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1

Abstract—Recently, it has been argued that natural, intact

stalagmites in caves give important constraints on seismic hazard

since they have survived all earthquakes over their (rather long) life

span. This suggests that the pattern of oscillation should be fully

understood, including the splitting of eigenfrequencies that has

occurred in recent cave observations. In the present study, we

simulate the oscillation of a given stalagmite by setting up four

simplified models of the stalagmite. The dimensions of the intact

stalagmite were measured in situ, and the geo-mechanical and

elastic parameters of broken stalagmite samples, determined in

geo-mechanical laboratory, have been taken into account. The

eigenfrequencies of the stalagmite are then calculated numerically,

by the finite element method, and compared with the measured

in situ values. The latter have shown splitting of eigenfrequencies,

which we were able to reproduce by the numerical model calcu-

lations taking into account the asymmetric shape of the stalagmite.

Key words: Earthquake, palaeoearthquake, stalagmite, finite

elements, seismic hazard, eigenfrequency, asymmetry.

1. Introduction

The main motivation for this numerical modeling

study comes from the wish to better understand

seismic hazard, a problem with important social and

economic implications. The occurrence of strong

earthquakes is well-known at many plate boundaries,

but especially in intraplate regions, the seismicity rate

can be low. Recurrence intervals of large earthquakes

can be as long as 10,000 years (Scholz 1990) and

may thus be overlooked (Calais et al. 2016). In such

areas, the missing long-term information about past

earthquakes makes it very difficult to appropriately

estimate the seismic hazard. The long-term

information of earthquakes in Central Europe is

missing since the instrumental seismic records go

back only for about a century and even the historical

reports generally provide too short and incomplete

coverage of the past (Zsı́ros 2000; Tóth et al. 1996–

2014). In principle, such long-term information may

be gained from the traces of strong palaeoearthquakes

that pre-date the available catalog information, or

from the absence of such traces. The latter may in

principle be established by the continued existence of

speleothems that are still intact in the pertaining

region, indicating a lack of earthquakes strong

enough to destroy them (Boch 2008; Szeidovitz et al.

2008a, b; Gribovszki et al. 2008, 2013a, b, 2017). For

stalagmites that have survived, we are able to esti-

mate the horizontal ground acceleration that would

have made them failed at different stages of their

growth. It can then be concluded that the ground

acceleration has not exceeded the estimated value

ever since the growth stage for which it was com-

puted. Such information can be crucial for properly

estimating the seismic hazard.

In order to evaluate the vulnerability of spe-

leothems to earthquakes, it is necessary to know the

range of their natural frequencies, since the spe-

leothem can undergo dynamic amplification during

excitation. Therefore in order to determine the

behaviour of speleothems under seismic action, it is

necessary to have information about the natural fre-

quency band of such speleothems (Lacave et al.

2000). Only very elongated, thin and long spe-

leothems are subject to the dynamic amplification

phenomena, because their natural frequencies are

within the seismic frequency range (around

0.1–30 Hz). These dripstones could undergo such

amplification that might lead to their rupture during a

real earthquake (Lacave et al. 2004) and we are

investigating that kind of dripstones. This means that
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they have much higher probability to fail with a

lower ground acceleration value than in static case,

when speleothems move as rigid objects together

with their base.

In Bao et al. (2014) resonance frequency was

calculated by numerical discontinuous deformation

analysis (DDA) method and measured as well. DDA

method to perform site response analysis of free

standing columns can be found in that study. The

ability of DDA to simulate wave propagation through

structures is tested by comparing the resonance fre-

quency obtained for a multidrum historical

monument column when modelling it with DDA and

testing it in the field using geophysical site response

survey.

Our study was mainly motivated by the reason

that the eigenfrequencies of the stalagmite measured

in situ have not been fully reproducible by simple

analytical calculations. Therefore we set up a

numerical modeling approach to predict the eigen-

frequencies of the stalagmite we investigated,

assuming a variety of geometrical shapes. Do these

match the values measured in situ if we take into

account realistic geometrical features of the stalag-

mite? Is the assumed (non-realistic) symmetric shape

the reason why the calculated natural frequencies

(Gribovszki et al. 2013a) differ from the measured

ones? A previously unexplained feature was the

splitting of the harmonic oscillations. We address

whether numerical computation can reproduce that

phenomenon or whether this is an artifact of the

in situ measurement method.

