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1. Introduction

The classical Fock space (or, the Segal–Bargmann space) has a long and cele-
brated history and its origins are found in quantum mechanics. In spite of the
richness of the existing literature on scalar Fock spaces, the vector-valued case
has, to the best of our knowledge, not yet been thoroughly considered. The
investigation of spaces of analytic functions in the vector-valued framework
brings along new insights and it often requires the development of entirely
new techniques compared to the scalar setting (see [13]). The objective of
our paper is to study big Hankel operators with anti-analytic symbols on
generalized vector-valued Fock spaces.

Seip and Youssfi [14] studied big Hankel operators with anti-holomorphic
symbols acting on a large class of scalar Fock spaces with radial weights sub-
ject to a mild smoothness condition (see below). Using their sharp estimates
for the reproducing kernel, we investigate this class of operators in the vector-
valued setting and define adequate versions of Bloch, Besov spaces and of
mean oscillation.

Let us first present our framework. We assume Ψ : [0,∞) → [0,∞) is a
C3-function such that

Ψ′(x) > 0, Ψ′′(x) ≥ 0 and Ψ′′′(x) ≥ 0. (1)
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We now define the class S of functions g : [0,∞) → [0,∞) such that there
exists a real number η < 1

2 for which

g′′(x) = O
(
x− 1

2 [g′(x)]1+η
)

, x → +∞. (2)

We assume that the function

Φ(x) := xΨ′(x)

is in S, and, when d > 1, we also require that Ψ is in S. For ϕ(z) :=
Ψ(|z|2), z ∈ C

d, let dμϕ(z) = e−ϕ(z)dmd(z), where dmd(z) denotes the
Lebesgue measure on C

d. Given a separable Hilbert space H, we denote by
L2

ϕ(H) the space of measurable H-valued functions that are square integrable
with respect to dμϕ. We define the vector-valued Fock space F2

ϕ(H) as the
subspace of L2

ϕ(H) consisting of holomorphic functions, i.e.

F2
ϕ(H) =

{
f : Cd → H holomorphic : ‖f‖2

ϕ =
∫

Cd

‖f(z)‖2dμϕ(z) < ∞
}

.

The point evaluations are bounded linear maps from F2
ϕ(H) to H: more

precisely, for any f ∈ F2
ϕ(H) we have

‖f(z)‖ ≤ c(z)‖f‖ϕ, z ∈ C
d, (3)

where c(z) � eΨ(|z|2)/2Φ′(|z|2)1/2(Ψ′(|z|2))(d−1)/2. For dim H = 1, this esti-
mate was proved in Lemma 8.2 in [14], and the passage to the vector-valued
case is straightforward via bounded linear functionals. It follows that F2

ϕ(H)
is a closed subspace of L2

ϕ(H) and hence the orthogonal projection from
L2

ϕ(H) onto F2
ϕ(H) is given by

(Pϕf)(z) =
∫

Cd

Kϕ(z, w) f(w) dμϕ(w), z ∈ C
d, (4)

where C
d × C

d 	 (z, w) 
→ Kϕ(z, w) denotes the reproducing kernel of the
scalar Fock space F2

ϕ(C). Again, the last formula is easily deduced from
the reproducing formula of the scalar Fock space F2

ϕ(C) applied to z 
→
〈Pϕf(z), h〉, where h ∈ H is arbitrary.

We are now ready to define vectorial Hankel operators. In what follows,
L(H) will stand for the space of bounded linear operators on H and K(H)
will stand for the space of compact linear operators on H. We denote by
Tϕ(L(H)) the space of holomorphic operator-valued functions T : Cd → L(H)
that satisfy

Kϕ(·, z)‖T (·)‖L(H) ∈ L2
ϕ(Cd) for all z ∈ C

d.

For T ∈ Tϕ(L(H)) we define the big Hankel operator HT ∗ with symbol T ∗

by

HT ∗f(z) := (I − Pϕ)(T (·)∗f(·))(z)

=
∫

Cd

[T (z)∗ − T (w)∗]f(w) · Kϕ(z, w) dμϕ(w)

for all f ∈ F2
ϕ(H).



IEOT Big Hankel Operators on Vector-Valued Page 3 of 25 2

In the scalar case, the boundedness/compactness of such operators was
shown to be equivalent to their symbols belonging to the Bloch space/little
Bloch space (see [14]). Moreover, the Schatten class membership is equivalent
to the symbol belonging to analytic Besov spaces.

We recall that the scalar Bloch space in several complex variables was
first introduced by Timoney [16,17] for bounded symmetric domains. The
scalar Bloch space B, corresponding to the weight e−Ψ(|z|2) on C

d, was con-
sidered by Seip and Youssfi [14] and is defined as the space of holomorphic
functions f : Cd → C with

‖f‖B = sup
z∈Cd

{
sup

ξ∈Cd, ξ �=0

|〈∇f(z), ξ̄〉|
β(z, ξ)

}
< ∞, (5)

where β(z, ξ) denotes the Bergman metric

β(z, ξ) =
√

〈B(z)ξ, ξ〉, z, ξ ∈ C
d,

and B(z) is the d × d-matrix with entries
[ ∂2

∂z̄j ∂zk
log K(z, z)

]
jk

, 1 ≤ j, k ≤ d.

