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Abstract Weestablish a geometric condition guaranteeing exact copositive relaxation for the
nonconvex quadratic optimization problemunder two quadratic and several linear constraints,
and present sufficient conditions for global optimality in terms of generalized Karush–Kuhn–
Tucker multipliers. The copositive relaxation is tighter than the usual Lagrangian relaxation.
We illustrate this by providing a whole class of quadratic optimization problems that enjoys
exactness of copositive relaxation while the usual Lagrangian duality gap is infinite. Finally,
we also provide verifiable conditions under which both the usual Lagrangian relaxation
and the copositive relaxation are exact for an extended CDT (two-ball trust-region) problem.
Importantly, the sufficient conditions can be verified by solving linear optimization problems.

Keywords Copositive matrices · Non-convex optimization · Quadratic optimization ·
Quadratically constrained problem · Global optimality condition · Relaxation

1 Introduction

Consider the following nonconvex quadratic optimization problem, which is referred to as
the extended trust region problem:

(P) min
x∈Rn

x�Q0x + 2q�
0 x

subject to x�Q1x + 2q�
1 x ≤ 1

‖Ax − a‖2 ≤ 1
Bx ≤ b,

where Q0,Q1 are (n × n) symmetric matrices, A is an (� × n) matrix, B is an (m × n)

matrix, a ∈ R
�, b ∈ R

m and q0,q1 ∈ R
n . Model problems of this form arise from robust
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optimization problems under matrix norm or polyhedral data uncertainty [5,20] and the
application of the trust region method [15] for solving constrained optimization problems,
such as nonlinear optimization problems with nonlinear and linear inequality constraints
[9,34]. It covers many important and challenging quadratic optimization (QP) problems such
as those with box constraints; trust region problems with additional linear constraints; and
the CDT (Celis–Dennis–Tapia or two-ball trust-region) problem [1,9,14,28,38]. In general,
with no further structure on the additional linear constraints Bx ≤ b, the model problem (P)
is NP-hard as it encompasses the quadratic optimization problem with box constraints.

In the special case where Q1 is the identity matrix, A,B are zero matrices and a,b,q1
are zero vectors, the model problem (P) reduces to the well-known trust-region model. It
has been extensively studied from both theoretical and algorithmic points of view [19,39].
The trust-region problem enjoys exact Lagrangian relaxations. Moreover, its solution can
be found by solving a dual Lagrangian system or, equivalently, a semidefinite optimization
problem (SDP). Unfortunately, these nice features do not continue to hold for the more
general extended trust-region problem (P); see [20]. In fact, it has been shown that exactness
of Lagrangian (or SDP) relaxation can fail for the CDT problem, or for the trust region
problem with only one additional linear inequality constraint.

Recently, copositive optimization has emerged as one of the important tools for studying
nonconvex quadratic optimization problems. Copositive optimization is a special case of con-
vex conic optimization (namely, to minimize a linear function over a cone subject to linear
constraints). By now, equivalent copositive reformulations for many important problems are
known, among them (non-convex, mixed-binary, fractional) quadratic optimization problems
under amild assumption [2,3,13], and some special optimization problems under uncertainty
[4,18,32,37]. In particular, it has been shown in [7] that, for quadratic optimization problems
with additional nonnegative constraints, copositive relaxations (and its tractable approxima-
tions) provides a tighter bound than the usual Lagrangian relaxation. On the other hand, the
techniques in [7] are not directly applicable because our model problem does not require the
variables to be nonnegative.

In light of rapid evolution of this field, in this paper, we introduce a new copositive
relaxation for the extended trust region problem (P), and present two significant contributions
to copositive optimization:

• We establish a geometric condition guaranteeing exact copositive relaxation for the non-
convex quadratic optimization problem (P). We also present sufficient conditions for
global optimality in terms of generalized Karush–Kuhn–Tucker multipliers extending
the global optimality conditions obtained for CDT problems [9]. Moreover, we provide
a class of quadratic optimization problems that enjoys exactness of the copositive relax-
ation while the usual Lagrangian duals for these problems yield trivial lower bounds with
infinite gaps.

• In the special case, where (P) is an extended CDT (or two-ball trust region, TTR) prob-
lems, we also derive simple verifiable sufficient conditions, which is independent of the
geometric conditions, ensuring both exact copositive relaxation and exact Lagrangian
relaxations. In particular, the sufficient conditions can be checked by solving a linear
optimization problem.

The paper is organized as follows: In Sect. 2, we first recall notation and terminology, and
present some basic facts on copositivity. In Sect. 3, we introduce the copositive relaxation
for (P) and its semi-Lagrangian reformulation. We also provide a global optimality condition
and prove an exactness result for this relaxation. In Sects. 4 and 5, we examine the extended
CDT problem and provide simple conditions ensuring the tightness of both the copositive
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relaxation and the usual Lagrangian relaxation. In Sect. 6, we provide details on how copos-
itive relaxation problems can be approximated by hierarchies of semidefinite and/or linear
optimization problems.

2 Preliminaries

We abbreviate by [m :n]: = {m,m + 1, . . . , n} the integer range between two integers m, n
with m ≤ n. By bold-faced lower-case letters we denote vectors in n-dimensional Euclidean
space R

n , by bold-faced upper case letters matrices, and by � transposition. The positive
orthant is denoted byRn+: = {x ∈ R

n : xi ≥ 0 for all i∈[1 :n]}. In is the n×n identitymatrix.
The letters o and O stand for zero vectors, and zero matrices, respectively, of appropriate
orders. The set of all n × n matrices is denoted by Rn×n , and the closure (resp. interior) of a
set S ⊂ R

n by cl(S) (resp. int S).
For a given symmetric matrix H = H�, we denote the fact that H is positive-semidefinite

by H � O. Sometimes we write instead “H is psd.” Denoting the smallest eigenvalue of any
symmetric matrix M = M� by λmin(M), we thus have H � O if and only if λmin(H) ≥ 0.
Linear forms in symmetric matrices X will play an important role in this paper; they are
expressed by Frobenius duality 〈S,X〉 = trace(SX), where S = S� is another symmetric
matrix of the same order as X. By A ⊕ B we denote the direct sum of two square matrices:

A ⊕ B =
[

A O
O� B

]
, and in particular we will use J0: = 1 ⊕ O =

[
1 o�
o O

]
. (1)

For any optimization problem, say (Q), we denote by val(Q) its optimal objective value
(attained or not). Consider a quadratic function q(x) = x�Hx − 2d�x + γ defined on R

n ,
with q(o) = γ , ∇q(o) = −2d and D2q(o) = 2H (the factors 2 being here just for ease of
later notation). For this q we define the Shor relaxation matrix [36] as

M(q): =
[

γ −d�
−d H

]
. (2)

Then q(x) ≥ 0 for all x ∈ R
n if and only ifM(q) � O.

