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Abstract. Inverse patchy colloids are patchy particles with differently charged surface regions. In this paper
we focus on inverse patchy colloids with two different polar patches and an oppositely charged equatorial
belt, and we describe a model and a reliable and efficient numerical algorithm that can be applied to
investigate the properties of these particles in molecular dynamics simulations.

1 Introduction

Colloids with differently charged surface regions can be
generally described as charged patchy particles; in or-
der to distinguish them from conventional patchy parti-
cles [1,2], they are often referred to as inverse patchy col-
loids (IPCs) [3]. Similar to conventional patchy colloids,
IPCs are characterized by non-isotropic interaction pat-
terns and a reduced bonding valence; IPCs are nonetheless
considered as a different class of systems because, while
the behavior of conventional patchy systems is dominated
only by an orientation-dependent attraction, IPC systems
are characterized by a competition between directional at-
traction and directional repulsion, leading to more com-
plex assembly scenarios. Intensive research activity by a
diverse selection of groups (both experimental and theo-
retical) have recently focused on IPCs in the context of
smart materials design [4–9], where colloids with charged
surface patterns offer promising (or surprisingly new) op-
portunities for the self-assembly of target structures with
specific properties at the nano- and micro-scale [10,11].

In this contribution we consider an IPC model that has
been developed for hard colloids with a heterogeneous sur-
face charge distribution; the model is based on an accurate
coarse-graining procedure [3,12] and has been primarily
implemented to be studied in Monte Carlo (MC) simula-
tions [13,14]. We consider here a suitably adapted version
of the model that can be used in Molecular Dynamics
(MD) simulations [15,16], and we describe how to set up
and to integrate the equations of motions for an ensemble
of such particles in MD calculations. The advantage of MD
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over MC simulations is the availability of a real time-scale,
allowing thus to study dynamic properties via dynamic
correlation functions [16]. Moreover, MD simulations al-
low for a better optimization on GPUs and an easier par-
alellization of the code with respect to MC algorithms.

We consider here IPCs carrying only two patches, lo-
cated on the opposite poles of the colloidal particle; in
this picture an IPC can be represented as a linear, rigid
molecule composed of three units, where the distances be-
tween these three entities are fixed. We note that, in gen-
eral, when using bond constraints only, one can never re-
cover the correct number of degrees of freedom for a linear
molecule consisting of more than two atoms [17]. We thus
take advantage of an approach presented in ref. [17] and
adapt it to our systems. This approach is able to describe
the dynamics of rigid polyatomic systems by the motion
of a subset of atoms with properly chosen constraints. For
the integration of the equations of motion within the ve-
locity Verlet algorithm [18] we use an algorithm, known
in literature as RATTLE [19], that is able to describe the
evolution of both the positions and the velocities of all
entities in a molecule (i.e., in an IPC), that satisfy the in-
ternal geometric constraints within any desired accuracy
(limited only by the precision of the calculations).

The paper is organized as follows: in sect. 2 we briefly
outline the model and in sect. 3 we present the numer-
ical algorithm that allows to integrate the equations of
motion of these particles. The manuscript is closed with
concluding remarks.

2 The model

The model features a hard spherical particle of radius σc

carrying two interaction sites, labeled 1 and 2, located at
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Fig. 1. Representation of an IPC with two different patches
in a Cartesian reference system. For the symbols see text.

distances ai (with i = 1, 2) from the particle center in op-
posite direction; such a distance is always smaller than σc

so that the sites are located inside the colloid. As a con-
sequence, the corresponding site interaction sphere, with
radius σpi, extends only partially outside the hard core
particle, defining in this way the patch i (see fig. 1). Since
all the surface regions of the colloid have the same interac-
tion range, δ, the following relation holds by construction
for each patch i (see fig. 1)

δ

2
= ai + σpi − σc. (1)

Since the particle diameter 2σc fixes the unit of length of
the model, the parameters to be fixed are σpi and ai. The
choice of these two parameters defines the colloid interac-
tion range and the patch surface extension, given by the
half opening angle γi according to (see fig. 1)

cos γi =
σ2

c + a2
i − σ2

pi

2aiσc
. (2)

The geometric parameters can be fixed to reproduce both
the experimental value of δ, which is determined by the
electrostatic screening of the surrounding solvent, and the
experimental patch sizes, which are related to the surface
features of IPCs synthesized in the lab [5].

