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Abstract
We use a genetic algorithm to explore the subspace of combination and parametrization patterns spanned by a set of popular 
exchange and correlation functional approximations. Using the well-balanced GMTKN30 benchmark database to guide the 
evolutionary process, we find that the genetic algorithm is able to recover variants of several popular generalized gradient 
approximation functionals and hybrid functionals. For the latter class, the algorithm is able to identify a reparametrized 
version of the three-parameter hybrid B3PW91, which shows significantly improved performance compared to conventional 
versions of B3PW91. Furthermore, the possible application of this algorithm to automatically construct so-called “niche”-
functionals—specially tailored to specific applications—is demonstrated.
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Introduction

Kohn–Sham density functional theory (DFT) [1] ranks 
amongst the most popular and most frequently employed 
methods in computational chemistry [2, 3]. Due to its favora-
ble ratio of computational efficiency to accuracy, it can be 

used routinely in the quantum mechanical treatment of large 
molecular systems and the ground state dynamical simula-
tion of long timescales.

Yet, although an “exact” functional providing a perfect 
description of the electronic ground state of a system does 
exist in principle, little is known of its actual form or how 
to derive it systematically. To ameliorate this drawback, 
empirical approximations have to be introduced to render 
DFT feasible for practical applications. These approxima-
tions are usually designed based on physical intuition and/
or fitting to reference data sets, introducing several empirical 
parameters in the process. DFT owes a significant portion of 
its widespread success to the emergence of various highly 
successful empirical functional approximations, which can 
in turn be combined and reparametrized to create new func-
tionals [4]. Accordingly, the search and parametrization 
strategies to identify promising new functionals in the vast 
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functional space are almost as diverse as the approxima-
tions themselves, ranging from highly systematic brute-force 
approaches [5, 6] to procedures leveraging, e.g., insights 
from game theory [7].

Another class of algorithms that shows excellent per-
formance for similar high-dimensional search spaces are 
genetic algorithms [8]. This type of optimization algorithm 
is based on the concept of Darwinian evolution [9] and has 
been applied to a diverse range of problems in computational 
chemistry, with geometry optimization, docking studies, 
and catalyst design only being some of the most prominent 
examples [10].

In the present work, we investigate whether genetic algo-
rithms can also be used to automate the search for promising 
density functional combinations and parametrization pat-
terns. To facilitate an assessment of the algorithms perfor-
mance, we restrict the optimization problem to a subregion 
of the functional space spanned by several popular exchange 
and correlation functional approximations. To this end, we 
employ a specially developed genetic algorithm to search 
for generalized gradient approximation (GGA) and hybrid 
functionals using the GMTKN30 benchmark database [11] 
as guidance. Based on the evolved functionals, their per-
formance, emerging trends in functional composition and 
parametrization patterns, as well as their relationships to 
conventional functionals are analyzed.

One particularly promising feature of the genetic algo-
rithm presented here is the ability to construct functionals 
tailored to specific needs and systems. The resulting “niche” 
functionals can be obtained in a completely automated fash-
ion and exhibit excellent performance for their intended task. 
We demonstrate the potential of this approach by evolving 
a functional focused exclusively on describing long-range 
dispersion interactions.

Genetic algorithm

Genetic algorithms are heuristic optimization algorithms 
designed according to the principles of Darwinian evolu-
tion [8]. Potential solutions to the optimization problem, so-
called individuals, compete with each other in a survival of 
the fittest scenario in order to evolve solutions of increasing 
quality.

In genetic algorithms, every individual is represented by 
a genome, which encodes a particular solution in discrete 
form, e.g., a list of binary numbers. The genetic algorithm is 
initiated by creating a set of individuals (a population) with 
randomly generated genomes. In the next step, a fitness score 
is assigned to each individual by a fitness function. This 
fitness score is a measure of the quality of the current indi-
vidual (e.g., how good the solution is). Afterwards, genetic 
operations in the form of crossover and mutation events (see 

below) are applied to the current population to generate a set 
of children. These children are once again evaluated using 
the fitness function. To ensure the continuous improvement 
of the solutions present in a population, selection pressure 
is applied during the crossover procedure. This pressure 
is exerted by introducing a selection scheme based on the 
fitness score, where individuals possessing a better score 
and thus representing better solutions are selected more fre-
quently for crossovers. Finally, a new population is created 
from the members of the parent population and the children. 
Similar to the crossover selection, individuals compete with 
each other at this point. The fitter individuals are more likely 
to be chosen for the next population while the most unfit 
individuals are exterminated. This process of evaluation, 
selection and reproduction is iterated until a solution of suf-
ficient quality is obtained.

