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Abstract
Lithium halocarbenoids are versatile reagents for accomplishing homologation processes. The fast a-elimination they

suffer has been considered an important limitation for their extensive use. Herein, we present a series of practical

considerations for an effective employment in the homologation of selected carbon electrophiles.
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Introduction

Methylenating agents are recognized as valuable synthetic

tools in homologation reactions, allowing the formal

insertion of a methylene unit (i.e., CH2) into a given pre-

formed bond. Classical examples of homologation pro-

cesses are represented by the carbon chain extension or the

ring expansion of carbonyl compounds [1, 2].

Carbenoidic reagents play a prominent role within the

plethora of homologating agents [3–6]. The term carbenoid

was introduced by the pioneers in the field Closs and Moss

who defined their chemical reactivity ‘‘qualitatively anal-

ogous to those of carbenes without necessarily being free

divalent carbon species’’ [7]. Accordingly, organometallic

compounds containing a metal atom (e.g., Li, Mg) and, at

least one electronegative element (e.g., halogen) linked to

the same carbon, have been referred to as carbenoids, thus

considering their carbene-like features [8].

A significant advancement in the field originated from

the work of Gert Köbrich and coworkers in the 1960s [9].

These milestones still represent the key concepts in car-

benoid chemistry and put the bases for the rational design

and understanding of reactions involving these versatile

synthetic tools. The concomitant presence of an electron-

donating and electron-withdrawing substituent at the car-

bon center determines the so-called ambiphilicity of these

reagents [5, 10]. Thus, carbenoids display a dual reactivity

ranging from nucleophilic to electrophilic [6, 11, 12].

Depending on the experimental conditions, they may

selectively exhibit only one of these two properties

[13–17]: it is normally accepted that the nucleophilic
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Table 1 Controlled generation of Li-carbenoid, LiCH2Cl

Entry T/�C 2a/% 3/% 4/%

1a - 78 94 0 0

2a - 65 94 0 0

3a - 55 94 0 3

4a - 45 95 0 2

5a - 35 88 0 3

6a - 25 85 0 5

7b - 25 93 0 0

8a - 15 89 0 4

9a - 5 65 8 6

10a 0 68 10 9

11a 20 25 49 20

12c 20 26 60 4

a0.200 cm3/min drop rate of MeLi–LiBr
b0.400 cm3/min drop rate of MeLi–LiBr
c0.050 cm3/min drop rate of MeLi–LiBr
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behavior is shown at low temperatures, while their elec-

trophilicity comes into play at higher temperatures

(Scheme 1) [6, 18, 19]. This key characteristic of carbenoid

reagents can be explained taking into consideration struc-

tures, which in principle can provide two different ion-

ization forms. On the one hand, a negative charge is

localized at the carbon atom (i.e., it becomes nucleophilic),

while in the other case the carbon atom brings a positive

charge (i.e., it becomes electrophilic).

Given these premises, one may individuate two different

reactions categories in which carbenoids are involved: (1)

nucleophilic additions (eventually followed by elimina-

tion); (2) cyclopropanation-type processes (Simmons–

Smith like chemistry) [20, 21]. It is important to stress that

carbenoids of lithium and magnesium, because of their

excellent nucleophilicity, do react predominantly as car-

banions [6, 13–16]. On the other hand, less nucleophilic

carbenoids such as zinc or rhodium linked ones exhibit

preferentially an electrophilic behavior [4, 22].

In recent years, our group launched a research program

[23] focused on the use of carbenoid-type reagents for the

homologation of different carbon (Weinreb amides

[24–32], ketones [33, 34], isocyanates [35–38]) or het-

eroatom electrophiles [39] for preparing in a single step a-

halo or rearranged (thereof) derivatives [40]. We observed

a paramount importance of the conditions employed for

generating the carbenoid and, herein, we disclose full

details on how to prepare and use these highly reactive

species under Barbier type conditions [41, 42].

Results and discussion

We evaluated the employment of a syringe pump, as a

practical tool to modulate the addition rate of organo-

lithium and its influence in carbenoid-mediated homolo-

gation reactions. A straightforward strategy to yield

halohydrins requires the treatment of an aldehyde or a

ketone with halocarbenoids. Reactions involving car-

benoids need an excess of both halomethyl precursor and

Li-source to overcome the limiting instability after their

generation at - 78 �C [18]. The carbenoid species were

generated in situ, by adding MeLi–LiBr (2.8 equiv)—using

an automatic syringe pump—to a solution of ICH2Cl (3.0

equiv) and electrophile (1.0 equiv). Accordingly, we firstly

evaluated the reproducibility of the reaction (reported by

Matteson in 1986) [43] on benzaldehyde (1) being the

substrate endowed with an excellent electrophilic profile.

