate
predictions for the pair distribution function of ferrofluids
at low density and dipolar interactions not strong enough
to lead to self-assembly. The second approach takes into
account the self-assembly occurring at moderate dipolar
interactions by considering the system as an ideal gas of
chain clusters of different lengths [17]. Despite both the-
oretical approaches are proven to be reliable for predict-
ing the structure factor first peak, they fail at low wave
vectors [17-20, 22]. Here, the inaccurate behaviour of the
structure factor is related to the fact that the method of
diagram expansion neglects high-order correlations which
are important at long distances. In turn, the chain model
lacks interchain interactions which are important for con-
centrated systems. In computer simulations due to the
finite size of the system, the structure factor obtained for
low values of ¢ is also not reliable [15-18, 20, 22].
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The knowledge about the microstructure of ferrofluids
is not only valuable by itself, but also is directly linked to
thermodynamic properties such as pressure, compressibil-
ity factors and heat capacity which alter together with the
microstructure [20,24-30]. To our knowledge, nobody has
studied isothermal compressibility of ferrofluids by means
of computer simulations despite it has a strong implica-
tion for thermodynamics and dynamics of ferrofluids [31].
The aim of this paper is to fill this gap and to explain how
dipolar interactions influence the isothermal compressibil-
ity. Using molecular dynamics computer simulations, we
compute the isothermal compressibility xr of dipolar hard
sphere systems in an isothermal-isobaric (N PT') ensemble
as a measure of volume fluctuations. This method cap-
tures well the qualitative behaviour of y7 which clearly
displays the influence of dipolar correlations. Moreover,
isothermal compressibility has a direct relevance to the
structural properties of ferrofluids, since it measures the
structure factor at the zero limit of the wave vector length
as follows [32]:

pkTXxT = ;i_f)l% 5(q)- (1)

Here p is the number density of dipolar particles, kg and
T denote the Boltzmann constant and temperature of the
system, respectively. The notation ¢ signifies the magni-
tude of the wave vector q (¢ = |q|). The range ¢ — 0
is exactly the range of wave vectors where conventional
methods experience difficulties in predicting the structure
factor. Note that the structure factor in this range holds an
important information regarding long-range particle cor-
relations and its scaling contains information about the
fractal dimension of a sample that characterizes its mi-
crostructures [15]. In order to obtain the structure fac-
tor in this important range of wave vectors, we combine
two simulation approaches. We compute the structure fac-
tor at large wave vectors in a conventional way by means
of molecular dynamics simulations of dipolar hard sphere
systems in the canonical NVT ensemble. At low ¢ values,
we have only one point of the structure factor obtained
from NPT simulations according to eq. (1), where the
pressure P is the equilibrium one of the NVT ensemble.
In the next step, we join the results of two simulations
techniques to interpolate the structure factor in the range
of small values of wave vectors. This way, we estimate the
structure factor of ferrofluids at low wave vectors and ver-
ify the range of validity of the aforementioned analytical
approaches.

The paper is organized as follows. Section 2 describes
the details of modelling the systems of dipolar spheres
and explains both methods of computer simulations used
in this paper. The simulation results and their analysis are
given in sect. 3 and summarized in sect. 4.

2 Simulation method

We consider a system of N spherical particles of diameter
o. Each particle possesses a central magnetic moment p
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whose rotation is related to the particle rotation. Particles
interact with each other via two potentials: the Weeks-
Chandler-Andersen (WCA) potential [33] to account for
the particle steric repulsion
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and the potential of dipole-dipole interactions
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Here r;; is the distance between particles 7 and j and r;;
is the displacement vector connecting the centers of these
particles. Vectors p; and p; denote their dipolar moments
of magnitude p. The constant g stands for the vacuum
permeability and the parameter € is the strength of the
WCA potential. The strength of the dipolar interactions
can be described by the parameter A = Buou?/4ro3. The
inversed product of temperature 7" and the Boltzmann
constant kp is denoted as 3 = 1/kpT.