B(z) is positive-definite and it is usually referred to as the Bergman matrix.
A standard argument (see e.g. [19]) shows that

‖f‖B = sup
z∈Cd

√
〈B−1(z) ∇f(z), ∇f(z)〉. (6)

We shall now define an operator-valued version of the Bloch space B, for which
we provide several adequate equivalent norms. One of these is an analogue
of (5) (see Sect. 2), the second one is expressed in terms of mean oscillation
[see (11)], and it turns out that our Bloch space coincides with an operator-
version of BMOA. We now define a third norm which is more relevant for
our approach in studying the Hankel operator. Inspired by (6) we introduce

QT (z) :=
∑

1≤i,j≤d

B−1(z)ijDjT (z)
(
DiT (z)

)∗
, z ∈ C

d, (7)

where B−1(z)ij denotes the (ij)-th entry of the hermitian matrix B−1(z) and
DiT (z)∗ is the adjoint of the operator DiT (z) = ∂T

∂zi
(z).

The operator-valued Bloch space B(L(H)) is the space of holomorphic
functions T : Cd → L(H) with

‖T‖B(L(H)) = ‖T (0)‖L(H) + sup
z∈Cd

‖QT (z)‖1/2
L(H) < ∞. (8)

Notice that for H = C, in view of (6), we recover the scalar Bloch space.
The operator QT (z) can be expressed in terms of the radial derivative, the
tangential derivatives of T , as well as the eigenvalues of B(z) (see Sect. 2).
Taking this into account, we show that B(L(H)) can be characterized as the
space of holomorphic functions T : Cd → L(H) with the property that there
exist c1, c2 > 0 such that

‖RT (z)‖L(H) ≤ c1|z|
√

Φ′(|z|2)
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and

‖Tij(T )(z)‖L(H) ≤ c2|z|
√

Ψ′(|z|2), 1 ≤ i, j ≤ d,

where RT denotes the radial derivative of T , and Tij(T ) denote the tangential
derivatives of T , i.e.

RT (z) =
d∑

k=1

zk
∂T

∂zk
, Tij(T ) = zi

∂T

∂zj
− zj

∂T

∂zi
, 1 ≤ i, j ≤ d. (9)

For a continuous function f : C
d → L (H) such that ‖f(.)‖L(H) |kz|2

is in L1 (dμϕ) for all z, one defines its Berezin transform analogously to the
scalar case by

f̃(z) =
∫

Cd

f(w) |kz(w)|2 dμϕ(w), z ∈ C
d.

For a continuous function T : Cd → L (H) we define

MO2T ∗(z) := T̃ T ∗(z) − T̃ (z)T̃ ∗(z), z ∈ C
d, (10)

provided ‖T (.)‖L(H) |kz| is in L2
ϕ(C) for all z ∈ C

d. We say that T has bounded
mean oscillation if supz∈Cd

∥∥MO2T ∗(z)
∥∥

L(H)
< ∞ and we introduce the

norm

‖T‖BMO(L(H)) := sup
z∈Cd

∥∥MO2T ∗(z)
∥∥1/2

L(H)
+ ‖T (0)‖L(H) . (11)

For the connection between Hankel operators and bounded mean oscillation
see also [5].

Throughout this paper, for two functions E1, E2, the notation E1 � E2

means that there is a constant k > 0 independent of the argument such that
E1 ≤ kE2. If both E1 � E2 and E2 � E1 hold, then we write E1 � E2.

The next theorem characterizes the boundedness of the Hankel operator
HT ∗ .

Theorem 1.1. Given a holomorphic function T : Cd → L(H), the following
are equivalent:
(a) T ∈ Tϕ(L(H)) and the Hankel operator HT ∗ is bounded from F2

ϕ(H) to
L2

ϕ(H);
(b) T ∈ B (L(H));
(c) supz∈Cd

∥∥MO2T ∗(z)
∥∥1/2

L(H)
< ∞.

Moreover,

‖T‖B(L(H)) �
(
‖HT ∗‖ + ‖T (0)‖L(H)

)
� ‖T‖BMO(L(H)) .

Inspired by the scalar case [14], we present two alternative proofs of the
implication (b) ⇒ (a) above: one of them relies on the Schur test combined
with the reproducing kernel estimates provided in [14], while the second one is
based on Hörmander estimates for the ∂̄-equation. Due to non-commutativity,
the latter proof is not a mere adaptation of the one from the scalar case, and
it provides an estimate in terms of the multiplication operator with symbol
the operator-valued function Q

1/2
T , which will be used in an essential way in
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the characterizations of compactness and Schatten class membership of the
Hankel operator.

Subsequently, in Theorem 4.2 (see Sect. 4) we show that a “little oh”
version of condition (b), respectively (c), from Theorem 1.1 characterizes the
compactness of HT ∗ .

We recall that, given two separable Hilbert spaces H1,H2 and p > 0,
a compact linear operator A : H1 → H2 belongs to the Schatten class Sp =
Sp(H1,H2) if the sequence of eigenvalues {sn}n of (T ∗T )1/2 satisfies

‖A‖Sp :=

(∑
n

sp
n

)1/p

< ∞.