While the general motifs outlined above are common to 
all genetic algorithms, real-world applications typically vary 
in the details of implementation—such as the encoding of 
the genome, the fitness function used and the form of the 
genetic and selection operators—as they are adapted to best 
suit the optimization problem at hand. The same holds true 
for the current work. To make genetic algorithms suitable for 
the evolution of density functional methods, several adap-
tions are required, which will be discussed below.

Steady‑state genetic algorithms

Instead of the standard genetic algorithm, where new pop-
ulations are determined repeatedly, a steady-state genetic 
algorithm is used in this work. Here, only one population is 
maintained for the whole run and individuals are continu-
ously generated, evaluated and replaced. The steady-state 
genetic algorithm is advantageous for parallel computing, 
as the fitness function of each individual is calculated on a 
separate computer core. Since, in a standard genetic algo-
rithm, the next population is only generated once the fitness 
assessment of all individuals has finished (different indi-
viduals may need different computational time), many of the 
cores might run idle. This problem is avoided in a steady-
state genetic algorithm.

Selection

Two different modes of selection are used in the steady-state 
genetic algorithm. Parent genomes for crossover operations 
are determined using tournament selection [12]. In tourna-
ment selection, N individuals are chosen from the popula-
tion at random and their fitness scores are compared. The 
fittest individual from this subgroup is then selected. The 
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size of the tournament N can be used to control the selec-
tion pressure.

The individuals to be deleted from the population are cho-
sen via elitist random selection, i.e., an individual is chosen 
from the population at random. If it does not belong to the M 
fittest members of the population, it is removed and replaced 
by one of the children.

Fitness function

The fitness score in the present work is obtained as the 
weighted total mean absolute deviation (WTMAD) com-
puted for the GMTKN30 (general main group thermochem-
istry, kinetics, and noncovalent interactions) reference data-
base as defined by Grimme [11]. The GMTKN30 database 
encompasses 30 subsets addressing different problems, such 
as basic properties, reaction energies, and long-range inter-
actions and has been used extensively to study the quality 
of density functionals. To obtain one single WTMAD score 
for a functional, a total of 1218 single point computations 
are performed. The weighting scheme was introduced to 
account for the varying sizes of the different reference sub-
sets and the relative difficulty for DFT methods to describe 
these subsets. A more detailed description of the WTMAD 
score and the subsets used in the GMTKN30 database can 
be found in Ref. [11]. Since the WTMAD is an error, lower 
scores correspond to fitter individuals. A potential alterna-
tive to GMTKN30 is the recently published GMTKN55 [13] 
database, which features an improved selection of reference 
systems. Since the main focus of this study is the evalua-
tion of the GA approach in general, the smaller GMTKN30 
database was chosen over GMTKN55 for two reasons: (1) 
due to the smaller size of the former, fitness evaluations can 
be carried out faster while still retaining a well-balanced set 
of systems and (2) GMTKN30 facilitates a comparison to 
conventional functionals, as more in-depth studies are avail-
able due to its earlier publication date.

The density functional genome

In the present work, two different versions of genomes are 
required since two genera of functionals are investigated 
using the genetic algorithm: GGA functionals, which depend 
only on the gradient of the electron density, and hybrid 
functionals, which also incorporate part of the exact Har-
tree–Fock exchange.

Within the framework of Kohn–Sham DFT, the exchange 
correlation energy EXC

GGA
 of a typical GGA functional is com-

posed of several terms: the local Slater exchange EX

LSDA
 , the 

gradient correction to the exchange EX

GGA
 , the local part of 

the correlation energy EC

LSDA
 , and the gradient correction to 

the correlation energy EC

GGA
 . These different energy contri-

butions are in turn modeled by individual functionals. While 
an analytical expression can be derived for the functional 
component FX

LSDA
 describing the energy contribution EX

LSDA
 

based on the uniform electron gas [14, 15], only empirical 
approximations exist for FX

GGA
 , FC

LSDA
 , and FC

GGA
 [4]. These 

three latter functional approximations are the building 
blocks that differ among the GGA functionals, so that the 
GGA genome therefore takes the form shown in the upper 
half of Fig. 1. Here, every GGA functional is encoded by 
three string entries—one for every functional component.

The exchange–correlation energy EXC

hybrid
 of hybrid func-

tionals is typically modeled according to

where EX

HF
 is the exact Hartree–Fock exchange, a is a param-

eter controlling the admixture of exact exchange and b and 
c are scaling factors to adjust the gradient corrections to the 
exchange and correlation energies [4]. The genetic repre-
sentation used for hybrid functionals is based on the GGA 
genome but also includes the scaling factors, which are 
encoded as real numbers (bottom half of Fig. 1).

