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Abstract We adapt ideas and concepts developed in optimal transport (and its martin-
gale variant) to give a geometric description of optimal stopping times τ of Brownian
motion subject to the constraint that the distribution of τ is a given probability μ. The
methods work for a large class of cost processes. (At a minimum we need the cost
process to be measurable and (F0

t )t≥0-adapted. Continuity assumptions can be used
to guarantee existence of solutions.) We find that for many of the cost processes one
can come up with, the solution is given by the first hitting time of a barrier in a suitable
phase space. As a by-product we recover classical solutions of the inverse first passage
time problem/Shiryaev’s problem.

Keywords Distribution-constrained optimal stopping · Optimal transport · Inverse
first passage problem · Shiryaev’s problem
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1 Appetizer

To whet the reader’s appetite and to give some idea of the kind of problems that can
be solved with the methods presented in this paper we would like to start with two
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corollaries to our main results. In Sect. 3 we will present these main results and in
Sect. 4 we will use them to prove Corollary 1.1 from them.

Both Corollaries 1.1 and 1.2 assert that the solutions of certain optimal stopping
problems can be described by a barrier in an appropriate phase space.

In this section, let (Bt )t≥0 be a Brownian motion started1 in 0 on some filtered
probability space (�,G, (Gt )t≥0, P) satisfying the usual conditions and let μ be a
measure on (0,∞). First we consider optimal stopping problems of the following
form.

Problem (OptStopψ(Bt ,t)) Among all stopping times τ ∼ μ on (�,G, (Gt )t≥0, P)

find the maximizer of

τ �→ E[Zτ ],

where the process Z is of the form Zt = ψ(Bt , t).

Corollary 1.1 Assume thatμhasfinite firstmoment. There is anupper semicontinuous
function β : R+ → [−∞,∞] such that the stopping time

τ := inf {t > 0 : Bt ≤ β(t)} (1.1)

has distribution μ.
τ has the following uniqueness properties: On the one hand it is the a.s. unique

stopping time which has distribution μ and which is of the form (1.1) (we will later
say that such a stopping time is the hitting time of a downwards barrier).

On the other hand τ is also the a.s. unique solution of (OptStopψ(Bt ,t)) for a
number of different ψ . Namely:

– Let p ≥ 0, assume μ has finite moment of order 1
2 + p + ε for some ε > 0 and

let A : R+ → R be strictly increasing and |A(t)| ≤ K (1+ t p) for some constant
K .2 Then we may choose

ψ(Bt , t) = Bt A(t).

– Let p ≥ 2, assume μ has finite moment of order p
2 + ε for some ε > 0 and let

φ : R → R satisfy φ′′′ > 0 as well as |φ(y)| ≤ K (1 + |y|p) for some constant
K . Then we may choose

ψ(Bt , t) = φ(Bt ).

To give an example of a slightly more complicated functional amenable to analysis
with our tools consider

1 We note that the results presented in this section remain valid for Brownian motions started according to
a general law λ at the cost of slightly more tedious moment conditions in the formulation of Corollaries 1.1
and 1.2.
2 One may of course choose 0 ≤ p < 1

2 , ε := 1
2 − p and e.g. A(t) := t p so that no moment conditions

beyond those at the very beginning of this theorem are imposed on μ.
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Fig. 1 Solutions to constrained optimal stopping problems

Problem (OptStopB
∗
t ) Among all stopping times τ ∼ μ on (�,G, (Gt )t≥0, P) find

the maximizer of

τ �→ E[B∗τ ],

where B∗t = sups≤t B(s).

Corollary 1.2 Assume that μ has finite moment of order 3
2 . Then (OptStopB

∗
t ) has a

solution τ given by

τ = inf
{
t > 0 : Bt − B∗t ≤ β(t)

}

for some upper semicontinuous function β : R+ → [−∞, 0].
We emphasize that the solutions to the constrained optimal stopping problems

provided in Corollaries 1.1 and 1.2 represent particular applications of the abstract
results obtained below. Figure 1 presents graphical depictions of stopping rules of
several further solutions of constrained optimal stopping problems (together with the
respective optimality properties). These stopping rules can be derived—under suitable
moment conditions—using arguments very similar to those required for Corollaries
1.1 and 1.2 (see also the comments in Remark 7.1 at the end of the paper).

2 Background: martingale optimal transport and Shiryaev’s problem

In this article we consider distribution-constrained stopping problems from a mass
transport perspective. Specifically we find that problems of the form exemplified in
(OptStopψ(Bt ,t)) and (OptStopB

∗
t ) are amenable to techniques originally developed

for the martingale version of the classical mass transport problem. This martingale
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optimal transport problem arises naturally in robust finance; papers to investigate such
problems include [8,12,16,18,20,25,31]. In mathematical finance, transport tech-
niques complement the Skorokhod embedding approach (see [24,32] for an overview)
to model-independent/robust finance.

A fundamental idea in optimal transport is that the optimality of a transport plan
is reflected by the geometry of its support set which can be characterized using the
notion of c-cyclical monotonicity. The relevance of this concept for the theory of
optimal transport has been fully recognized by Gangbo and McCann [19], based
on earlier work of Knott and Smith [28] and Rüschendorf [36,37] among others.
Inspired by these ideas, the literature on martingale optimal transport has developed
a ‘monotonicity principle’ which allows to characterize martingale transport plans
through geometric properties of their support sets, cf. [6,7,9,10,22,39].

The main contribution of this article is to establish a monotonicity principle which
is applicable to distribution-constrained optimal stopping problems. This transport
approach turns out to be remarkably powerful, in particular we will find that questions
as raised in Problems (OptStopψ(Bt ,t)) and (OptStopB

∗
t ) can be addressed using a

relatively intuitive set of arguments.
Thedistribution-constrainedoptimal stoppingproblem (OptStop) (and specifically

(OptStopB
∗
t )) arises naturally in financial and actuarial mathematics. We refer the

reader to [23] which describes various examples (unit-linked life insurances, stochas-
tic modelling for health insurances, the liquidation of an investment portfolio, the
valuation of swing options).

Bayraktar and Miller [5] consider the same optimization problem that we treat
here. However their setup and methods are rather distinct from the ones used here:
they assume that the target distribution is given by finitely many atoms and that the
target functional depends solely on the terminal value of Brownian motion. Follow-
ing the measure valued martingale approach of Cox and Källblad [5,14] address the
constrained optimal stopping problem using a Bellman perspective.

The problem to construct a stopping time τ of Brownianmotion such that the law of
τ matches a given distribution on the real line was proposed by Shiryaev in his Banach
Center lectures in the 1970’s, it has since been called Shiryaev’s problem or inverse
first passage problem.Dudley andGutmann [17] provide an abstractmeasure-theoretic
construction. An early barrier-type solution to the inverse first passage problem was
given by Anulova [3]. She constructs a symmetric two-sided barrier (corresponding
to the case a = 0 in the sixth picture of Fig. 1). Anulova discretises the measure
μ and concludes through approximation arguments. The solution to the inverse first
passage problem given in Corollary 1.1 was derived by Chen et al. [13] based on
a variational inequality which describes the corresponding barrier. Notably, this is
predated by a (formal) PDE description of such barriers given by Avellaneda and
Zhu [4] in the context of credit risk modeling. Ekström and Janson [13] relate this
solution to an optimal stopping problem and provide an integral equation for the
barrier. Analytic solutions to the inverse first passage problem are known only in a
few cases ([1,2,11,29,33,38]). An interesting connection between the inverse first
passage problem and Skorokhod’s problem is provided by Jaimungal et al. [26].
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3 Statement of main results

Assumption 1 Throughout we will assume that (�,G, (Gt )t≥0, P) is a filtered prob-
ability space and that (Bt )t≥0 is an adapted process which has continuous paths on
(�,G, (Gt )t≥0), such that B can be regarded as a measurable map from � to C(R+),
the space of continuous functions from R+ to R. The cost function c will always be a
measurable map C(R+)× R+ → R. μ will denote a probability measure on R+.

Then the problem we consider can be stated as follows.

Problem (OptStop) Among all stopping times τ ∼ μ find the minimizer of

τ �→ E[c(B, τ )].

Here we formulate our main optimization problem in terms of minimization, fol-
lowing the usual convention in the optimal transport literature (which is also used in
the closely related paper [6]). Clearly, a sign change transforms this into a maximiza-
tion problem and in our applications we will in fact turn to this latter version when
resulting formulations appear more natural. We trust that this will not cause confusion.

Throughout we will also make the following assumptions without further mention:

Assumption 2 1. c is measurable, (F0
t )t≥0-adapted, where (F0

t )t≥0 is the filtration
on C(R+) generated by the canonical process (ω �→ ω(t))t∈R+ .

2. There is a G0-measurable random variable U which is uniformly distributed on
[0, 1] and independent of the process (Bt )t≥0.

3. There is a probability measure λ s.t. (Bt )t≥0 is a Brownian motion with initial law
λ, i.e. B0 ∼ λ.

4. The problem is well-posed in the sense that E[c(B, τ )] is defined and > −∞ for
all stopping times τ ∼ μ and that E[c(B, τ )] < ∞ for at least one such stopping
time.

5.
∫
t p0 dμ(t) < ∞, where p0 ≥ 0 is some constant that we fix here and that can be

chosen when applying the results from this section.

A note on language: The adjective “adapted” is usually applied to processes whose
time argument is written in subscript form. For any filtered measurable space �̃ and
any function f : �̃ × R+ → R (or possibly f : �̃ × R+ → [−∞,∞]) we will
interchangeably think of f simply as a function or as the process Yt (ω) := f (ω, t).
And so f being adapted means the same thing as (Yt )t∈R+ being adapted. Similarly
for a subset 
 of �̃ × R+ we may also think of 
 as its indicator function or as the
process Yt (ω) := 1
(ω, t) and will also say that the set 
 is adapted.

With that in mind, Assumption 2.1 should seem like an obvious thing to ask for
from the cost function. Also, knowing about the existence of optional projections, it
should be clear no later than Lemma 5.3 that Assumption 2.1 does not pose a real
restriction on the class of problems we are treating.