The Schatten class membership of HT ∗ is characterized below.

Theorem 1.2. Suppose T : Cd → K(H) is holomorphic and p ≥ 2. Then the
following are equivalent:
(a) T ∈ Tϕ(L(H)) and the Hankel operator HT ∗ belongs to the Schatten

class Sp(F2
ϕ(H), L2

ϕ(H));

(b) Q
1/2
T : Cd → Sp(H) is measurable and∫

Cd

‖QT (z)1/2‖p
Sp(H)K(z, z) dμϕ(z) < ∞; (12)

(c) (MO2T ∗)1/2 : Cd → Sp(H) is measurable and∫

Cd

‖
(
MO2T ∗(z)

)1/2 ‖p
Sp(H)K(z, z) dμϕ(z) < ∞. (13)

Moreover, we have equivalence between the following quantities

‖HT ∗‖Sp �
∥∥∥(QT )1/2

∥∥∥
Lp(Cd,Sp(H),dλϕ)

�
∥∥∥(MO2T ∗)1/2

∥∥∥
Lp(Cd,Sp(H),dλϕ)

,

where dλϕ(z) := K(z, z) dμϕ(z).

Similar considerations to the ones in Sect. 9 in [14], show that there is
no nontrivial holomorphic function T : Cd → L(H) such that condition (12)
holds for p = 2, and therefore there are no nontrivial Hilbert-Schmidt Hankel
operators with anti-holomorphic symbols on F2

ϕ(H).
Here, it is worthwhile mentioning the following specificity of the vector-

valued setting in our approach to prove the necessity of the conditions on the
symbol T for compactness, respectively Schatten class membership. At a first
glance, the test functions that seem natural to consider are of the type kze,
where kz is the normalized reproducing kernel of F2

ϕ(C) and e ∈ H. However,
it turns out that we need to consider test functions of the form kzez, for an
appropriate choice of the vectors ez, that depends on the operator-valued
function QT (z).

Regarding previous studies of big Hankel operators on scalar Fock spaces
we would also like to mention [3,4,8,9,12,18], as for Hankel forms on vector-
valued Bergman-type spaces we refer to [1,2].

The paper is organized as follows. Section 2 is concerned with equivalent
definitions and basic properties of the operator-valued Bloch, little Bloch



2 Page 6 of 25 H. Bommier-Hato, O. Constantin IEOT

space, as well as some preliminary material. Section 3 is dedicated to the
boundedness of HT∗, while in Sect. 4 we characterize the compactness of
HT∗. Finally, in Sect. 5 we investigate the Schatten class membership of our
Hankel operators.

2. The Operator-Valued Bloch Space, Little Bloch Space and
BMOA

We start with some considerations regarding the Bergman matrix. Recall
that the Bergman matrix B(z) is the d × d-matrix with entries

[ ∂2

∂z̄j ∂zk
log K(z, z)

]
jk

, 1 ≤ j, k ≤ d.

Notice that if F (|z|2) := K(z, z), then

B(z) =
F ′

F
I + |z|2

(F ′

F

)′
Pz,

where I stands for the identity matrix, Pz denotes the projection of Cd onto
span{z}, given by

Pzw =
1

|z|2 〈w, z〉z z, w ∈ C
d.

We can rewrite

B(z) = λ(z)Pz + μ(z) (I − Pz),

where

λ(z) =
F ′

F
(|z|2) + |z|2

(
F ′

F

)′
(|z|2) and μ(z) =

F ′

F
(|z|2)

are the eigenvalues of B(z). Hence
(
B(z)

)−1 =
1

λ(z)
Pz +

1
μ(z)

(I − Pz). (14)

Now Lemma 4.1 from [14] gives

F ′

F
(r) = (1 + o(1))Ψ′(r),

(
F ′

F

)′
(r) = (1 + o(1))Ψ′′(r) + o(1)

Ψ′(r)
r

, as r → ∞,

which implies

λ(z) � Ψ′(|z|2) + |z|2Ψ′′(|z|2) = Φ′(|z|2)
μ(z) � Ψ′(|z|2). (15)

It was shown in Lemma 7.2 in [14] that, instead of working with Bergman
balls (i.e. balls corresponding to the Bergman distance), one can equivalently
work with sets of the form

D(z, a) =
{

w : |z − Pzw| ≤ a[Φ′(|z|2)]−1/2, |w − Pzw| ≤ a[Ψ′(|z|2)]−1/2
}

,

(16)
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where z ∈ C
d, a > 0.

Lemma 2.1. The sets D(z, a) are unitarily invariant, that is, if U : Cd → C
d

is a unitary map, then

U(D(z, a)) = D(Uz, a), z ∈ C
d, a > 0. (17)

Proof. The proof is straightforward and relies on the identity UPz = PUzU
for any z ∈ C

d. �

Recall that in (7) we introduced the operator

QT (z) :=
∑

1≤i,j≤d

B−1(z)ijDjT (z)
(
DiT (z)

)∗
, z ∈ C

d,

Depending on the context, we shall use alternative expressions for QT (z).
From (14) we have

B−1(z)ij =
(

1
λ(z)

− 1
μ(z)

)
zi zj

|z|2 +
1

μ(z)
δij .

