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Abstract

We prove the global existence of Dirac-wave maps with curvature term with small initial
data on globally hyperbolic manifolds of arbitrary dimension which satisfy a suitable growth
condition. In addition, we also prove a global existence result for wave maps under similar
assumptions.

Mathematics Subject Classification 58J45 - 53C27 - 53C50 - 35L71

1 Introduction and results

Wave maps are among the fundamental variational problems in differential geometry. They
are defined as critical points of the Dirichlet energy for a map between two manifolds, where
one assumes that the domain manifold is Lorentzian and the target manifold is Riemannian.
More precisely, let (M, h) be a globally hyperbolic Lorentzian manifold, (P, G) a Rieman-
nian manifold and ¢: M — P a map. Squaring the norm of its differential gives rise to
the Dirichlet energy, whose critical points are given by the wave map equation, which is
(¢) = 0, where 7(¢p) := —h"‘ﬂVaadqb(aﬂ).

The wave map equation is a second-order semilinear hyperbolic system, that is the natural
analogue of the harmonic map equation for maps between Riemannian manifolds. Wave maps
are also well-studied in the physics literature, they appear as critical points of the Polyakov
action in bosonic string theory for a string with Lorentzian worldsheet.

There are many articles that study wave maps in the case that the domain is Minkowski
space. We cannot give an exhaustive list of the results here, but want to mention the influ-
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ential works of Klainerman [15], Tataru [26], Klainerman and Selberg [17], Klainerman and
Machedon [16], Tao [24,25] and Shatah and Struwe [22,23].

There are less articles that consider the case of a domain being a non-flat globally hyper-
bolic manifold. Here, we want to mention the works of Choquet-Bruhat [9,10] for wave maps
on Robertson—Walker spacetimes and several recent articles that consider wave maps on non-
flat backgrounds [11,14,18,20]. To obtain an overview on the current status of research on
the wave map equation we refer to the recent book [12].

In modern quantum field theory one considers extensions of the wave map system, one
of them being the supersymmetric nonlinear o-model [1]. Recently, there has been a lot of
interested in this model from a mathematical perspective. In mathematical terms, the model
leads to a geometric variational problem that couples a map between manifolds to spinor
fields.

Most of the mathematical research on this model so far is concerned with the case that
both manifolds are Riemannian leading to the notion of Dirac-harmonic maps [8] and Dirac-
harmonic map with curvature term [4,7], which represent semilinear elliptic problems. At
present, many results regarding the geometric and analytic structure of Dirac-harmonic maps
and Dirac-harmonic maps with curvature are known [5], but no existence result for these
kind of equations could be achieved.

In case that the domain manifold has a Lorentzian metric the critical points of the super-
symmetric nonlinear o-model lead to a system of the wave map equation coupled to spinor
fields. For this system two existence results are available [6,13] for the domain being two-
dimensional Minkowski space.

In order to couple the wave map equation to spinor fields we have to recall some con-
cepts from spin geometry on globally hyperbolic manifolds. We have to make the additional
assumption that the manifold M is spin, which guarantees the existence of the spinor bundle
SM. Sections in the spinor bundle are called spinors. Moreover, we fix a spin structure. The
spinor bundle is a vector bundle on which we choose a metric connection compatible with
the hermitian scalar product denoted by (-, -) sas. On the spinor bundle we have the Clifford
multiplication of spinors with tangent vectors, which satisfies

(U, X -E)sm = (X -V, &) sm
forall X € TM, ¥, & € T'(SM). In addition, the Clifford relations
X-Y+Y -X=-2h(X,Y)

hold for all X, Y € T M, where h represents the metric on M.

The natural operator acting on spinors is the Dirac operator, which is defined as the
composition of applying the covariant derivative first and Clifford multiplication in the second
step. More precisely, the Dirac operator acting on spinors is given by

¥ :=h"o, - Vy,.

The Dirac operator is a linear first order hyperbolic differential operator. For more background
on spin geometry on globally hyperbolic manifolds we refer to [2,3]. The Dirac operator itself
is anti-self-adjoint with respect to the L>-norm. However, the combination i# yields a self-
adjoint operator, that is

/<iae,w>dvh=/ (&, i) dVi.
M M
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The square of the Dirac operator satisfies the Schrodinger—Lichnerowicz formula

204 scal”
T

where scal” denotes the scalar curvature of the manifold M. Note that 3° is a wave-type
operator.

In quantum field theory one usually considers spinors that are twisted by some additional
vector bundle. Here, we consider the case that the spinor bundle is twisted with the pullback
of the tangent bundle from the target manifold. More precisely, we are considering the bundle
SM ® ¢*T P and sections in this bundle are called vector spinors. We obtain a connection
on SM ® ¢*T P by setting

VSM®¢*TP — VSM ® -ﬂ(p*TP + ILSM ® V¢*TP.

Note that Clifford multiplication on the twisted bundle is defined by acting only on the first
factor. This allows us to define the Dirac operator acting on vector spinors as follows

o SM®¢*TN
D :=h"P, - v, .

We assume that the connection on ¢*T P is metric and thus the operator i D is also self-adjoint
with respect to the L?-norm. After these considerations we are ready to present the energy
functional for Dirac-wave maps with curvature term

$(0.0.8) =5 [ (1ao8 +(3.i3) - ¢ (# k" (3.0)6)) avi.

In the last term the indices are contracted as follows
o (509) gy = 9] (9
(0. R” (5.9) ¥ (9 05) (00

N
which ensures that the energy functional is real-valued. We would like to point out that in
the physics literature (see e.g. [1]) one usually considers Grassmann-valued spinors in the
analysis of (1.1). However, we want to use methods from the geometric calculus of variation
and due to this reason we are employing standard spinors.
The critical points of (1.1) can easily be calculated as

SM@¢*T P

w(@) = ShPRP (10 - 7) d i) — <(VR1")tt (v.9) 9. ¢>, (1.2)

iy = %RP (3.9) 7. (13)

where t(¢) := —hob Vi, d¢ (dp) represents the wave map operator. The solutions of (1.2),
(1.3) are called Dirac-wave maps with curvature term.

We are able to provide the first existence result for the Dirac-wave map with curvature
term system which is as follows:

Theorem 1.1 Let &, be a smooth family of complete Riemannian metrics on "', N €
CPR x ) with0 < A <N < B < ooand (M" h) = (R x &, —N2dt* + ;) be a
globally hyperbolic Lorentzian spin manifold that satisfies the following condition: There
exists a monotonically increasing smooth function s : R — R with fooo s~dr < oo, such
that the conformal metric

h=(Ns)h=—s2dt*+g
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has bounded geometry, the metrics g have a uniform Sobolev constant and
INllckegy + IVuNIlchg,y + 1Ml g,y + sl < € < 00 (1.4

forall k € N. Here, v is the future-directed unit normal of the hypersurfaces {t} x ¥ and 1
is their second fundamental form.

Then if in addition, the Riemannian manifold (P, G) has bounded geometry, there exists
foreachr € Nwithr > ”gl an ¢ > 0 such that if the initial data (¢g, ¢1, Vo) for the system
(1.2), (1.3) satisfies

160l 1z + 11110y + W0l 7 oy < (1.5)

the unique solution of the system (1.2), (1.3) with initial data ¢|;=0 = ¢o,0Pli=0 =
@1, Uli—0 = Yo exists for all times t € [0, 00) and satisfies

¢ € C° ([0, 00), H' (2, P)) N C' ([0, 00), H'(Z, P)),
¥ € C°([0,00), H (M, SM ® ¢*TP)) N C" ([0, 00), H ™" (M, SM ® ¢*T P)).