First, we present the stalagmite that gave rise to

this study. Then we explain how we determined the

eigenfrequencies by using the recorded in situ

vibration (field observation). Afterwards we briefly

review the theoretical basis for the numerical mod-

eling, and show in detail the different computations

that were done, their results and the comparison with

the field observations made in the cave. Finally, we

test the numerical model computation with the ana-

lytical solution and discuss the possible reasons of the

splitting of eigenfrequencies.

2. The Investigated Stalagmite in the Domica Cave

and the Measured Parameters of Broken Samples

The stalagmite that we investigated in situ (Fig. 1)

is standing in the Ördög-lik Hall (C̆ ertova diera) of

the Domica cave, which is the Slovakian part of the

Baradla-Domica cave system located in Northeastern

Hungary. The height of this candlestick-shaped (tall,

slim and more or less cylindrically-shaped) stalag-

mite is about 4.6 m; the average diameter of it is

about 5–6 cm (Table 1). Measuring more precisely

the dimensions of the stalagmite in the cave was

difficult, since it is rather difficult to approach.

The elastic parameters and the mechanical prop-

erties, which were used for the model calculations

(analytic and numerical as well), were determined in

a mechanical laboratory (Gribovszki et al. 2013a;

Konecny et al. 2015), and by in situ vibration mea-

surements in the cave. Mechanical laboratory

measurements were performed on samples originat-

ing from stalagmites, which were found lying broken

on the ground in the Ördög-lik Hall of Domica cave.

The dynamic Young’s modulus (E) was determined

from ultrasonic Vp and Vs values (Nováková et al.

2011). The latter were measured by the direct pulse

transmission technique using a portable digital

Figure 1
The intact, candlestick-shaped stalagmite that we investigated in

the Domica cave, Ördöglik Hall (Slovakia)
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ultrasonic instrument (Pundit Lab ? , Proceq Com-

pany), and the measurements were carried out in the

mechanical laboratory of the Institute of Geonics of

the Czech Academy of Sciences (Konecny et al.

2015). The dimensions and the relevant elastic and

geo-mechanical parameters of the stalagmite are lis-

ted in Table 1. MC-ICP-MS age determinations have

shown that this stalagmite is not older than eight

thousand years (Gribovszki et al. 2013a).

In the model computations, isotropic elastic

properties of the stalagmite have been assumed,

therefore only one value determining each property

was enough.

3. The In Situ Non-Destructive Vibration

Measurements in the Cave

The vibration of the stalagmite we investigated

was recorded twice in situ in 2012 and in 2013, and

by two different sensors and data loggers. The first

measurements were carried out in 2012 and have

been documented in Gribovszki et al. (2013a). The

second in situ measurements were performed in 2013.

At that time, a low-frequency geophone (type LF-24)

was fastened onto the stalagmite in order to record its

vibration. The geophone eigenfrequency is 1 Hz; it

has a built-in nonlinear correction pre-amplifier (its

weight is 0.3 kg). A Reftek 130S-01 data logger was

also used (24 bit, AD converter). A special coupling

sensor holder was built to ensure sufficient mechan-

ical connection between the stalagmites and the

geophone and to precisely adjust the horizontal

position of the geophone.

The stalagmite was excited by hitting it gently

with a finger. The vibration of the excited stalagmite

was recorded (Fig. 2), and it was later analyzed in the

office and the natural frequencies of the stalagmite

have been determined. As shown in Fig. 2 and

Table 2 the power spectral density of vibration indi-

cates that the eigenfrequency of the stalagmite is

around 2.1 Hz, and the first higher harmonics are

about 10.2 and 10.6 Hz. Such a low natural frequency

could very well occur during a local earthquake

(Lacave et al. 2000, 2004), and put the stalagmite in

resonance.

In the following we will call the set of eigenfre-

quencies plus higher oscillations the

‘‘eigenfrequencies’’. For the higher frequencies,

around 10 and 26 Hz, the harmonic oscillations split

into two individual spectral lines (see Fig. 2 and

Table 2). We will discuss this in the later part of this

paper, and model the splitting of eigenfrequency by

numerical computations. Such a splitting is not

apparent for the eigenfrequency itself, at 2.1 Hz, but

such a splitting may perhaps be hidden by the limited

frequency resolution of 0.16 Hz, which is due to the

limited length of the time window.