Given any cone C of symmetric n × n matrices,

C�: =
{
S = S� ∈ R

n×n : 〈S,X〉 ≥ 0 for all X ∈ C
}

denotes the dual cone of C. For instance, if C = {
X = X� ∈ R

n×n : X � O
}
, then C� = C

itself, an example of a self-dual cone. Trusting the sharp eyes of our readers, we chose a
notation with subtle differences between the five-star denoting a dual cone, e.g., C�, and the
six-star, e.g. z∗, denoting optimality.

The key notion used below is that of copositivity. Given a symmetric n × n matrixQ, and
a closed, convex cone � ⊆ R

n , we say that

Q is �-copositive if v�Qv ≥ 0 for all v ∈ �, and that
Q is strictly �-copositive if v�Qv > 0 for all v ∈ � \ {o} .

Strict copositivity generalizes positive-definiteness (all eigenvalues strictly positive) and
copositivity generalizes positive-semidefiniteness (no eigenvalue strictly negative) of a sym-
metric matrix. Checking copositivity is NP-hard for most cones � of interest, see [16,31] for
the classical case � = R

n+ studied already by Motzkin [30] who coined the notion back in
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1952. In the sequel, we will use “copositive” synonymous for “Rn+-copositive” in Motzkin’s
sense.

The set of all �-copositive matrices forms a closed, convex matrix cone, the copositive
cone

C�
� : =

{
Q = Q� ∈ R

n×n : Q is �-copositive
}

with non-empty interior int C�
� , which exactly consists of all strictly �-copositive matrices.

However, the cone C�
� is not self-dual. Rather one can show that C�

� is the dual cone of

C� : =
{
X = FF� : F has

(
n + 1

2

)
columns in �

}
,

the cone of �-completely positive (cp)matrices. Note that the factor matrix F has many more
columns than rows. A perhaps more amenable representation is

C� = conv
{
xx� : x ∈ �

}
,

where conv S stands for the convex hull of a set S ⊂ R
n . Caratheodory’s theorem then

elucidates the bound
(n+1

2

)
on the number of columns in F above, which is not sharp in the

classical case � = R
n+ but asymptotically tight [10,35].

Next, we specify a result on reducingϒ-copositivity withϒ = R
p
+ ×R

n to a combination
of psd and classical copositivity conditions. This result will be used later on.

Lemma 2.1 Let ϒ = R
p
+ × R

n and partition a (p + n) × (p + n) matrix M as follows:

M =
[
R S�
S H

]
where R is a p × p-matrix.

ThenM is ϒ-copositive if and only if the following two conditions hold:

(a) H is positive semidefinite and HH†S = S, i.e., ker H ⊆ ker S�;
(b) R − S�H†S is (R

p
+−)copositive.

Here H† is the Moore-Penrose pseudoinverse of H.

Proof The argument is an easy extension of the arguments that led to [9, Thm.3.1]. ��

3 Relaxations for extended trust region problems

3.1 Problem structure

The problem we study here is given by

(P) min
x∈Rn

f0(x): = x�Q0x + 2q�
0 x

subject to f1(x): = x�Q1x + 2q�
1 x − 1 ≤ 0

f2(x): = ‖Ax − a‖2 − 1 ≤ 0
Bx ≤ b.

Throughout this paper, we assume that the feasible set of problem (P) is non-empty. The
model problem (P) can be reformulated as

z∗: = inf { f0(x) : x ∈ F ∩ P} with P: = {
x ∈ R

n : Bx ≤ b
}
, (3)

where F : = {x ∈ R
n : fi (x) ≤ 0, i = 1, 2}, b ∈ R

p and B is a p × n matrix.
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For our approach, it will be convenient to introduce slack variables s j : = b j − (Bx) j for
all j∈[1 : p], arriving at new primal-feasible points y = (s, x) ∈ R

p
+ × R

n , in other words,
to replace P with

P̄: =
{
y = (s, x) ∈ R

p
+ × R

n : B̄y = b
}

with the p × (p + n)-matrix B̄: = [Ip |B].
We now need to extend all original functions in the obvious way, namely f̄i (y) =

f̄i (s, x) = fi (x) by writing Q̄i = O ⊕ Qi , i.e., adding p zero rows and p zero columns
to Qi , arriving at symmetric matrices of order p + n; likewise we define q̄�

i = [o�,q�
i ].

Finally, by introducing another quadratic constraint, defining Q̄3 = B̄�B̄, q̄3 = B̄�b and
c3 = b�b, we rephrase the p linear constraints B̄y = b into one quadratic constraint

f̄3(y) = ‖B̄y − b‖2≤ 0.
In this way, the original problem (3) is rephrased in a somehow standardized form, namely

z∗ = inf
{
f̄0(y) : f̄i (y) ≤ 0, i∈[1 :3], y = (s, x) ∈ R

p
+ × R

n} . (4)

The optimal value z∗ of (3) need not be attained, and it could also be equal to −∞ (in the
unbounded case) or to +∞ (in the infeasible case). Considering Qi = O would also allow
for linear inequality constraints. But it is often advisable to discriminate the functional form
of constraints, and we will adhere to this principle in what follows.

3.2 Copositive relaxation

Next, we introduce a copositive relaxation for (P). Let y = (s, x) ∈ R
p ×R

n . Now consider
multipliers u ∈ R

3+ of the inequality constraints f̄i (y) = fi (x) ≤ 0, i∈[1 :3], and v ∈ R
p
+

for the sign constraints s ∈ R
p
+. Then we define the full Lagrangian function for problem (4)

as

L(y;u, v): = f̄0(y) + u1 f̄1(y) + u2 f̄2(y) + u3 f̄3(y) − v�s .