Moreover, for comparative purposes, we performed an

exploratory reaction, adopting a manual addition of the

organolithium reagent (MeLi–LiBr), at - 78 �C. The

synthetic protocol led us to obtain the desired chlorohydrin

2a, in relatively low yield (54%). Considering this result,

we directed our efforts towards the identification of the

optimal conditions to achieve a complete conversion of

benzaldehyde into the corresponding 2a, exploiting a syr-

inge pump. Different temperatures—ranging from - 78 to

20 �C—were screened to evaluate the conversion of the

aldehyde into the desired product and, the subsequent

generation and distribution of side-products (i.e., epoxide 3

or alcohol 4). The so-obtained chloromethyllithium

Table 2 Temperature dependency of different halomethyl carbenoids

Entry T/�C CH2I2 CH2Br2 ICH2Br

2b/% 3/% 4/% 2c/% 3/% 4/% 2c/% 3/% 4/%

1 - 78 90 3 2 78 0 5 78 0 0

2 - 65 81 2 12 62 0 24 79 4 3

3 - 55 86 3 5 71 0 19 84 3 5

4 - 45 68 24 4 90 0 5 81 7 3

5 - 35 45 35 11 85 0 7 87 7 2

6 - 25 45 41 5 39 5 48 64 28 3

7 - 15 32 39 18 46 10 34 52 40 3

8 - 5 22 54 4 0 20 68 34 12 51

9 0 23 54 10 4 16 66 0 16 75
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Table 3 Study of ICH2Cl reactivity toward electrophiles at different temperature

Entry T/�C 5a 6a 7a

1 - 78 64 82 93

2 - 65 65 74 95

3 - 55 54 72 97

4 - 45 68 69 97

5 - 35 68 59 94

6 - 25 70 51 91

7 - 15 57 33 85

8 - 5 40 38 59

9 0 44 21 59

Numbers signify conversion (%) of 5, 6, and 7 towards their corresponding homologated product 5a, 6a, 7a based on 1H NMR calculations

Table 4 Use of additives/salts

Entry Additive T/�C 7 7a 7b

REF REF - 35 4 94 2

1 LiCl (0.5 M in THF) - 35 18 81 1

2 LiBr (1.5 M in THF) - 35 17 68 5

3 Ti(OiPr)4 - 35 44 56 0

4 MnCl4Li2 (0.5 M in THF) - 35 68 32 0

5 TMEDA - 35 7 92 1

6 LaCl3 - 35 11 86 3

7 CeCl3 - 35 17 83 0

8 FeCl3 - 35 47 53 0

9 CoCl2 - 35 22 78 0

10 NiCl2 - 35 26 73 1

11 PbCl2 - 35 16 83 1

12 InCl3 - 35 20 80 0

13 LiClO4 - 35 0 [ 99 0

14 CuCl - 35 19 79 2

15 CuI - 35 37 58 5

16 SbCl3 - 35 43 57 0

17 CdCl2 - 35 15 85 0

18 MeNH(CH2)2NHMe - 35 38 54 8

19 HMPA - 35 20 51 2

20 DMPU - 35 17 81 2

Numbers signify conversion (%) of 7 to 7a and 7b based on 1H NMR calculations

1288 S. Monticelli et al.

123



promptly reacts with the aldehyde present in the reaction

environment affording chlorohydrin 2a.

LiCH2Cl-mediated homologations show the best com-

promise between stability and reactivity at - 78 �C.

Nevertheless, the syringe pump-mediated addition of the

lithium reagent allows with a rate of 0.200 cm3/min to

increase the reaction temperature up to - 15 �C (Table 1,

entries 1–6 and 8), obtaining the corresponding homolo-

gated product 2a in good yield. Conversely, increasing the

temperature from - 5 to 20 �C (Table 1, entries 9–11), the

homologated product 2a is gradually converted into

epoxide 3 via an internal SN2 reaction and the formation of

4 is increased due to the competitive attack of MeLi to the

carbonyl [44]. Increasing the rate from 0.200 to 0.400 cm3/

min (Table 1, entry 7) at - 25 �C resulted in an excellent

conversion into 2a and no formation of 4 was detected. As

the addition rate of MeLi–LiBr was reduced to 0.050 cm3/

min at 20 �C (Table 1, entry 12), we observed a higher

conversion of 2a into epoxide 3, and reduced attack of

MeLi to the aldehyde. The results obtained can be trans-

lated to a higher control for generating the Li-carbenoid

species at elevated temperatures as well as maintaining a

good stability and reactivity. In turn, for this specific case,

the thermal instability of halohydrin 2a lies on the

boundary of - 25 to - 15 �C.