4. Deformation Model for Stalagmites

4.1. Linear Elasticity Theory

The motion of a stalagmite under seismic forces

can be described by the linear elastic wave equation:

q€u þ gs _u ¼ �r � rþ F; ð1Þ

where q represents the medium density, €u is the

acceleration of the unknown displacement u, and F

denotes the seismic excitation force. The damping of

the material is included by the coefficient gs. r
denotes the stress tensor, which is linearly related to

the strain by the constitutive equation:

Table 1

Dimensions of the stalagmite we investigated and elastic and mechanical properties of broken stalagmite samples collected from the same

cave

Length (measured in situ) H = 4.6 ± 0.3 m

Thickness (measured in situ) D = 2r = 5-6 cm

Dynamic Young’s modulus (measured in the lab) E = 33.6 ± 0.4 GPa

Poisson’s ratio (measured in the lab) m = 0.1

Density (measured in the lab) q = 2347.6 ±115.8 kg/m3

Damping factor (calculated from the recorded vibration) gs= 0.00048
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r ¼ Ce; ð2Þ

while the strain tensor is defined by:

e ¼ 1

2
ru þruT
� �

; ð3Þ

and the fourth-order stiffness tensor C for isotropic

media with Lamé constants k and l is given element-

wise by:

Cijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ; ð4Þ

where dij denotes the Kronecker symbol.

Another important case of dynamic problems is

the eigenoscillation problem (EOP) for an elastic

body with surface stresses (Altenbach et al. 2013;

Day and Romero 2004). In this case we seek time-

harmonic solutions of the homogeneous dynamic

Eq. (1) with F = 0, in the form

u ¼ u x; tð Þ ¼ w xð Þeixt. Substituting this into (1) and

cancelling the factor eixt, we get:

r � r ¼ �qx2w; ð5Þ

where x is the frequency of motion.

Alternatively, it is common to use the Euler–

Bernoulli beam theory as a simplification of the linear

theory of elasticity for transverse vibration which

provides a means for calculating the load-carrying

and deflection characteristics of beams. It covers the

case for small deflections of a beam that is subject to

lateral loads. However, the Euler–Bernoulli beam

theory does not account for the effects of transverse

shear strain. As a result it underpredicts deflections

and overpredicts natural frequencies. A more accu-

rate approach is the Timoshenko theory, which also

includes shear and rotation inertia. Although this

theory gives remarkably accurate results compared to

a two-dimensional model, not all types of distur-

bances can be modelled appropriately, see

Labuschagne et al. (2009); Pilkey (2002). Overall,

stalagmites are not unlike other common elements in

mechanical engineering structures, like beams,

trusses, etc., and they can be treated similarly.

4.2. Boundary Conditions and Loadings

There exist several types of boundary conditions

for elastic media. For our purpose the most important

one is the free-surface boundary, which we apply to

the entire surface of our stalagmite model except for

the ground interface. On the latter we will either

impose clamped or fixed boundary conditions or

prescribe a given load source.

The free surface condition requires that surface

tractions are zero, both for tangential and normal

stress components. With the normal vector n acting

on the surface this condition is given by:

n � r ¼ 0 ð6Þ

While the fixed boundary condition can be

expressed by u ¼ 0, there are also numerous types

of loads that can be applied. Depending on the

problem configuration and the numerical modeling,

seismic waves and seismic motion can be modelled

for example by a point source (which may, however,

be numerically unstable in some cases) or an incident

plane wave. The gravity body force is also taken into

account for every part of the model.

4.3. Numerical Computation Method

A common numerical technique for solving prob-

lems in mechanical engineering is the Finite Element

Method (FEM). It gives great flexibility for modeling

bFigure 2

Excitation spectrum of the stalagmite: a the recorded vibration and

spectrum of part of it in Hz, b vibration and spectrogram showing

the repeated excitation by a gentle hit recorded in 2013

Table 2

Dimensions and natural frequencies measured by non-destructive in situ examinations of the stalagmite that was studied (observed data in

Table 3, second column)

Height (m) Diameter (cm) H/D Measured f0 (Hz) Measured f1 (Hz) Measured f2 (Hz)

4.60 ± 0.3 Average: 5–6 98–70 2.1 10.2; 10.6 25; 26.5
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complex geometries and can easily handle any type of

general boundary conditions and variable material

properties. FEM has a solid theoretical foundation,

which gives added reliability and makes it possible to

mathematically analyze and estimate the error in the

approximate solution. A detailed explanation of this

numerical scheme is given in Appendix 1.