The role of Assumption 2.2 should become clearer soon. We would like to note at
this point though that often enough our results put together will imply that the solution
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of Problem (OptStop) for a space (�,G, (Gt )t≥0, P) which satisfies Assumption 2.2
is essentially the same as the solution of the Problem for a space which may not satisfy
said assumption, and we will find that we can describe this solution in detail. This can
be seen executed in the proofs of the corollaries stated in the Appetizer.

The methods in this paper work not just for Brownian motion but for a class
of processes which is conceptually bigger, but then turns out to not include much
beyond Brownian motion—namely for any space-homogeneous but possibly time-
inhomogeneous Markov process with continuous paths which has the strong Markov
property. (Here space-homogeneous means that starting the process at location x and
then moving its paths to start at location y results in a version of the process started
at y.) If the reader so wishes, she may think of B as a process from this slightly
larger class of processes. Care was taken not to reference any properties of Brownian
motion beyond those stated here. In particular our results apply to multi-dimensional
Brownian motion.

Assumption 2.4 is mostly just there to ensure that we are actually talking about an
optimization problem in a meaningful sense. For the problems presented in the Appe-
tizer, the moment conditions on μ which are given in the statement of Corollary 1.1
and Corollary 1.2 ensure that Assumption 2.4 is satisfied (as we will see in the proofs
of these corollaries).

The constant p0 in Assumption 2.5 will (implicitly) appear in the statement of
Theorem 3.6, one of the main results. Its role is to ensure that E[ϕ(B, τ )] will be
finite for some (class of) function(s) ϕ and any solution τ of (OptStop). (The choice
ϕ(B, τ ) = τ p0 is somewhat arbitrary here.)

The main results are Theorems 3.1 and 3.6.
We give two versions of Theorem 3.1. Version A is easier to state and may feel

more natural, but we will need Version B (which is more general and has essentially
the same proof as Version A) in the proof of the corollaries in the Appetizer.

Theorem 3.1
Version A. Assume that the cost function c is bounded from below and lower semicon-
tinuous when we equip C(R+)with the topology of uniform convergence on compacts.
Then the Problem (OptStop) has a solution.

Version B. Assume that the cost function c is lower semicontinuous when we equip
C(R+) × R+ with the product topology of two Polish topologies which generate
the right sigma-algebras on C(R+) and R+ respectively and assume that the set
{c−(B, τ ) : τ ∼ μ, τ is a stopping time} is uniformly integrable, where c− := −c∨0
denotes the negative part of c. Then the Problem (OptStop) has a solution.

To state Theorem 3.6 we need a few more definitions.

Remark 3.2 We will find it convenient to talk about processes that don’t start at time
0 but instead at some time t > 0. Similarly we will consider stopping times taking
values in [t,∞). These will be defined on the space C([t,∞)) equipped with the
filtration (F s

t )s≥t , again generated by the canonical process (ω �→ ω(s))s≥t . We refer
to the distribution of Brownian motion started at time t and location x by W

t
x . This

is a measure on C([t,∞)). For a probability measure κ on R we write W
t
κ for the

distribution of Brownian motion started at time t with initial law κ .
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Definition 3.3 (Concatenation) For every t ∈ R+ we have an operation� of concate-
nation, which is a map into C([t,∞)) and is defined for (ω, s) ∈ C([t,∞))× [t,∞)

and θ ∈ C ([s,∞)) with θ(s) = 0 by

((ω, s)� θ) (r) =
{

ω(r) t ≤ r ≤ s

ω(s)+ θ(r) r > s
. (3.1)

Definition 3.4 (Stop-Go pairs) The set of Stop-Go pairs SG ⊆ (C(R+)× R+) ×
(C(R+)× R+) is defined as the set of all pairs ((ω, t), (η, t)) (note that the time
components have to match) such that

c(ω, t)+
∫
c((η, t)� θ, σ (θ)) dW

t
0(θ) < c(η, t)+

∫
c((ω, t)� θ, σ (θ)) dW

t
0(θ)

(3.2)

for all (F s
t )s≥t -stopping times σ for which W

t
0(σ = t) < 1, W

t
0(σ = ∞) = 0,∫

σ p0 dW
t
0 < ∞ and for which both sides in (3.2) are defined and finite.

A hopefully intuitive way of putting the definition of Stop-Go pairs into words is
the following: ((ω, s), (η, t)) form a Stop-Go pair iff, irrespective of how we might
stop after time t (i.e. which stopping rule σ we might use after time t), Stopping ω at
time t and letting η Go on is better—i.e. has lower cost—than stopping η and letting
ω go on. These two situations are contrasted in Fig. 2.

As hinted at earlier, the definition of Stop-Go pairs depends on the parameter p0
from Assumption 2.5. A larger p0 means that we are asking for more in Assumption
2.5 and implies that we get a larger set SG, as we are quantifying over fewer stopping
times σ in the definition ofSG. This in turn implies that the conclusion of Theorem 3.6
below will be stronger.

Definition 3.5 (Initial Segments) For a set 
 ⊆ C(R+) × R+ define the set 
< ⊆
C(R+)× R+ by


< = {(ω, s) : (ω, t) ∈ 
 for some t > s} . (3.3)

Theorem 3.6 (Monotonicity Principle) Assume that τ solves (OptStop). Then there
is a measurable, (F0

t )t≥0-adapted set 
 ⊆ C(R+)× R+ such that

P[((Bt )t≥0, τ ) ∈ 
] = 1

Fig. 2 The left hand side of
(3.2) corresponds to averaging
the function c over the stopped
paths on the left picture, the
right hand side to averaging the
function c over the stopped paths
on the right picture

123



78 M. Beiglböck et al.

and

SG ∩ (

< × 


) = ∅. (3.4)

The following lemma should give a first hint about how the Monotonicity can be
applied.

Lemma 3.7 Let τ be a solution of (OptStop) and assume that the cost function
c is such that there exists a measurable, (F0

t )t≥0-adapted process (Yt )t≥0 such
that

Yt (ω) < Yt (η) �⇒ ((ω, t), (η, t)) ∈ SG. (3.5)

Define the barriers Ř, R̂ ⊆ R× R+ by

Ř =
⋃

(ω,t)∈


(−∞,Yt (ω)] × {t}

R̂ =
⋃

(ω,t)∈


(−∞,Yt (ω))× {t},

where 
 is a set with the properties in Theorem 3.6. Define the functions ˇτ and τ̂ on
C(R+) by

ˇτ(ω̃) = inf {t ∈ R+ : (Yt (B(ω̃)), t) ∈ Ř}
τ̂ (ω̃) = inf

{
t ∈ R+ : (Yt (B(ω̃)), t) ∈ R̂

}
.

Then

ˇτ ≤ τ ≤ τ̂ P-a.s. (3.6)

When applying this Lemma to show that some optimal stopping problem has a
barrier-type solution as symbolized for example by the pictures in Fig. 1 the process
Yt (B) is of course what we are labelling the vertical axes in the pictures with. So for
the first picture Yt (ω) = ω(t), for the second one Yt (ω) = ω(t) − sups≤t ω(s), for
the third Yt (ω) = −(ω(t)− sups≤t ω(s)) (the sign is flipped relative to the labelling
in the picture because in this picture the barrier is drawn “up” instead of “down”),
etc.

Notice that, contrary to customs, when we draw the barriers Ř/R̂ in the pictures in
Fig. 1 the first coordinate is the vertical axis and the second coordinate is the horizontal
axis. This is because, to make cross-referencing and comparison with [6] easier, we
follow their convention of always having time as the second coordinate but still in the
pictures it seems more natural to put the independent variable on the horizontal axis.

Note that a priori ˇτ and τ̂ need not be stopping times or even measurable, as we
don’t know much about the sets Ř and R̂.
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Using theproperties of a concrete process (Yt )t≥0 wewill in the proofs ofCorollaries
1.1 and 1.2 be able to show that ˇτ = τ̂ a.s. (this should not be surprising as for each
time t the barriers Ř and R̂ differ by at most a single point) and therefore that the
optimizer τ is the hitting time of a barrier.

Proof of Lemma 3.7 Let ω̃ ∈ � s.t. (B(ω̃), τ (ω̃)) ∈ 
. By assumption this holds for
P-a.a. ω̃. Then

(
Yτ(ω̃)(B(ω̃)), τ (ω̃)

) ∈ Ř and therefore ˇτ(ω̃) ≤ τ(ω̃).

Next we show that τ̂ (ω̃) ≥ τ(ω̃). Assume that (Yt (B(ω̃)), t) ∈ R̂. Wewant to show
that t ≥ τ(ω̃). By the definition of R̂ we find that there is η ∈ C(R+) with (η, t) ∈ 


and Yt (B(ω̃)) < Yt (η), so by (3.5) we know ((B(ω̃), t), (η, t)) ∈ SG. Assuming, if
possible, t < τ(ω̃) we get according to Definition 3.5 that (B(ω̃), t) ∈ 
<. Therefore
we have that ((B(ω̃), t), (η, t)) ∈ SG ∩ (
< × 
), but this is a contradiction to
SG ∩ (
< × 
) = ∅, so we must have t ≥ τ(ω̃). ��
Remark 3.8 (Duality) Problem (OptStop) is an infinite-dimensional linear program-
ming problem and one would hence expect that a corresponding dual problem can
be formulated. Indeed, assuming that c is lower semicontinuous and bounded from
below, the value of the optimization problem equals

sup
M,ψ

E[M0] +
∫

ψ dμ,

where the supremum is taken over bounded (Gt )t≥0-martingales M = (Mt )t≥0 and
bounded continuous functions ψ : R+ → R satisfying (up to evanescence)

Mt + ψ(t) ≤ c(B, t).

This can be established in complete analogy to the duality result derived in [6, Theorem
1.2/Section 4.2] and we do not elaborate.

4 Digesting the appetizer

We will now demonstrate how to use the Monotonicity Principle of Theorem 3.6 to
derive Corollary 1.1. The proof of Corollary 1.2 is very similar but relies on under-
standing a technical detail which does not add much to the story at this point, so we
leave it for the end of the paper.