Remark 1.2 Under the same assumptions, the proof of Theorem 1.1 also implies global exis-
tence of Dirac-wave maps, which satisfy an equation slightly simpler than (1.2), (1.3). In
this case, the second term on the right hand side of (1.2) and the right-hand side of (1.3) both
vanish.

Along the line of Theorem 1.1 we obtain the following result for the wave map equation
generalizing the results from [9,10]:

Theorem 1.3 Ler g, be a smooth family of complete Riemannian metrics on £"~', N €
CPRx X)with0 < A <N < B < ooand (M" h) = (R x &, —N2dt* + ;) be a
globally hyperbolic Lorentzian manifold that satisfies the following condition: There exists
a monotonically increasing smooth function s : R — Ry with fooo s~dt < oo, such that
for the conformal metric

h = (Ns)_zﬁ = —s72d* + g
the metrics g; admit a uniform Sobolev constant and
RS Nl ek g,y + IN ek gy + Vo Nl g,y + Ml kg, < C < 00 (1.6)

forall k € N. Here, v is the future-directed unit normal of the hypersurfaces {t} x ¥ and 1
is their second fundamental form.

Then if in addition, the Riemannian manifold (P, G) has bounded geometry, there exists
foreachr € Nwithr > ”gl an ¢ > 0 such that if the initial data (¢, ¢1) for the wave map
equation satisfies

160l 71 g0y + 16117 a0y < & (1.7)

the unique wave map with initial data ¢|;,—0 = ¢o, 0rPli=0 = ¢1 exists for all times t €
[0, 00) and satisfies

¢ € C°([0,00), H''(2, P)) N C' ([0, 00), H' (T, P)).

Remark 1.4 If we compare the assumptions of Theorems 1.1 and 1.3 we observe that one
also has to control the Ry;jo-components of the curvature tensor in the result for Dirac-
wave maps with curvature term. This curvature contribution appears when computing the
curvature of the spinor bundle. This explains why we have to assume bounded geometry
of the Lorentzian manifold in Theorem 1.1 but only bounded geometry of the Riemannian
slices in Theorem 1.3.
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In addition, we also have to demand a decay of the second fundamental form (1.4) in
Theorem 1.1 which originates from the choice of a positive definite scalar product on the
spinor bundle that is no longer metric.

Remark 1.5 It seems that the class of Lorentzian manifolds that we are considering is the
appropriate setting that guarantees a nice long-time behavior for solutions of various nonlinear
wave equations with small initial data. We therefore think that our approach can be also used
to establish existence results for a large class of other second order hyperbolic systems arising
in mathematical physics.

Example 1.6 There are many spacetimes that satisfy the assumptions in Theorems 1.1 and
1.3. The simplest class is the class of Robertson-Walker spacetimes —dt> + s2(t)g with
s~ e L1([0, 00)) which already contains the de-Sitter space and the power-law inflation
metric. More generally, it is believed that generic future geodesically complete solutions of
the Einstein equation with positive cosmological constant A > 0 satisfy the assumptions of

our theorems.

Throughout this article we will employ the following notation: We will use small Greek
letters o B y for space-time indices, small Latin indices i j k for spatial derivatives and
capital Latin indices / J K for indices on the Riemannian target. We will denote spatial
derivative by D. Moreover, we will make use of the usual summation convention, that is we
will always sum over repeated indices.

This article is organized as follows: In the second section we introduce a suitable conformal
transformation that we will be using to prove our main results. In the third section we establish
the necessary energy estimate which is the key tool to prove the main result.

2 Conformal Euler-Lagrange equations

In the following we calculate how the energy functional (1.1) transforms under a certain
conformal transformation of the metric on M.

Lemma 2.1 If we transform the metric h = (Ns)*h and the vector spinors via
~ 1-n
Yi=(Ns) 2 ¢

the energy functional (1.1) acquires the form

1 _ . ]
s, v =3 [ ((Ns)" dg P + (i DY) - (V" (v, RP ww)) dVi.
M
2.1

Proof Under a conformal change of the metric 4 = (Ns)?h the volume elements transform
as dVj = (Ns)" dV},. The Dirac operators transform as

B ()™ 0) = (Vo) F By,

Note that the twisted Dirac operator Ip transforms in the same way as the standard Dirac
operator § since the twist bundle ¢*T P does not depend on the metric on M.
Inserting our choice for ¢ we get

(. i09) = v ™ (w. iy,

which completes the proof. O
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For the sake of completeness we calculate the critical points of (2.1).

Lemma 2.2 (Critical points) The critical points of (2.1) are given by
1
Ong = (n — 2)(Ns) ™' Vovg ¢ — 5(Ns>2—”h“ﬂR” (., iy - ¥) dp(3p)
1 4-2n P\*
+ = (Vs) <(VR ) @, w>,

. 1
DY = (N 2RO Y. (22)
Here, (] := —h*P Vi, d¢(3p) denotes the wave map operator.

Proof First, we vary the vector spinors v keeping the map ¢ fixed. More precisely, we
consider a variationof ¢ : (—¢, &) x M — SM ®¢*T P denoted by y; satisfying %
&. We calculate
d 1
dn }x=0§

=5 [ (le.imw)+ (wime) - o2 e R 0w)) v
M

a=0 "
fM ((m,imm V2" < (v, R ) m)) avi

2
-/ (Re<s,ilz>w) W 5 R, ww)) dVi,
M

yielding the equation for the vector spinor.
Afterwards, we keep the vector spinors ¥ fixed and consider a variation of ¢: (—¢, &) X
M — P denoted by ¢, satisfying % | —o = - We calculate

1
ﬁ’x:og

f(N )~ 2<V— d¢x> dVa|,_,

_ fM (N2 (0.0) — (n — D(Ns)">V(Ns) {n. V) dVi.

f (Ns)"2lds 2 dVi

Moreover, we have

d 1
= =03 /M ((w,imf) (Ns)>™" (vf R"(y. ww)) dVi

1
= 5/ hep <1//,iRP (7, dep(3a)) 8ﬁ~lﬁ> dVy
M

1 2—n P g
+E/M<NS> <<(VR ) W, w>,n> dVi,

where we used the equation for v. Finally, we have
WP (i RP (. dg(0)) 05 - ¥r) = b (0, R (00 - 9)dg (3p)).
which completes the proof. O

We want to turn the system (2.2) into a system of two wave-type equations. To this end
we recall the following Weitzenbdck formula for the twisted Dirac operator .
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Lemma 2.3 The square of the twisted Dirac operator ) satisfies

) scal 1 ay BS P
D" =0+ ——+ 7070 - 9 - R (d¢ (0,) . d¢ (05)) V. (23)
Proof For a proof the we refer to [19, Theorem 8.17]. O

Making use of (2.3) we obtain the following rescaled Euler-Lagrange equations

1
0w = (n — 2)(Ns) ' Vyngd — 5<Ns>2—"h“ﬂR‘°(w, iy - V)¢ (3p)

1 4-2n P 1

+ 5 (N) <(VR ) . w>w,w>, 2.4)