The pair potential between two IPCs at distance r with
a mutual orientation Ω is given by

U(r,Ω) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞, if r < 2σc,
∑

αβ

uαβwαβ(r,Ω), if 2σc < r < 2σc + δ,

0, if rij ≥ 2σc + δ,

(3)
where α and β specify either a patch or the bare colloid
of the first and second IPC, respectively, while wαβ and

Fig. 2. IPC soft core interaction as specified in eq. (4) (red
line) compared to a generalized Lennard-Jones 2n-n potential
with n = 100 (green line) [20].

uαβ are the geometric weight factor and the character-
istic energy strength of the αβ interaction, respectively.
We note that, while the uαβ are constant values, the wαβ

—as well as the potential U itself— depend on both the
inter-particle distance and the relative orientation of the
two IPCs. The energy constants uαβ can be fixed for a
precise microscopic system by taking advantage of the an-
alytic description of the model within the Debye-Hückel
approach [3,12].

In view of the numerical algorithm that solves the
equations of motion of our IPCs within a MD framework
(see sect. 3) an IPC can be considered as a linear, rigid
molecule, consisting of three entities: the central colloid
plus the two interaction spheres, representing the patches.

In order to integrate the equations of motion, we re-
place the hard core repulsion specified in eq. (3) with a
continuous, suitably harsh repulsive soft sphere interac-
tion given by

U(r) = A

[(
2σc

r

)2k

− 2
(

2σc

r

)k

+ 1

]

Θ(2σc − r) (4)

with k = 15 and A = 500εm, where εm is the energy min-
imum, obtained when two IPC particles at contact are in
a T-shape configuration [3]; εm sets the unit of energy.
This soft core has a deceivingly small exponent compared
to the potentials used in, e.g., [20], but the very large A
factor contributes in making the potential very stiff (see
fig. 2). We note that in our MD simulations particles never
get closer to each other than 0.975 (in units of the par-
ticle diameter). We checked the consistency between the
continuous and the hard core [3] versions of the model by
comparing energies, pair distribution functions and static
structure factors at several state points with those ob-
tained via Monte Carlo simulations of the original model.
No significant differences were observed (see fig. 3).
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Fig. 3. Monte Carlo (MC) results for the hard core potential
reproduce Molecular Dynamics (MD) results for the harshly
repulsive soft potential: the radial distribution functions in the
fluid phase for an IPC system usually referred to as 30n [13,
15] are shown at two state points, namely both points are at
T = 0.3, while ρ = 0.1 and ρ = 0.4. The main panel shows
the full g(r) as a function of the inter-particle distance, the
vertical inset shows an enlargement around the first peak, the
horizontal inset zooms over the second peak. The MD results
are obtained from a simulation in the microcanonical ensem-
ble, hence with T we refer to the average temperature after
equilibration [16].

3 The numerical algorithm

We first set up the equations of motion of the IPCs fol-
lowing the procedure presented in ref. [17] (see sect. 3.1)
and then integrate these equations using an algorithm that
guarantees that the coordinates and velocities of the enti-
ties within a molecule satisfy the internal geometric con-
straints at each time step [19] (see sect. 3.2).

3.1 Construction of the equations of motion

We start from the equations of motion for all the units of
our linear molecule, i.e.,

⎧
⎪⎨

⎪⎩

mcr̈c = Fc,

m1r̈1 = F1,

m2r̈2 = F2,

(5)

where c refers to the colloid center, while 1 and 2 denote
the patches. We now want to write these equations so that
the internal constraints of our molecule are automatically
satisfied. To do so, we consider the patches as the so-called
primary particles [17] and we infer the position of the col-
loid center through

rc = (a2/d)r1 + (a1/d)r2, (6)

where a1, a2 are the distances of the patches from the
colloid center and d = a1 + a2. As a consequence of our

choice, the constraints which guarantee that the internal
architecture of our molecule is preserved are on the posi-
tion of the colloid center and on the distance between the
patches; these conditions can be written in the following
form

{
σ = (r1 − r2)2 − d2 = 0,

τ = −rc + (a1/d)r2 + (a2/d)r1 = 0.
(7)