In addition to the general composition of the functional, 
the influence of dispersion corrections is studied in this 
work. For this purpose, the basic functionals are augmented 
by an empirical dispersion correction during the genetic 
algorithm optimization procedure, using either the atom-
pairwise D3 dispersion correction with the Becke–John-
son damping scheme (D3(BJ)) by Grimme or the density-
dependent non-local (NL) part of the VV10 functional of 
Vydrov and Van Voorhis [16, 18]. Similar to the switch 
from GGA genomes to hybrid genomes, the basic genome 
is expanded by appending the fitting parameters of the 

E
XC

hybrid
= aE

X

HF
+ (1 − a)EX

LSDA
+ bE

X

GGA
+ E

C

LSDA
+ cE

C

GGA

Fig. 1   Basic genomes used for GGA and hybrid functionals. The 
GGA (e.g, BP86) is represented by three entries specifying the 
approximate functionals used in the description of EX

GGA
 , EC

LSDA
 , and 

E
C

GGA
 . The genome of the hybrid functional (e.g, B3PW91) has a sim-

ilar structure but is extended by a set of real numbers controlling the 
admixture of exact exchange (a) and the scaling of the gradient cor-
rections to the exchange and correlation energy (b, c)
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dispersion correction. In the case of D3(BJ), all 4 param-
eters (s6, s8, a1, a2; for nomenclature and explanation of the 
parameters, see Refs. [16], [17]) are included, while for NL 
only the short-range attenuation parameter (bNL; see Ref. 
[18]) is optimized.

In the present work, the allowed approximations for 
the functional specification in the genome were B88 [19], 
PW91(X) [20], mPW(X) [21], PBE(X) [22], RPBE(X) 
[23], OPTX [24], X [25], TPSS(X) [26], B97-D(X) [27], 
and B97(X) [28] for FGGA​

X, VWN-III [29], VWN-V [29], and 
PW91(LDA) [20] for the FLSDA

Cterm, and P86 [30], PW91(C) 
[20], PBE(C) [22], LYP [31], TPSS(C) [26], B97-D(C) 
[27], and B97(C) [28] for FGGA​

C.
It should be noted at this point, that in general, arbitrary 

combinations of functional components could be used to 
form new expressions (e.g., a combination of three differ-
ent FX

GGA
 and only one FC

LSDA
 using different coefficients). 

Here, we restrict ourselves to the above functional forms 
as conventional DFT code generally does not allow more 
complex combinations. The few codes which do, proved to 
be too unstable with respect to the convergence of the self-
consistent field procedure to be of any practical use, as the 
genetic algorithm requires a certain level of robustness.

Genetic operations

The search space is explored by the genetic algorithm using 
crossover and mutation operations.

During crossover, the genomes of two parent individu-
als are recombined to yield two children. This is done by 
applying crossover operations to the individual entries of the 
aligned parent genomes with the crossover probability Pc. 
Since the density functional genomes can contain discrete 
strings as well as real numbers, two different basic crossover 
operations have to be introduced (Fig. 2).

If the affected entries specify the type of functional 
approximation, they are simply swapped between the 
genomes. If the entries are real numbers, such as used in the 
hybrid genome and for the dispersion correction, weighted 
averages are formed. The new value for the first child is 
obtained by the relation w × xparent1 + (1 − w) × xparent2 , 
where the x are the respective values in the parent genomes 
and w is a random number drawn from the standard uniform 
distribution. The entry for the second child is calculated by 
swapping the order of the parent genomes in the weighted 
average. To avoid the generation of clones, at least one cross-
over event is enforced.

Mutation introduces random permutations to a single 
genome. Similar to crossover, individual entries of a genome 
are mutated with a certain probability, the mutation prob-
ability Pm. If a mutation occurs in a functional component, 
the original functional approximation is substituted by a ran-
domly chosen approximation from the same class (e.g., only 
from the FC

GGA
 approximations). If the entry corresponds to a 

real parameter, it is perturbed by Gaussian noise. An exam-
ple for the two different cases is shown in Fig. 3.

At least one mutation event is enforced to ensure the 
genetic diversity of the population.