Both of the sets Ř and R̂ in Lemma 3.7 have the property that (writingR for the set
in question) (y, t) ∈ R and y′ ≤ y implies (y′, t) ∈ R. We call such sets (downwards)
barriers. More specifically, for technical reasons in what follows it is slightly more
convenient to talk about subsets of [−∞,∞] × R+ instead of subsets of R × R+,
giving the following definition.

Definition 4.1 Let X be a topological space. A downwards barrier is a set R ⊆
[−∞,∞] × X such that {−∞} × X ⊆ R and

(y, t) ∈ R and y′ ≤ y implies (y′, t) ∈ R
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Clearly, in Lemma 3.7, instead of talking about Ř ⊆ R×R+, we could have talked
about Ř ∪ ({−∞} × R+) ⊆ [−∞,∞] × R+ without anything really changing, and
likewise for R̂.

The reader will easily verify the following lemma.

Lemma 4.2 Let X be a topological space. There is a bijection between the set of
all upper semicontinuous functions β : X → [−∞,∞] and the set of all closed
downwards barriers R ⊆ [−∞,∞] × X (where closure is to be understood in the
product topology). This bijection maps any upper semicontinuous function β to the
barrier R which is the hypograph of β

R := {(y, x) : y ≤ β(x)} ,

while the inverse maps a barrier R to the function β given by

β(x) := sup {y : (y, x) ∈ R} .

What we will show now, on the way to proving Corollary 1.1 is that the first hitting
time after 0 of any downwards barrier by Brownian motion is a.s. equal to the first
hitting time after 0 of the closure of that barrier. This serves to both resolve the question
whether the times in Lemma 3.7 are stopping times and to show that ˇτ = τ̂ a.s.

Let us assume for the rest of this section that B is actually a Brownian motion
started in 0.

Lemma 4.3 LetR be a downwards barrier in [−∞,∞]×R+. LetR be the closure
of R (in the product topology of the usual topologies on [−∞,∞] and R+). Define

τ(ω) := inf{t > 0 : (Bt (ω), t) ∈ R}
τ(ω) := inf{t > 0 : (Bt (ω), t) ∈ R}.

Then τ = τ a.s.

Proof As R ⊇ R we clearly have τ(ω) ≤ τ(ω) for all ω ∈ �. Define

τ ε(ω) := inf{t > 0 : (Bt (ω)+ ε · A(t), t) ∈ R},

where A(t) := t
1+t is a bounded, strictly increasing function. Using just thatR is the

closure of R one proves by elementary methods that τ(ω) ≤ τ ε(ω) for all ω ∈ �

and any ε > 0. Because A(t) = ∫ t
0 (1+ s)−2 ds is the integral from 0 to t of a square

integrable function we can apply Girsanov’s theorem (see e.g. [34, Theorem 38.5]) to
see that τ 1/n converges to τ in distribution as n →∞.

As
(
τ 1/n

)
n is a decreasing sequence bounded below by τ we get that convergence

holds almost surely. ��
The following is a particular case of [21, Corollary 2.3] (which in turn relies on

arguments given in [30,35]). Note that this lemma is purely a statement about barrier-
type stopping times and is not directly connected to the optimization problem under
consideration.
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Lemma 4.4 (Uniqueness of Barrier-type solutions) Assume that (Yt )t≥0 is a measur-
able, (F0

t )t≥0-adapted process and that the process Z defined through Zt := Yt (B)

has a.s. continuous paths. LetR1,R2 ⊆ [−∞,∞] × R+ be closed downwards bar-
riers such that for

τi (ω) := inf {t > 0 : (Zt (ω), t) ∈ Ri }

we have τ1 ∼ τ2. Then τ1 = τ2 a.s.

Proof Is to be found in [21, Corollary 2.3]. ��
We now have the necessary prerequisites to use our main results in showing that the

first optimization problem in the Appetizer admits a (unique) barrier-type solution.

Proof of Corollary 1.1 The strategy is as follows: We choose a cost function and
leverage Theorem 3.1 to show that an optimizer exists, the Monotonicity Principle in
the form of Theorem 3.6 and Lemma 3.7 will—with some help from Lemma 4.3—
show that any optimizer must be the hitting time of a barrier. Lemma 4.4 shows that
any two barrier-type solutions must be equal.

We now provide the details. Start with a cost function c(ω, t) := −ω(t)A(t) for
a strictly monotone function A : R+ → R which satisfies |A(t)| ≤ K (1 + t p) and
assume that μ has moment of order 1

2 + p+ ε for some ε > 0. To prove that a barrier-
type solution exists when μ has first moment, choose a bounded strictly increasing
A and p = 0, ε = 1

2 in this step. (These assumptions guarantee in particular that
the optimization problems considered below have a finite value.) Clearly the problem
(OptStop) for c corresponds to (OptStopψ(Bt ,t)) forψ(Bt , t) = Bt A(t) (i.e.ψ takes
the role of −c such that the minimal/maximal values agree up to a change of sign).
We will deal with the case where ψ(Bt , t) = φ(Bt ) at the end of this proof.

We now check that the conditions in Version B of Theorem 3.1 are satisfied. We
also need to check that Assumption 2 holds. Here we need the assumption that μ has
moment of order 1

2 + p + ε, as well as the Hölder and Burkholder-Davis-Gundy
inequalities. The latter specialized to Brownian motion state that for all q > 0
there are positive constants K0 and K1 such that for any stopping time τ we have
K0 E

[
τ q/2

] ≤ E
[
(|B|∗τ )q

] ≤ K1 E
[
τ q/2

]
(where |B|∗t = sups≤t |Bs |). With these in

hand a straightforward calculation allows us to bound Bτ A(τ ) in the L1+δ-norm for
some δ > 0, independently of the stopping time τ ∼ μ.

This showsboth that the uniform integrability condition inVersionBofTheorem3.1
is satisfied and that Assumption 2.4 is satisfied.

On C(R+) we may choose the (Polish) topology of uniform convergence on com-
pacts. For the topology on R+ we start with the usual topology and turn A into a
continuous function (if it wasn’t), by making use of the fact that any measurable func-
tion from a Polish space to a second countable space may be turned into a continuous
function by passing to a larger Polish topology (with the same Borel sets) on the
domain. (This can be found for example in [27, Theorem 13.11].)

In the statement of Corollary 1.1 we did not require that the probability space
(�,G, (Gt )t≥0, P) satisfy Assumption 2.2. To remedy this we can enlarge the prob-
ability space by setting �̃ := � × [0, 1], G̃t := Gt ⊗ B ([0, 1]) and P̃ := P ⊗ L,
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where L is Lebesgue measure on [0, 1]. On this space we consider the Brownian
motion B̃t (ω, x) := Bt (ω). Theorem 3.1 now gives us an optimal stopping time τ̃ on
the enlarged probability space. If we can show that this stopping time is in fact the
hitting time of a barrier, then it follows that τ̃ = τ ◦ ((ω, x) �→ ω) for a stopping
time τ which is defined as the hitting time of the Brownian motion B of the same
barrier. As there are more stopping times on (�̃, G̃, (G̃t )t≥0) than on (�,G, (Gt )t≥0)
in the sense that any stopping time τ ′ on (�,G, (Gt )t≥0) induces a stopping time
τ̃ ′ := τ ′ ◦ ((ω, x) �→ ω) on (�̃, G̃, (G̃t )t≥0) we conclude that τ must also be optimal
among the stopping times on (�,G, (Gt )t≥0). With this out of the way, let us refer to
our Brownian motion by B, to the optimal stopping time by τ and to our filtered prob-
ability space by (�,G, (Gt )t≥0, P) irrespective of whether this is the original process
and space we started with, or an enlarged one.

Choosing p0 := 1
2 + p + ε in Assumption 2.5 we apply Theorem 3.6 to obtain

a set 
 on which (B, τ ) is concentrated under P and for which (3.4) holds. As μ is
concentrated on (0,∞), we may assume that 
 ∩ (C(R+)× {0}) = ∅. Next we want
to show that Lemma 3.7 applies with Yt (ω) = ω(t).

Translating (3.5) to our situation, we want to prove that ω(t) < η(t) implies

−ω(t)A(t)− E

[(
η(t)+ B̃σ

)
A(σ )

]
< −η(t)A(t)− E

[(
ω(t)+ B̃σ

)
A(σ )

]
,

(4.1)

where B̃ is Brownian motion started in 0 at time t on C([t,∞)) and σ is any stopping
time thereon with W

t
0(σ = t) < 1, W

t
0(σ = ∞) = 0,

∫
σ p0 dW

t
0 < ∞. Again the

Burkholder–Davis–Gundy inequality shows thatE[B̃σ A(σ )] < ∞. So (4.1) turns into

ω(t) E[A(σ )− A(t)] < η(t) E[A(σ )− A(t)]

which clearly follows from the assumptions. So we know that Lemma 3.7 holds, i.e.
using the names from said lemma we have ˇτ ≤ τ ≤ τ̂ P-a.s.


 ∩ (C(R+)× {0}) = ∅ implies Ř∩ (R× {0}) = ∅ and therefore ˇτ(ω) = inf{t >

0 : (Bt (ω), t) ∈ Ř}, and likewise for R̂ and τ̂ . As Ř = R̂ =: R it follows from
Lemma 4.3 that ˇτ = τ = τ̂ a.s. and that τ is of the form claimed in (1.1) with
β(t) := sup{y ∈ R : (y, t) ∈ R}. The uniqueness claims follow from Lemma 4.4 and
what we have already proven.

We now treat the case whereψ(Bt , t) = φ(Bt )with φ′′′ > 0, |φ(y)| ≤ K (1+|y|p)
and μ has finite moment of order p

2 + ε for some ε > 0. Most of the proof remains
unchanged. Setting c(ω, t) = −φ(ω(t)) we may again use the Burkholder-Davis-
Gundy inequalities to show that c(Bτ , τ ) is bounded in L1+δ-norm, independently of
the stopping time τ ∼ μ, thereby showing both that Assumption 2.4 is satisfied and
that the uniform-integrability condition in Version B of Theorem 3.1 is satisfied.