Let ϒ = R
p+1
+ × R

n . Recall that the matrix J0 and the Shor relaxation matrix M(q) for a
quadratic function q are given as in (1) and (2) respectively. Then the matrixM(L(·;u,o))−
μJ0 can be written as below:⎡

⎣ −u1 − u2 + u3‖b‖2 − μ −u3b� q�
0 + u1q�

1 − u2a�A − u3b�B
−u3b u3Ip u3B

q0 + u1q1 − u2A�a − u3B�b u3B� Hu + u3B�B

⎤
⎦ (5)

where Hu = Q0 + u1Q1 + u2A�A is the Hessian of the Lagrangian function. We now
associate a copositive relaxation for (P) as follows:

(COP) z∗COP: = sup
{
μ : (μ,u) ∈ R × R

3+, M(L(·;u,o)) − μJ0 is ϒ-copositive
}
, (6)

It is worth noting that, unlike in [7], our model problem does not require the variables to be
nonnegative, and so the techniques in constructing a copositive relaxation as in [7] cannot be
applied directly. Here we achieve this task by introducing nonnegative slack variables.

An important observation is that the copositive relaxation can be equivalently reformulated
as a semi-Lagrangian dual problem of the problem (P). Recall that the usual Lagrangian dual
(or Lagrangian relaxation) of (P) is given by

z∗LD: = sup
{
�(u, v) : (u, v) ∈ R

3+ × R
p
+
}
, (7)

123



556 J Glob Optim (2018) 71:551–569

where �(u, v): = inf
{
L(y;u, v) : y ∈ R

p+n
}
. A form of partial Lagrangian relaxation

called semi-Lagrangian of (P) (see [7,17] and the references therein) is given by

z∗semi: = sup
{
�semi(u) : u ∈ R

3+
}
. (8)

where �semi(u): = inf
{
L(y;u,o) : y ∈ R

p
+ × R

n
}
. The relation between copositive relax-

ation, full and semi-Lagrangian bounds can be summarized in the following chain of
inequalities:

z∗LD ≤ z∗COP = z∗semi ≤ z∗. (9)

We note that the relation z∗LD ≤ z∗semi ≤ z∗ follows by the construction, and the equality
z∗COP = z∗semi follows by adapting the techniques in [7, Lemma 2.1] to the polyhedral cone
R

p
+ × R

n (see also (11) later for a detailed proof).
We now illustrate that, in general, a copositive relaxation can provide amuch tighter bound

for the model problem (P) than the usual Lagrangian dual. Indeed, in the following example,
we see that the copositive relaxation is tight while the usual Lagrangian dual yields a trivial
lower bound which has infinite gap. As we will see later (Proposition 4.3), one can indeed
construct a whole class of quadratic optimization problems with exact copositive relaxation
but infinite Lagrangian duality gap.

Example 3.1 (Copositive relaxation vs Lagrangian relaxation) Consider the following non-
convex quadratic optimization problem with simple linear inequality constraints

min q(x): = 1

2
x21 + 2x1x2 + x22

s.t. x1 ≥ 0, x2 ≥ 0.

Clearly, the objective function is not convex and the optimal value of this problem is z∗ = 0.
We next observe that this problem can be converted to our standard form as

min
(x,s)∈R2×R2

1

2
x21 + 2x1x2 + x22

s.t. (x1 − s1)
2 + (x2 − s2)

2 ≤ 0

s1 ≥ 0, s2 ≥ 0.

Then the copositive relaxation reads

z∗COP = sup
μ∈R,u≥0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ :

⎡
⎢⎢⎢⎢⎣

−μ 0 0 0 0
0 u 0 −u 0
0 0 u 0 −u
0 −u 0 1

2 + u 1
0 0 −u 1 1 + u

⎤
⎥⎥⎥⎥⎦ is (R3+ × R

2)-copositive

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Clearly, from the copositivity requirement, z∗COP ≤ 0. Moreover, it can be verified from
Lemma 2.1 that, for μ = 0 and u = 1, the matrix⎡

⎢⎢⎢⎢⎣

0 0 0 0 0
0 1 0 −1 0
0 0 1 0 −1
0 −1 0 3

2 1
0 0 −1 1 2

⎤
⎥⎥⎥⎥⎦ is (R3+ × R

2)-copositive.

Thus, z∗COP = z∗ = 0.
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Next we show that z∗LD = −∞. To see this, we only need to show that for each fixed
u ≥ 0 and v = (v1, v2)

� ∈ R
2+, we have

inf
(x,s)∈R2×R2

{[
1

2
x21+2x1x2+x22

]
+u

[
(−x1 + s1)

2 + (−x2 + s1)
2]− v1s1 − v2s2

}
= −∞.

Indeed, taking x = s = (−t, t) we see that, as t → +∞,[
1

2
x21 + 2x1x2 + x22

]
+ u

[
(−x1 + s1)

2 + (−x2 + s1)
2]− v1s1 − v2s2

= −1

2
t2 + t (v1 − v2) → −∞ .

4 Tightness of copositive relaxation

We consider, for y = (s, x) ∈ R
p
+ × R

n , the full Lagrangian function

L(y;u, v) = f̄0(y) +
3∑

i=1

ui f̄i (y) − v�s, (u, v) ∈ R
3+ × R

p .

As in [7], let us say that the pair (x;u, v) ∈ (F ∩ P) × R
3+ × R

p is a generalized KKT pair
for (3) if and only if, for s = b−Bx and y = (s, x), it satisfies both the first-order conditions
∇yL(y;u, v) = o and as well the complementarity conditions vksk = 0 for all k∈[1 : p] and
ui f̄i (y) = 0 for all i∈[1 :3], but without requiring vk ≥ 0.

4.1 Geometric conditions for exact copositive relaxation

Next, we provide a geometric condition ensuring the exactness of the copositive relaxation
which does not rely on the information of KKT pairs. To do this, denote y = (s, x) and
let f̄0(y) = x�Q0x + 2q�

0 x, f̄1(y) = x�Q1x + 2q�
1 x − 1, f̄2(y) = ‖Ax − a‖2 − 1 and

f̄3(y) = ‖Bx + s − b‖2.
Theorem 4.1 For the extended trust region problem (P), let

	: = {[ f̄0(y), f̄1(y), f̄2(y), f̄3(y)]� : y ∈ R
p
+ × R

n} + R
4+.

Suppose that 	 is closed and convex. Then we have z∗COP = z∗.