The equations of motion (5) are then corrected by sub-
tracting the gradient of the constraints multiplied by the
Lagrange multipliers μ and λ

miri = Fi − ∇i(μ · τ + λσ), (8)

where i = 1, 2, c. Substituting the constraints (7) in (8)
we obtain

⎧
⎪⎪⎨

⎪⎪⎩

mcr̈c = Fc + μ,

m1r̈1 = F1 − (a2/d)μ − λr12,

m2r̈2 = F2 − (a1/d)μ + λr12,

(9)

where r12 = r1 − r2.
Using the second derivative of the equation for τ in (7)

within the first equation of (9) we obtain the following
expression for μ

μ=− d2

Imc
Fc+

da1

Im2
F2+

da2

Im1
F1 − λ

[
da2

Im1
− da1

Im2

]

r12,

(10)
where

I =
d2

mc
+

a2
1

m1
+

a2
2

m2
. (11)

Since the choice of μ ensures that the constraint τ = 0
is always satisfied, eq. (6) can be used as to calculate the
trajectory of the colloid center rc(t) once the trajectories
of the patches r1(t) and r2(t) are known. This represents a
considerable simplification, since we just need to evaluate
a linear algebraic equation in place of solving a second-
order differential equation.

The trajectories of the patches that must be integrated
with respect to time can be obtained by substituting the
expression for μ —eq. (10)— into the second and third
equations of (9). The final system of equations that must
be considered is thus
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rc =(a1/d)r2 + (a2/d)r1,

m1r̈1 =
(

1 − a2
2

Im1

)

F1 +
(

−a1a2

Im2

)

F2 +
(

da2

Imc

)

Fc

−λ

[

1 +
a1

I

(
a2

m1
− a1

m2

)]

r12,

m2r̈2 =
(

1 − a2
1

Im2

)

F2 +
(

−a1a2

Im1

)

F2 +
(

da1

Imc

)

Fc

+λ

[

1 +
a2

I

(
a2

m1
− a1

m2

)]

r12.

(12)
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3.2 Integration of the equations of motion

The system (12) of coupled differential equations still con-
tains the Lagrange multiplier λ. A naive substitution of
the second and third equations of (12) into the second
derivative of the equation for σ in (7) yields a solution sub-
ject to a large error when discretized on a computer [19].
To cope with this problem an alternative algorithm has
been proposed, called RATTLE: the idea behind this con-
cept is to determine the value of λ at each numerical in-
tegration step, so that σ = 0 is always satisfied within
numerical accuracy [19].

We can rewrite the equations of motion for the patches
of a single IPC —see eq. (12)— in the following, more
compact way

{
m1r̈1 = F̃1 − α1λr12,

m2r̈2 = F̃2 + α2λr12,
(13)

where we have defined the effective total forces F̃1 and
F̃2; further we have introduced two coefficients α1 and
α2, defined as

α1 = 1 +
a2

I

(
a2

m1
− a1

m2

)

(14)

and

α2 = 1 +
a1

I

(
a2

m1
− a1

m2

)

. (15)

In the simulation we compute the real forces between two
IPCs by adding up the forces originating from the three
individual entities of each IPC. From the real forces we
then obtain the effective forces via
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F̃1 =
(

1 − a2
2

Im1

)

F1 +
(

−a1a2

Im2

)

F2 +
(

da2

Imc

)

Fc,

F̃2 =
(

1 − a2
1

Im2

)

F2 +
(

−a1a2

Im1

)

F2 +
(

da1

Imc

)

Fc.

(16)
Within the velocity Verlet scheme [18], the differential

equations (13) are discretized as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1(t + h) = r1(t) + hv1(t) +
h2

2m1
F̃1(t) − α1λrr12(t),

r2(t + h) = r2(t) + hv2(t) +
h2

2m2
F̃2(t) + α2λrr12(t),

v1(t + h) = v1(t) +
h

2m1

(
F̃i(t) + F̃i(t + h)

)

−α1λvr12(t + h),

v2(t + h) = v2(t) +
h

2m2

(
F̃i(t) + F̃i(t + h)

)

+α2λvr12(t + h).
(17)

where the vi(t) are the velocities of the patches, h is
the time increment and λr and λv are Lagrange multi-
pliers [19].

To solve the equations for the positions of the patches
we define

si(t) = ri(t) + hvi(t) +
h2

2mi
F̃i(t), (18)

with i = 1, 2. The constraint σ = 0 can be thus written as

|s1 − α1λrr12 − s2 − α2λrr12|2 = d2, (19)

which is solved with respect to λr giving

λr =
s2
12 − d2

2(α1 + α2)s12 · r12
+ O(λ2

r), (20)

where s12 = s1 − s2. By substituting this expression for
λr into the first two equations of (17), we calculate the
new positions ri(t + h) for the patches of our IPC.