It remains to show that ω(t) < η(t) implies ((ω, t), (η, t)) ∈ SG. φ′′′ > 0 implies
that the map y �→ φ(η(t)+ y)− φ(ω(t)+ y) is strictly convex. By the strict Jensen
inequality E[φ(η(t)+ B̃σ )− φ(ω(t)+ B̃σ )] > φ(η(t))− φ(ω(t)) for any stopping
time σ on C([t,∞)) which is almost surely finite, satisfies optional stopping and is
not almost surely equal to t . As we may choose p0 := p

2 + ε, which is greater than
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1, we may assume that the σ in the definition of SG has finite first moment, which is
enough to guarantee that it satisfies optional stopping. Rearranging the last inequality
gives (3.2). ��

5 Existence of an optimizer

The proof of existence of solutions to the Problem (OptStop) crucially depends on
thinking of stopping times as the joint distribution of the process to be stopped and
the stopping time. We introduce some concepts to make this precise and give a proof
of Theorem 3.1 at the end of this section.

Lemma 5.1 Let G : C([t,∞)) → R, and s ≥ t . The function

ω �→
∫
G((ω, s)� θ) dW

s
0(θ)

is a version of the conditional expectation EW
t
λ
[G|F t

s ] (for any initial distribution λ).
Henceforth, by E [G|F t

s ] we will mean this function.
If G ∈ Cb (C([t,∞))), then E [G|F t

s ] ∈ Cb (C([t,∞))).

Proof Obvious. ��
Here we use Cb(X) to denote the set of continuous bounded functions from a

topological space X to R. The last sentence of the lemma is of course true for any
topology on C([t,∞)) for which the map ω �→ ω� θ is continuous for all θ , but we
will only need it for the topology of uniform convergence on compacts.3

Given spaces X and Y we will denote the projection from X × Y to X by projX
(and similarly for Y ). For a measurable map F : X → Y between measure spaces
and a measure ν on X we denote the pushforward of ν under F by F∗(ν) := D �→
ν(F−1 [D]).

Definition 5.2 (RST) The set RSTt
κ of randomized stopping times (of Brownian

motion started at time t with initial distribution κ) is defined as the set of all sub-
probability measures ξ on C([t,∞))×[t,∞) such that (projC([t,∞)))∗(ξ) ≤ W

t
κ and

that

∫
F(r) (G(ω)− E [G|F t

s ] (ω)) dξ(ω, r) = 0 (5.1)

for all s > t , all G ∈ Cb (C ([t,∞))) and all F ∈ Cb ([t,∞)) supported on [t, s].
In this definition the topology on C([t,∞)) is that of uniform convergence on

compacts and the topology on [t,∞) is the usual topology.
Given a distribution ν on C ([t,∞)) we write

RSTt
κ(ν) := {

ξ ∈ RSTt
κ : (proj[t,∞))∗(ξ) = ν

}
.

3 And that choice is rather arbitrary itself, as close reading will reveal.
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We write RSTt
κ(P) for the set of all ξ ∈ RSTt

κ with mass 1 and call these the finite
randomized stopping times.

In any of these, if we drop the superscript t then we will mean time t = 0, while,
if we drop the subscript κ , then we mean that the initial distribution κ = δ0, i.e. the
Brownian motion to be stopped is started deterministically in 0.

To explain the qualifier finite it may help to imagine that for a non-finite randomized
stopping time of mass α < 1, the mass 1 − α which is missing is placed along
C([t,∞))× {∞}.

The following Lemma 5.3 from [6] shows that the problem (OptStop) is equivalent
to the following optimization problem (OptStop’) in the sense that a solution of one
can be translated into a solution of the other and vice versa. This of course also implies
that the values of the two problems are equal, thereby showing that the concrete space
(�,G, (Gt )t≥0, P) has no bearing on this value, as long as Assumptions 1 and 2 are
satisfied.

The definition we have given for a randomized stopping time is only the most
convenient (for our purposes) of a number of possible equivalent definitions. Although
Lemma 5.3 below should provide some intuition on what a randomized stopping time
is, the reader may still wish to refer to [6, theorem 3.8] for the other possible ways
of defining randomized stopping times. The first step in connecting condition (5.1),
which is one of the equivalent conditions listen in said theorem, to the others, is to
notice that (5.1) can be rewritten as

∫ (∫
F(r) dξω(r)

)
(G(ω)− E [G|F t

s ] (ω)) dW
t
κ(ω) = 0,

where ξω is a disintegration of ξ with respect to W
t
κ . This says that the function

ω �→
∫
F(r) dξω(r) is orthogonal to G−E [G|F t

s ] for all bounded continuous G, i.e.
that it is a.s. F t

s -measurable whenever F is supported on [t, s]. A limit argument then
shows that ω �→ ξω([t, s]) is a.s. F t

s -measurable. Again, we refer the reader to [6] for
a more detailed exposition.

Problem (OptStop’) Among all randomized stopping times ξ ∈ RSTλ(μ) find the
minimizer of

ξ ′ �→
∫
c dξ ′.

Lemma 5.3 ([6, Lemma 3.11]) Let τ be a (Gt )t≥0-stopping time and consider

� : � → C(R+)× [0,∞]
�(ω) := ((Bt (ω))t≥0, τ (ω)).

Then ξ := �∗(P)�C(R+)×R+ is a randomized stopping time, i.e. ξ ∈ RSTλ, and for
any non-negative measurable process F : C(R+)× R+ → R we have

∫
F dξ = E[(F · 1C(R+)×R+) ◦�] = E[F(B, τ ) · 1R+(τ )]. (5.2)
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For any ξ ∈ RSTλ, we can find a (Gt )t≥0-stopping time τ such that ξ = �∗(P) and
(5.2) holds.

ξ is a finite randomized stopping time iff τ is a.s. finite.

Proof of Theorem 3.1 We prove Version B of the theorem. Version A is a special
case. We show that Problem (OptStop’) has a solution. To this end we show that
the set RSTλ(μ) is compact (in the weak topology). From the fact that c is lower
semicontinuous and bounded from below in an appropriate sense we then deduce by
the Portmanteau theorem that the map

ĉ : RSTλ(μ) → (−∞,∞]
ĉ(ζ ) :=

∫
c dζ

is lower semicontinuous and therefore that the infimum infζ∈RSTλ(μ) ĉ(ζ ) is attained.
Now for the details. On each of the spaces C(R+) and R+ we are dealing with

two topologies, one coming from the Definition 5.2 of randomized stopping times
(to wit, the topology of uniform convergence on compacts on the space C(R+) and
the usual topology on R+) and one coming from the assumptions in the statement of
this theorem. We can equip each of these spaces with the smallest topology which
contains the two topologies in question. These are again Polish topologies and they
still generate the standard sigma-algebras on the respective spaces. For the remainder
of this proof all topological notions are to be understood relative to these topologies. So
the topology on C(R+)×R+ is the product topology of these two topologies, and the
weak topology on the space of measures on C(R+)×R+ is to be understood relative
to this product topology. The cost function c of course remains lower semicontinuous
and by Lemma 5.1 the functions (ω, r) �→ F(r) (G(ω)− E [G|F0

s ]) appearing in
Definition 5.2 are continuous.

Note that for ξ ∈ RSTλ(μ) as μ has mass 1, so must ξ and (projC(R+))∗(ξ), which
together with (projC(R+))∗(ξ) ≤ W

0
λ implies (projC(R+))∗(ξ) = W

0
λ. So we deduce

RSTλ(μ) =
{
ξ ∈ � :

∫
F(s)

(
G − E[G|F0

t ]
)
(ω) dξ(ω, s) = 0 ∀(t, F,G) ∈ �

}

where

ξ ∈ � ⇐⇒ (projC(R+))∗(ξ) = W
0
λ and (projR+)∗(ξ) = μ

(t, F,G) ∈ � ⇐⇒ t > 0, F : R+ → R is bounded and continuous in the usual
topologies, and 0 outside [0, t], G : C(R+) → R is bounded
and continuous as a function from the topology of uniform
convergence on compacts.

The set� is compact by Prokhorov’s Theorem and the fact that pushforwards are con-
tinuousmaps betweenmeasure spaces. It remains to show thatRSTλ(μ) is a nonempty
closed subset. It is nonempty because the product measure W

0
λ ⊗ μ ∈ RSTλ(μ). It

is closed because, as noted, (ω, s) �→ F(s) (G − E [G|F0
t ]) (ω) is continuous for all

(t, F,G) ∈ �.
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Now we show that ĉ is lower semicontinuous. The functions cN := c ∨ −N are
each bounded from below and lower semicontinuous. By the Portmanteau theorem
the maps ĉN := ζ �→

∫
cN dζ are lower semicontinuous. OnRSTλ(μ) they converge

uniformly to ĉ because

sup
ζ

∣∣∣ĉ(ζ )− ĉN (ζ )

∣∣∣ ≤ sup
ζ

∫ ∣∣∣c − cN
∣∣∣ dζ ≤ sup

ζ∈RSTλ(μ)

∫
c− · 1c−≥N dζ ,

which converges to 0 as N goes to∞ by the uniform integrability assumption. As a
uniform limit of lower semicontinuous functions is again lower semicontinuous we
see that ĉ is lower semicontinuous. ��

6 Geometry of the optimizer

This section is devoted to the proof of Theorem 3.6. The proof closely mimicks that of
Theorem 1.3/Theorem 5.7 in [6]. For the benefit of those readers already familiar with
said paper we will first describe the changes required to the proofs there to make them
work in our situation and then—for the sake of a more self-contained presentation—
indulge in reiterating the main arguments and only citing results from [6] that we can
use verbatim.

Sketch of differences in the proof of Theorem 3.6 relative to [6, Theorem 5.7] Again

the strategy is to show that for a larger set ŜG
ξ ⊇ SG we can find a set 
 ⊆

C(R+)×R+ such that ŜG
ξ ∩ (
< × 
) = ∅. The definition of ŜGξ

must of course
be adapted analoguously to the changes required to the definition of SG.