Proof Let z∗semi denote the optimal value of the semi-Lagrangian dual (8). We first observe
that z∗COP = z∗semi. To see this, for any μ ∈ R and any quadratic function q defined on Rp+n ,
it can be directly verified that the following two conditions are equivalent:

(a) q(y) ≥ μ for all y ∈ R
p
+ × R

n ;
(b) the (n + p + 1) × (n + p + 1)-matrix M(q − μ) = M(q) − μJ0 is ϒ-copositive.

This equivalence implies the identity

inf
{
q(y) : y ∈ R

p
+ × R

n} = sup {μ ∈ R : M(q) − μJ0 is ϒ-copositive} . (10)

Note that above equality holds, by the usual convention that sup∅ = −∞, also if q is
unbounded from below on Rp

+ × R
n . Applying (10) with q = L(·;u,o), we see that

�semi(u) = sup {μ : μ ∈ R, M(L(·;u,o)) − μJ0 is ϒ-copositive}
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Then it follows from the definitions of semi-Lagrangian dual and copositive relaxation that

z∗semi = sup
{
�semi(u) : u ∈ R

3+
}

= sup
{
μ : (μ, u) ∈ R × R

3+, M(L(·;u,o)) − μJ0 is ϒ-copositive
}

= z∗COP. (11)

As z∗ ≥ z∗semi, we see that z
∗ ≥ z∗COP always holds. So, we can assume without loss of

generality that z∗ > −∞. As the feasible set of (P) is nonempty, we have z∗ < +∞, and
hence z∗ ∈ R. Let ε > 0. Thus [z∗ − ε, 0, 0, 0]� /∈ 	. By the strict separation theorem, there
exists (μ0, μ1, μ2, μ3) �= (0, 0, 0, 0) such that

3∑
i=0

μi ai > μ0(z
∗ − ε) for all a ∈ 	 .

As 	 + R
4+ ⊆ 	, we get μi ≥ 0 for all i∈[0 :3]. Moreover, by the feasibility, we see that

μ0 > 0. Thus, by dividing μ0 on both sides, we see that for all y = (s, x) ∈ R
p
+ × R

n

f̄0(y) +
3∑

i=1

μi f̄i (y) > z∗ − ε,

where λi = μi/μ0, i = 1, 2, 3. This implies that

z∗ − ε ≤ inf
y∈Rp

+×Rn
{ f̄0(y) +

3∑
i=1

μi f̄i (y)} ≤ z∗semi = z∗COP,

where the second inequality follows from the definition of semi-Lagrangian dual (8). By
letting ε ↘ 0, we have z∗ ≤ z∗COP. As the reverse inequality always holds, the conclusion
follows. ��

Before we provide simple sufficient conditions ensuring this geometrical condition, we
will illustrate it using our previous example.

Example 4.1 Consider the same example as in Example 3.1. We observe that, in this case
A,Q1 are zero matrices and q1,a are zero vectors, and so, the set 	 becomes

	: =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

x21
2 + 2x1x2 + x22−1

−1
(x1 − s1)2 + (x2 − s2)2

⎤
⎥⎥⎦ : (s, x) ∈ R

2+ × R
2

⎫⎪⎪⎬
⎪⎪⎭

+ R
4+ .

Then

	 = {[z1, z2, z3, z4]� : [z1, z4]� ∈ 	1, z2 ≥ −1, z3 ≥ −1},
where

	1 =
{[

x21
2 + 2x1x2 + x22

(x1 − s1)2 + (x2 − s2)2

]
: (s, x) ∈ R

2+ × R
2

}
+ R

2+ .

Now we provide an analytic expression for 	1. Note that, if x1 = 0, then [ x212 + 2x1x2 +
x22 , (x1 − s1)2 + (x2 − s2)2]� ∈ R

2+ and R2+ ⊆ 	1 (take x2 = s2 ≥ 0 and s1 ≥ 0 = x1 to get
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an arbitrary point (x22 , s
2
1 )

� ∈ R
2+). Thus we only need to consider the case where x1 �= 0.

Then

	1 =
{[

x21
2 + 2x1x2 + x22

(x1 − s1)2 + (x2 − s2)2

]
: s ∈ R

2+, α ∈ R, x =
[

t
αt

]
∈ R

2

}
+ R

2+

=
{[ ( 1

2 + 2α + α2
)
t2

min{t, 0}2 + min{αt, 0}2
]

:
[
t
α

]
∈ R

2
}

+ R
2+,

where the last equality followsbynoting thatmins≥0(x−s)2 = min{x, 0}2.Direct verification
now shows that

	1 = {[a1, a2]� : a2 ≥ −a1 ≥ 0} ∪ R
2+,

which is closed and convex. Therefore, 	 is also closed and convex.

Next, we provide some verifiable sufficient conditions guaranteeing convexity as well as
closedness of 	. To do this, recall that an n × n matrix M is called a Z -matrix if its off-
diagonal elements Mi j with 1 ≤ i, j ≤ n and i �= j , are all non-positive. We also need the
following joint-range convexity for Z -matrices.

Lemma 4.1 LetMi , i∈[1 :q], be symmetric Z-matrices of order n. Then

{(x�M1x, . . . , x�Mqx) : x ∈ R
n} + R

q
+

is a convex cone.

Proof The proof is similar to [19, Theorem 5.1]. ��
Proposition 4.1 Suppose that Q0,Q1, A�A are all Z-matrices, B = −In and q0,q1,a,b
are zero vectors. Then 	 is convex.

Proof Let h̄0(y) = x�Q0x, h̄1(y) = x�Q1x, h̄2(y) = ‖Ax‖2 and h̄3(y) = ‖x − s‖2 with
y = (s, x), so p = n here. We first note that 	 = (0,−1,−1, 0) + 	̄ where

	̄ = {(h̄0(y), h̄1(y), h̄2(y), h̄3(y)) : y ∈ R
p
+ × R

n} + R
4+.

To see the convexity of 	, it suffices to show that 	̄ is convex. To verify this, take
(u0, u1, u2, u3) ∈ 	̄ and (v0, v1, v2, v3) ∈ 	̄, and let λ ∈ [0, 1]. Then there exist
(ŝ, x̂) ∈ R

n+ × R
n and (s̃, x̃) ∈ R

n+ × R
n such that

h̄i (ŝ, x̂) ≤ ui and h̄i (s̃, x̃) ≤ vi , i∈[1 :3] .

In particular, u3 ≥ 0 and v3 ≥ 0. We now verify that

λ(u0, u1, u2, u3) + (1 − λ)(v0, v1, v2, v3) ∈ 	̄.