The Finite Element numerical calculations that we

will present in the following have been done by

COMSOL Multiphysics software, Structural Mechan-

ics Module, Solid Mechanics interface.

5. Numerical Examples and Applications

5.1. Models for the Stalagmite

For modeling the eigenfrequencies of the stalag-

mite, we have constructed four approximate models to

test the effect of different features of the stalagmite

model. This approach helps us to understand where

the observed phenomenon may be coming from. An

alternative approach might be to produce a full model

of the stalagmite surface, and to enter this into the

modeling. However, a 3D laser scanner was not

available, since the path to approach the stalagmite

was quite difficult and narrow, and it would not have

helped to isolate the cause of the observed phenom-

ena. We chose to use approximate stalagmite shapes.

This approximate shape was constructed on the basis

of pictures of the stalagmite taken from different

angles in the cave. The first model (Model A) contains

the largest complexity, and this model is the most

similar to the real geometry of the stalagmite,

consisting of a series of cylinders and cones; the

second one (Model B) corresponds to the first one, but

the asymmetric parts are centered; the third model

(Model C) consists of a single elongated cone, and the

fourth model (Model D) is a cylinder with average

diameter of the real stalagmite. The four models are

illustrated in Fig. 3, with a concise presentation of the

corresponding parameters in Appendix 2.

5.2. Natural Eigenfrequencies

Based on the formulation of the EOP in Eq. (5),

we computed the natural frequencies by using the

COMSOL Multiphysics Eigenfrequency Study, (the

mesh type was set to ‘‘extra fine’’) and the resulting

Figure 3
Different geometries of the stalagmite a asymmetric model Model A, b the symmetric model Model B, c the cone Model C, and d the cylinder

Model D (depicted in four-fold horizontal exaggeration)
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values were compared to the ones observed in the

Domica cave Ördöglik Hall, as shown in Table 3 and

illustrated in Fig. 4. The element size of the mesh

applied (* 7 mm) comparing it to the wave length

was suitable, as it was written in Lysmer and

Kuhlemeyer (1969). The width of the pink bar in

Fig. 4 shows the uncertainty of the observed eigen-

frequencies (± 0.16 Hz), which results from the

finite temporal observation window. The correspond-

ing spectrum, in which the frequencies were

determined (observed values), is shown in Fig. 2.

The model with an asymmetric shape (Model A)

has produced split frequencies for all three frequency

groups, including the eigenfrequency. For that lowest

eigenfrequency, the observed value is indeed situated

between the two predicted ones. The higher predicted

eigenfrequencies are either equal to the lower value

of the observed split frequencies or they are between

the two observed values and almost equal to the

higher one (one of the predicted split frequencies is

within the observational uncertainty). Therefore, we

can state that the values determined by finite element

computations assuming an asymmetric shape of the

stalagmite are very close, and indeed almost equal to

the observed ones. No assumed symmetrical shape of

the stalagmite produced any splitting of the dominant

frequencies.

6. Discussion

We can verify the Finite Element solution by

comparing the eigenfrequencies that resulted from

the numerical Model D (the cylinder), with

eigenfrequencies that we computed from an analyti-

cal solution following Kong et al. (2008):

fi ¼ ai

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ED2

16qH4

s

; ð7Þ

where a0 = 0.559; a1 = 3.507; a2 = 9.820;

a3 = 19.244; a4 = 31.808; D is the average diameter,

H is the height of stalagmite, q is the mass density of

the stalagmite, E is the dynamic Young’s modulus

(see also Bednárik 2009; Gribovszki et al. 2017). The

latter values are given in Table 4, and they show

indeed a rather good correspondence with the

numerical values in the far right column of Table 3.

That suggests that the eigenfrequencies for the other

models are trustworthy.

The only model, which produces frequency

splitting, is the asymmetric Model A. This strongly

suggests that the splitting is due to the asymmetry in

the stalagmite. The splitting occurs in Model A for all

three groups of frequencies, while the observations

have shown the splitting only for the two higher

frequency groups. The missing splitting for the low-

est frequency can be easily explained by the

relatively short time window, which results in a fre-

quency resolution that is too low to observe the

splitting. Clearly, the frequency splitting is not an

artefact of the in situ measuring method.