Since terms of order O(λ2
r) have been neglected in

eq. (20), the patch positions might have to be calculated
in an iterative fashion: λr is computed from eq. (20) using
the just updated positions until

∣
∣|r1(t + h) − r2(t + h)|2 − d2

∣
∣ < 10−12d2 (21)

is satisfied. In our choice of units, 10−12d2 is close to the
machine epsilon1; in fact, 10−12 was chosen as the smallest
number which never caused a convergence problem.

Once the new positions of all patches of all IPCs have
been corrected, their velocities are also updated in the
following three steps. First, we calculate

vi(t + h/2) = vi(t) +
h

2mi
F̃i(t) i = 1, 2. (22)

In this way, the old forces are no longer needed and their
memory space can be used to store the new forces F̃i(t+h),
that are now computed from the new positions ri(t + h).
Successively, the velocities are again updated as

v∗
i (t + h) = vi(t + h/2) +

h

2mi
F̃i(t + h), (23)

where the ∗ indicates that we still have to correct for
the constraints. According to the RATTLE scheme [19],
we must enforce the time derivative of the constraint
|r12(t + h)|2 = d2, i.e.,

r12(t + h) · v12(t + h) = 0, (24)

where v12 = v1 − v2. This constraint ensures that the
velocities of the patches are not able to stretch or compress
the IPC but can only lead to a rotational or translational
motion of the particle. Finally, the updated velocities can
be calculated by

v1(t + h) = v∗
1(t + h) − α1λvr12(t + h) (25)

and
v2(t + h) = v∗

2(t + h) + α2λvr12(t + h). (26)
1 The machine epsilon ε is the smallest number satisfying

1 + ε �= 1 in machine algebra. Using 8 bytes variables it is
2−53 � 1.11 · · · × 10−16.
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where λv is determined by substituting relations (25)
and (26) into the constraint (24), i.e.,

[v∗
12(t + h)−λv(α1 + α2)r12(t + h)] · r12(t + h) = 0; (27)

this relation can be solved (exactly) for λv

λv =
v∗

12 · r12

(α1 + α2)d2
. (28)

We note that, in contrast to eq. (20) for λr, eq. (24) for λv

is exact, so corrections on λv are taken only if λv > 10−12

(see the online sample codes of ref. [21]); in this case the
correction does not need to be iterative.

The error on a single RATTLE trajectory step is of
order h2, the same as the unconstrained velocity Verlet
algorithm. Thus, there is no loss of precision by using
RATTLE, as long as the tolerance on the constrains is
small enough. This is proven in appendix B of the RAT-
TLE original paper [19].

4 Conclusions

In this contirbution we have presented in detail a numer-
ical approach to set up the equations of motion of an en-
semble of colloidal particles with heterogeneously charged
surfaces and to solve these equations numerically (within
the velocity Verlet scheme) in a molecular dynamics sim-
ulation code.

We have focused on the special case where the two
charged patches are located on the poles of an oppositely
charged colloid. Due to some emerging singularities (that
are imposed by the linear internal architecture of the par-
ticle) this two-patch model represents a rather challeng-
ing case. Within our framework the decorated particle is
viewed as a rigid, linear molecule that consists of three
entities: the central colloidal particle and the two patches.
Following an explicit recommendation in ref. [21], we have
refrained in our particular problem from an implemen-
tation using quaternions. Our formulation of the equa-
tions of motion (which avoids the aforementioned singular-
ities) has been combined with a velocity Verlet integration
scheme and can be readily and efficiently implemented in
a simulation code, leading to robust and reliable numerical
solutions of the equations of motion.

Our focus on the two-patch model gives credit to
very recent experimental progress in the synthesis of the
such particles in the lab [5] and to their remarkable
propensity to self-organize into very unusual, sometimes
even exotic structures: examples are intricate translation-
ally and orientationally ordered particle arrangements or
complex lamellar structures in three dimensions, which
keep their stability over a remarkably broad temperature
range [14,16].

Our approach sets the stage for future extensions to-
wards multi-patch models, as they are expected to be syn-
thesized in the lab in the near future. From the concep-
tual point of view, the non-linear internal structure of a
multi-patch particle is considerably easier to handle than

a linear patch arrangement. However, the number of con-
straints imposed by the rigidity of the internal structure
implies np(np − 1)/2 geometric constraints, np being the
number of patches.
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