Apart from that the only real changes are to [6, Theorem 5.8]. Whereas previously
it was essential that the randomized stopping time ξ r(ω,s) is also a valid randomized
stopping time of the Markov process in question when started at a different time but
the same location ω(s), we now need that ξ r(ω,s) will also be a randomized stopping
time of our Markov process when started at the same time s but in a different place. Of
course, whenwe are talking about Brownianmotion both are true, but this difference is
the reason why in the case of the Skorokhod embedding the right class of processes to
generalize the argument to is that of Feller processes while in our setup we don’t need
our processes to be time-homogeneous butwe do need them to be space-homogeneous.
That we are able to plant this “bush” ξ r(ω,s) in another location is what guarantees
that the measure ξπ

1 defined in the proof of Theorem 5.8 of [6] is again a randomized
stopping time.

Whereas in the Skorokhod case the task is to show that the new better randomized
stopping time ξπ embeds the same distribution as ξ we now have to show that the
randomized stopping time we construct has the same distribution as ξ . The argument

works along the same lines though—instead of using that ((ω, s), (η, t)) ∈ ŜG
ξ

implies ω(s) = η(t) we now use that ((ω, s), (η, t)) ∈ ŜG
ξ
implies s = t . ��

We now present the argument in more detail.
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As may be clear by now, what we will show is that if ξ ∈ RSTλ(μ) is a solution of
(OptStop’), then there is a measurable, (F0

t )t≥0-adapted set 
 ⊆ C(R+)×R+ such
that SG ∩ (
< × 
) = ∅. Using Lemma 5.3 this implies Theorem 3.6.

We need to make some preparations. To align the notation with [6] and to make
some technical steps easier it is useful to have another characterization of measurable,
(F0

t )t≥0-adapted processes and sets. To this end define

Definition 6.1

S :=
⋃

t∈R+
C([0, t])× {t}

r : C(R+)× R+ → S

r(ω, t) := (
ω�[0,t], t

)

r has many right inverses. A simple one is

r ′ : S → C(R+)× R+

r ′( f, s) :=
(

t �→
{
f (t) for t ≤ s

f (s) for t > s
, s

)

.

We endow S with the sigma algebra generated by r ′.

[6, Theorem 3.2], which is a direct consequence of [15, Theorem IV. 97], asserts that a
process X is measurable, (F0

t )t≥0-adapted iff X factors as X = X ′ ◦r for a measurable
function X ′ : S → R. So a set D ⊆ C(R+)×R+ is measurable, (F0

t )t≥0-adapted iff
D = r−1

[
D′

]
for some measurable D′ ⊆ S.

Note that r(ω, t) = r(ω′, t ′) implies (ω, t)� θ = (ω′, t ′)� θ and therefore

SG = (r × r)−1
[
SG′

]

for a set SG′ ⊆ S × S which is described by an expression almost identical to that
in Definition 3.4. Namely we can overload � to also be the name for the operation
whose first operand is an element of S, such that (ω, t) � θ = r(ω, t) � θ and note
that as c is measurable, (F0

t )t≥0-adapted we can write c = c′ ◦ r and thus get a cost
function c′ which is defined on S.

Given an optimal ξ ∈ RSTλ(μ)wemay therefore rephrase our task as having to find
ameasurable set
 ⊆ S such that r∗(ξ) is concentrated on
 and thatSG′∩(
< × 
) =
∅, where 
< := {

(g�[0,s], s) : (g, t) ∈ 
, s < t
}
.

Note that for 
 ⊆ S although
(
r−1 [
]

)<
is not equal to r−1

[

<

]
we still have

SG ∩ (
r−1

[

<

]× r−1 [
]
) = ∅ iff SG ∩ (

(r−1 [
])< × r−1 [
]
) = ∅.

One of themain ingredients of the proof of [6, Theorem 1.3] and of our Theorem 3.6
is a procedure whereby we accumulate many infinitesimal changes to a given random-
ized stopping time ξ to build a new stopping time ξπ . The guiding intuition for the
authors is to picture these changes as replacing certain “branches” of the stopping time
ξ by different branches. Some of these branches will actually enter the statement of
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a somewhat stronger theorem (Theorem 6.8 below), so we begin by describing these.
Our way to get a handle on “branches”—i.e. infinitesimal parts of a randomized stop-
ping time—is to describe them through a disintegration (wrt W

0
λ) of the randomized

stopping time. We need the following statement from [6] which should also serve to
provide more intuition on the nature of randomized stopping times.

Lemma 6.2 [6, Theorem 3.8] Let ξ be a measure on C(R+)× R+. Then ξ ∈ RSTλ

iff there is a disintegration (ξω)ω∈C(R+) of ξ wrt W
0
λ such that (ω, t) �→ ξω([0, t]) is

measurable, (F0
t )t≥0-adapted and maps into [0, 1].

Using Lemma 6.2 above let us fix for the rest of this section both ξ ∈ RSTλ(μ)

and a disintegration (ξω)ω∈C(R+) with the properties above. Both Definition 6.3 below
and Theorem 6.8 implicitly depend on this particular disintegration and we emphasize
that whenever we write ξω in the following we are always referring to the same fixed
disintegration with the properties given in Lemma 6.2. Note that the measurability
properties of (ξω)ω∈C(R+) imply that for any I ⊆ [0, s] we can determine ξω(I ) from
ω�[0,s] alone. For ( f, s) ∈ S we will again overload notation and use ξ( f,s) to refer
to the measure on [0, s] which is equal to (ξω)�[0,s] for any ω ∈ C(R+) such that
r(ω, s) = ( f, s).

Definition 6.3 (conditional randomized stopping time) Let ( f, s) ∈ S. We define a
new randomized stopping time ξ ( f,s) ∈ RSTs by setting

ξ ( f,s)
ω :=

{
1

1−ξ( f,s)([0,s])
(
ξ( f,s)�ω

)
�(s,∞)

for ξ( f,s)([0, s]) < 1

δs for ξ( f,s)([0, s]) = 1
∫
F dξ ( f,s) :=

∫∫
F(ω, t) dξ ( f,s)

ω (t) dW
s
0(ω)

(6.1)

for all bounded measurable F : C([s,∞)) × [s,∞) → R, i.e. (ξ
( f,s)
ω )ω∈C([s,∞)) is

the disintegration of ξ ( f,s) wrt W
s
0.

Here δs is the Dirac measure concentrated at s. Really, the definition in the case
where ξ( f,s)([0, s]) = 1 is somewhat arbitrary—it’s more a convenience to avoid

partially defined functions. What we will use is that
(
1− ξ( f,s)([0, s])

)
ξ

( f,s)
ω =(

ξ( f,s)�ω

)
�(s,∞)

.

Definition 6.4 (relative Stop-Go pairs) The set SGξ consists of all (( f, t), (g, t)) ∈
S × S (again the times have to match) such that either

c′( f, t)+
∫
c((g, t)� θ, u) dξ ( f,t)(θ, u) < c′(g, t)+

∫
c(( f, t)� θ, u) dξ ( f,t)(θ, u)

(6.2)

or any one of

1. ξ ( f,t) (C(R+)× R+) < 1 or
∫
s p0 dξ ( f,t)(θ, s) = ∞

2. the integral on the right hand side equals∞
3. either of the integrals is not defined
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holds. We also define

ŜG
ξ := SGξ ∪ {

( f, s) ∈ S : ξ( f,s)([0, s]) = 1
}× S (6.3)

Lemma 6.6 below says that the numbered cases above are exceptional in an appro-
priate sense and one may consider them a technical detail. Note that when we say
(( f, t), (g, t)) ∈ SGξ we are implicitly saying that ξ( f,t)([0, t]) < 1.

Note that the sets SGξ and ŜG
ξ
are measurable (in contrast to SG, which may be

more complicated).

Definition 6.5 We call a measurable set F ⊆ S evanescent if r−1 [F] is evanescent,
that is, if W

0
λ

(
projC(R+)

[
r−1 [F]

]) = 0.

Lemma 6.6 [6, Lemma 5.2] Let F : C(R+)×R+ → R be somemeasurable function
for which

∫
F dξ ∈ R. Then the following sets are evanescent.

–
{
( f, s) ∈ S : ξ ( f,s) (C(R+)× R+) < 1

}

–
{
( f, s) ∈ S :

∫
F(( f, s)� θ, u) dξ ( f,s)(θ, u) /∈ R

}

Proof See [6]. ��
Lemma 6.7 [6, Lemma 5.4]

SG′ ⊆ ŜG
ξ

Proof Can be found in [6]. Note that they fix p0 = 1. ��
Theorem 6.8 Assume that ξ is a solution of (OptStop’). Then there is a measurable
set 
 ⊆ S such that r∗(ξ)(
) = 1 and

ŜG
ξ ∩ (


< × 

) = ∅. (6.4)

Our argument follows [6, Theorem 5.7]. We also need the following two auxilliary
propositions, which in turn require some definitions.

Definition 6.9 Let υ be a probability measure on some measure space Y . The set
JOINλ(υ) is the set of all subprobability measures π on (C(R+)×R+)×Y such that

(projY )∗(π) ≤ υ and

(projC(R+)×R+)∗(π�C(R+)×R+×D) ∈ RSTλ for all measurable D ⊆ Y .

Proposition 6.10 Let ξ be a solution of (OptStop’). Then (r × Id)∗ (π)(SGξ ) = 0
for all π ∈ JOINλ(r∗(ξ)).

Herewe use× to denote the Cartesian productmap, i.e. for sets Xi ,Yi and functions
Fi : Xi → Yi where i ∈ {1, 2} the map F1 × F2 : X1 × X2 → Y1 × Y2 is given
by (F1 × F2)(x1, x2) = (F1(x1), F2(x2)). Proposition 6.10 is an analogue of [6,
Proposition 5.8] and it is where the material changes compared to [6] take place. We
will give the proof at the end of this section.
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Proposition 6.11 [6, Proposition 5.9] Let (Y, υ) be a Polish probability space and let
E ⊆ S × Y be a measurable set. Then the following are equivalent

1. (r × Id)∗ (π)(E) = 0 for all π ∈ JOINλ(υ)

2. E ⊆ (F × Y ) ∪ (S × N ) for some evanescent set F ⊆ S and a measurable set
N ⊆ Y which satisfies υ(N ) = 0.

Proposition 6.11 is proved in [6] and we will not repeat the proof here.