Results and discussion

GGAs

Three separate genetic algorithm optimization runs were 
carried out for GGA type functionals, using either no dis-
persion correction in the genome, the D3(BJ) atom-pairwise 
potential by Grimme (D3), or the density-dependent NL cor-
rection by Vydrov and Van Voorhis. The compositions and 
parameters obtained for the top performing Evolutionary 
GGA (EG) functionals in each species—labeled EG, EG-D3, 
and EG-NL—are given in Table 1. The WTMAD scores of 
the evolved functionals computed with the quadruple-ζ basis 

Fig. 2   Crossover between two sample genomes for hybrid func-
tionals, where the first sites 

(

F
X

GGA

)

 and the fifth sites (b) have been 
marked for a crossover event. Entries corresponding to functional 
approximations are simply swapped between genomes, while a 
weighted average is formed for the real-valued parts of the genome 
(e.g, ω = 0.75). Changes in the genomes are highlighted in red (color 
figure online)

Fig. 3   Mutation of a hybrid functional genome. The FC

LSDA
 entry is 

mutated by replacing the functional approximation by a randomly 
chosen approximation of the same type, while the real parameter a is 
mutated by adding Gaussian noise. Changes in the genomes are high-
lighted in red (color figure online)
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set are shown in Fig. 4. This figure also includes WTMAD 
scores computed with the same basis set of the closely 
related PBE and B97-D3 GGA functionals as computed in 
this work.

Comparing the functionals yielded by the genetic algo-
rithm amongst each other, the following trend can be 
observed. The functionals which incorporate dispersion 
correction parameters in their genome during the genetic 
algorithm optimization process (EG-D3 and EG-NL) 
exhibit significantly lower WTMAD scores (18.41 kJ/mol 
for both functionals) than the functional evolved without 
dispersion correction (EG with 24.27 kJ/mol). This behav-
ior is hardly surprising. The inability of standard DFT to 
properly describe dispersion type interactions has been the 
subject of several recent studies and different empirical 
corrections have been developed to counteract this short-
coming, such as the D3(BJ) correction and the NL correc-
tion. Since the GMTKN30 reference database used in this 
work contains many test systems where dispersion effects 

are important, it can be expected that evolved functionals 
with dispersion corrections perform better. No difference 
in accuracy is observed between the D3(BJ) correction and 
the NL correction for the GMTKN30 database.

Pertaining to the composition of the various GGA func-
tionals, we find that the genetic algorithm is able to recover 
several conventional functionals that are known to show 
excellent performance for the GMTKN30 database. The 
EG functional without dispersion correction essentially 
recovers the popular PBE functional [22] (see Table 1). 
Although EG uses the PW91(C) correlation functional, 
this correlation functional is almost identical to PBE(C) 
with exception of one additional term and is expected 
to exhibit almost exactly the same performance. This is 
indeed the case in the present work, as can be seen when 
comparing the WTMADs of both functionals (24.27 kJ/
mol for EG versus 24.69 kJ/mol for standard PBE). Simi-
lar results are found for the functionals using dispersion 
correction (EG-D3 and EG-NL). In both cases, Becke’s 
B97-D functional [27] is recovered, one time using D3 dis-
persion correction and the other time using the NL correc-
tion, showing the same performance of the original B97-
D3 functional (18.41 kJ/mol in all cases). Since B97-D and 
its variants are amongst the most reliable GGA functionals 
incorporating long-range dispersion interactions, it is of 
little surprise that the genetic algorithm correctly identi-
fies them as one of the top performers on the GMTKN30 
database. While the above findings highlight the saliency 
of the genetic algorithm approach, the search for GGAs 
should only be regarded as a proof of principle study. 
Since the valid GGA genomes were only drawn from ten 
GGA exchange functionals (including one meta-GGA), 
three local correlation functionals, and nine GGA cor-
relation functionals (including one meta-GGA), the total 
number of possible combinations is 210 functionals, which 
could also be explored in a more systematic manner. In the 
case of the GGAs incorporating dispersion, the genetic 
algorithm explores a slightly larger search space, since the 
long-range parameters are determined at the same time as 

Table 1   Composition and 
parametrization patterns 
obtained for the fittest evolved 
functionals

Columns two to four specify the particular combination of functional approximations used for the func-
tional, columns five to seven the coefficients used for the three-parameter hybrid functionals and the 
remaining columns contain the parameters relevant for dispersion corrections

E
X

GGA
E
C

LSDA
E
C

GGA
a b c bNL s6 s8 a1 a2

EG PBE (X) VWN-V PW91(C) – – – – – – – –
EG-D3 B97-D (X) PW91 (LSDA) B97-D (C) – – – – 0.43 3.08 0.47 3.49
EG-NL B97-D (X) PW91 (LSDA) B97-D (C) – – – 3.85 – – – –
EH B88 PW91 (LSDA) B97 (C) 0.25 0.78 0.60 – – – – –
EH-D3 B88 VWN-III B97 (C) 0.24 0.87 0.57 – 0.51 3.59 0.53 4.37
EH-NL B88 VWN-V PW91 (C) 0.26 0.72 0.45 3.77 – – – –
EH-ED TPSS(X) PW91 (LSDA) B97 (C) 0.59 0.11 0.45 – – – – –

Fig. 4   WTMAD scores (in kJ/mol) of the evolved GGA function-
als EG, EG-D3, and EG-NL (shown in orange) and different stand-
ard GGA functionals (blue) for comparison. WTMAD values for the 
standard GGAs were computed in this work (color figure online)
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the functional composition. This approach is unusual, as 
typically dispersion corrections are parametrized in an a 
posteriori manner. However, no difference in the perfor-
mance is observed in the present work (see, e.g., EG-D3 
and B97-D3).