The nature of the frequency splitting is thus

similar, to the splitting of Earth’s normal modes (e.g.,

Aki and Richards 1981), which is created by Earth’s

(internal and external) aspherical structure, as well as

its rotation and anisotropy. Such splitting has recently

become of interest also for engineering purposes

(e.g., Vallabhaneni et al. 2013), since it may help

characterize deviations from structural symmetry,

Table 3

Comparison of observed with predicted eigenfrequencies from the four models in Fig. 3 (in Hz)

Observed Model A

Asymmetric

Model B

Symmetric

Model C

Cone

Model D

Cylinder

f0 2.1 2.096 2.097 2.161 1.494

2.124 i.q. i.q. i.q.

f1x 10.2 10.082 10.082 10.703 9.359

f1y 10.6 10.207 i.q. i.q. i.q.

f2x 25 25.983 26.172 27.931 26.184

f2y 26.5 26.381 i.q. i.q. i.q.
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Figure 4
Comparison of observed and predicted frequencies from the four models in Fig. 3. The pink areas represent the accuracy of observed

dominant frequencies
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Figure 4
continued
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e.g., due to internal defects. The splitting is generally

stronger, the stronger the asymmetry is. The orien-

tation of defects (cavities) matters, while the total

volume of the cavities seems to matter less. A more

direct comparison of the stalagmite oscillation is

perhaps with that of rings and bells (e.g., Allaei et al.

1986). Analytical modeling has shown that a point

mass non-uniformity shifts the higher natural fre-

quencies more than the lower ones in an absolute

sense. The percentage change of the frequencies

increases up to a certain mode and then decreases for

the rest of the modes.

The observed splitting is well-explained by the

asymmetric model, except that it is 3 to 4 times as

strong as in the numerical prediction. Such a differ-

ence may result from asymmetries in the outer shape

of the stalagmite, asymmetries in the internal struc-

ture, and from the necessary fixing of the measuring

sensor onto the stalagmite.

The outer shape of the stalagmites does indeed

appear much more complex than we could realize in

the numerical model: there were many more irregu-

larities of the shape, and they occur in both horizontal

directions. Our model considers only deviations in a

single direction. The internal structure of the stalag-

mite is also more irregular than we have assumed,

both in the arrangement of the different calcareous

aggregates, and in the pore spaces. A cut portion of

another stalagmite has shown pore spaces within the

stalagmite, which have a very complex shape. This

likely leads to anisotropic elastic properties of the

stalagmite. In principle, tomographic techniques may

reveal the internal structure of stalagmites (Gri-

bovszki et al. 2017, Fig. 8 and Konecny et al. 2015,

Figs. 3, 4, images of X-ray micro-tomograph and

computed tomograph). Furthermore, we have exper-

imented with different portable ultrasound techniques

and an acoustic tomographic measuring device orig-

inally intended for studying the structure of trees

(ArborSonic3D), and this gave reasonable results

(Hegymegi et al. 2016) in laboratory, but the stalag-

mite of interest is too difficult to access for this kind

of measurements. External and internal heterogeneity

can very well explain the discrepancy in the size of

the frequency splitting.

On the other hand, the effect of the oscillation

sensor is likely to be of less importance. The 0.3 kg-

weight horizontal geophone, which was fastened to

the stalagmite to record its vibration, represents only

a few percent of the mass of the asymmetric part of

the real stalagmite, and it might cause frequency

splitting that is at most an order of magnitude weaker

than that observed.

Given that the modeling successfully predicts the

main features of the stalagmite oscillations, it is

tempting to move further with the modeling, on one

hand by making the model even more realistic, e.g., by

building a model based on a 3D laser scan of the sta-

lagmite surface, and on the other hand, to move to

time-dependent seismic forcing. The latter is particu-

larly useful, since so far mostly static force has been

applied. COMSOL and other Universal Finite Element

Method (FEM)-based softwares, SAP2000 (Paskaleva

et al. 2006; Valentini et al. 2016) or ANSYS, etc., can

be used to perform dynamic structural analysis of the

investigated stalagmites. Seismic action can be mod-

elled either by using response-spectra curves of

national building codes or of real earthquakes (Pas-

kaleva et al. 2006; Valentini et al. 2016) or by using

real or synthetic acceleration time histories (Bommer

and Acevedo 2004). Realistic numerical modelling

can successfully contribute to preliminary estimates of

the breakage of stalagmites, including relevant stress

level and the time when the rupture process starts

(likely earlier than in static case). This is analogous to

recent attempts to use realistic ground motion histo-

ries, e.g., measured strong ground motions, for

modeling of building responses in structural engi-

neering (e.g., Norman 1976; Norman and Wierzbicki

1987; Vamvatsikos and Cornell 2002).