All simulations mentioned in this paper were carried
out in ESPResSo [34,35] at the following system param-
eters: number density p is in the range between 0.01 and
0.1 with step 0.01, and the dipolar interaction strength
varied from A = 1.0 up to A = 4.0 with step 1.0.

The first molecular dynamics simulations of dipolar
soft spheres were done in the canonical ensemble (NVT
simulations). We placed 512 dipolar particles into a cubic
simulation box of length [ = §/N/p. The initial positions
of the particles and orientations of their magnetic mo-
ments were randomly chosen. We use the periodic bound-
ary conditions to model the system in a bulk [36]. The
dimensionless temperature 7' = 1 of the system was kept
constant by means of the Langevin thermostat [37] at
the dimensionless friction coefficient v = 1. We also em-
ployed the dipolar-P3M algorithm to compute the long-
range dipolar interactions between particles in metallic pe-
riodic boundary conditions [38]. The system was evolved
using the Velocity-Verlet algorithm with the time step
At = 0.01. The equilibrium of the system was reached
during 2 x 10* time steps and the statistics was accumu-
lated during subsequent 6 x 10° time steps. The target
observables in these simulations were the radial distribu-
tion function (RDF) g(r) and the pressure P. The RDF is
related to the structure factor of the system as follows [32]:

o0
Sta) =1+ 22

drrsin(gr) (g(r) — 1). (4)
q Jo

Note, the isothermal compressibility xr can be also cal-
culated via RDF as expressed below:

pkgTxr =1+ 47Tp/ drr? (g(r) —1). (5)
0

The pressure P obtained in NVT simulations was
used to set up the next molecular dynamics simulations
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in the isothermal-isobaric ensemble (NPT simulations).
This time, we kept the pressure constant and used the vol-
ume of the simulation box for this purpose. We changed
the volume of the simulation box according to the accep-
tance rule for making a volume move [36], which has the
following form:

acc(o — n) = min(1, exp{—pB[U (V") — U(V?)]
+P(V" =V = NB " In(V*/V°)}). (6)

Here, U(V?°) and U(V"™) denote the energies correspond-
ing to the systems with volume V° before the volume
move and V"™ after the volume move was made. The at-
tempt to change the volume from U(V®) to U(V™) was
made every 10* time steps by making a trial volume move
AV = V° — V"™ which is uniformly distributed over the
interval [—0.1V°,0.1V°]. The volume was changed equally
along all three directions.

The remaining routine of the simulation protocol
stayed the same as for NVT simulations, including the
Langevin thermostat to preserve the temperature, the
dipolar-P3M method to compute dipolar interactions and
the Velocity-Verlet scheme to propagate the system. We
increased the size of the system to N = 2048 particles
and the time spent to collect statistics to 107. We are in-
terested in volume fluctuations which are related to the
isothermal compressibility as expressed below:

V) - (v)?
kpTxr = —————. 7
BLXT W) (7)
Note that we also considered smaller systems consisting
of N = 512 particles. The comparison of data obtained
by means of NPT simulations of smaller systems to those
of bigger systems did not show any dependence of the
isothermal compressibility of the system size.
In the next section, we compare the isothermal com-
pressibility obtained using egs. (5) and (7).

3 Results and discussion

Figure 1 shows how the isothermal compressibility xr of
the dipolar soft sphere systems alters with number density
p- The compressibilities obtained by two different methods
(using eq. (5) and eq. (7)) demonstrate the same qualita-
tive behaviour: the compressibility decays as the system
becomes denser and therefore less compressible. Moreover,
the compressibilities calculated via two different methods
even coincide at A = 1 and 2. For higher A\, we observe
the discrepancy between the methods which grows with
increasing particle concentration: the compressibility cal-
culated via RDF is consistently lower than its counterpart
at a given density because of the finite size effect of the
system in NVT simulations which has been enhanced by
integration in eq. (5). In the following, we will only talk
about the compressibility calculated in NPT ensemble.
To estimate the impact of dipolar correlations on the
compressibility, we compare it to the compressibility of
pure hard sphere systems. The latter can be analytically
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Fig. 1. Isothermal compressibility xr as a function of the
number density p obtained in NPT simulations using eq. (7)
(depicted as red circles) and NVT simulations using eq. (5)
(depicted as blue diamonds). The black dashed curve is the
isothermal compressibility for the pure hard sphere system.
Red curves are the result of the fitting of NPT simulation
data by the power law Ap®, where the coefficients A and B
are given in table 1. Each subfigure corresponds to different A
— strength of dipolar interactions: (a) A = 1.0; (b) A = 2.0; (c)
A =3.0; (d) A =4.0.