Proof of Theorem 6.8 Using Proposition 6.10 we see that (r × Id)∗ (π)(SGξ ) = 0
for all π ∈ JOINλ(r∗(ξ)). Plugging this into Proposition 6.11 we find an evanescent
set F1 ⊆ S and a set N ⊆ S such that r∗(ξ)(N ) = 0 and SGξ ⊆ (F1× S)∪ (S× N ).
Defining for any Borel set E ⊆ S the analytic set

E> := {
(g, t) ∈ S : ∃s < t,

(
g�[0,s], s

) ∈ E
}

we observe that ((E>)c)< ⊆ Ec and find r∗(ξ)(F>
1 ) = 0.

Setting F2 :=
{
( f, s) ∈ S : ξ( f,s)([0, s]) = 1

}
and arguing on the disintegration

(ξω)ω∈C(R+) we see that r∗(ξ)(F>
2 ) = 0, so r∗(ξ)(F>) = 0 for F := F1 ∪ F2.

This shows that S\(N ∪ F>) has full r∗(ξ)-measure. Let 
 be a Borel subset of
that set which also has full r∗(ξ)-measure.

Then


< × 
 ⊆ (
(F>)c

)< × Nc ⊆ Fc × Nc and

ŜG
ξ ⊆ (F × S) ∪ (S × N )

which shows ŜG
ξ ∩ (
< × 
) = ∅. ��

Lemma 6.12 If α ∈ RSTλ and G : C(R+)× R+ → [0, 1] is measurable, (F0
t )t≥0-

adapted, then the measure defined by

F �→
∫
F(ω, t)G(ω, t) dα(ω, t) (6.5)

is still in RSTλ.

Proof We use the criterion in Lemma 6.2. Let (αω)ω∈C(R+) be a disintegration of α

wrt W0
λ for which (ω, t) �→ αω([0, t]) is measurable, (F0

t )t≥0-adapted and maps into
[0, 1]. Then (α̂ω)ω defined by α̂ω := F �→

∫
F(t)G(ω, t) dαω(t) is a disintegration

of the measure in (6.5) for which (ω, t) �→ α̂ω([0, t]) is measurable, (F0
t )t≥0-adapted

and maps into [0, 1]. ��
Lemma 6.13 (Strong Markov property for RSTs) Let α ∈ RSTλ. Then

∫
F(ω, t) dα(ω, t) =

∫∫
F((ω, t)� ω̃, t) dW

t
0(ω̃) dα(ω, t)

for all bounded measurable F : C(R+)× R+ → R.

Proof Using integral notation instead of the more conventional E, we may write the
classical form of the strong markov property as
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∫
G

(
�τ(ω)(ω)

)
H(ω) · 1R+(τ (ω)) dW

0
λ(ω)

=
∫∫

G(ω̃)H(ω) · 1R+(τ (ω)) dW
τ(ω)
ω(τ(ω))(ω̃) dW

0
λ(ω)

for all bounded measurable G : C(R+) → R and all bounded F0
τ -measurable H :

C(R+) → R. Here �t is the function which cuts off the initial segment of a path up
to time t . From this a simple monotone class argument shows that

∫
K

(
�τ(ω)(ω), ω

) · 1R+(τ (ω)) dW
0
λ(ω)

=
∫∫

K (�̃, ω) · 1R+(τ (ω)) dW
τ(ω)
ω(τ(ω))(�̃) dW

0
λ(ω)

for all bounded F0∞ ⊗ F0
τ -measurable K : C(R+)× C(R+)→ R.

We may then choose for K (ω̃, ω) the function F(η, τ (ω)) where the path η is
created by cutting off the tail of ω after time τ(ω) and attaching ω̃ in its place. Noting
the relationship between W

τ(ω)
x and W

τ(ω)
0 we then get

∫
F(ω, τ(ω)) · 1R+(τ (ω)) dW

0
λ(ω)

=
∫∫

F((ω, τ(ω))� �̃, τ (ω)) · 1R+(τ (ω)) dW
τ(ω)
0 (�̃) dW

0
λ(ω).

Using Lemma 5.3 with � = [0, 1] × C(R+) and Gt = B ([0, 1]) ⊗ Ft we find a
(Gt )t≥0-stopping time τ s.t. we may write α as

α = (
(y, ω) �→ (ω, τ(y, ω))

)
∗(L⊗W

0
λ)�C(R+)×R+

(where L is Lebesgue measure on [0, 1]). For a fixed y ∈ [0, 1], ω �→ τ(y, ω) is an
(F0

t )t≥0-stopping time, so wemay apply the previous equation to these stopping times
and integrate over y ∈ [0, 1] to get

∫
F(ω, τ(y, ω)) · 1R+(τ (y, ω)) d(L⊗W

0
λ)(y, ω)

=
∫∫

F((ω, τ(y, ω))� �̃, τ (y, ω)) · 1R+(τ (y, ω)) dW
τ(y,ω)
0 (�̃) d(L⊗W

0
λ)(y, ω).

Using the equation for α we see that this is what we wanted to prove. ��
Lemma 6.14 (Gardener’s Lemma) Assume that we have ξ ∈ RSTλ(P), a measure
α on C(R+)×R+ and two families β(ω,t), γ (ω,t), where (ω, t) ∈ C(R+)×R+, with
β(ω,t), γ (ω,t) ∈ RSTt (P) such that both maps

(ω, t) �→
∫
1D ((ω, t)� ω̃, s) dβ(ω,t)(ω̃, s) and

(ω, t) �→
∫
1D ((ω, t)� ω̃, s) dγ (ω,t)(ω̃, s)

are measurable for all Borel D ⊆ C(R+)× R+ and that

ξ(D)−
∫∫

1D ((ω, t)� ω̃, s) dβ(ω,t)(ω̃, s) dα(ω, t) ≥ 0 (6.6)
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for all Borel D ⊆ C(R+)× R+. Then for ξ̂ defined by

∫
F d ξ̂ :=

∫
F dξ −

∫∫
F((ω, t)� ω̃, s) dβ(ω,t)(ω̃, s) dα(ω, t)

+
∫∫

F((ω, t)� ω̃, s) dγ (ω,t)(ω̃, s) dα(ω, t)

for all bounded measurable F we have ξ̂ ∈ RSTλ(P).

Remark 6.15 The intuition behind the Gardener’s Lemma is that we are replacing
certain branches β(ω,t) of the randomized stopping time ξ by other branches γ (ω,t)

to obtain a new stopping time ξ̂ . This process happens along the measure α. Note
that (6.6) implies that

∫
1D ((ω, t)� ω̃) dW

t
0(ω̃) dα(ω, t) ≤ W

0
λ(D) for all Borel

D ⊆ C(R+). The authors like to think of α as a stopping time and of the maps
(ω, t) �→ β(ω,t) and (ω, t) �→ γ (ω,t) as adapted (in some sense that would need to be
made precise). As these assumptions aren’t necessary for the proof of the Gardener’s
Lemma, they were left out, but it might help the reader’s intuition to keep them in
mind.

Proof of Lemma 6.14 We need to check that the ξ̂ we define is indeed a measure, that
(projC(R+))∗(ξ̂ ) = W

0
λ and that (5.1) holds for ξ̂ .

Checking that ξ̂ is a measure is routine—we just note that (6.6) guarantees that
ξ̂(D) ≥ 0 for all Borel D.

Let G : C(R+) → R be a bounded measurable function.

∫
G(ω) d ξ̂(ω, t) =

∫
G(ω) dξ(ω, t)−

∫∫
G((ω, t)� ω̃) dβ(ω,t)(ω̃, s) dα(ω, t)

+
∫∫

G((ω, t)� ω̃) dγ (ω,t)(ω̃, s) dα(ω, t)

=
∫
G dW

0
λ −

∫∫
G((ω, t)� ω̃) dW

t
0 dα(ω, t)

+
∫∫

G((ω, t)� ω̃) dW
t
0 dα(ω, t)

=
∫
G dW

0
λ

Now let F : R+ → R and G : C(R+) → R be bounded continuous functions, with
F supported on [0, r ].

∫
F(t) (G − E [G|F0

r ]) (ω) d ξ̂(ω, t) =
∫
F(t) (G − E [G|F0

r ]) (ω) dξ(ω, t)

−
∫∫

F(s) (G − E [G|F0
r ]) ((ω, t)� ω̃) dβ(ω,t)(ω̃, s) dα(ω, t)

−
∫∫

F(s) (G − E [G|F0
r ]) ((ω, t)� ω̃) dγ (ω,t)(ω̃, s) dα(ω, t) (6.7)

The first summand is 0 because ξ ∈ RSTλ(P). Looking at the second summand we
expand the definition of E [G|F0

r ].

E [G|F0
r ] ((ω, t)� ω̃) =

∫
G(((ω, t)� ω̃, r)� θ) dW

r
0(θ)

=
∫
G((ω, t)� ((ω̃, r)� θ)) dW

r
0(θ)
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whenever t ≤ r , which is the case for those t which are relevant in the integrand above,
because F(s) �= 0 implies s ≤ r and moreover β(ω,t) is concentrated on (ω̃, s) for
which t ≤ s.

Setting Ĝ(ω,t)(ω̃) := G((ω, t)� ω̃) and F̂ (ω,t) := F�[t,∞) we can write

∫∫
F(s) (G − E [G|F0

r ]) ((ω, t)� ω̃) dβ(ω,t)(ω̃, s) dα(ω, t)

=
∫
1[0,r ](t)

∫
F̂ (ω,t)(s) (Ĝ(ω,t) − E [Ĝ(ω,t)|F t

r ]) (ω̃) dβ(ω,t)(ω̃, s) dα(ω, t)

which is 0 because β(ω,t) ∈ RSTt (P) and therefore

∫
F̂ (ω,t)(s) (Ĝ(ω,t) − E [Ĝ(ω,t)|F t

r ]) (ω̃) dβ(ω,t)(ω̃, s) = 0

for all (ω, t) and r ≥ t . The same argument works for the third summand in (6.7). ��
Proof of Proof of Proposition 6.10 We prove the contrapositive. Assuming that there
exists a π ′ ∈ JOINλ(r∗(ξ)) with (r × Id)∗ (π ′)(SGξ ) > 0, we construct a ξπ ∈
RSTλ(μ) such that

∫
c dξπ <

∫
c dξ .