7. Conclusions

Observed harmonic oscillations of a stalagmite

from Domica cave, Slovakia, have been compared

with FEM-based numerical calculations, to

Table 4

Calculated eigenfrequencies from the analytic solution, Eq. (7)

f0 (Hz)

theoretical

f1 (Hz) theoretical f2 (Hz) theoretical

1.497 9.390 = 1.497 9 6.274 26.293 = 9.390 9 2.800
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understand the characteristics of the resulting spectra,

namely the eigenfrequencies, and especially their

splitting, and what they are due to. For modeling the

behaviour of the stalagmite under excitation, four

approximate geometries of the stalagmite shape have

been constructed. The main dimensions (height and

average diameter) of the four approximate geometries

of the stalagmite shape were more or less similar to

the real ones, determined by the in situ measure-

ments. The calculations were based on the

formulation of the eigenoscillation problem, and a

COMSOL Multiphysics software package was used

for performing the numerical calculations. Based on

the results of the numerical modeling the dominant

frequencies could be explained, including the clear

splitting behavior, which is caused by the asymme-

tries of the stalagmite.
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Appendix 1: Finite Element Method for Linear

Elasticity

The Finite Element Method (FEM), introduced by

engineers in the late 1950s and 1960s, is a common

numerical technique in mechanical engineering for

solving problems that can be described by partial

differential equations (PDE) and appropriate bound-

ary/initial conditions. It gives great flexibility to

model complex geometries and can easily handle any

type of general boundary conditions and variable

material properties. FEM has a solid theoretical

foundation which gives added reliability and makes it

possible to mathematically analyze and estimate the

error in the approximate solution. We illustrate this

method based on the static problem under the con-

ditions of equilibrium, in which all forces on the

elastic body sum to zero and the displacements are

not a function of time, together with the Neumann

(stress) boundary condition:
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r � r ¼ F

n � r ¼ gN

As a first step we construct the weak formulation

by multiplying by a test function v and integrating

over the domain X:

Z

X

v � �r � rð Þ ¼
Z

X

v � F:

Using the Green’s formula and substituting the

stress, we obtain:

Z

X

rvð Þ � l ru þruT
� �

þ k r � uð ÞI
� �

¼
Z

X

v � F þ
Z

oX

v � rn:

Rearranging and making use of the boundary

condition leads us to the weak form of the linear

elasticity problem: Find u [ H1(X) such that,

l
2

Z

X

ru þruT
� �

� rv þrvT
� �

þ k �
Z

X

r � uð Þ r � vð Þ

¼
Z

X

v � F þ
Z

oX

v � gN

8v 2 H1ðXÞ:

The two integrals on the left hand side charac-

terize symmetric bilinear forms which we denote by

a u; vð Þ and b u; vð Þ, while on the right hand side the

integrals define linear functionals which we denote by

f vð Þ and g vð Þ.
The next step is to assume that the solution can be

written as a superposition of basis functions ui,

i= 1,…, N, i.e., u =
P

i uiui, v =
P

i viui. Using the

notation of bilinear forms and functionals and sub-

stituting the solution ansatz into the weak form

allows us to extract the sums out of the integrals such

that,

l
2

X

i;j

uivja ui;uj

� �
þ k

X

i;j

uivjb ui;uj

� �

¼
X

j

vjf ðujÞ þ
X

j

vigðujÞ

Using the vector–matrix-notation and canceling

out the test vector v leads us to the finite element

system:

l
2

Au þ kBu ¼ f þ g

More details on the existence and stability of such

a solution can be found in Altenbach et al. (2013);

Falk (2008).