M
Oy = _SCZI v — %h“”hﬁ‘saa -0p - RP (o (3,), dop (35)) ¥

[ P 2—n

+ 2V (R @ @)™ -y
1

+ §(Ns)“—z"lew, VIRY (Y, Y)Y, 2.5)

where [J;, denotes the corresponding wave-operator.
In terms of local coordinates this system acquires the form (/ =1, ..., dim P)

s202p! + ssd,¢0" + %sz tr g0,¢' + D*Dg!
= —(n—2)559,¢" —(n —2)s’N"'9,No;¢' + (n —2)N~' Dy, NDy, '
- %(Ns)Q*”Rth“ﬂ (w’ﬁ i3 - ¢L>aﬁ¢f
+ TIZ(NS)4_2HG1]VJRKLMN <WK, ¢M><1/va lﬁN),

1
s2V2yl 4 55yl 4 ESZ tr gV, ¥! + D*Dy!

scal" Loy 5 pl Ko oL J
e A L S PR A A PR R
i -
+ 5V, ((Ns)2 "R, <1//f, wL>ay,) 95 - ¥

1 _
4 §(NS)4 2"R§KLRA§RS <W], 1//L><1//M’ 1/fS>1//R~
Remark 2.4 Note that the system (1.2), (1.3) on the manifold (M, E) is equivalent to the

system (2.2) on the conformally transformed manifold (M, /). From now on we will use the
system (2.4), (2.5) which follows from (2.2).

3 The energy estimate
In this section we first develop several formulas that are useful in the study of energy estimates

for sections in arbitrary vector bundles. Later on, we will apply these techniques to the cases
of wave maps and Dirac-wave maps with curvature term.

@ Springer



119 Page 80f30 V. Branding, K. Kroncke

3.1 Energies on general vector bundles
Let X" be a manifold, s : R — R smooth and g;, € R be a smooth family of Riemannian
metrics on X. We consider the (globally hyperbolic) Lorentzian manifold

(M,h) = (R x =, —s(t)"2di* + g).

The non-vanishing Christoffel symbols of this metric are given by

Ky 1,. ; ; | B
Pgo ==, Ty =555, Tl =T0y =>¢"%u,  Thj; =T

Let V be a Riemannian vector bundle over M which is equipped with a metric connection
V. As usual, iterating yields a map

VET(V) > T (T*M®k ® v) .
We define the associated wave operator L] : I'(V) — I'(V) by the sign convention such that
O = —h*PV24E

for £ € I'(V). The covariant derivative V restricts for each # € R to the spatial covariant
derivative D which yields a map

D:I'(V)>T (" (T*Z)® V).

where m : M — X is the canonical projection. In the following, we will write 7* % instead
of w*(T*X) for notational convenience. The covariant derivative naturally extends as a map

D:T (T*E®k ® v) T (T*2®k+1 ® v)
by defining

k
(Dx&) (X1..... X)) ="Vx G (X1, ... X)) = > &(X1..... DxXi, ... X¢).

i=1
where for each t € R, Dy X; denotes the covariant derivative of g;. Furthermore, we define
its formal adjoint D* : T(T*E®*! @ V) — I'(T*® @ V) by

D*€ (X1, ..., Xp) = —¢" Dy (9;, X1, ..., X) -
Finally, we define a covariant time-derivative V; : F(T*E®k V) > I(T*=% @ V) by
k
(Vi) (X1, X0 =V (€ (X1, X)) = Y& (Xu, o, Vi Xiy oo, Xa).
i=1
Observe that this definition makes sense as Vy, X; € I'(T M) is always tangential to X due

to the structure of the metric i. A quick computation shows that the wave operator can be
written as

1
g = s>V, V,€ + $sV,€ + Esz try ¢ - V,€ + D*DE. (3.1)

Lemma 3.1 We use the notations from above. Let (., .) be the natural t-dependent scalar
product induced on [(T*T® Q@ V). Let &,n € T'(V). Then we have the product rule

3 <Dk§, Dkn> — <V,Dk§, Dkn> + (Dkg, V,Dkn>.
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Proof Let o be a fixed time and let {eq, .. ., ¢,} be an orthonormal basis of (X, g;,) atx € X.
Then the scalar product can also be written as

I]yeees ir=1
where the scalar products on the right hand side are the ones on V. Now think of {ey, ..., e,}
as an orthonormal system in T(y,, v) M. Parallel transport along the curve # > (7, x) yields
orthonormal systems {eq, ..., e,} for each T(; ,)M. Because Vj,9; = —ga[, h(d;,e;) =0
foreachi € {1, ..., n} so that we in fact obtain orthonormal bases of 7\ ¥ with respect to
the metric g, for each ¢ € R. Therefore we get

k k
+ Z <De,'l ..... e,‘kg’:’ Vt (De,'] ..... iy n)>

I
™
=
S
_,‘@??‘

k k k
,.4.,6,'1(%-’ DE[] ..... e,'k n> + Z (De,'] ..... e;k%_’ lee;l,”.,e,'k T]>

Il
)
v

(viD*e, Dtn)+ (e, v, Db ).

Remark 3.2 In the above lemma, the special structure of the metric % is essential.

For a section § € I'(V), we now define the kth energy density
2 2
ex®) = [Dvig| + | DF e[

which is a nonnegative function on M and the kth energy as

Ek(é)(t)Z/EEk(S)dVg,,

where dVy, is the volume element of the metric g, and the integral has to be understood as
an integral over {r} x X.

Proposition 3.3 Let& € I'(V) be spacelike compactly supported. Then its kth energy satisfies
the evolution equation

d

thk(s)=2/2(Dsz,Dkvts) dvg,+%/z(]Dk“g\z—sz\D"v,s

2) trg & dVy,
“32/ (v, [v.. | vig) av, +2/ (p*vig, [D*D, D¥]¢) av,,
x T
+2/ (Dk+1$, [V,, Dk+1]s> av,,.
z

Proof We compute

d ) 2 1 .
—Ep(§) = 255/ ‘Dkvzé‘ dVg, + */ er(§)trg & dVy,
dt > 2 /s
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119 Page 10 of 30 V. Branding, K. Kroncke

+2s2/ (viDtvie. DEvg) av, +2/ (VD g, DM e) av,
D) D)

:2&3/ ’DkV,S
D)
+2s2/ <DkVtV,§,DkV,.§> dvg,+2s2/ <[V,,Dk] V,E,DkVt§> vy,

) )

+2f <Dk+1V,§‘, Dk+1$> v, +2f ([v,,Dk“]g,Dk“s) dVy,.
D) )

Moreover, we have

2 1
A +7/ er(E)trg g dVy,
2 s

2/ <Dk+1V,.§, D"+1$> vy, =2/ <DkVt§,D*D"+1§> v,
2 )}
:2/ <DkV,f§,DkD*D.§> v,
D)

n 2/ <DkV,§, [D*D, Dk] 5) dv,,.
=
The statement follows by combining both equalities and using (3.1). O

In order to derive energy estimates for the vector spinors we have to take into account
the special structure of the scalar product of the spinor bundle SM. The natural geometric
scalar product which is invariant under the spin group is not positive definite and thus not a
good candidate for analytic purposes. To obtain a positive definite scalar product one has to
Clifford multiply the second factor with the timelike unit vector field eg, see [3], which in
our setup is given by eg = s9;. Using our geometric setup we find