If π ′ ∈ JOINλ(r∗(ξ)), then for any two measurable sets D1, D2 ⊆ S, because
π ′�(C(R+)×R+)×D2

∈ RSTλ and by making use of Lemma 6.12 we can deduce that
(projC(R+)×R+)∗(π ′�(r×Id)−1[D1×D2]

) ∈ RSTλ. Using the monotone class theorem
this extends to any measurable subset of S × S in place of D1 × D2. So we can
set π := π ′�(r×Id)−1[SGξ ]

and know that (projC(R+)×R+)∗(π) ∈ RSTλ and that π is

concentrated on SGξ .
We will be using a disintegration of π wrt r(ξ), which we call

(
π(g,t)

)
(g,t)∈S and for

whichwe assume thatπ(g,t) is a subprobabilitymeasure for all (g, t) ∈ S. It will also be
useful to assume that π(g,t) is concentrated on the set {(ω, s) ∈ C(R+)×R+ : s = t}
not just for r(ξ)-almost all (g, t) but for all (g, t). Again this is no restriction of
generality. We will also push π onto (C(R+)× R+) × (C(R+)× R+), defining a
measure π̄ via

∫
F dπ̄ :=

∫∫
F ((ω, s), ((g, t)� η̃, t)) dW

t
0(η̃) dπ ((ω, s), (g, t))

for all bounded measurable F . Observe that by Lemma 6.13 the pushforward of π

under projection onto the second coordinate (pair) is ξ and that a disintegration of π̄

wrt to ξ (again in the second coordinate) is given by
(
πr(η,t)

)
(η,t)∈C(R+)×R+ . Let us

name (projC(R+)×R+)∗(π) =: ζ ∈ RSTλ. We will now use the Gardener’s Lemma

to define two modifications ξπ
0 , ξ

π
1 of ξ such that ξπ := 1

2 (ξ
π
0 + ξπ

1 ) is our improved
randomized stopping time.

For all bounded measurable F : C(R+)× R+ → R define

∫
F dξπ

0 :=
∫
F dξ +

∫
(1− ξω([0, s]))

(
−

∫
F((ω, s)� ω̃, u) dξ r(ω,s)(ω̃, u)

+F(ω, s)
)
dζ(ω, s)
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∫
F dξπ

1 :=
∫
F dξ +

∫
(1− ξω([0, s]))

(
− F(η, t)

+
∫
F((η, t)� ω̃, u) dξ r(ω,s)(ω̃, u)

)
dπ̄((ω, s), (η, t)).

The concatenation on the last line is well-defined π̄ -almost everywhere because π̄ is

concentrated on (r × r)−1
[
SGξ

]
and so in the integrand above s = t on a set of full

measure.
We need to check that the Gardener’s Lemma applies in both cases. First of all

observe that the product measureW
t
0⊗δt is inRSTt (P) and that Lemma 6.13 implies

∫
F(ω, t) dα(ω, t) =

∫∫
F((ω, t)� ω̃, s) d

(
W

t
0 ⊗ δt

)
(ω̃, s) dα(ω, t).

for any randomized stopping timeα. So for ξπ
0 themeasures γ (ω,t) are given byW

t
0⊗δt

and for ξπ
1 the measures β(ω,t) are given by W

t
0 ⊗ δt .

For ξπ
0 the measure along which we are replacing branches is given by

F �→
∫
F(ω, s)(1− ξω([0, s])) dζ(ω, s).

The branches β(ω,s) we remove are ξ r(ω,s). We need to check that

∫
F dξ −

∫
(1− ξω([0, s]))

∫
F((ω, s)� ω̃, u) dξ r(ω,s)(ω̃, u) dζ(ω, s) ≥ 0

for all positive, bounded, measurable F : C(R+)× R+ → R. Let us calculate.

∫
(1− ξω([0, s]))

∫
F((ω, s)� ω̃, u) dξ r(ω,s)(ω̃, u) dζ(ω, s)

=
∫∫∫

F((ω, s)� ω̃, u) d
(
(ξ(ω,s)��̃)�(s,∞)

)
(u) dW

s
0(ω̃) dζ(ω, s)

=
∫∫

F(ω, u) d
(
(ξω)�(s,∞)

)
(u) dζ(ω, s) ≤

∫∫
F(ω, u) d(ξω)(u) dζ(ω, s)

≤
∫∫

F(ω, u) d(ξω)(u) dW
0
λ(ω) =

∫
F(ω, u) dξ(ω, u)

Here we first used the definition of ξ r(ω,s) and then Lemma 6.13 and finally that
(projC(R+))∗(ζ ) ≤ W

0
λ.

For ξπ
1 we replace branches along

F �→
∫
F(η, t)(1− ξω([0, s])) dπ̄ ((ω, s), (η, t))

=
∫
F(η, t)

∫
(1− ξω([0, s])) dπr(η,t)(ω, s) dξ(η, t).

The calculation above shows that

∫
F dξ −

∫
(1− ξω([0, s]))F(η, t) dπ̄ ((ω, s), (η, t)) ≥ 0
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for all positive, bounded, measurable F : C(R+) × R+ → R. For ξπ
1 the branches

γ (η,t) that we add are given by

F �→
∫

(1− ξω([0, s]))
∫
F(ω̃, u) dξ r(ω,s)(ω̃, u) dπr(η,t)(ω, s)∫

(1− ξω([0, s])) dπr(η,t)(ω, s)

when
∫

(1− ξω([0, s])) dπr(η,t)(ω, s) > 0 and δt otherwise (again, the latter is arbi-
trary). In the more interesting case γ (η,t) is an average over elements ofRSTt (P) and
therefore itself in RSTt (P). Here it is again crucial that for πr(η,t)-almost all (ω, s)
we have s = t , otherwise we would be averaging randomized stopping times of our
process started at unrelated times.

Putting this together we see that ξπ := 1
2 (ξ

π
0 + ξπ

1 ) is a randomized stopping time
and that

2
∫
F d(ξπ − ξ) =

∫
(1− ξω([0, s]))

(
F(ω, s)−

∫
F((ω, s)� ω̃, u) dξ r(ω,s)(ω̃, u)

−F(η, t)+
∫
F((η, t)� ω̃, u) dξ r(ω,s)(ω̃, u)

)
dπ̄((ω, s), (η, t)) (6.8)

for all bounded measurable F : C(R+)× R+ → R. Specializing to F(ω, s) = G(s)
for G : R+ → R bounded measurable we find that

∫
G(s) d(ξ − ξπ )(ω, s) = 0 ,

again because for π̄ -almost all ((ω, s), (η, t)) we have s = t . This shows that ξπ ∈
RSTλ(μ).

We now want to extend (6.8) to c. We first show that (6.8) also holds for F :
C(R+) × R+ → R which are measurable and positive and for which

∫
F dξ < ∞.

To see this, approximate such an F from below by bounded measurable functions (for
which (6.8) holds) and note that by previous calculations both

∫
(1− ξω([0, s]))

∫
F((ω, s)� ω̃, u) dξ r(ω,s)(ω̃, u) dπ̄((ω, s), (η, t)) ≤

∫
F dξ < ∞

and
∫

(1− ξω([0, s]))F(η, t) dπ̄((ω, s), (η, t)) ≤
∫
F dξ < ∞.

Looking at positive and negative parts of c and using Assumption 2.4 to see that∫
c− d(ξπ − ξ) ∈ R we get that indeed (6.8) holds for F = c.
Now we will argue that the integrand in the right hand side of (6.8) is negative

π̄ -almost everywhere. This will conclude the proof.
By inserting an r in appropriate places we can read off from Definition 6.4 what it

means that π̄ is concentrated on (r × r)−1
[
SGξ

]
. In the course of verifying that (6.8)

applies to c we already saw that cases 2 and 3 in Definition 6.4 can only occur on a set
of π̄ -measure 0. Lemma 6.6 excludes case 1 π̄ -almost everywhere. This means that
(6.2) holds π̄ -almost everywhere—or more correctly, that for π̄ -a.a. ((ω, s), (η, t))
we have s = t and
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c(ω, s)−
∫
c((ω, s)� ω̃, u) dξ r(ω,s)(ω̃, u)

−c(η, t)+
∫
c((η, t)� ω̃, u) dξ r(ω,s)(ω̃, u) < 0, (6.9)

completing the proof. ��

7 Variations on the theme

We proceed to prove Corollary 1.2. This is closely modelled on the treatment of the
Azema-Yor embedding in [6, Theorem 6.5]. As is the case there we run into a technical
obstacle, though one which can be overcome by combining the ideas we have already
seen in slightly new ways.

To demonstrate the problem let us begin an attempt to prove Corollary 1.2. Again,
we read off c(ω, t) = −ω∗(t), with ω∗(t) = sups≤t ω(s). We may use Theorem 3.1

to find a solution τ of the problem (OptStopB
∗
t ) and we use Theorem 3.6 to find a

set 
 ⊆ C(R+) × R+ for which P[(B, τ ) ∈ 
] = 1 and SG ∩ (
< × 
) = ∅.
Now we would like to apply Lemma 3.7 with Yt (ω) = ω(t) − ω∗(t), as proposed
by Corollary 1.2, so we want to prove that ω(t) − ω∗(t) < η(t) − η∗(t) implies
((ω, t), (η, t)) ∈ SG. Let us do the calculations. We start with an (F s

t )s≥t -stopping
time σ , for whichW

t
0(σ = t) < 1,Wt

0(σ = ∞) = 0 and for which both sides in (3.2)
are defined and finite. To reduce clutter, let us name (ω �→ (ω, σ (ω)))∗(Wt

0) =: α,
so that (3.2), which we want to prove, reads

−ω∗(t)+
∫

((ω, t)� θ)∗(s) dα(θ, s) < −η∗(t)+
∫

((η, t)� θ)∗(s) dα(θ, s)
(7.1)

We may rewrite the left hand side as

∫ (
ω∗(t) ∨ (

ω(t)+ θ∗(s)
))− ω∗(t) dα(θ, s)

=
∫
0 ∨ (

ω(t)− ω∗(t)+ θ∗(s)
)
dα(θ, s).