calculated by differentiating volume V' with respect to
pressure P at constant temperature 7' [32]:

kBTXTZ—l (8V)T~ (8)

v \opP
Using the Carnahan-Starling approximation for the com-
pressibility factor Z of hard spheres [28]
Y S Y R
kgTp (1—¢)? 7
where ¢ = puvg is the particle volume fraction and vy =

702 /6 is the particle volume, the isothermal compressibil-
ity for hard spheres writes as follows:

(1= puo)*
L+ 4dpvg + 4p*v¢ — 4pPv3 + ptog)

ZHS

(9)

, (10)

pkpTXT° = (

The isothermal compressibility obtained using eq. (10) is
depicted as a black dashed curve in fig. 1. Comparing data
for dipolar and nondipolar systems, we notice that the
compressibility of the system of dipolar spheres resembles
that of a nondipolar one. Moreover, they almost coincide
at A = 1 (see fig. 1(a)) as dipolar interactions are very
weak and give almost no contribution to the isothermal
compressibility for such dilute systems. With increasing
values of A (look at fig. 1(a) to (d) consequently), the
curves start deviating towards higher compressibility. This
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Table 1. Coefficients A and B obtained by fitting the isother-
mal compressibility by the function f(p) = Ap®.

A A B

1 0.73 —1.06
2 0.95 —1.03
3 3.04 —0.79
4 16.57 —0.51
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Fig. 2. Structure factor S(q) at different densities of the sys-
tem p depicted in different colours. Each subfigure is plot-
ted for different strength of dipolar interactions: (a) A = 1.0;
(b) A =2.0; (¢) A =3.0; (d) A =4.0.

is due to the effective interparticle attraction caused by
dipolar interactions and self-assembly of dipolar particles.
Both these phenomena lead to a higher compression with-
out the need of exerting any additional pressure on the
system. It turns out that the compressibility can be well
predicted by the power law f(p) = Ap®. The result of the
fitting of the compressibility by the power law is depicted
in fig. 1 as a solid red curve and the obtained coefficients
A and B are given in table 1.

Since the isothermal compressibility carries the infor-
mation about the structure factor at the zero limit of the
wave vectors ¢ — 0, the obtained above results can help us
to estimate the structure factor at low wave vectors g and
therefore add to understanding the structural properties
of ferrofluids.

As has been mentioned in the introduction, the struc-
ture factor obtained by means of computer simulations is
very accurate for values of ¢ corresponding to short in-
terparticle distances in the real space. Therefore, we plot
the structure factor obtained via NVT simulations us-
ing eq. (4) only for gqo > 1.5 as solid curves (see fig. 2).
Different colours correspond to different number densities
p. In the range go > 3, the structure factor qualitatively
coincides with the one obtained in previous works [15-19]:
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Table 2. Interpolation coefficients a, b and ¢ obtained by in-
terpolating the structure factor of a dipolar hard sphere system
by a polynomial of the second order F(q) = ax + bx + cx? at
different strengths of the dipolar interaction .