Note that h̄i (y) = y� [O ⊕ Qi
]
y for i ∈ {0, 1} and h̄2(y) = y� [O ⊕ A�A

]
y, cf. (1), while

h̄3(y) = y�
[

In −In
−In In

]
y

so that the associated matrices[
O O�
O Q0

]
,

[
O O�
O Q1

]
,

[
O O�
O A�A

]
,

[
In −In

−In In

]
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are all Z -matrices. We see that

{(h̄0(y), h̄1(y), h̄2(y), h̄3(y)) : y ∈ R
p × R

n} + R
4+

is convex. So there exists (r, z) ∈ R
p × R

n such that

h̄i (r, z) ≤ λui + (1 − λ)vi , i∈[0 :3] .
Denote z = (z1, . . . , zn) and let |z| = (|z1|, . . . , |zn |). The Z -matrices assumptions ensure

h̄i (|z|, |z|) = |z|�Qi |z| ≤ z�Qiz ≤ λui + (1 − λ)vi , i ∈ {0, 1} ,

h̄2(|z|, |z|) = |z|�(A�A)|z| ≤ z�(A�A)z ≤ λu2 + (1 − λ)v2

and

h̄3(|z|, |z|) = 0 ≤ λu3 + (1 − λ)v3.

Therefore, λ(u0, u1, u2, u3) + (1− λ)(v0, v1, v2, v3) ∈ 	̄, and so the conclusion follows. ��
Proposition 4.2 Suppose that there exist τi ≥ 0, i∈[0 :2], such that

τ0Q0 + τ1Q1 + τ2A�A � 0.

Then 	 is closed.

Proof Let r(k) ∈ 	 such that r(k) → r ∈ R
4. Then there exists yk = (sk, xk) ∈ R

p
+ × R

n

such that

f̄i (yk) ≤ r (k)
i for all i∈[0 :3] and all k .

We first see that {xk} is bounded. To see this, note that
2∑

i=0

τi fi (xk) =
2∑

i=0

τi f̄i (xk) ≤
2∑

i=0

τi r
(k)
i →

2∑
i=0

τi ri .

Since ∇2
(∑2

i=0 τi fi
)
(x) ≡ τ0Q0 + τ1Q1 + τ2A�A � 0, this implies that {xk} must be

bounded. Taking into account that

f̄3(sk, xk) = ‖Bxk + sk − b‖2 ≤ r (k)
3 → r3,

it follows that also {sk} is a bounded sequence. By passing to subsequences, we may assume
that yk = (sk, xk) → (s, x) =: y ∈ R

p
+ × R

n . Passing to the limit, we see that f̄i (y) ≤
ri , i∈[0 :3] and so r ∈ 	. Thus 	 is closed. ��
4.2 Sufficient global optimality conditions

Now, we obtain the following sufficient second-order global optimality condition, which also
implies that the copositive relaxation is tight, generalizing a recent result [9, Section 6.3] for
CDT problems:

Theorem 4.2 If at a generalized KKT pair (x̄; ū, v̄) ∈ (F ∩ P) ×R
3+ ×R

p of problem (3),
we have

S̄: = M(L(·; ū,o)) − f0(x̄)J0 ∈ C�
ϒ , (12)

then x̄ is a globally optimal solution to (3) and z∗ = z∗COP.
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Proof We first note that the conic dual of problem (6) is

z∗CP = inf {〈M0,X〉 : 〈Mi ,X〉 ≤ 0, i∈[1 :3], 〈J0,X〉 = 1, X ∈ Cϒ } , (13)

with Mi = M( f̄i ) and Cϒ = conv
{
xx� : x ∈ R

p+1
+ × R

n
}
. From standard conical lifting

and weak duality arguments it follows

z∗LD ≤ z∗COP ≤ z∗CP ≤ z∗ .

Let s̄ = b − Bx̄ and ȳ = (s̄, x̄). The complementarity conditions imply v̄�s̄ = 0 and∑3
i=1 ui f̄i (ȳ) = 0, so that both the standard L(ȳ; ū, v̄) = f0(x̄) and as well L(ȳ; ū,o) =

f0(x̄), which will be used now. Indeed, put z̄� = [1, ȳ�] and X̄ = z̄z̄� ∈ Cϒ . Then from the
definition of S̄ we get

〈X̄, S̄〉 = z̄�S̄z̄ = L(ȳ; ū,o) − f0(x̄) = 0,

so that (X̄, S̄) form an optimal primal-dual pair for the copositive problem (13) and (6) with
zero duality gap. We conclude, by feasibility of x̄ and definition of z∗, and because of (6)
with μ = f0(x̄), cf. (12),

z∗ ≤ f0(x̄) ≤ z∗COP ≤ z∗CP ≤ z∗

yielding tightness of the copositive relaxation, zero duality gap for the copositive-cp conic
optimization problems, and optimality of x̄. ��

While checking copositivity is NP-hard, the slackmatrix S̄may lie in a slightly smaller but
tractable approximation cone, and then global optimality is guaranteed even in cases where
S̄ is indefinite. The difference can also be expressed in properties of the Hessian Hū of the
Lagrangian (recall that this is the same irrespective of our decision whether to relax also the
linear constraints or not): indeed, a similar condition on the slack matrix yielding tightness
of the classical Lagrangian bound (i.e. z∗LD = z∗) or the equivalent SDP relaxation [7,
Section 5.1] implies that its lower right principal submatrix Hū has to be psd, and we know
this is too strong in some cases [39].

By contrast, the condition S̄ ∈ C�
ϒ (giving tightness z∗COP = z∗), by the same argument

usingLemma2.1 and (5), only yields positive semidefiniteness ofHū+ū3BB�.Of course, this
happens with higher frequency than positive-definiteness of the Hessian, and the discrepancy
is not negligible, see [7, Section 5] for an example.

We note that Theorem 4.2 can be used to construct a class of problems where copositive
relaxation is always tight while the usual Lagrangian dual produces a trivial bound with
infinite duality gaps. To see this, we shall need the following auxiliary result.

Lemma 4.2 LetM be strictly Rn+-copositive; then there exists a constant σ > 0 such that

x�Mx + σ‖x − s‖2 > 0 for all (s, x) ∈ (
R
n+ × R

n) \ {o} .