1 ik
Vte() =0, Vieo = 5sg gikaxj-
Hence, we define the following kth energy density for the vector spinors v
e W) =52 (D90, e0 - DV )+ (DF 1y, e - DM,

which is a nonnegative function. In the following we will always employ the positive definite
scalar product without mentioning it explicitly. However, since e is not parallel with respect
to the spatial coordinates the kth energy of the spinor satisfies

diEk(lﬂ) :2/ <DkD¢, Dkvtw> dv,, +1/ (‘DkHw‘Z_sZ‘DkVﬂ//‘Q) trg & dVy,
: . 2 /s
+252/2<Dkv,¢, [V,,Dk] vﬂ/f) vy, +2fE<DkV,1/f, [D*D, Dk] 1/f> v,

+2/2<D’<+1¢, [V,,DkH]w) dvg[+2f2<1)kw, eo-(D*m).D"“nﬁ) dv,,.
(3.2)

Lemma3.4 Let & € T(T*S® @ V). Then we have the identity

1
(IVi, DIE) (X, X1,y Xi) = Ry x (E(X1, -, X)) = 5 Do (X1, -, X)

k
1 .
+§§15(X17~'~7ng(Xi)5"'st)'
=
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Proof At first, we compute

(ViD&) (X, X1, ..., Xk)

= Vy (DEX. X1.,.... Xp)) — (DE)(Vy, X, X1, ..., Xp)

k
=Y (DEX, X1, ..., Vo, Xiy .., Xi)

i=1

k
= V) (VN EX1 o X0) = Y6, Dx X X))

i=1

k
— (D, x€) (X1..... X0) = Y (Dx&) (X1, ..., Vo, Xi, ... X¢)
i=1
k
= V) (VN EX1 o X)) = 30 (Vi) (Xi o, Dx X X0
i=1

k

i=1 i,j=1
i#]

k
— (Dv,, x&) (X1, ..., Xp) — Z(ng)(xl,...,Va,Xi,...,Xk).

i=1

Similarly, we find

(D (Vi§)) (X, X1, ..., Xy)

k
= VY (Vi€) (X1, ... X0) = Y (Vi€) (X1..... DxXi. ... Xp)
i=1

k
=vy (vavr (g(xl,...,xk))—Zg(xl,...,va,xi,...,xk)>

i=1

k
=Y (ViE)(X1. ... DxXi..... X0)

i=1

k
= VY (VY EX, X)) = 3 (DxE) (X1, Ve Xi o X)
i=1

i=1 ij=1
i#]
k
= (V&) (X1..... DxXi, ... Xp).

i=1

k n
—Zf(xl,...,vaalX,',...Xk)— Z $(X1,...,Dxx* ,Va X

1

n
=Y E(X1.... Vo, DxXio. . Xg) — > E(Xi..... DxXi..... V3, Xj. ... Xp)

j,...Xk)
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119 Page 12 0f 30 V. Branding, K. Kréncke

Summing up, we obtain

(V0 DI&) (X, X1, X = VY (VEEXL - X)) = VY (VY 6L X))
k
— > & (X1,.... Vs, DxXi — DxVy Xi, ... X)
i=1

— (Dv,, x§) (X1, ... Xp).

As this expression is tensorial in X and the X;, we may assume that the components of these
vector fields with respect to a chart of ¥ are independent of time. By raising an index with
respect to g; we can think of ¢, as an endomorphism on 7*3X. Then the formulas for the
Christoffel symbols imply V3 X = Vo, = % £(X) and the same holds for X;. Moreover,
we have [9;, X] = [0;, X;] = 0 and

1. . |
Vi DxXi = DxVa Xi = 58 (Dx Xi) — Dx (& (Xi)) = =5 Dxg (Xi).
By putting these facts together, we immediately get the statement of the Lemma. O

In the following we will often make use of the so-called » notation. More precisely, we
will use a x to denote various contractions between the objects involved.
We apply the general formula from above in the case where we haveamap ¢ € C*°(M, P),
[Vi, D]p € T(T*X @ ¢*T P) and we get
1 .
([Vi, D1¢) (X) = _Edd) (8(X)).
More generally, if E = ¢*T P in the Lemma above, we get

1
([V:, D1&) (X, X1, ..., X)) = RP(d¢(3z),d¢(X))(§(X1, L Xp) — EDg(X)é(Xla o Xk
1 k
+5250&...,ng(x,o,...,xk)
1
= R” (Vi¢, Dx¢) (E(X1..... X)) — 3 DX, Xp)
1 k
+§;s(xl,...,DX@;)(X,»),...,x,{)~

By an iteration argument, we find

[vt’Dk] th): Z GVIIRP*D””Jrl(Z)iv"*Dmll+1¢*DI2V[¢*DZ3+1¢*DZ4VZ¢
LAY mj=k—1 [ —times

k—1
+)_ DgxD!Vig,
=0

[Vtka+l]¢= Z GVIIRN*Dm1+1¢)*"'*Dmll+l¢*Dl2v[¢)*Dls+l¢*Dl4+l¢
Pl mj=k—1 11 —times
k
+ Z Dk_lg*Dl+1¢.
=0
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In the case of a vector spinor ¢ € I'(SM ® ¢*T P), the formulas are
1 .
(IVe, DIY) (X) = RSM (@), X) - 9 + R” (Vigp, Dx$) ¥ + 5 D¢ (3(X)

and

([Vl‘a D]S) (X7 le ...,Xk)
=RM(3,, X)-& + R” (V;¢, Dxo) (£(X1, ..., Xx))

k

1 1 .

- EDg<X)$(X1,-~-,Xk)+ 5 E E(X1, ..., Dxg(Xi), ..., Xp).
i=1

By iterating the formula from above, we get

k—1 k—1
[0 05| Viwr = 32 D! (RS (3, 0) # D119,y + Y D w19,y

=0 =0
+ > GV RP « D" F pw- xD"1 1§« D2V, DB pu DMV,
Dl mj=k—1 [1 —times
and
k k
[Vt, Dk+l] v = ZDI (RSM(at’ .)) «DFly 4 ZDkleg-*DzHl/f
=0 =0
+ ) OVIRPA D™ guxD"1 T xDPV,px DT pa Dy
Yl mj=k [} —times

Lemma3.5 Let & € T(T*S® @ V). Then we have the identity

([p*D.D]&) (X, X1,..., X3) = —Dricx)§(X1. ..., Xp)

k
- 2ZDeis(xl,...Rx,e,.x_,»,...,xk)
j=1

+ Dy Ry, (E(X1,.... X)) + 2Ry, (DeE(X1, ..., Xp))

k
—Zg(xl,...De,,Rx,ein, s Xk
j=I

where {ej}1<j<n_1 is a local orthonormal frame. Here and throughout the proof, we sum
overi.

Proof A direct computation yields
([D*D.D]&) (X. X1 ... Xp)
=Dy . o EX1, ... X)) — D] . xEX1, ... Xp)
= D¥ .o, §X1s . Xi) = D}, x o §(X1s o0 Xp)

+ D]y o EX1 o X)) = DY xEXL LX)
= Rx . DE(ei, X1, ..., Xk) + De; Rx ,5(X1, ..., Xi)
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119 Page 14 0f 30 V. Branding, K. Kréncke

k
= —DRicc)§(X1, ..., X0) = Y D& (X1, ... Rx.e, X, .., Xx)
j=1

+ R (De (X1, X)) + Dy (RY 08) (X, X1, Xe)

k
= Do Y E(X1....Rx.eXj, ... Xp)
j=1

k
= —DRic(x)§(X1, ..., Xi) —ZZDL),-S (X1, . Rx.e; Xj. ..., Xz)
i=1

+ Do Ry, (E(X1, ... X)) + 2Rx.¢; (De,E(X1, ..., Xp))
k
=Y &(X1.... Dy Rx.o, X, ... Xp).
j=1

Here, RV o & € T(T*T®*2 @ V) is defined as
(RV o) (X, Y. X1, .. X0) = R y €(X1, ..., X0)

and DRV is the covariant derivative of the curvature endomorphism on V restricted to vectors
tangential to X. In other words,

Dle‘//,Zg = Dx (Rl‘//,zf) - ngxy,zf - Rl‘//,Dx,zf - R;//,z (Vx&).