For the right hand side we get the same expression with ω replaced by η. Looking at
the integrands we see that if

0 < η(t)− η∗(t)+ θ∗(s) (7.2)

then

0 ∨ (
ω(t)− ω∗(t)+ θ∗(s)

)
< 0 ∨ (

η(t)− η∗(t)+ θ∗(s)
)
,

but in the other case

0 ∨ (
ω(t)− ω∗(t)+ θ∗(s)

) = 0 = 0 ∨ (
η(t)− η∗(t)+ θ∗(s)

)
.
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So if (7.2) holds for (θ, s) from a set of positive α-measure, then we proved what we
wanted to prove. But if θ∗(s) ≤ η∗(t) − η(t) for α-a.a. (θ, s) then in (3.2) we have
equality instead of strict inequality.

As in [6, Theorem 6.5], one way of getting around this is to introduce a secondary
optimization criterion. One way to explain the idea of secondary optimization is to
think about what happens if, instead of considering a cost function c : C(R+)×R+ →
R we consider a cost function c : C(R+) × R+ → R

n . Of course, to be able to talk
about optimization, we will then want to have an order on R

n . For reasons that should
become clear soon, we decide on the lexicographical order. For the case n = 2 that
we are actually interested in for Corollary 1.2 this means that

(x1, x2) ≤ (y1, y2) ⇐⇒ x1 < y1 or (x1 = y1 and x2 ≤ y2).

We claim that Theorem 3.6 is still true if we replace c : C(R+) × R+ → R by
c : C(R+) × R+ → R

n and read any symbol ≤ which appears between vectors
in R

n as the lexicographic order on R
n (and of course likewise for all the derived

symbols and notions <, ≥, >, inf, etc.). Moreover, the arguments are exactly the
same. Indeed the crucial part that may deserve some mention is at the end of the
proof of Proposition 6.10, where we use the assumption that (6.9) holds on a set of
positive measure, i.e. that the integrand is < 0 on a set of positive measure, and that
the integrand is 0 outside that set, to conclude that the integral itself must be < 0.
This implication is also true for the lexicographical order on R

n . One more detail
to be aware of is that integrating functions which map into R

2 may give results of
the form (∞, x), (x,−∞), etc. In the case of a one-dimensional cost function we
excluded such problems by making Assumption 2.4. What we really want in the proof
of Proposition 6.10 is that

∫
c dξ and

∫
c dξπ should be finite. Clearly a sufficient

condition to guarantee this is to replace Assumption 2.4 by

(4’) E[c(B, τ )] ∈ R
n for all stopping times τ ∼ μ.

This is not the most general version possible but it will suffice for our purposes.
To get an existence result we may assume that c = (c1, c2) is component-wise

lower semicontinuous and that both c1 and c2 are bounded below (in either of the
ways described in the two versions of Theorem 3.1). Note that—because we are
talking about the lexicographic order—ξ ∈ RSTλ(μ) is a solution of (OptStop’) for
c iff ξ is a solution of (OptStop’) for c1 and among all such solutions ξ ′, ξ minimizes∫
c2 dξ ′. By Theorem 3.1 in the form that we have already proved the set of solutions

of (OptStop’) for c1 is non-empty. It is also a closed subset of a compact set and
therefore itself compact. This allows us to reiterate the argument that we used in
the proof of Theorem 3.1 to find inside this set a minimizer of ξ ′ �→

∫
c2 dξ ′. This

minimizer is the solution of (OptStop’) for c.
With this in hand we may pick up our

Proof of Corollary 1.2 The same arguments as in the proof of Corollary 1.1 apply,
so we may assume that our probability space satisfies Assumption 2.2. We start
with a cost function c(ω, t) := (c1(ω, t), c2(ω, t)) := (−ω∗(t), (ω∗(t) − ω(t))3).
‖c1(B, τ )‖L3 ≤ ‖|B|∗τ‖L3 ≤ K1‖τ‖1/2L3/2 , by the Burkholder-Davis-Gundy inequali-
ties, so (c1)− satisfies the uniform integrability condition and E[c(B, τ )] is finite for
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all stopping times τ ∼ μ. c2 ≥ 0 and by the Burkholder-Davis-Gundy inequalities
E[c2(B, τ )] ≤ E[(B∗(τ ))3] ≤ K1E[τ 3/2] = K1

∫
t3/2 dμ(t) for some constant K1.

The last term is finite by assumption.
By our discussion in the preceding paragraphs we find a solution τ of (OptStop)

for c and a measurable, (F0
t )t≥0-adapted set 
 ⊆ C(R+)×R+, for which P[(B, τ ) ∈


] = 1 and SG∩ (
<×
) = ∅, where now ((ω, t), (η, t)) ∈ SG iff for all (F s
t )s≥t -

stopping times σ for which W
t
0(σ = t) < 1, W

t
0(σ = ∞) = 0,

∫
σ 3/2 dW

t
0 < ∞,

setting α := (ω �→ (ω, σ (ω)))∗(Wt
0) we have that either equation (7.1) holds or

−ω∗(t)+
∫

((ω, t)� θ)∗(s) dα(θ, s) = −η∗(t)+
∫

((η, t)� θ)∗(s) dα(θ, s)
(7.3)

and

c2(ω, t)−
∫
c2((ω, t)� θ, s) dα(θ, s) < c2(η, t)−

∫
c2((η, t)� θ, s) dα(θ, s).

(7.4)

Nowwewant to applyLemma3.7, sowewant to show thatω(t)−ω∗(t) < η(t)−η∗(t)
implies ((ω, t), (η, t)) ∈ SG. We already dealt with the case where α is such that (7.2)
holds on a set of positive α-measure. We now deal with the other case, so we have

θ∗(s) ≤ η∗(t)− η(t) < ω∗(t)− ω(t) (7.5)

for α-a.a. (θ, s) and we know that (7.3) holds. We show that (7.4) holds. Because of
(7.5), ((ω, t)� θ)∗(s) = ω∗(t), and so c2((ω, t)� θ, s) = (ω∗(t) − ω(t) − θ(s))3.
We calculate the left hand side of (7.4).

∫
(ω∗(t)− ω(t))3 − (ω∗(t)− ω(t)− θ(s))3 dα(θ, s)

=
∫
3(ω∗(t)− ω(t))2θ(s)− 3(ω∗(t)− ω(t))(θ(s))2 + (θ(s))3 dα(θ, s)

= (ω(t)− ω∗(t))3
∫

(θ(s))2 dα(θ, s)+
∫

(θ(s))3 dα(θ, s)

Here the Burkholder–Davis–Gundy inequalities show that both
∫

(θ(s))3 dα(θ, s) and∫
(θ(s))2 dα(θ, s) are finite so that we may split the integral and they also show that

{B̃σ∧T : T ≥ t} is uniformly integrable so that by the optional stopping theorem∫
θ(s) dα(θ, s) = 0. (B̃ is again Brownian motion started in 0 at time t onC([t,∞)).)
For the right hand side of (7.4) we get the same expression with ω replaced by η.

This concludes the proof thatω(t)−ω∗(t) < η(t)−η∗(t) implies ((ω, t), (η, t)) ∈ SG
and Lemma 3.7 gives us barriers Ř, R̂ such that for their hitting times ˇτ , τ̂ by Bt − B∗t
we have ˇτ ≤ τ ≤ τ̂ a.s.

Again we want to show that ˇτ = τ̂ a.s. and that they are actually stopping times.
Againwe do so by showing that they are both a.s. equal to the hitting time of the closure
of the respective barrier. If Ř∩({0}×R+) = ∅ then this works in exactly the sameway
as in Lemma 4.3. (This time we define τ ε := inf{t > 0 : (Bε

t (ω)− (Bε)∗t (ω), t) ∈ R}
where Bε

t (ω) := Bt (ω)+A(t)ε.) If Ř∩({0}×R+) �= ∅ then (Bε
t (ω)−(Bε)∗t (ω), t) ∈
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R and t > 0 need not imply Bt (ω)− B∗t (ω) < Bε
t (ω)− (Bε)∗t (ω), which is essential

for the topological argument showing that the hitting time of R is less than or equal

τ ε. But if R̂ ∩ ({0} × R+) = Ř ∩ ({0} × R+) �= ∅, then ˇτ and τ̂ are both almost

surely ≤ T where T := inf{t > 0 : (0, t) ∈ R̂}, so in the step where we show
that the hitting time of R is less than τ ε we can argue under the assumption that
τ ε(ω) < T . In this case we do have that (Bε

t (ω) − (Bε)∗t (ω), t) ∈ R and t > 0
implies Bt (ω)− B∗t (ω) < Bε

t (ω)− (Bε)∗t (ω). ��
Remark 7.1 We hope that the proofs of Corollaries 1.1 and 1.2 have given the reader
some idea of how to apply the main results of this paper to arrive at barrier-type
solutions of constrained optimal stopping problems, as depicted in Fig. 1.

We would like to conclude by giving a couple of pointers to the interested reader
who may want to work through the proofs corresponding to the remaining pictures in
Fig. 1.

For the problem of minimizing E[B∗τ ], it may actually happen that the times ˇτ, τ̂from Lemma 3.7 do not coincide. Specifically one has to expect this to happen on a
non-negligible set when Ř contains parts of the time axis which R̂ does not contain.
Under these circumstances an optimizer may turn out to be a true randomized stopping
time, with a proportion of a path hitting the time axis at a certain point needing to be
stoppedwhile the rest continues. In this situation the picture alone does not completely
describe the optimal stopping time.

For the problems involving absolute values one needs to make aminor modification
in the proof of Proposition 6.10. Specifically one can allow “mirroring” the pathswhich
are “transplanted” using the Gardener’s Lemma. This leads to a slightly different
definition of Stop-Go pairs, which is perhaps most easily described by saying that in
Fig. 2 the green paths which are stoppen by σ may be flipped upside-down on either
side.
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