Proof We first note that the conclusion trivially holds ifM is further assumed to be positive
semidefinite. Sowemay assumewithout loss of generality that λmin(M) < 0. For any x ∈ R

n ,
denote by

x+: = [max{0, x1}, . . . ,max{0, xn}]� ∈ R
n+

and by x−: = x+ − x ∈ R
n+ so that x = x+ − x−. Furthermore, we have ‖x − s‖ ≥ ‖x−‖

for all s ∈ R
n+, as can be seen easily. Therefore we are done if we establish the (non-

quadratic) inequality x�Mx+ σ‖x−‖2 > 0 whenever x ∈ R
n \ {o}. Now, givenM is strictly
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copositive, we choose ρ: = min
{
x�Mx : x ∈ R

n+, ‖x‖ = 1
}

> 0. Note that x ∈ R
n+ if and

only if ‖x−‖ = 0. By continuity and compactness, we infer existence of an ε > 0 such that
x�Mx ≥ ρ

2 whenever ‖x−‖ ≤ ε and ‖x‖ = 1. Now we distinguish two cases:
Case 1: ‖x−‖ ≥ ε‖x‖ > 0. In this case, we have

x�Mx ≥ λmin(M)‖x‖2 > −σ‖x−‖2,
where we set σ : = −2λmin(M)/ε2 > 0;
Case 2: ‖x−‖ ≤ ε‖x‖. In this case, one has x�Mx ≥ ρ

2 ‖x‖2 > −σ‖x−‖2 (for any σ > 0).

So in both cases, we obtain x�Mx + σ‖x−‖2 > 0 for all x ∈ R
n \ {o}, and the lemma is

shown. ��
Consider the following non-convex quadratic optimization problem

(EP) min f0(x): = x�Q0x

subject to ‖x‖2 ≤ 1,

x ∈ R
n+,

where Q0 is a strictly R
n+-copositive and indefinite matrix. This problem can be regarded

as a special case of the model problem (P) with Q1 = In , A = O and a = 0. We now see
that this class of quadratic optimization admits a tight copositive relaxation and an infinite
Lagrangian duality gap.

Proposition 4.3 (Tight copositive relaxation and infinite Lagrangian duality gap for (EP))
For problem (EP), let z∗, z∗LD and z∗COP denote the optimal value of (EP), the Lagrangian
relaxation of (EP) and copositive relaxation of (EP) respectively. Then z∗LD = −∞ and
z∗ = z∗COP = 0.

Proof Direct verification shows that o ∈ R
n is a global solution with the optimal value

z∗ = 0. We first observe that, asQ0 is indefinite, the optimal value of the Lagrangian dual is
z∗LD = −∞. Next, as Q0 is strictly R

n+-copositive, the preceding lemma implies that there
exists σ > 0 such that

x�Q0x + σ‖x − s‖2 > 0 for all (s, x) ∈ (
R
n+ × R

n) \ {o} .

Let ȳ = (x̄, s̄) with x̄ = s̄ = o ∈ R
n , ū = (0, 0, σ ) ∈ R

3+ and v̄ = o ∈ R
n . Then we see

that (ȳ; ū, v̄) is a (generalized) KKT pair for (EP). Moreover, we have

M(L(·; ū,o)) − f0(x̄)J0 = M(L(·;u,o)) =
⎡
⎣ 0 o� o�
o u3In −u3In
o −u3In Q0 + u3In

⎤
⎦ ,

For all d: = (r, s, x) ∈ ϒ = R+ × R
n+ × R

n , above implies

d� [M(L(·; ū,o)) − f0(x̄)J0
]
d = x�Q0x + σ‖x − s‖2 ≥ 0,

and henceM(L(·; ū,o)) − f0(x̄)J0 is ϒ-copositive. This shows that z∗COP = 0. ��

5 Relaxation tightness in extended CDT Problems

In this section, we examine the so-called extended CDT problem:
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(PCDT) min x�Q0x + 2q�
0 x

subject to ‖x‖2 ≤ 1

‖Ax − a‖2 ≤ 1

Bx ≤ b.

This problem is a special case of our general model problem with Q1 = In and q1 = o.
In the cases where no linear inequalities are present, the problem (PCDT) reduces to the
so-called CDT problem (also referred as two-ball trust region problems, TTR). The CDT
problem, in general, is much more challenging than the well-studied trust region problems
and has received much attention lately, see for example [1,5,6,9,14]. The problem (PCDT)

arises from robust optimization [20] as well as applying trust region techniques for solving
nonlinear optimization problems with both nonlinear and linear constraints: see [34] for the
case of trust region problems with additional linear inequalities and see [6,9] for the case
of CDT problems. We will establish simple conditions ensuring exactness of the copositive
relaxations and the usual Lagrangian relaxations of the extended CDT problem.

First of all, we note that the sufficient second-order global optimality condition in Theo-
rem 4.2, specialized to the setting (PCDT), yields the exact copositive relaxation for extended
CDT problems.

Corollary 5.1 Let (x̄; ū, v̄) ∈ FCDT × R
3+ × R

p be a generalized KKT pair of problem
(PCDT) where FCDT is the feasible set of (PCDT). Denote by μ̄: = x̄�Q0x̄ + 2q�

0 x̄. Suppose
that ⎡

⎣−ū1 − ū2 + ū3‖b‖2 − μ̄ −ū3b� q�
0 − ū2a�A − ū3b�B

−ū3b ū3Ip ū3B
q0 − ū2A�a − ū3B�b ū3B� Q0 + ū1In + ū2A�A + ū3B�B

⎤
⎦

is (R
p+1
+ × R

n)-copositive. Then x̄ is a globally optimal solution to problem (PCDT) and
z∗ = z∗COP.

Proof The conclusion follows by Theorem 4.2 with Q1 = In and q1 = o. ��
Next we examine when the usual Lagrangian relaxation is exact for the extended CDT

problems. To this end, we define an auxiliary convex optimization problem

(AP) min x�Q+
0 x + 2q�

0 x

subject to ‖x‖2 ≤ 1

‖Ax − a‖2 ≤ 1

Bx ≤ b,

where

Q+
0 : = Q0 − λmin(Q0)In � O. (14)

We first see that if the auxiliary convex problem (AP) has a minimizer on the sphere {x ∈
R
n : ‖x‖ = 1}, then an extended CDT problem has a tight semi-Lagrangian relaxation. We

will provide a sufficient condition in terms of the original data guaranteeing this condition
later (in Theorem 5.1).