[m}
In the case ¢ € C*°(M, P), we obtain
([p*D., D] ¢) (X) = =Dg (Ric" (X)) + R” (D§(X). D (1)) (D er))
and for £ € T(T*Z® @ ¢*T P), we have
k
([D*D, D]€) (X, X1,... X0) =2 D& (X],...,RM (ei,X)Xl,...Xk>
=1
k
+ 306 (X1 Do RM (i, XX, Xk) = Driccog (X1, Xp)
=1
+ DpgenR” (DG (X). D (en)(E(X1. ... X1))
+ RY (D¢ (ei. X). Dg(e)) (E(X1. ... Xp))
+RP (DP(X), D*¢p(er, ) (E(X1, ... Xp)
+2R" (D (X). Do (e;)) (Dei&(X 1. ... Xp)) -
Thus by iteration we get
k—1
[D*D, Dk]¢ =Y " D'RM+Dk g
=0
+ > GV RP w D" H o« D1 x D2 e DB pue DI
Y li+Ymj=k-1 ) —times
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In the case of vector spinors, that is ¥ € ['(SM ® ¢*T P), we obtain

+ 2R§(1}Zt N De,'l// + Dei Ril,lgl . w
+ Vogie) RT (DH(X). Do (e ¥ + R” (D?¢(ei. X). Do (en)) v
+ R” (Dp(X), D*¢(ei, en) ¥

and for £ € T(T*=® ® SM ® ¢*T P), we have

([p*D. D)) (X, X1,..., Xp) = —Dricx)§(X1. ..., Xp)
+2RY(DG(X), D$(e)) (Do, ¥ (X1, ..., Xp))
+2RM Do (X1, X))+ Do RYL - (Xi. .., Xp)
+ Vg RY (DG(X), DY (e)) (Y (X1, ..., Xp))
+ RP (D*¢(ei. X). Do (en) (Y (X1, ... Xp))
+ R? (D$(X). D*¢(ei. en) (Y (X1, ... Xp))

k
+23 "Dyt (X, ...,RM(ei,X)Xl,...Xk)
=1
k

+Y ¢ (Xl,...,DeiRM(ei,X)X;, ...xk).
=1

By iteration, we then obtain
k—1 k
[D*D, Dk] v = ZDIRM*DIHI// + ZDIRSM*Dkflw
1=0 =0
+ Z GVIIRN*DmI+1¢*"'*Dmll+1¢*D12+1¢*D13+1¢*Dl4w.
2l mi=k | —times

We conclude this section with a very important lemma, which we will frequently make
use of when deriving energy estimates.

Lemma3.6 Let (M™, g) be an m-dimensional Riemannian manifold, r a natural number
satisfying r > %, E — M a Riemannian vector bundle with a connection, k € N, &, ... &, €
H'(E)andl;i = 1, ...k natural numbers satisfying Y, l; < r. Then the following inequality
holds
k li 2 k
[ w[vha] av < Con 1 e

If in addition, we have &4 € H""YE) and Zf:ll li <r —1, then

2
[ w[vha ] av < oo B el sl
M

Here, Csop = Csop(g, 11, - .., lx, 1) depends on the constant from the Sobolev embedding on
M and the numbers 1y, ..., I, r.
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119 Page 16 of 30 V. Branding, K. Kroncke

Proof We prove the first inequality, the second one is shown very similarly. Choose p; €

[1,00],i =1, ..., such that 1% > % — ’;—l' so that ||Vl".§,~ ”Lpl. < C ||& || g by Sobolev

embedding. Furthermore,

due to our assumptions. Therefore, we can choose the p; such that Zf:] % = % An
application of the Holder inequality finishes the proof of the inequality. O
3.2 Energy of the map
We define the kth energy density of the map part as
2 ko o k 2

e (B) = s ‘D at¢‘ +‘D Dqﬁ‘ (3.3)

and the kth energy as
Ei(¢9) = / ex(P) dVy,. (CX)
b

The kth total energy is given by

k k
Fk<¢>=ZEz<¢>=/EZe,(¢>dvg,=s2||vt¢||§,k+||D¢||§,k, (3.5)
=0 =0

where the Sobolev norms are taken with respect to the metric g;. In (3.9) below, we also
define the total energy Fy(y) of the spinor part, which we already need in the following
proposition:

Proposition3.7 LetT >0, r e N,r > n—1)/2, k € {1, ..., r}and (¢, V) be a solution
of (2.4), (2.5) such that

¢ eC’(10,7), H (=, P))nC ([0, T), H'(Z, P)),
Y eC?([0,T), H (M, SM ® ¢*TP))NC' ([0, T), H " (M, SM ® $*T P)).

Then the kth energy of the map satisfies the following inequality

d . - -
T @) = C1o) (Igll et + 10 Tog Nllce + 5~ I Dlog Nlle + 5™ IR lcir) Fi(@)

2
—(n—2)s§/ ‘Dkvﬂp dv,,
X

+ Calk,n, g)s™! HR”\

k-1
. Z ()22
=1

k
o illes Y Fr@) P E )

1=0

+ C3(k, n, g)s>™" HNZ_"

RP‘

e
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+ Cak,n, g)s'™" HNz_"

RP’

e

k
o 2 @R @)
=0

4 Cs(k,n, 9532 HN472n ”ck HRP‘

k
S F@)' PR )
=0

Ck+l1

(3.6)

where the positive constants Ci, i € {1, ...,5} depend on n, k and the Sobolev constant of
the metric g;.

Proof Assume for the moment that the initial data is compactly supported such that the
solution is spacelike compactly supported. Using the general formula (3.3) we find

%Ek(¢)=2/2<Dth¢,DkVt¢> dVg,Jr%/)S (‘Dquﬁ‘ —sz‘DkV,qb

2
)trgngg,
—|—2s2/ <[v Dk]V¢> D*v ¢> v, +2/ ([D*D Dk]¢ D¢V >dV
ts P, t o , , 1) o
D) X

+ 2/Z <[v,, Dk“] é D"“¢> dv,,.