Substituting this in the expression of QT (z) we obtain for z �= 0

QT (z) =
1

|z|2
( 1

λ(z)
− 1

μ(z)

)
RT (z)

(
RT (z)

)∗

+
1

4μ(z)
Δ(T (z)T (z)∗)

=
1

λ(z)|z|2 RT (z)
(
RT (z)

)∗

+
1

μ(z)|z|2
∑

1≤i<j≤d

Tij(T )(z)
(
Tij(T )(z)

)∗
, (18)

where RT and Tij(T ) were defined in (9). In particular, this shows that QT (z)
is a positive operator.

Another expression of QT which will be useful in several of the subse-
quent proofs is the following. If ckj(z) stands for the kj entry of the (hermit-
ian) matrix B(z)−1/2, where 1 ≤ k, j ≤ d, set

Cj(z) :=
d∑

k=1

ckj(z)DkT (z), z ∈ C
d. (19)

Obviously Cj(z) ∈ L(H) and we have

d∑
j=1

Cj(z)
(
Cj(z)

)∗
=

d∑
k,l=1

⎛
⎝

d∑
j=1

clj(z) cjk(z)

⎞
⎠DlT (z)

(
DkT (z)

)∗

=
∑

1≤k,l≤d

(
B−1(z)

)
lk

DlT (z)
(
DkT (z)

)∗

= QT (z). (20)
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A straightforward calculation shows that QT satisfies

‖QT+S(z)‖1/2
L(H) ≤ ‖QT (z)‖1/2

L(H) + ‖QS(z)‖1/2
L(H) ,

T, S ∈ L(H), z ∈ C
d, (21)

which implies that (8) defines a norm on B (L (H)). Moreover, the complete-
ness of B (L (H)) follows by a standard argument similar to the one in [19].

In the next proposition we provide an equivalent norm on B(L(H)),
which is an analogue of (5), and we prove the vectorial version of a standard
estimate for Bloch functions in terms of the Bergman distance. The Bergman
distance is defined by

dΨ(z, w) := inf
γ

∫ 1

0

β(γ(t), γ′(t)) dt, z, w ∈ C
d,

where the infimum is taken over all piecewise C1−smooth curves γ : [0, 1] →
C

d such that γ(0) = w and γ(1) = z.

Proposition 2.2. (a) We have

‖T‖B(L(H)) � ‖T (0)‖L(H) + sup
z∈Cd

{
sup

ξ∈Cd, ξ �=0

‖
∑d

k=1 ξkDkT (z)‖L(H)

β(z, ξ)

}
,

(22)
for all holomorphic functions T : Cd → L(H), where the involved con-
stants depend only on d.

(b) For any T ∈ B(L(H)) we have

‖T (z) − T (w)‖L(H) � ‖T‖B(L(H))dΨ(z, w), z, w ∈ C
d, (23)

where dΨ denotes the Bergman distance induced by the Bergman metric
β.

Proof. (a) Using the fact that β(z, ξ) =
√

〈B(z)ξ, ξ〉 and substituting η :=
B(z)1/2ξ we may write

E(z) := sup
ξ∈Cd, ξ �=0

‖
∑d

k=1 ξkDkT (z)‖L(H)

β(z, ξ)

= sup
η∈Cd, η �=0

‖
∑d

k=1(B(z)−1/2η)kDkT (z)‖L(H)

‖η‖

= sup
w∈Cd, ‖w‖=1

∥∥∥∥∥
d∑

k=1

(B(z)−1/2w)kDkT (z)

∥∥∥∥∥
L(H)

= sup
w∈Cd, ‖w‖=1

∥∥∥∥∥∥
d∑

j=1

wjCj(z)

∥∥∥∥∥∥
L(H)

, (24)

where, in the last two steps above, we used the notation from (19). Particu-
larizing w in the last expression above to the vectors from the canonical basis
of Cd, we obtain

E(z) ≥ ‖Cj(z)‖L(H) = ‖Cj(z)Cj(z)∗‖1/2
L(H) z ∈ C

d, 1 ≤ j ≤ d. (25)
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Using the above together with (20) we deduce

d · E(z)2 ≥
d∑

j=1

‖Cj(z)Cj(z)∗‖L(H)

≥ ‖
d∑

j=1

Cj(z)Cj(z)∗‖L(H)

= ‖QT (z)‖L(H). (26)

On the other hand, relation (24) and the Cauchy-Schwarz inequality imme-
diately give

E(z)2 ≤ sup
w∈Cd, ‖w‖=1

⎛
⎝

d∑
j=1

|wj |‖Cj(z)‖L(H)

⎞
⎠

2

≤

⎛
⎝

d∑
j=1

‖Cj(z)‖2
L(H)

⎞
⎠

≤ d · ‖
d∑

j=1

Cj(z)Cj(z)∗‖L(H) = d · ‖QT (z)‖L(H),

where the last inequality above follows by positivity. Together with (26) this
implies

E(z) � ‖QT (z)‖1/2
L(H),

and (a) now follows by taking the supremum over z ∈ C
d in the above

relation.
In order to prove (b), let z, w ∈ C

d and consider a piecewise C1 curve
γ : [0, 1] → C

d (γ = (γ1, . . . , γd)) such that γ(0) = w and γ(1) = z. Then, in
view of (a), we get

‖T (z) − T (w)‖L(H) ≤
∫ 1

0

∥∥∥∥∥∥
d∑

j=1

γ′
j(t)DjT (γ(t))

∥∥∥∥∥∥
L(H)

dt

≤
√

d sup
ξ∈Cd

‖QT (ξ)‖1/2
L(H)

∫ 1

0

β(γ(t), γ′(t)) dt.