Hybrids

Similar to the GGA functionals reported above, three genetic 
algorithm evolution runs have been carried out to identify 
well-performing Evolutionary Hybrid (EH) functionals, 
using once again genomes with no dispersion correction, as 
well as the D3(BJ) and NL corrections (a complete geneal-
ogy of the EH-NL functionals can be found in the support-
ing information, which illustrates the work of the genetic 
algorithm). The WTMAD scores of the best resulting func-
tionals—termed EH, EH-D3, and EH-NL—can be found in 
Fig. 5. Their compositions as well as hybrid and dispersion 
parameters are given in Table 1.

As expected, all evolved hybrid functionals yield lower 
WTMAD scores than their GGA counterparts. The benefit 
of including a dispersion correction on the overall WTMAD 
scores is also observed. However, in contrast to the GGA 
functionals, where the D3(BJ) and NL dispersion corrections 
perform equally well, NL outperforms D3(BJ) in the case of 
hybrid functionals. The trend obtained for the evolved GGAs 
suggests that this difference is mainly due to the larger 
parameter space of D3(BJ) (four additional parameters) 
compared to NL (one additional parameter). The already 
enlarged genome of hybrid functionals in combination with 
the additional parameters introduced by the D3(BJ) correc-
tion complicates the search for the global optimum and, as 

a result, the genetic algorithm is terminated before complete 
convergence is reached. Further iterations until convergence 
were not carried out to ensure comparability with the other 
genetic algorithm runs (EH-NL, EH).

The hybrid functional EH without explicit dispersion cor-
rection is closely related to the one parameter hybrid B97 
of Becke [33]. The main differences between both hybrids 
are the change of the B97(X) exchange term for B88(X) and 
the introduction of two additional parameters present in the 
standard three parameter hybrid form employed above (b and 
c). Compared to the standard B97 functional (WTMAD of 
20.50 kJ/mol), the variant EH (WTMAD of 17.99 kJ/mol) 
shows better overall performance on the GMTKN30 data-
base. The reason for this behavior is a combination of two 
effects: First, the functional form of EH is more flexible 
due to the two additional parameters. Second, EH is directly 
optimized on GMTKN30, while B97 was parametrized on a 
different set of molecules. The primary difference between 
both sets is the presence of a wide range of non-covalent 
interaction benchmarks in GMTKN30, which contribute 
to the overall WTMAD with a high weight. Based on the 
information contained in these benchmarks, the genetic 
algorithm utilizes the additional flexibility of EH to intro-
duce a dispersion-like behavior (see Fig. 6). Consequently, 
the WTMAD of EH associated with non-covalent interac-
tions (10.04 kJ/mol) is much lower than in B97 (16.74 kJ/
mol), leading to the improved WTMAD score. Considering 
only basic properties and reaction energies, both hybrids 
exhibit a much closer performance, with B97 achieving 
slightly better accuracy for basic properties (19.66 kJ/mol 
vs. 20.50 kJ/mol) and EH for the reaction test set (24.27 kJ/
mol vs. 22.18 kJ/mol). This trend is to be expected, as B97 
was parametrized systematically in order to provide a good 

Fig. 5   WTMAD scores (in kJ/mol) of the evolved hybrid function-
als EH, EH-D3 and EH-NL (shown in orange) and several common 
hybrid functionals (blue) for comparison. WTMAD values for B97, 
B3PW91-D3(BJ), and B3PW91 were computed in this work, while 
the WTMAD of ωB97X-D3 was taken from Ref. [32] (color figure 
online)