Due to finite speed of propagation and an exhaustion procedure, this equality also holds
generally for solutions in the above space. Note also that we will use Lemma 3.6 frequently
in the proof without mentioning it explicitly. We have to estimate all terms on the right hand
side and start by estimating the commutator terms

sz/;:<DkVt¢, I:Vf’ Dk] Vt¢> dVe,

= 52 > / VIREx D"+ g xD™1H ¢ D23, D3+ 92 D48, D 8, ¢ AV,
)
YL+ mj=k—1 11 -times

k—1
+s22/;: D" gxD"1,¢xD* 8,4 aVy,
=0

< C(k)s? HRP

k—1
i 2 DS 10013 + COOS? g et 19l
=0

< Ck)s~! HRP

k—1
i 22 Fr@)PF 2 4+ Chlgl et Fi@)-
1=0
The second commutator can be controlled as follows
/ <Dk+l¢’ [V“ Dk+l¢]> av,,
=

= > /):VZ'RP* D" H g x D" 1§ % D23, ¢x D DY D™ DexD* D¢ d V,
Yl mj=k—1 [ -times

k
+y /2 DX 4xD! DgxD* D aV,,
=0

<cmlw

k—1
i 2 NDAUE 18l e + CR gl et | DT
=0

@ Springer



119 Page 18 of 30 V. Branding, K. Kroncke

< Ch)s™! HRP‘

k—1

s 2E @)+ C gl crrt Fie(@).
=0

The third commutator can be estimated as follows
/ <Dk8,¢, [D*D, Dk]¢> A
)
k—1
= Zfz D'R¥+D" ! ¢pxD* 3,4 aV,,

=0

+ > VI RP« D"+ ..« D"1 1y « D2 Dpx D> Dpx D" DpxD*V,¢p dV,

)
Pl mj=k—1 11 -times

k—1
< C) [RZ] s 1091110l e+ C) [RT | S 1DON o1l
=0

k=1
< Clk)s™! “REHCH Fi(¢) + Ck)s ™! HRPHCH Z(Fr(d)))ZH/Z-
1=0

As a second step we estimate the terms that arise when inserting the equation (2.4) for ¢
into (3.3). In order to estimate the first term we calculate

(Ns) 'Vywve¢ = —s5Vip —s>N~'9;NVi¢p + N~' (DN, D¢), .

This allows us to derive the following estimate

[0 (@97 9v0u0) . 049i0) v,
)]
ko o |? : 1 ( DN k-1 k
- _ss'/ DV av,, +Zf D <T) «D¥1Dgx Dk, dV,
z 1=0 P
‘ AN
+s22/ ph (tT) «D2V,pxD*V,¢p dV,
x
li

2
< —sjf ’DkV,q& dVy, + C(k)s_l||DlogN||cka(¢) + C(k)||0; log N|| ck Fi (¢).
)y

In order to treat the second term on the right hand side of (2.4) we have to consider spatial
and time derivatives separately
D* (R (it - 9 (0 )
= Y VIRPwD" g xD"1 ¢ D20 x DB YD =DV,
Dol mj=k [ -times
D*(RP ity - 9 (0) )
= > VIRPxD"Tgu. . aD"1 G xDPyYx DBy «D" Do,
2l mj=k 11 -times
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such that we find
Dk (N> RP (i, - )d (3p) )

= Y. DN SVERPA D" gu o aD™ 2t ¢ DB 0D yx DB YaDOV ¢
Y li+y mj=k I»-times

+V2RP« D" gy« D2 2 DBy DMy« DS D

I»-times
This allows us to derive the following estimate:
1
/ <D" (—Eh“ﬁ(Ns)z‘”RP(w, 0y - w)d¢(aﬁ)) : Dkvt¢> dVy
by

_ s - Z / DZ'NZ_"

z
ZliJerj:k

xs2 | VERP« D" s - xD"™2F 1« DB 3% D' yrx DS > D6V, px DXV,

[»-times

+DRRP % D" pu . xD"2 T  xDBYx DIy 2D DGxD* v, | dV,

[>-times

< Ck,n)s* | N>"

RP’

e

k
o 0ller D NPl 1913 1V e
=0

+ s [N | RT|

k
o 2 1D 1 1 1 Vel
=0

< Ck,n)s* ™" |N>"

RP’

k
| o o llollen D B @) P E )
=0

+ C(k, n)sl—ﬂ ”Nz—f’l

RP’

s

k
o 2 @),
=0

The third term on the right hand side of (2.4) can be computed as

pt (N4_2" <(VR”)Ii W, w>)

= > D'NYTWVEHRFPY DM gu o a D2 kDB Ya DIy x DS yraDly.
D li+y mj=k I>-times
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This allows us to derive the following estimate

[ (ot (@2 (9r7) @) Dka0) av,
z

— s4—2n Z D11N4_2n*V12+1RP
Shtymi=k"”
* D" pu . x DM x DB Y a DIy DSy DOy DX B, 0 d V,

[»-times

< 5472'1C(k) H N472n || -

RP‘

k
crn 2 1Dy 10 180 pl e
=0

< 372 C(k) ” N4-2n ”Ck HRP‘

Ck+1

k
> F@)' PR ()
1=0
Adding up the different contributions concludes the proof. O
3.3 Energy of the spinor
We define the kth energy density of the spinor part as
2|k 2 k 2

e () =% | DV, p |+ | DE Dy (3.7)

and the kth energy as
Ex(¥) =/ ex(Y) dVy,. (3.8)
b

The kth total energy is given by

k k
o) =Y Ei() + Y17, = /E D @) dVe + 1Vl = IV 5 + 1 1 -
=0 =0
3.9)
Note that

d 1 . _ 1 .
Euwu; =20Vl ¥l + 5| trgll=lvli, < (s 14 5| trgnLoo) Fi(y).
(3.10)

Proposition3.8 Let T > 0, r e Nr > n—1)/2, k € {1,...,r — 1} and (¢, V) be a
solution of (2.4), (2.5) such that

¢ eC’(l0,7), H (=, P))nC ([0, T), H'(Z, P)),
v eC?([0,T), H (M, SM ® ¢*TP))NC' ((0,T), H ™" (M, SM ® $*T P)).
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Then the kth energy of the spinor satisfies the following inequality

%Ek(lﬂ) = Citem (| R @0

s+l + 1D eollz) Fiw)

+Co0 85~ (IR e+ [RM] o+ sear® ] ) o)

k
+Can k) (7 anlles ) |RP| oy D2 B @) Fri )
=0

k+1
+ Caln ko )s™ ™ NPT R L ddlen D Fr @) E )?
=0 .
+(1=2) Csnk, s> [N "o log N| | RT | diller D Fr (@) ()
. 1=0
+(1=2) Con, k, 35> [N IRT| 110l g Fr () Fro1 (1)
k+1 B
+Crtn ks = [N [RY L D @) PR @)?
2 2k -
+Csn ks T INTT| IRT | L D D F @) P E ),
= 3.11)
where the positive constants C;, i € {3, ..., 8} depend on n, k and the Sobolev constant of

the metric g;.

Remark 3.9 The curvature quantities coming from the spinor bundle above have to be under-
stood as the following sections: RS (3;,-) € I'(T*E ® End(SM)), RSM = RSM (| ) ¢
['(A’TE ® End(SM)), both by restricting to vectors tangent to X. Moreover d; €
['(End(SM)) acts by Clifford multiplication. The C* norms with respect to g, are then
defined in a canonical way.