Taking now the supremum over γ above leads us to (b). �

The next lemma, which is a direct consequence of the reproducing ker-
nel estimates proven in [14], shows that the operator-valued Bloch space is
contained in Tϕ(L(H)).

Lemma 2.3. If T ∈ B(L(H)), then for any z ∈ C
d we have ‖T (·)‖L(H) ·

K(·, z) ∈ L2
ϕ(C).

Proof. Since Ψ ∈ S and satisfies (1) we have

[Ψ′(x)]−ηΨ′′(x) � Ψ′(x), x ≥ 0,
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which implies

Ψ′(x) � [1 + Ψ(x)]
1

1−η , x ≥ 0. (27)

Hence

Φ′(x) = Ψ′(x) + xΨ′′(x) � (1 + x)[1 + Ψ(x)]3 (28)

since η < 1
2 . From the fact that T ∈ B(L(H)) together with (15) we obtain

the estimate

‖RT (z)‖2
L(H) � λ(z)|z|2 � Φ′ (|z|2

)
|z|2, z ∈ C

d.

Combining this with (28) and taking into account the fact that Φ′ is increas-
ing, we deduce

‖T (z) − T (0)‖L(H) =
∥∥∥
∫ 1

0

1
t

RT (tz) dt
∥∥∥

L(H)

≤ |z|
√

(1 + |z|2)(1 + Ψ(|z|2))3, z ∈ C
d.

Since Ψ grows at least like a linear function, the above estimate yields

I = I(z) :=
∫

Cd

‖T (w)‖2
L(H)|K(w, z)|2e−Ψ(|w|2) dmd(w)

�
∫

Cd

|K(w, z)|2e−(1−ε)Ψ(|w|2) dmd(w)

for any ε ∈ (0, 1/2). Recall that K(w, z) = F (〈z, w〉). Then, by unitary
invariance, we may assume without loss of generality that z = (x, 0, . . . , 0)
with x > 0. If d > 1 we write w = (w1, ξ) with ξ ∈ C

d−1 and w1 = reiθ, and
use polar coordinates to get

I �
∫ ∞

0

∫ π

−π

|F (xreiθ)|2
(∫

Cd−1
e−(1−ε)Ψ(r2+|ξ|2) dmd−1(ξ)

)
r dθdr. (29)

Using again the monotonicity of Ψ we deduce
∫

Cd−1
e−(1−ε)Ψ(r2+|ξ|2) dmd−1(ξ) � e−(1−2ε)Ψ(r2)

∫

Cd−1
e−εΨ(|ξ|2) dmd−1(ξ)

� e−(1−2ε)Ψ(r2). (30)

The estimates of the reproducing kernel (see Lemma 3.1 in [14]) together
with (27)–(28) give

∫ π

−π

|F (xreiθ)|2dθ � (1 + xr)3/2[1 + Ψ(xr)]Ne2Ψ(xr),

where N = N(d) > 0 and the constants involved depend on x, but not on
r. Taking into account the above relation and (30), we now return to (29) to
deduce

I �
∫ ∞

0

e−(1−2ε)Ψ(r2)+(2+ε)Ψ(xr) dr.
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To see that the last integral is finite, put Q(r) = (1−2ε)Ψ(r2)−(2+ε)Ψ(xr)
and notice that for 2(1 − 2ε)r − (2 + ε)x ≥ 1 we have

Q′(r) = 2(1 − 2ε)rΨ′(r2) − (2 + ε)xΨ′(xr)
≥ min

t≥0
{Ψ′(t)} =: δ > 0,

and hence e−Q(r) � e−δr, which proves the claim. �

Let M be a closed subspace of L (H). The little Bloch space B0(M) is
the space of holomorphic functions T : Cd → M such that

lim
|z|→+∞

‖QT (z)‖L(H) = 0. (31)

Let us now show that the density of polynomials in the scalar little
Bloch space extends to the operator-valued case. The proof of this fact is
standard and it is based on approximation by convolutions with Fejér kernels
(see [11]). We include it for the sake of completeness.

Theorem 2.4. Let M be a closed subspace of L (H). Then the holomorphic
polynomials with coefficients in M are dense in B0 (M).