p a b c
0.01 0.96 0.008 —5.8107°
P 0.04 0.89 0.02 0.01
0.07 0.86 —0.08 0.03
0.1 0.84 —0.15 0.05
p a b c
0.01 1.06 —0.06 0.01
\—9 0.04 1.04 —0.08 0.01
0.07 1.04 —0.12 0.02
0.1 1.03 —0.18 0.04
p a b c
0.01 1.13 —0.06 0.002
N3 0.04 1.53 —0.35 0.04
0.07 1.72 —0.54 0.08
0.1 1.85 —0.72 0.13
p a b c
0.01 1.77 —-0.5 0.08
N4 0.04 3.49 —1.95 0.38
0.07 4.58 —3.09 0.67
0.1 5.44 —4.05 0.92

the increase of the density leads to a growth of the first
peak as the number of particle pairs in the sample be-
comes greater (compare the curves within each subfigure);
the position of the first peak slightly shifts towards larger
wave vectors with the enhancement of dipolar interactions
as it results in the effective attraction diminishing the
interparticle distance (track the shift by looking at the
subplots from (a) to (d) consequently). Circles at ¢ = 0
in fig. 2(a)—(d) represent the SF obtained via isothermal
compressibility using eq. (7). In order to get the missing
part of the structure factor at 0 < go < 1.5, we interpo-
late the points of the structure factor at ¢ = 0 and 1.5 <
go < 2.5 by a quadratic polynomial F'(¢) = ax + bx + cx?.
The interpolation coefficients can be found in table 2. The
part of structure factor obtained by the interpolation is
depicted as dashed curves of the colour corresponding to
the figure colour scheme.

It is worth noticing that the structure factor at zero ¢
decays with increasing particle concentration at A = 1. At
A = 2, these points almost converge to one value, whereas
for high A = 3 and 4, the structure factor at zero wave
vectors increases with the density of the system. This
crossover is happening because dipolar particles tend to
form chains at A\ > 2 and these chains are captured by
the structure factor also at distances L > o, i.e. when
q — 0. The scaling of the structure factor in this range by
the function S(q) ~ (qo)~P allows us to characterize the
formed structures because the meaning of the coefficient
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Fig. 3. Structure factor S(q) of dipolar hard sphere systems in
log-log scale. (a), (b) A =3 and (c), (d) A =4. (a), (c) p=0.7
and (d), (e) p = 0.1. The black line is a scaling of the structure
factor by the function S(q) ~ (oq)~P. The scaling coefficients
D are provided in table 3.

Table 3. Coefficient D obtained by scaling the structure factor
at zero limit of the wave vector q.

p=0.01 p=0.04 p=0.07 | p=0.1
A=3 0.07 0.25 0.34 0.41
A=4 0.29 0.71 0.94 1.11

D is the fractal dimension. To find the scaling, we use the
obtained by interpolation values of the structure factor
at 0.8 < go < 2.0. This is the range where the structure
factor has a rapid linear decay in log-log scale. The re-
sults of the scaling are provided in fig. 3 as black lines and
the obtained values for the coefficient D are given in ta-
ble 3. At the highest A = 4 considered here, the coefficient
D ~ 1. This confirms the chain formation and additionally
justifies the accuracy of compressibility computed in this
work. These results are consistent with scalings obtained
in previous works on structure factor calculations [15-17].
However, this coefficient has not reached unity for sys-
tems at A = 3 at any particle density. We attribute this
to the fact that although the chains can already be found
in these systems, they are mostly short, i.e. dimers-like,
with few longer chains. Therefore, they give low impact
in long-range chainlike spatial correlations that results in
such a small value for D.