Lemma 5.1 Suppose that the auxiliary convex problem (AP) has a minimizer on the sphere
{x : ‖x‖ = 1}. Then z∗LD = z∗COP = z∗.
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Proof Recall that z∗LD ≤ z∗COP ≤ z∗. So it suffices to show that z∗LD = z∗. Without loss of
generality, we assume that λmin(Q0) < 0 (otherwise (PCDT) is a convex quadratic problem
and so z∗LD = z∗). Let x∗ be a solution of (AP) with ‖x∗‖ = 1. As λmin(Q0) < 0, it follows
from ‖x‖ ≤ 1 for all x ∈ FCDT that

z∗ = min
x∈FCDT

f0(x) ≥ min
x∈FCDT

[ f0(x) + λmin(Q0)(1 − ‖x‖2)]
= min

x∈FCDT
{x�Q+

0 x + 2q�
0 x} + λmin(Q0)

= x∗�Q+
0 x

∗ + 2q�
0 x

∗ + λmin(Q0)

= x∗�Q+
0 x

∗ + 2q�
0 x

∗ + λmin(Q0)‖x∗‖2
= x∗�Q0x∗ + 2q�

0 x
∗ = f0(x∗) ≥ z∗,

where the last inequality follows from feasibility of x∗ for the extended CDT problem. This
shows that z∗ = val(AP) + λmin(Q0). Rewriting (AP) as

(AP1) min
(x,s)∈Rn×R

p
+

x�Q+
0 x + 2q�

0 x

subject to ‖x‖2 ≤ 1

‖Ax − a‖2 ≤ 1

‖Bx + s − b‖2 = 0,

we obtain the Lagrangian dual of this problem which can be stated as

(LD1) sup
(u3,u1,u2,v)∈R×R

p+2
+

inf
(x,s)∈Rn×Rp

{x�Q+
0 x + 2q�

0 x + u1 f1(x)

+ u2 f2(x) + u3(‖Bx + s − b‖2) − 2v�s}
= sup

(μ,u3,u1,u2,v)∈R�×R
p+2
+

{μ : M̃(μ,u, v) � O},

where M̃(μ,u, v) denotes the matrix⎡
⎣−u1 − u2 + u3‖b‖2 − μ −u3b� − v� −q�

0 − u2a�A − u3b�B
−u3b − v u3Ip u3B

−q0 − u2A�a − u3B�b u3B� Q+
0 + u1In + u2A�A + u3B�B

⎤
⎦ .

Note that the feasible set of (AP1) is bounded by ‖x‖ ≤ 1 and s = Bx − b for all feasible
(x, s). Since any convex optimization problemwith compact feasible set enjoys a zero duality
gap (for example see [21]), it follows that

val(AP) = val(LD1) .

Finally, the conclusion results by noting that val(LD1) = z∗LD + λmin(Q0). So we have
z∗ = z∗LD and furthermore z∗LD = z∗COP = z∗. ��

Next we provide a simple sufficient condition formulated in terms of the original data
guaranteeing tightness of the relaxations. It is important to note that this sufficient condition
can be efficiently verified by solving a feasibility problem of a linear optimization problem.

Theorem 5.1 LetM = [Q+
0 |A�]�. Suppose that

ker(M) ∩ {v ∈ R
n : Bv ≤ o} ∩ {v : q�

0 v ≥ 0} �= {o} . (15)

Then z∗LD = z∗COP = z∗.
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Proof By the preceding lemma, the conclusion follows if we show that the auxiliary convex
problem (AP) has a minimizer on the sphere {x : ‖x‖ = 1}. Suppose that a minimizer x∗
of (AP) satisfies ‖x∗‖ < 1. Let v ∈ ker(M) ∩ {v ∈ R

n : Bv ≤ o} ∩ {v : q�
0 v ≥ 0} with

v �= o. Consider x(t) = x∗ + tv, t ≥ 0. Then there exists t0 > 0 such that ‖x(t0)‖ = 1. Now
observe

x(t0)�Q+
0 x(t0) + 2q�

0 x(t0)

= x∗�Q+
0 x

∗ + 2q�
0 x

∗ − 2t0q�
0 v

≤ x∗�Q+
0 x

∗ + 2q�
0 x

∗,
‖Ax(t0) − a‖2 = ‖Ax∗ − a‖2 ≤ 1,

and

Bx(t0) − b = Bx∗ − b + t0Bv ≤ o.

This shows that x(t0) is a minimizer for (AP) and ‖x(t0)‖ = 1. The conclusion follows. ��

Remark 5.1 (LP reformulation of the sufficient condition (15)) Our sufficient condition (15)
can be efficiently verified by determining a feasible solution to the following LP

inf
d∈Rn

{1 : Md = 0, Bd ≤ 0, −q�
0 d ≤ 0,

n∑
i=1

di = 1}.

Remark 5.2 (Links to the known dimension condition for exact relaxation) In the special
case where A = O and a = o ∈ R

n , the authors showed in [20], that under the dimension
condition

dim kerQ+
0 ≥ dim span[b1, . . . ,bp] + 1,

where b�
i is the i th row of B, the SDP (or Lagrangian) relaxation is exact. We observe that

this dimension condition is strictly stronger than our sufficient condition in the preceding
theorem.

Firstly, we see that the dimension condition implies our sufficient condition in the pre-
ceding theorem. To see this, suppose the above dimension condition holds. Then there exists
v �= o such that v ∈ kerQ+

0 and b�
i v = 0 for all i∈[1 : p] (and hence Bv = o). By replacing

v by −v if necessary, we can assume that q�
0 v ≥ 0. Thus, our sufficient condition in the

preceding theorem holds.