Fig. 6   Potential energy curves for the benzene dimer as computed 
for the functionals EH-NL, EH, EH-ED with the def2-QZVP basis 
set. The CCSD(T) curve (shown in black) is taken from Ref. [40]. In 
addition, the curve computed for the B97 hybrid functional is shown 
in gray for comparison
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performance over a wide range of model chemistries. At 
the same time, this finding demonstrates the power of the 
genetic algorithm search procedure, as it is able to utilize 
information in the reference data in a manner contrasting 
to conventional parametrization strategies. Whether this 
use of information is physically founded or not remains to 
be addressed in future investigations. The composition of 
EH-D3 is similar to EH, but includes explicit dispersion cor-
rection. A direct comparison of this functional to B97 with 
D3(BJ) dispersion correction is not possible, as no D3(BJ) 
parameters have been reported for the B97 hybrid. However, 
due to the above trends, it is expected that both functionals 
would exhibit a similar performance, as non-covalent inter-
actions are now accounted for in an explicit manner in both 
cases. An important observation related to EH-D3 is that 
while the genetic algorithm is able to identify a sufficiently 
good solution, other conventional functionals with lower 
WTMADs are in principle accessible but not found during 
optimization (e.g., B3PW91-D3, see Fig. 6). This failure to 
identify the minimum corresponding to B3PW91-D3 can 
be once again attributed to the expanded parameter space 
introduced by the D3(BJ) correction, which slows down 
the convergence of the genetic algorithm (see above). The 
final hybrid functional EH-NL is indeed a reparametrized 
version of B3PW91 [34] using the NL dispersion correc-
tion. However, in this case, the genetic algorithm is able to 
identify an improved set of parameters and EH-NL shows 
a significantly lower WTMAD than both its D3 and NL 
counterparts (11.30 kJ/mol vs. 12.55 kJ/mol and 14.23 kJ/
mol, respectively). Unlike in the case of EH, this gain in 
performance is not achieved using the extra flexibility of the 
hybrid to introduce artificial dispersion behavior. Instead, 
ED-NL primarily improves upon the other B3PW91 ver-
sions in the basic properties (19.66 kJ/mol vs. 20.50 kJ/mol 
for B3PW91-D3 and 23.85 kJ/mol for B3PW91-NL) and 
reaction energies benchmarks (8.79 kJ/mol vs. 11.30 kJ/mol 
and 12.55 kJ/mol), while exhibiting nearly the same perfor-
mance for non-covalent interactions (3.35 kJ/mol vs. 3.78 kJ/
mol and 3.35 kJ/mol). Especially the accuracy obtained for 
reaction energies is remarkable. On the whole, EH-NL 
shows excellent performance across the entire GMTKN30 
dataset even when compared to such successful functionals 
as ωB97X-D [35] (WTMAD of 11.72 kJ/mol). The close 
relation between the hybrid functionals found in this work 
to their conventional counterparts also serves as a general 
demonstration for the excellent performance of the latter for 
a wide range of chemical systems.

An ongoing discussion in the DFT community con-
cerns the amount of exact exchange (referred to as a in this 
work) used in hybrid functionals. Typical values range from 
10% Hartree–Fock exchange for TPSSh [36] up to 54% for 
M06-2X [37], with the majority of standard hybrid function-
als clustered around 25%, which is also the optimal value of 

exchange admixture suggested by theory [38]. Analyzing 
the top 100 evolved hybrid functionals of the three differ-
ent species with respect to the amount of exact exchange, 
average values of 25, 24, and 23% are obtained if no disper-
sion correction, the D3(BJ) correction or the NL correction 
is used, respectively. This finding supports the consensus 
that for three parameter hybrids an admixture Hartree–Fock 
exchange close to 25% is the best compromise if good per-
formance over a variety of different systems is desired [38].

Basis‑set dependence

Methods that were optimized using a certain basis set can 
show erratic behavior when paired with other basis sets (i.e., 
reduced accuracy, even when a larger basis sets than the 
original is used). Consequently, parametrization is often 
carried out with a basis set of similar quality as the one 
intended for the accuracy assessment or subsequent practical 
applications. In this work, the WTMAD computed with a 
quadruple-ζ basis set (def2-QZVP) is used in the final com-
parison of the different functionals. However, carrying out 
all 2,582,000 single point calculations (as comprised in the 
GMTKN30 database) required over the course of a single 
genetic algorithm run would be too demanding with a basis 
set of this size. Hence, a smaller double-ζ basis set (def2-
SVP) was chosen for the fitness evaluation of functionals, 
in order to render the computations required for the genetic 
algorithm tractable. To assess whether the use of this pro-
tocol is justified, the WTMADs of several evolved func-
tionals are compared using basis sets of double-ζ, triple-ζ, 
and quadruple-ζ quality. The obtained values are reported 
in Table 2. Apart from the six functionals described above, 
another hybrid functional with NL dispersion correction, 
EH2-NL, was included.