Proof. Assume T ∈ B0 (M). For (θ1, . . . , θd) ∈ R
d, we consider the unitary

linear transformation in C
d defined by Rθ(z) :=

(
eiθ1z1, . . . , e

iθdzd

)
, for all

z = (z1, . . . , zd) ∈ C
d. The torus

T
d =

{(
eiθ1 , · · · , eiθd

)
, (θ1, · · · , θd) ∈ [−π, π]d

}

is equipped with the Haar measure dθ, and, for any nonnegative integer N ,
the Fejér kernel FN is given by

FN

(
eiθ1 , . . . , eiθd

)
:=

∑
|mj |≤N,mj∈Z

(
1 − |m1|

N + 1

)
. . .

(
1 − |md|

N + 1

)
eim·θ,

(32)
where m · θ = m1θ1 + · · · + mdθd. The convolution

TN (z) =
∫

Td

T (R−θz) FN

(
eiθ1 , . . . , eiθd

)
dθ, z ∈ C

d, (33)

is then a holomorphic polynomial with coefficients in M, which obviously
belongs to B0(M), and we have

TN (z) − T (z) =
∫

Td

(T ◦ R−θ − T )(z) · FN

(
eiθ1 , · · · , eiθd

)
dθ, z ∈ C

d.

We claim that

lim
N→∞

‖TN − T‖B(L(H)) = lim
N→∞

sup
z∈Cd

‖QTN −T (z)‖1/2
L(H) = 0.

For fixed z ∈ C
d, Nz(T ) = ‖QT (z)‖1/2

L(H) defines a semi-norm on L(H) by
(21). Thus

‖QTN −T (z)‖1/2
L(H) ≤

∫

Td

∥∥Q(T◦R−θ−T )(z)
∥∥1/2

L(H)
· FN

(
eiθ1 , . . . , eiθd

)
dθ. (34)
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Then

‖QTN −T (z)‖1/2
L(H) ≤

∫

Vδ

+
∫

Td\Vδ

‖Q(T◦R−θ−T )(z)‖1/2
L(H)·FN

(
eiθ1 , . . . , eiθd

)
dθ,

(35)
where Vδ (δ > 0) denotes the neighborhood of 0 given by

Vδ := {(θ1, . . . , θd) : |θj | ≤ δ, 1 ≤ j ≤ d} .

Now let ε > 0. By the properties of FN , there exists N0 ∈ N such that∫

Td\Vδ

FN

(
eiθ1 , . . . , eiθd

)
dθ ≤ ε, N > N0. (36)

Since T ∈ B0 (M), we may choose R > 0 such that

sup
|z|>R

‖QT (z)‖1/2
L(H) < ε.

Then relation (21) together with the rotation invariance QT◦Rθ
(z) = QT (Rθz)

imply

sup
|z|>R

∥∥Q(T◦Rθ−T )(z)
∥∥1/2

L(H)
≤ sup

|z|>R

‖QT◦Rθ
(z)‖1/2

L(H)

+ sup
|z|>R

‖QT (z)‖1/2
L(H) < 2ε. (37)

Again, from the rotation invariance of QT and the uniform continuity of DjT
on every compact set

{
z ∈ C

d, |z| ≤ R
}

, R > 0, we obtain

lim
θ→0

sup
|z|≤R

∥∥Q(T◦Rθ−T )(z)
∥∥

L(H)
= 0.

Then we may choose δ small enough such that

sup
|z|≤R

∥∥Q(T◦Rθ−T )(z)
∥∥1/2

L(H)
< ε, θ ∈ Vδ. (38)

Using relations (36) and (38) in (35) yields

‖TN − T‖B(L(H)) = sup
z∈Cd

‖QTN −T (z)‖1/2
L(H) ≤ 2ε + 2ε‖T‖B(L(H)),

for N > N0, which validates the claim, and, thus, completes the proof. �

3. Boundedness of Hankel Operators

In this section we prove different characterizations of the boundedness of the
big Hankel operator. We shall use the notation F2

ϕ(L(H)) for the Fock space
of holomorphic functions f : Cd → L(H) that satisfy ‖f(·)‖L(H) ∈ L2

ϕ(Cd).

Proof of Theorem 1.1.

Implication (b) ⇒ (a). Assume that T ∈ B(L(H)). Lemma 2.3 shows
that T ∈ Tϕ(L(H)). Let f be a holomorphic polynomial in C

d with coefficients
in H and let {ei}i≥1 be an orthonormal basis of H. Set

Fi(z) := 〈HT ∗f(z), ei〉 = (I − Pϕ)Gi (z),
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where

Gi(z) = 〈T (z)∗f(z), ei〉.
The form

Ωi :=
d∑

j=1

〈f(z), DjT (z)ei〉dzj

is closed, that is, ∂Ωi = 0. For 1 ≤ j ≤ d, we denote Ωj
i := 〈f(z), DjT (z)ei〉.

Notice that Fi is the solution of minimal L2
ϕ(C)-norm of

∂u = Ωi.

By a theorem due to Hörmander (see [7,14]) it follows that∫

Cd

|Fi|2 dμϕ ≤
∫

Cd

|Ωi|2i∂∂̄ϕ dμϕ. (39)

Here |Ωi|i∂∂̄ϕ denotes the norm of Ωi measured in the Kähler metric defined
by i∂∂̄ϕ, that is

|Ωi|2i∂∂̄ϕ =
∑

1≤j,k≤d

AjkΩj
iΩ

k
i ,

where (Ajk(z))1≤j,k≤d is the inverse of the hermitian matrix

A(z) = (Ajk(z))1≤j,k≤d :=
( ∂2ϕ

∂zj∂z̄k
(z)

)
1≤j,k≤d

.