Proof In order to derive an energy estimate for the spinor we make use of (3.2). As before,
we may at first assume that the solution is spacelike compactly supported before we obtain
this equality for the general case by an exhaustion procedure. We will also frequently use
Lemma 3.6 in this proof. Again, we have to estimate all terms on the right hand side and start
by estimating the commutator terms:

s2/ <DkV,1/f, [vt, Dk] w) vy,
)

k—1
— 2 Z/ D! (RSM(a,, -)) « D1,y DRV, dV,
)
=0

k—1
+s22/ DK g« DI,y x DV, dV,
1=0Y%

+s2 ) Vi RP
Yty mj=k—1"%
* D" . %D p 4« D2V, 9 DB Dpx DV, 4y DXV, d V,

) -times
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=200 [RM 0. )|

it IVl + 2 CONZ N IV v

+52C() HRP’

k—1
i 2
DI Lo R P AT
=0

= C |RM @, )|, Few) + CONgNer Few)

ch=

+s7'Ch HRP‘

k—1

o 2 @),
1=0

The second commutator term can be estimated as follows:

/;:<[D*D, Dk] v, D"vﬂ//> dv,,

k—1 k
= Z/ D' RMxD* =y DXV, g d v, +Z/ D' RSMsD* =y wD* v,y dV,
1=0“% 1=0“%

+ ) VIRY « D" H ..« D"1+ ¢ x D2 Dpx D> Dx D"y« D* Vs dV,
2l mj=k = [1-times
= CR[RM| L 1w 1V g + €0 RS I 1190

+Cw) HRP

k
o 2 NDGIEZ Y e 1929 g
=0

<s'Clh) (HRM

+ H RSM

o) e

Cck—1
+s7lew R i F (@) F ().
=0

The third commutator can be controlled as follows:

/Eqw Dk+l] v Dk+1w> av,,

k
- Z/ D! (RSM(E),, -)) « DXLy Dk v,
=0 7%

k
+ Z/Z D" gwD! iy DMy a v,
=0

+ ) / VIR« D™ g xD™i g
2l mj=k—1 > [1-times

*D"23,¢x D" Do D" yrx DXy d v,

= C | RM @1, 1 e + COONE 19 e

+Ch) HRP

k
o 2 DI Il 111
=0
= Ch [ RM @], o)+ C@ollgler Few)
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+s7lcw R, i F @) Foa ).
1=0

As a next step we estimate the terms that arise when inserting (2.5) into (3.3). The first term
can easily be controlled as

M 1<
/ Dk Sca '(l/‘ , DkV,w dVg, i Z/ DlscalM*Dk_ll,//*DkVﬂ// dVg,
T 4 40

<Ck) H sca

TR,

Regarding the second term on the right hand side of (2.5) we again expand space and time
contributions

R P9y - 05 - R (d (3,) , dd(35)) ¥ = 257" 8, - 8; - R” (d(3,), d (3))) v
+878"0; - 0 - RT (d(3)), dp (D) v

Note that we do not get a term proportional to |d¢ (3;)|* due to symmetry reasons. We then
find

D* (W 1P, - 3 - RY (d @), dp @) ¥

= > D' R % D™ H pue. %D g «DP2 Dpx DB Dpx D
2l mj=k [1-times
+s2 Y D" 3,«D2RP % D™ H pu ... x D2t w DB A (3,)% D" dpx D'S yr
2l mj=k Ip-times

This allows us to derive the following estimate
f (D (710, - 3 - R (d @), dg @) ¥ ) . D*Viwr) Vs,
X

= > / D' RPx D™ Hpu . xD" T g x D2 dga DB d g D" yrx DXV, dV,
YLty mi=k 11 -times

+s2 ) /Dlla*DlzRP*Dml“dn %D g
Xl +Zm]—k I»-times

*Dl3d¢(8,)*Dl4d¢*D151//*Dk Vi dVy,

< C(k) HRP

Z DI 1 IV |

+52C )10 o

RP‘

Z 1D Vel e 19 1 IV N g

k k
=57 |R7| L Y@ P EoinrC® e [RY| 30 B @ Eo).
1=0 =0
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To manipulate the third term on the right hand side of (2.5) we first consider the derivative
with respect to . We find

Vi (R o)) o v = (Vapo) R”) (0 v) ()"0, -
+2RP (Vg ) (N9, -
+ Q=R Y)(Ns)* "0 log No, -
+ Q= nmis' T NTRE (90 -y

As a next step we calculate the k-th spatial derivative of this expression

k
D ((VapanRY) N0,y ) = 3" DUN?TDETIRY
S li+Y mj=k
* D" e x DMt T g DB DIy w DS 9, D16y« D dp (,),
lp+1-times
k
Dk (RP(V['(//, 1//)]\727"3[ . 1//) — Z Dll N27n*D12 RP
Zl,-+2mj:k
* D" o x D"t g« DBV, a DI x D5 9% D6y,
[»-times
k
Dk (RP W, YIN> "9, log N, - w) = Y D'"N*7dlog NxD"R"
Y Li+Yy mj=k

* D" e x D™ g DB DMy D5 3,4 D'y,

[»-times

k
Dk (N27I1RP(¢’ W), - w) = Y D'N*"sD"RP
Y li+mj=k
*Dml+]¢*. . -*D'"’2+1¢*DI3W*D[4¢*D153t*D16W-

[»-times

These manipulations allow us to derive the following estimates:
[ (D4 (5 (R womyvs) ) DAV v,
by

— g4 Z DU N2 DRTIRP Dm1+l¢* . *Dm12+1+1¢
z
Ylit+ymj=k I +1-times

* DB x DIy w D53, x D'+ D' dep (8,)x DXV, dV,

RS /E DN DP R 4 D™ o 5 DMt g
Zli+2m/=k I>-times

*DB3V, D« D'5 3, x D'y« DXV, 7 d Vy,

+(2_n)js3—n Z Dl‘N2_”*DZZRP*D’"‘+1¢*~--*D’"’2+1¢>
Ll imj=k * [>-times

@ Springer



Global existence of Dirac-wave maps with curvature term on... Page250f30 119

* D3y DM % DI5 3, DI yrx DXV, 4 d Vg,
+@-mstr Y [ D' N?>7"9,log NxD"? R"« D"+ pw ...« D"+ 1
2l +Zm1=k [»-times

* D3y D" % D'5 3, % D'y« DF v, dvg,

= s [N | R7)

119 1l cx Z 1Dy 1 13 Vel e IV g

k+1

P
Cck

+ C(k,n)(n — 2)is> " |[N*"

+ C(k)s4_" ”N2—11

e

19: 1l cx Z 1D 19 1 IV 3
=0

P
Ck

k
+ Clkmn = 25" [N "0 log N s | R |, Nodllcx D2 1D@N e 1130190 s
1=0

e

k
19l Y Dy 19 13 IV |
=0

< C(k)szfn ”szn HRP‘

s

k
19 cx D Fr(@) P2 F g ()
=0

Ck+1

4 C(k)SZ—n ||N2 n |Ck HRP‘

k
dller Y Fe@) P Fro ()
=0

k
+ C(k, n)(n—2)5s> " | N*™" d ] o lliller Y Fe @) 2 F (p)?
=0

e

+ Ck,n)(n —2)s> " [ N* "3 log N |

RP’

k
o loller D F @)Y 2 F ).
=0

As a next step we take care of the spatial derivatives in the third term on the right hand side
of (2.5). These can be computed as

D (R )N ™) -y = (DagR” ) (W ) (N> - g+ 2RP (DY, ) (NP -
+5* "R ) DN -y

The kth spatial derivative of these terms acquire the forms

DH((DasR”) (b, ) (N~ - )
:S2—n Z Dl[+1RP*Dm1+l¢*.'.*Dln[l+1+l¢*DZQI//*DI31/I*DZ41//*D15N2—H’
2l mi=k (l1+1)-times
Dk (RP (DY, ) (N - )
=57 Y D'RPxD™Flgu- 4D ¢« DP Dyra DBy DM yra DN,
2l mj=k 11 -times

Dk (@R () DN - )
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:527” Z DllRP*Dml+l¢*---*Dmll+1¢*Dlzw*Dl3l//'*Dl4l/f*DljDN27”.
Y li+y mj=k 11 -times

These manipulations allow us to derive the following estimates:

/E<Dk (D (RP(Iﬂ, w)(Ns)H) 3 - 1,//) , Dkv,¢> vy,

— s2—n Z Dl] Nz_”*DIZHRP* Dml'H(b* . .*Dm12+1+1¢
Sl my=k " (ly+1)-times
*DB Y« Dy DSy« DF YV, dV,
4og2n Z / DU N2 DR RP « D" H - kD2t
Ll mj=k lr-times

*DB Dy« Dy D5y« D*V,yr dV,

+s7 Y /D“D (N> ") xD2RP % D™ H s ... x D™y
S L4y mj=k Ip-times

* DBy Dy DSy« D*V,yr dV,

P
Ck

k
R”| L Y 109 191 191l
1=0

< C(k)sz—}’l ||N2—}’l

e | R e Z 1D 1 13 I Ve

+ C(k)SZ—n ”NZ—n

e

Z DIy 119113 IV | 0
=0

+ Ch)S* " |N* i

< CR)s"" N7 i

#°]

Ck+1

k+1
> F@)PFo ).
=0

To control the last term from the right hand side of (2.5) we calculate

DX (N> RP (W )R ()
:s27n Z D11N27n*D12RP*Dm1+l¢*.”*Dm12+1+l¢
2l + X mip+3 iy =k I-times

*DB R % D1 e 4 D51+ s DIy s DS a D16y« DYy D' 3.

I3-times

Consequently, we obtain the following estimate
[0 (@vsr & @R o) 0450) av
b

< S2_nC(k) HNZ—I’I ’RP’

e |

2k

2

o 2N DO I 1 IV
=0
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< s'71C) [N o | R

2k
2
o 2 @ P ).

=0
The last term of (3.2) can be estimated as

f (Dfveo - (D*eo) - D) avy, = ID*eollue 11
b
Adding up the different contributions yields the claim. O

Remark 3.10 Note that all terms on the right hand side of (3.11) have a similar analytic
structure except the terms proportional to C3 and Cg, which contain higher powers of the
H" -norms of ¢ and /.

3.4 Energy of the coupled pair

Before we prove an energy estimate for the coupled pair, we give more geometric interpreta-
tions of the terms appearing in the above estimates. At first, recall that the second fundamental
form I € [(T*2%%) of a hypersurface ({t} x X, g;) C (M, h) is given by

1,,. s,
(X, ¥) = (Vx¥ = DxY, v}y = 5 (%&(X, ¥) - 8y, v}, = = &(X, V),
where v is the future-directed unit normal of the hypersurface.

Lemma 3.11 We have the estimates

Iglcr <257 Mlice,  [IDeollzoe < Mz, Nillcr < 57" (14 [Wcim),

k
|R™ [ e < €O D M (IRM [l + C k) 1T
=0

RM

)

Cck

k
SM I
[R5, = cwom Y
=0

[ RS,

RM’

ck ck’

k+1
< Clk,m)s™" Y M1,
=0
Here, we defined the C*-norm of RM by taking the kth covariant derivative with respect to
h but taking the norm with respect to the Riemannian reference metric s~>dt> + g; in order
to get a nonnegative quantity.

Proof The first estimate follows from the definition of 1I, the second and third from the facts
that Vxo; = %g(X) and egp = sd;. Now we recall that for every tensor T € [(T*=%k) on
the manifold M, the difference between the covariant derivatives V and D can be expressed
as

DT = VT + 1T,

which by induction yields

DFT = Z D™ Tx- - - «D" T xV2T.
[ ——
Li+h+) mi=k 1) —times
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This formula in combination with the Gauf} equation
R* = RM 4+ TIxIl
yields the fourth inequality. To prove the last two formulas, we recall that

1 n—1
RMX, Yy =2 D0 RY (X, Y, 0u, 8p) o 0
o, =0

for X,Y € I'(T M), where {9y} is a local pseudo-orthonormal frame. Therefore, we get in
the above situation

(D"RSM)IPZ > DMk +D" V2R sy,
L4h+Y mi=k | —times

which yields the fifth inequality. Similarly, by using the product rule, we obtain

(DkRSM(E),, .)) Y= Y Dhow DI +D"BLAVERM wy
[ ——
Y liAy mj=k I, —times
and by using the third inequality we obtain the last one. O

At this point we are ready to control the total energy of (¢, ¥), which we define by

r—1

Fr(p,¥) = Fr(@) + Fa(¥) = Y Ex(@) + Y Ex(¥) + 1¥ 117

k=0 k=0
= 210,017 + 1D 3 + SV 13,1 + 1DV 3,0 + (W12,

Proposition3.12 Let T > 0,r e N, r > (n — 1)/2 and (¢, ) be a solution of (2.4), (2.5)
such that

¢peC’((0,7), H (2, P))NC' ([0, T), H' (Z, P)).
Y eC?([0,T), H (M, SM ® ¢*TP))NC' ((0,T), H " (M, SM ® $*T P)).
Suppose that s > 0 and that the following uniform bounds
0<C =N=CGC3 |Nleg+ <C4 [[VuNlcr1 <Cs,

r+1

IWer < Co. [RY] | <cr |R7] ., < s MMl < Cos™

hold for some positive constants C;, i = 1,...,9. Suppose finally that there is a uniform
bound on all the Sobolev constants of g;. Then the total energy satisfies the following inequal-

ity

2r+4 r
%Fr«p, V) SCos' Y F@ )T H Coi—25' T Y Fi(g, )P (312)
=0 =0

where C > 0 depends on the above bounds.

Proof The estimate is a direct consequence of the evolution inequalities (3.6), (3.10), (3.11),
Lemma 3.11 and elementary estimates. O
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Proof of Theorem 1.1 The existence of a local solution to the system (1.2), (1.3) can be
obtained by standard methods, see for example [21, Proposition 9.12]. In order to prove
long-time existence, it suffices to prove longtime existence of the solution (¢, ¥) of the
equivalent system (2.4), (2.5) on the conformal manifold (M, h).

Moreover, by the continuation criterion for hyperbolic partial differential equations [21,
Lemma 9.14] if suffices to obtain a uniform bound on F;. (¢, ¥) for all times ¢ € [0, 00).

We set f(t) = (n — 2)s!'="5. Note that f(¢) is integrable with respect to ¢. For n = 2,
this is trivial. For n > 2, we get due to the assumptions on s that

o0 o0 d
(n— 2)/ ssi™dr = —/ o (szfn)dt =— (s27”|,=oo — s27"|,=o) = 5(0)>™" < oc0.
0 0

As long as F;- (¢, ) < 1 we have the differential inequality

d -1
Eﬂ((b, ¥) < C(s7H )+ f1) Fr (o, ¥),

which can easily be integrated as

T
Fe(@, ¥)li=r < Fr (¢, ¥)li=o exp (/o 7'+ f(f))dl) -

Now, we set ® := fooo(s’l(t) + f(t))dt < oo and choose ¢ > 0 small enough such
that F, (¢, ¥)|;=0 < (2®)~'. Suppose that Tj is the first time for which F,(¢, ¥)|5, = 1.
However, the energy inequality from above gives

1
Fr@. ¥)li=1y = PF($. Y)li=0 = 7 < L.

which yields a contradiction. Therefore we can conclude that

Fr(¢,9) <1 <00
for all times ¢ € [0, oo) completing the proof. O

Proof of Theorem 1.3 The proof is as above but we additionally assume that ¢ = 0. In this
case, we just need the assumptions in Proposition 3.7 and not the slightly stronger ones
in Proposition 3.8. As the spinor is not involved, we obviously can also remove the spin
condition. O
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