Since the WTMAD scores of all functionals under inves-
tigation improve systematically with basis set size, no erratic 
basis set dependence seems to be present. Trends between 
functionals of different species (e.g., no dispersion, D3(BJ) 
correction) are also captured well, independent of the quality 
of the basis set. Potential problems can occur for functionals 

Table 2   Performance of the evolved functionals for basis sets of dif-
ferent size measured in terms of WTMAD (kJ/mol)

Functional Def2-SVP Def2-TZVP Def2-QZVP

EG 27.82 24.77 24.44
EG-D3 21.42 19.12 18.28
EG-NL 21.72 19.08 18.24
EH 22.38 17.99 17.87
EH-D3 19.41 13.85 12.97
EH-NL 18.24 11.76 11.26
EH2-NL 17.99 13.56 12.85
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of the same species, which show only small differences in 
their WTMAD at double-ζ level, as it is possible for the rela-
tive trend between these functionals to invert upon increase 
of the basis set size. An example are the functionals EH-NL 
and EH2-NL. For the double-basis, the WTMAD of EH2-
NL is lower than the one of EH-NL, although the difference 
is only small (0.25 kJ/mol). This ordering is inverted if a 
triple-ζ or larger basis set is used, since EH-NL now lies 
1.80 kJ/mol below EH2-NL, with the difference being even 
more pronounced for the quadruple-ζ basis.

However, since this phenomenon occurs only rarely and 
only for very small differences in the WTMAD score, the 
computations at double-ζ level still provide a good general 
guideline for the genetic algorithm. A simple countermeas-
ure is to select not only the best functional yielded by the 
genetic algorithm for evaluation at quadruple-ζ level, but 
also those functionals whose WTMAD scores lie within a 
certain limit to the best score. An advantage of this approach 
is that the genetic algorithm run with a double-ζ basis set 
and a subsequent re-evaluation of only a handful of function-
als with the quadruple-ζ basis set is still far more efficient 
than a whole genetic algorithm run carried out with the 
larger basis set. All functionals reported above were identi-
fied in this manner.

Influence of RI and RIJCOSX approximations

To reduce the required computational time, use was made 
of the resolution of identity (RI) approximation for GGAs 
and the resolution of identity chain of spheres (RIJCOSX) 
approximation for hybrid functionals. These approxima-
tions allow for an efficient computation of Coulomb and 
Hartree–Fock exchange terms, respectively, and can lead 
to speed-ups of one order of magnitude. RI and RIJCOSX, 
however, introduce small errors in the electronic energies. 
To study the impact of these errors on the WTMAD scores, 
reference computations for the evolved GGA and hybrid 
functionals were carried out with and without RI and RIJ-
COSX. It was found that upon use of the RI and RIJCOSX 
approximations, the WTMADs increase by an average of 
0.04 kJ/mol for GGA functionals and by 0.21 kJ/mol for 
hybrid functionals. The semi-numerical RIJCOSX yields 
slightly larger deviations than standard RI, but regarding the 
energies computed here, both approximations are safe to use 
and do not influence the quality of the results significantly. 
Hence, all WTMAD scores reported here for the evolved 
functionals were computed with these approximations.

Evolution for specific applications

So far, all evolved functionals presented here were obtained 
using the WTMAD computed over the GMTKN30 database 
as a performance measure. This protocol was chosen in order 

to study general functional patterns emerging for a chemically 
balanced set of problems. However, one particular strength of 
genetic algorithms is their flexibility with respect to the cri-
teria to be optimized, since only the fitness function has to be 
adapted accordingly and no gradients of any form are required.

To test this versatility of genetic algorithms in the context 
of density functionals, a hybrid functional was optimized 
targeting only the mean absolute error on those subsets of 
the GMTKN30 database that focus on non-covalent inter-
actions. Moreover, no dispersion correction was included 
in the functional genome. The resulting functional (see 
Table 1) was then applied to compute the potential energy 
curve for the benzene dimer, a well-known example for a 
Van-der-Waals bound system, where standard DFT fails 
(see, e.g., Ref. [39]). The potential energies obtained for 
the functional with adapted fitness function, called EH-ED 
(ED stands for evolved dispersion), the functionals EH and 
EH-NL, as well as CCSD(T) reference values taken from 
Ref. [40] are shown in Fig. 6.

While EH-NL shows only minor deviations from the 
CCSD(T) reference, the minimum is completely absent in 
the case of EH and the dimers are unbound. This result is 
typical for functionals not augmented by dispersion correc-
tions, as they lack the physical capability to describe long-
range interactions of the Van-der-Waals type. Yet, compared 
to EH, the potential curve of EH-ED exhibits a qualitatively 
correct behavior, possessing a distinct minimum at slightly 
larger distances than the CCSD(T) reference, despite the 
explicit absence of a dispersion correction.