Our next aim is to obtain an appropriate estimate for the right-hand-
side of (39). Setting Xi := (〈f(z),D1T (z)ei〉, . . . , 〈f(z),DdT (z)ei〉) ∈ C

d,
we may rewrite the last relation above as

|Ωi|2i∂∂̄ϕ = 〈(A−1(z))tXi,Xi〉Cd = 〈A−1(z)Xi,Xi〉Cd . (40)

Let us now take a closer look at A(z). We have

A(z) = Ψ′(|z|2)I + (zkz̄jΨ′′(|z|2))1≤j,k≤d, z ∈ C
d.

It follows that

A(z) = λ̃(z)Pz + μ̃(z)(I − Pz),

where

λ̃(z) = Ψ′(|z|2) + |z|2Ψ′′(|z|2) and μ̃(z) = Ψ′(|z|2).

Relation (15) shows that λ̃(z) � λ(z) and μ̃(z) � μ(z). We clearly have

A(z)
−1

= A(z)−1 =
1

λ̃(z)
Pz +

1
μ̃(z)

(I − Pz). (41)

From relation (14) we now deduce that the matrices A(z)
−1

and B(z)−1

have the same eigenvectors and comparable eigenvalues, which implies that
the induced hermitian forms are comparable, i.e.

〈A(z)−1v, v〉 � 〈B(z)−1v, v〉,
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where the involved constants are independent of z, v ∈ C
d. Using this in (40)

we get
|Ωi|2i∂∂̄ϕ � 〈B(z)−1Xi,Xi〉 = ‖B(z)−1/2Xi‖2. (42)

As in (19), we denote by cjk(z) the jk entry of the (hermitian) matrix
B(z)−1/2, where 1 ≤ j, k ≤ d, and

Cj(z) =
d∑

k=1

ckj(z)DkT (z).

Writing down the components of B(z)−1/2Xi with this notation, we deduce

‖B(z)−1/2Xi‖2 =
d∑

j=1

∣∣∣
d∑

k=1

cjk(z) 〈f(z),DkT (z)ei〉
∣∣∣
2

=
d∑

j=1

∣∣∣ 〈f(z), Cj(z)ei〉
∣∣∣
2

=
d∑

j=1

|〈Cj(z)∗f(z), ei〉|2.

We now use the above equality in (42) and return to (39) to deduce
∫

Cd

|Fi|2 dμϕ �
∫

Cd

d∑
j=1

|〈Cj(z)∗f(z), ei〉|2 dμϕ(z). (43)

Summing up over i and applying the monotone convergence theorem yield

‖HT ∗f‖2 =
∞∑

i=1

∫

Cd

|Fi|2 dμϕ

�
d∑

j=1

∫

Cd

∞∑
i=1

|〈Cj(z)∗f(z), ei〉|2 dμϕ(z)

=
d∑

j=1

∫

Cd

‖Cj(z)∗f(z)‖2 dμϕ(z)

=
∫

Cd

〈
d∑

j=1

Cj(z)
(
Cj(z)

)∗
f(z), f(z)〉 dμϕ(z)

=
∫

Cd

‖
( d∑

j=1

Cj(z)
(
Cj(z)

)∗)1/2

f(z)‖2 dμϕ(z)

≤ ( sup
z∈Cd

‖QT (z)‖L(H))‖f‖2
ϕ. (44)

where, from relation (20), we have QT (z) =
∑d

j=1 Cj(z)(Cj(z))∗. Hence

‖HT ∗f‖ � ( sup
z∈Cd

‖QT (z)‖1/2
L(H))‖f‖ϕ ≤ ‖T‖B(L(H))‖f‖ϕ,

and (b) ⇒ (a) is proven.
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Implication (a) ⇒ (c). Suppose HT ∗ is bounded. For w ∈ C
d and e ∈ H with

‖e‖ = 1, notice that by the reproducing formula, we have

HT ∗(Kw e) (z) = (T (z)∗ − T (w)∗)e · Kw(z),

where Kw(z) = K(z, w) is the reproducing kernel of F2
ϕ(C). On the other

hand, since T ∈ Tϕ(L(H)), the reproducing formula in F2
ϕ(L(H)) (which

follows from its scalar version via bounded linear functionals) yields T̃ =
T, T̃ ∗ = T ∗ and

MO2T ∗(z) =
∫

Cd

(T (z) − T (w)) (T (z) − T (w))∗ |kz(w)|2 dμϕ(w).

In particular this shows that MO2T ∗(z) is a positive operator. Combining
the last two equalities above we deduce

〈
MO2T ∗(z)e, e

〉
H =

∫

Cd

‖(T (z)∗ − T (w)∗)e‖2|kz(w)|2 dμϕ(z)

= ‖HT ∗(kze)‖2
F2

ϕ
, e ∈ H. (45)

Taking the supremum over unit vectors e ∈ H in the last relation above, we
obtain

∥∥MO2T ∗(z)
∥∥1/2

L(H)
= sup

‖e‖=1

‖HT ∗(kze)‖F2
ϕ

≤ ‖HT ∗‖, z ∈ C
d,

and (c) follows.