Appendix 2: Detailed Composition of the Different

Stalagmite Models (From Bottom to Top)

Here we give geometric parameters for the

asymmetric, symmetric, cone and cylinder model.

h represents the height of small part of the stalagmite,

and H its total height; r represents the radius, and dx

is the shift of the axis of the cylinder.
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P., Lednická, M., et al. (2017). Estimating the upper limit of

prehistoric peak ground acceleration using an in situ, intact and

vulnerable stalagmite from Plavecká priepast cave (Detrek}oi-
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leva, I., Brimich, L., & Kovács., K. (2013b). Comprehensive

investigation of intact, vulnerable stalagmites to estimate an

upper limit on prehistoric ground acceleration. In Proceedings of

the vienna congress on recent advanced in earthquake engi-

neering and structural dynamics & 13. D-A-CH Tagung, Vienna,

Paper No. 445, p. 10.

Model A

Asymmetric model

Model B

Symmetric model

Model C

Cone

Model D

Cylinder

Cone 1: r1 = 0.055 m,

r2 = 0.035 m,

h = 0.15 m

r1 = 0.037 m,

r2 = 0.025 m, H = 4.61 m

r = 0.03 m, H = 4.61 m

Cone 2: r1 = 0.035 m,

r2 = 0.03 m,

h = 1.15 m

Eccentric

cylinder 1:

r = 0.03 m,

h = 0.02 m,

dx = - 0.03 m

Cylinder 1: r = 0.03 m,

h = 0.02 m

Cone 3: r1 = 0.03 m,

r2 = 0.025 m,

h = 1.0 m

Eccentric

cylinder 2:

r = 0.025 m,

h = 0.02 m,

dx = ? 0.03 m

Cylinder 2: r = 0.025 m,

h = 0.02 m

Cylinder 3: r = 0.025 m,

h = 1.25 m

Eccentric

cylinder 3:

r = 0.025 m,

h = 0.02 m,

dx= - 0.03 m

Cylinder 4: r = 0.025 m,

h = 0.02 m

Cone 4: r1 = 0.025 m,

r2 = 0.02 m,

h = 1.0 m

Total H = 4.61 m

Vol. 175, (2018) Numerical Modeling of Stalagmite Vibrations 4513

https://doi.org/10.1002/2016gl070815
https://doi.org/10.1007/s10950-017-9655-3
https://doi.org/10.1007/s10950-017-9655-3


Gribovszki, K., Paskaleva, I., Kostov, K., Varga, P., & Nikolov, G.

(2008). Estimating an upper limit on prehistoric peak ground

acceleration using the parameters of intact speleothems in caves

in southwestern Bulgaria. In A. Zaicenco, I. Craifaleanu, I.

Paskaleva (Eds.) Harmonization of seismic hazard in Vrancea

Zone with special emphasis on seismic risk reduction. NATO

Science for peace and security, series C: environmental security

(pp. 287–308). Dordrecht: Springer. (ISBN: 978-1-4020-9241-1).
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Konecny, P., Lednická, M., Soucek, K., Stas, L., Kubina, L., &

Gribovszki, K. (2015). Determination of dynamic Young’s

modulus of vulnerable speleothems. Acta Montanistica Slovaca,

20(2), 156–163. (ISSN 13351788).

Kong, S., Zhou, S., Nie, Z., & Wang, K. (2008). The size-depen-

dent natural frequency of Bernoulli–Euler micro-beams.

International Journal of Engineering Science, 46, 427–437.

Labuschagne, A., van Rensburg, N., & van der Merwe, A. (2009).

Comparison of linear beam theories. Mathematical and Com-

puter Modelling, 49, 20–30.

Lacave, C., Koller, M., & Egozcue, J. (2004). What can be con-

cluded about seismic history from broken and unbroken

speleothems? Journal of Earthquake Engineering, 8, 431–455.

Lacave, C., Levret, A., & Koller, M. (2000). Measurements of

natural frequencies and damping of speleothems. In Proceedings

of the 12th World Conference on Earthquake Engineering,

Auckland, New-Zealand, Paper No. 2118, p. 7.

Lysmer, J., & Kuhlemeyer, R. L. (1969). Finite dynamic model for

infinite media. Journal of the Engineering Mechanics Division,

ASCE, 95(EM4), 859–877.

Norman, J. (1976). Plastic failure of ductile beams loaded

dynamically. Journal of Engineering for Industry, 98(1),

131–136.

Norman, J., & Wierzbicki, T. (1987). Dynamic plastic failure of a

free-free beam. International Journal of Impact Engineering,

6(3), 225–240.
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