Now having the reliable structure factor even at low
values of ¢, we have the opportunity to compare it to the
two known theoretical predictions through the complete
range of the wave vectors. Figure 3 shows structure fac-
tors for systems with different A and p obtained in several
ways. Blue curves in fig. 3 correspond to the analytical
method, employing the diagram expansion for the calcu-
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lation of g(r) [18,19]. This method is advised to be used
for very dilute systems with weak dipolar interactions. In
case of higher values of dipolar interactions, self-assembly
starts playing an important role. To this respect, another
method to calculate g(r) was proposed which considers
the system as an ideal gas of chains formed by magnetic
particles [17]. The equilibrium distribution of chains by
their lengths is obtained at given values of A and p by
minimizing the free energy density functional [6]. How-
ever, this method neglects the interchain interactions that
make the model not applicable for concentrated systems.
Black curves in fig. 4 represent the structure factor ob-
tained via this model. Figure 4 compares the black and
blue curves to the structure factors obtained using our ap-
proach based on simulation data and their interpolation
(red circles). In the following, we call the latter as simula-
tion data for convenience. At low lambda (A < 2), all three
methods are in good agreement in the range of go > 3
(see fig. 4(a) and (b)). However, the simulation data are
closer to the blue curve at p = 0.1 and slightly deviate
from the prediction made by the chain model. However,
the chain model gives better predictions of the structure
factor from A = 3 and higher, since this approach accu-
rately accounts for the distances between particles inside
chain structures that is reflected in the structure factor
first peak. This is an expected result obtained in the for-
mer works [17-19]. However, we would like to draw your
attention to the range of low values of ¢. One can note that
the structure factor of dilute systems (p < 0.05) at A < 2
obtained by the diagrammatic method coincides with the
simulation data for low values of ¢ as there are almost
no long-distance correlations in these systems. The chain
model becomes less accurate for systems with higher p (see
fig. 4 at p = 0.1 at small values of ¢), albeit it seems to
work for low concentrations and A\ = 3. Finally, at A > 3,
we cannot rely on any of the two models when analysing
the structure factor for low values of q.

4 Conclusion

This paper is aimed at computing the isothermal com-
pressibility of dipolar soft sphere systems using computer
simulations. We employed molecular dynamic simulations
which we carried out for two ensembles. Firstly, simula-
tions in the NVT ensemble, which have provided us with
the pressure of the system to start the next simulations
in the NPT ensemble. We computed the isothermal com-
pressibility using data obtained in both simulations: via
integration of the RDF obtained in NVT simulations and
via volume fluctuations of the simulation box in N PT" sim-
ulations. The isothermal compressibility obtained by these
methods show the same qualitative behaviour, though the
first method is less reliable because of the finite size effects.
The isothermal compressibility decreases with an increas-
ing particle concentration. However, dipolar interactions
slow down the observed decay. The difference between
the obtained isothermal compressibilities of dipolar soft
sphere systems and those of nondipolar ones increases with
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Fig. 4. Structure factor S(gq) obtained for dipolar hard sphere systems at different densities p depicted in different colours.
Each subfigure is plotted for a different strength of dipolar interactions: (a) A = 1.0; (b) A = 2.0; (¢) A = 3.0; (d) A = 4.0.
We increase the number density p in each column going from left to right so that p has the following values: 0.01, 0.04
and 0.1 accordingly. Circles represent data obtained using two simulation approaches and interpolation. Black and blue curves
correspond to theoretical predictions of the structure factors using the chain model and the model based on the virial expansion,

respectively.

the strength of dipolar interactions. Apparently, the en-
hanced interparticle attraction due to dipolar interactions,
which also results in chain formation at high enough A, fa-
cilitates the compressibility of such systems. The obtained
result estimating an impact of dipolar correlations to com-
pressibility is also relevant to other kinds of dipolar sys-
tems, e.g., magnetic gels and elastomers, for which com-
pression is an essential basis for any possible application.

The high importance of the isothermal compressibility
is also determined by its relevance to the structural prop-
erty. Namely, the compressibility is the structure factor
at the zero limit of the wave vector ¢. This is exactly the

range where both theories as well as computer simulations
usually experience difficulties in predicting the structure
factor. In this paper, we offer the method to predict the
structure factor at low wave vectors which is based on the
interpolation of the obtained compressibility at ¢ = 0 and
the structure factor in the reliable range of ¢ to the range
of small wave vectors. The advantage of this method is
that the structure factor obtained by interpolation has a
smooth behaviour in the range of small ¢ and therefore
allows us to find an accurate scaling of the fractal dimen-
sion characterizing structures formed in the sample which
is in agreement with previous results.
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