To see the dimension condition is strictly stronger, let us consider Q0 =
[
2 0
0 −2

]
, A =[

0 0
0 0

]
, q0 = a =

[
0
0

]
and B = b�

1 = [−1, 0]. Clearly, dim kerQ+
0 = dim ker

[
4 0
0 0

]
= 1

and dim span[b1] = 1, and so the dimension condition fails. On the other hand, our sufficient
condition reads

{o} �= ker

[
4 0 0 0
0 0 0 0

]�
∩ {v ∈ R

2 : −v1 ≤ 0} = {0} × R,

which is obviously satisfied.
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6 Approximation hierarchies for Cϒ-copositivity

In general, checking copositivity of a matrix is an NP-hard problem, and hence solving a
copositive optimization problem is alsoNP-hard. Therefore, to compute the semi-Lagrangian,
we need to approximate them by so-called hierarchies, i.e., a sequence of conic optimization
problems involving tractable conesK�

d such thatK�
d ⊂ K�

d+1 ⊂ C�
ϒ where d is the level of the

hierarchy, and cl(
⋃∞

d=0 K�
d) = C�

ϒ . On the dual side, Kd are also tractable, Kd+1 ⊂ Kd , and⋂∞
d=0 Kd = Cϒ . For classical copositivity CRn+ , there are many options, for a concise survey

see [8]. Many of these hierarchies involve linear [11,12] or psd constraints of matrices
of order nd+2, e.g. the seminal ones proposed in [24,33]. One possibility would be the
reduction of ϒ-copositivity via Schur complements as in Lemma 2.1 above, reducing this
question to a combination of psd and classical copositivity conditions, which can be treated
by these classical approximation hierarchies. However, the difficulty with this approach is
the nonlinear dependence of the Schur complement R − S�H†S on (μ,u). Therefore let
us outline two alternative approaches for constructing tractable hierarchies in approximating
the copositive relaxation, extending and adapting the classical approach.

6.1 SDP hierarchy

One approach for computing the copositive relaxation is to use a hierarchy of SDP relaxations,
extending the sum-of-squares idea in Parrilo’s work [33], which we sketch as below. Let
I = [1 : p+1] and, for a matrixM = M� ∈ R

(p+n+1)×(p+n+1), define a quartic polynomial

pM(y) =
∑

(i, j)∈I×I

Mi j y
2
i y

2
j +

∑
i∈I, j /∈I

Mi j y
2
i y j +

∑
i /∈I, j∈I

Mi j yi y
2
j +

∑
i /∈I, j /∈I

Mi j yi y j .

Note that M is ϒ-copositive if and only if pM(y) ≥ 0 for all y ∈ R
p+n+1. A sufficient

condition for this is that the product pM(y)‖y‖2d = pM(y)(
∑

k y
2
k )

d is a sum-of-squares
(s.o.s.) polynomial, which automatically guarantees nonnegativity of pM overRp+n+1. Now
it is natural to define

K�
d : =

{
M = M� ∈ R

(p+n+1)×(p+n+1) : pM(y)‖y‖2d is a s.o.s. polynomial
}

. (16)

Then, following the logic of classical hierarchies, it is not difficult to see that above properties
hold, and thatK�

d (andKd itself) are tractable cones expressible byLMI conditions onmatrices
of order nd+2. Thus, copositivity characterization of the semi-Lagrangian relaxation can
be computed by using SDP hierarchies and polynomial optimization techniques [33]. Of
course, LMIs on matrices of larger order pose a serious memory problem for algorithmic
implementations even for moderate d if n is large.

However, in recent years, various techniques have been proposed to address this issue: one
approach is to exploit special structures of the problem such as sparsity and symmetry [22,23]
to treat large scale polynomial problems. Other techniques include refined SDP hierarchies
such as the SDP approximation proposed in [26] and the recently established bounded s.o.s.
hierarchy [27].

On the other hand, it is worth noting that sometimes even the zero-level approximation in
the hierarchy (16) can provide amuch better bound as compared to the Lagrangian relaxation,
as shown in the next example.

Example 6.1 (Zero-level approximationof copositive relaxations canbeat theLagrangian
relaxation) With the data from Example 3.1, recalling that the optimal value of this example
is z∗ = 0, we have
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M̂(u) =

⎡
⎢⎢⎣

u 0 −u 0
0 u 0 −u

−u 0 1
2 + u 1

0 −u 1 1 + u

⎤
⎥⎥⎦ and M(u, μ) =

[−μ o�
o M̂(u)

]
.

Then the zero-level approximation for the copositive relaxation problem reads

(RP) sup
(μ,u)∈R×R+

{
μ : pM(u,μ) is a s.o.s. polynomial

}
.

From the definition ofM(u, μ), we see that pM(u,μ) is a s.o.s. polynomial if and only ifμ ≤ 0
and

p̂u(x) = [
x21 , x

2
2 , x3, x4

]
M̂(u)

⎡
⎢⎢⎣
x21
x22
x3
x4

⎤
⎥⎥⎦

is a s.o.s. polynomial. This shows that

val(RP) =
{

0, if C �= ∅,

−∞, else.

where

C : = {u ∈ R : p̂u is a s.o.s. polynomial}.
Using the “solvesos” command in the Matlab toolbox YALMIP [29], one can verify that p̂u
is a s.o.s. polynomial if u = 1. Thus, val(RP) = 0 which agrees with the true optimal value
z∗ = 0. On the other hand, as computed in Example 3.1, the Lagrangian relaxation yields a
trivial lower bound −∞.

6.2 LP hierarchy

Another approach is to compute the copositive relaxation using linear optimization. While
providing, in general, weaker bounds in comparing with SDP hierarchies, this approach
is appealing because LP solvers suffer less from memory problems than state-of-art SDP
solvers. To do this, consider a compact polyhedral base K of the cone ϒ , i.e., R+K = ϒ ,
e.g. the polytope

K =
⎧⎨
⎩(s, x) ∈ ϒ :

p+1∑
i=1

si ≤ 1, max
i∈[1:n] |xi | ≤ 1

⎫⎬
⎭ = {

y ∈ R
p+n+1 : h j (y) ≥ 0, j∈[1 :m]}

described by m = p + 2(n + 1) affine-linear inequalities. By positive homogeneity, we
observe that M is ϒ-copositive if and only if qM(y): = yTMy ≥ 0 for all y ∈ K . Now
Handelman’s theorem (for example see [25, Theorem 2.24]) ensures that any polynomial
f positive over such a polytope K admits the representation f = ∑

α∈Nm cα

∏m
j=1 h

α j
j for

some scalars cα ≥ 0. Then one can construct a sequence of LP approximation by letting

K�
d : =

⎧⎨
⎩M = M� ∈ R

(p+n+1)×(p+n+1) : qM =
∑

α∈Nm ,|α|≤d

cα

m∏
j=1

h
α j
j , cα ≥ 0

⎫⎬
⎭ .

It is well known (see for example [25, Theorem 5.11]) that above K�
d can be expressed by

linear inequality constraints.
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