This result is an excellent demonstration for the perfor-
mance of the genetic algorithm in optimizing a specially 
designed objective. Moreover, it opens up the possibility to 
use the genetic algorithm to automatically create “niche”-
functionals tailored to specific needs. While the increased 
accuracy for the target properties comes at the cost of gener-
ality (e.g., reduced performance for other properties, EH-ED 
exhibits a WTMAD of 48.53 kJ/mol), the associated trade-
off should be acceptable compared to the gains, provided 
the reference data and fitness function are chosen carefully.

At the same time, this finding also illustrates one of the 
potential drawbacks of DFT. As was shown above, even 
the standard three-parameter hybrid functional form is 
extremely flexible with respect to the combination of dif-
ferent functional approximations and parametrization. With 
enough patience and creativity, almost any desired result can 
be obtained. Hence, this high intrinsic flexibility of density 
functional approaches should always be considered carefully 
when searching for a universally valid functional.
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Conclusion

A genetic algorithm was applied to the exploration of the 
generalized gradient approximation (GGA) and hybrid 
density functional subspace spanned by several popular 
functional components. The genetic optimization of indi-
vidual functionals was guided by their performance on the 
GMTKN30 reference database, which was also used as a 
measure for accuracy when comparing different function-
als. For both types of functionals—GGAs and hybrids—
the genetic algorithm is able to identify variants of popular 
density functionals, which show good performance on the 
GMTKN30 benchmark. These results demonstrate the abil-
ity of the genetic algorithm to efficiently explore the possi-
ble combinations of exchange and correlation functionals as 
well as different parametrization patterns. Several interesting 
effects are observed for the hybrid functionals in particu-
lar. Monitoring the admixture of exact exchange for the top 
performing members of each population, it is found to con-
verge towards a numerical value close to 25%, which is com-
monly accepted to offer the best accuracy for a wide range of 
chemical systems [38]. In addition, the genetic algorithm is 
able to identify a reparametrized variant of B3PW91, which 
shows excellent performance over the whole GMTKN30 
benchmark, not only outperforming conventional versions 
of B3PW91, but also coming close to top performing func-
tionals, such as ωB97X-D.

An important feature of the genetic algorithm is its ability 
to automatically construct functionals tailored to specific 
problems or molecules by employing different reference data 
sets to guide the evolution process. The potential utility of 
this feature is demonstrated by introducing dispersion-like 
behavior in a functional that possesses no inherent disper-
sion correction. This automated construction of “niche”-
functionals with improved accuracy for certain systems or 
properties will prove useful in situations, where fast and 
accurate computations are required and a sufficient amount 
of reference data is available (e.g., in ab initio molecular 
dynamics).

Other potential future applications for the genetic algo-
rithm are the automated determination of parametrization 
patterns required for newly developed functional compo-
nents, as well as the re-parametrization of existing func-
tionals. Moreover, the use of genetic algorithms in the field 
of density functional theory also offers the tantalizing pos-
sibility not only to optimize parametrization schemes for 
functionals, but also to evolve better approximations to the 
exact exchange–correlation functionals via genetic program-
ming [41].

Computational details

All computations were performed with Orca [42]. Calcula-
tions of the WTMAD required for the fitness assessment 
during the genetic algorithm run were carried out with 
the def2-SVP basis set, while the best evolved functionals 
were re-evaluated at the def2-QZVP level [43]. In case of 
the G21EA and WATER27 subsets of the GMTKN30 data-
base, the standard basis set was augmented by diffuse func-
tions from the aug-cc-pVDZ and aug-cc-pVQZ basis sets, 
respectively [44]. Scalar relativistic effects in the HEAVY28 
and RG6 datasets were accounted for using the appropriate 
Stuttgart–Dresden effective core potentials as implemented 
in Orca [45, 46]. To speed up the evaluation process, the 
resolution of identity (RI) approximation was employed 
for GGA functionals and the RI-chain-of-spheres exchange 
(RIJCOSX) approximation for hybrid functionals [47–49]. 
Open-shell systems present in the reference data were 
described within the unrestricted Kohn–Sham framework.

A population of 100 individuals was used for all genetic 
algorithm runs. Crossover and mutation probabilities were 
set to Pc = 0.6 and Pm = 0.1, respectively. A total of 20 chil-
dren were generated during crossover events and the par-
ents were selected using tournaments of size 2. To ensure a 
diverse gene-pool, 5 completely new individuals were gener-
ated at the same time and added to the children. During the 
random replacement selection, the 5 best individuals were 
preserved. For every genetic algorithm run, a total of 2000 
fitness evaluations were carried out.

Supplementary Information

ORCA inputs for all functionals, as well as a genealogy 
of the EH-NL species can be found in the supplementary 
information.
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