We then studied the effect of temperature on the reac-

tivity of halocarbenoids generated by different halomethyl

sources to compare the behavior of Li-carbenoid species.

The use of diiodomethane for generating iodomethyl-

lithium showed good results under the reaction condition

below - 55 �C (Table 2, entries 1–3). The increase of the

temperature favored the formation of the corresponding

epoxide 3. Notably, compound 4 does not exceed 18%

even at 0 �C (Table 2, entries 7–9).

Difficulties in controlling the generation of bro-

momethyllithium carbenoid arose when using CH2Br2 as

dihalomethane. Evidently, the Li-carbenoid is generated at

a minor extent in comparison with ICH2Cl and the reaction

is dominated by a direct nucleophilic addition of MeLi on

carbonyl at temperature up to - 25 �C (Table 2, entries

6–9). ICH2Br was then used as alternative bromomethyl

source, showing similar results to ICH2Cl, albeit in slightly

lower conversion into bromohydrin 2c. It showed a good

control in generating the bromomethyllithium carbenoid

and maintaining a good reactivity until - 35 �C (Table 2,

entry 5). Increasing the temperature, resulted in the bro-

mohydrin ring closure to afford epoxide 3 (Table 2, entry

7) and at 0 �C no bromohydrin 2 was anymore detected

(Table 2, entry 9). At higher temperature, MeLi–LiBr

possesses a higher reactivity towards benzaldehyde than

ICH2Br; in fact compound 4 represents the main reaction

product at 0 �C (Table 2, entry 9). In the light of these data,

ICH2Cl remains the best source for generating and main-

taining a good reactivity of the Li-carbenoid, LiCH2Cl,

towards benzaldehyde.

With the aim to widen the stability/reactivity study

employing syringe pump, other electrophiles were sub-

jected to the previous reaction conditions. 2-Phenylac-

etaldehyde (5), phenyl Weinreb amide (6), and

cyclohexenone (7) were selected for this scope.

Extending the chain with one carbon atom, 2-pheny-

lacetaldehyde resulted in a quasi-stable conversion towards

5a although in a minor consent when compared to ben-

zaldehyde 1.
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Fig. 1 Use of additives/salts
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Afterwards, the homologation of Weinreb amides—a

class of acylating agents particularly suited for a-substi-

tuted organolithium reagents [45–48]—was evaluated. N-

Methoxy-N-methylbenzamide (6) showed rather good

results until - 45 �C, where the conversion starts to

decrease, however, maintaining 21% conversion at 0 �C
(Table 3, entries 5–9).

The a,b-unsaturated cyclic ketone 7 was then chosen as

electrophile, due to our previous interest in its challenging

reactivity [40]. Surprisingly, it showed a very good sta-

bility profile even at temperature close to 0 �C and prac-

tically the same reactivity of benzaldehyde with

chloromethyllithium (Table 3, entries 5–9). To reach full

conversion of cyclohexenone into chlorohydrin 7a, differ-

ent additives were tested. They could promote the forma-

tion and improve the stability of the Li-carbenoid and

ultimately increase the electrophilicity of the

cyclohexenone.

As shown in Table 4 and in Fig. 1, the reference con-

ditions were set at - 35 �C for 1 h, upon which small

conversion into aldehyde 7b (as a consequence of the

Meinwald rearrangement) was started to be observed [40].

From the obtained results, we can conclude that the

addition of additives has almost no beneficiary effect on the

conversion towards 7a. Nevertheless, there are a few cases

worth mentioning. Although entries 2, 15, and 18 (Table 4,

Fig. 1) show a decrease in the homologated product 7a;

they also resulted in a slightly higher conversion into the

corresponding aldehyde 7b. Surprisingly, full conversion

of cyclohexenone 7 into 7a was observed only when

lithium perchlorate LiClO4 (Table 4, entry 15; Fig. 1) was

used. With this result in hand, we examined the concen-

tration dependency of cyclohexenone in combination with

LiClO4. As reported in Table 5, the optimal concentration

(Table 5, entry 4) was found to be 1 M and it represents the

concentration used in all the previous experiments.

Conclusions

The well-known instability of lithium halocarbenoids has

represented a significant challenge for their employment in

synthesis [49]. Despite the usefulness, the requirement for

strict conditions for counterbalancing the degradative a-

elimination had somehow constituted the main limitation,

thus obscuring the innate potential. In this study, we

identified the ideal conditions (stoichiometry, temperature,

syringe pump) for finely tuning their generation and reac-

tivity towards common carbon electrophiles.
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