Implication (c) ⇒ (b). In order to do this, we are going to show that

‖QT (z)‖L(H) �
∥∥MO2T ∗(z)

∥∥
L(H)

.

Recall from above that
∥∥MO2T ∗(z)

∥∥
L(H)

= sup
‖e‖=1

‖HT ∗(kze)‖2
F2

ϕ
. (46)

Now, for w ∈ C
d, we have

‖HT ∗(Kw e)‖2 =
∫

Cd

‖(T (z)∗ − T (w)∗)e‖2|K(z, w)|2 dμϕ(z) (47)

≥
∫

D(w,a)

‖(T (z)∗ − T (w)∗)e‖2|K(z, w)|2 dμϕ(z)

where D(w, a) was defined in (16). Lemma 7.2 and Lemma 7.1 in [14] ensure
that for a > 0 small enough

|K(z, w)|2 ∼ K(z, z)K(w,w), w ∈ C
d, z ∈ D(w, a).

From this we deduce (as in the proof of Theorem D in [14]) that for a > 0
small enough we have

|K(z, w)|2e−ϕ(z) � K(w,w)
|D(w, a)| , z ∈ D(w, a),
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where |S| denotes the euclidean volume of a set S ⊂ C
d.

Using the last inequality in (47) we obtain
1

|D(w, a)|

∫

D(w,a)

‖(T (z)∗ − T (w)∗)e‖2 dmd(z) � ‖HT ∗(kw e)‖2. (48)

We shall now show that the expression on the left-hand-side of the above
inequality is bounded below by a constant multiple of ‖QT (w)1/2e‖2 for w ∈
C

d. In order to do this, for h ∈ H with ‖h‖ = 1, consider the holomorphic
scalar-valued function

f(z) := fw,e,h(z) = 〈(T (z) − T (w))h, e〉H, z ∈ C
d.

Notice that

‖(T (z)∗ − T (w)∗)e‖ = sup
‖h‖=1

|f(z)|.

We first prove the desired estimates for w = (w1, 0, · · · , 0). The result
in the general case will then follow by unitary invariance. So we first assume
that w = (w1, 0) ∈ C

d, where w1 ∈ C. In this case, the set D(w, a) reduces
to B1(w1, aρ1(w)) × Bd−1(0, aρ2(w)), where Bk(z,R) denotes the euclidian
ball in C

k, k ≥ 1, centred at z ∈ C
k and of radius R > 0, and

ρ1(z) = [Φ′(|z|2)]−1/2, ρ2(z) = [Ψ′(|z|2)]−1/2, z ∈ C
d. (49)

By Cauchy’s formula, the Cauchy–Schwarz inequality and subharmonic-
ity, we now get

(aρ1(w))2|D1f(w1, 0)|2 � 1
|D(w, a)|

∫

D(w,a)

|f(z)|2 dmd(z). (50)

Now notice that

|w| · |D1f(w)| = |〈w1D1T (w)h, e〉| = |〈RT (w)h, e〉|.
In view of the above and (50), we may write

ρ1(w)2 |〈RT (w)h, e〉|2 � |w|2
|D(w, a)|

∫

D(w,a)

|〈(T (z) − T (w))h, e〉|2 dmd(z).

In light of relations (15) and (49), we have λ(w) � ρ1(w)−2. Taking the
supremum over ‖h‖ = 1 we obtain

1
|w|2 · 1

λ(w)
‖(RT (w))∗e‖2 � 1

|D(w, a)|

∫

D(w,a)

‖(T (z)∗ − T (w)∗)e‖2 dmd(z).

(51)

This last estimate suffices in case d = 1. If d > 1, it remains to estimate
the tangential term in QT (w). We start with the observation that since w =
(w1, 0), we have

Tij(T )(w) = 0 if 1 < i < j ≤ d,

and

T1j(T )(w) = w1 DjT (w) for 1 < j ≤ d,
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so that, in order to estimate the tangential term in QT (w), we only need to
handle terms of the form w1 DjT (w). To do this we first write the Cauchy
formula for the function C

d−1 	 z′ = (z2, . . . , zd) 
→ f(z1, z
′). We have

f(z1, rz
′) =

∫

Sd−1

f(z1, rζ)
(1 − 〈z′, ζ〉)d−1

dσ(ζ),

where r > 0, Sd−1 denotes the unit sphere in C
d−1, and dσ is the Lebesgue

measure on Sd−1. Differentiating with respect to zj , 2 ≤ j ≤ d, at the point
z′ = 0 ∈ C

d−1 and applying the Cauchy-Schwarz inequality, we deduce

r2 |Djf(z1, 0)|2 �
∫

Sd−1

|f(z1, rζ)|2 dσ(ζ).

Using spherical coordinates in C
d−1 together with the subharmonicity of

z1 
→ |Djf(z1, 0)|2, we infer

(ρ2(w))2|Djf(w1, 0)|2 � 1
|D(w, a)|

∫

D(w,a)

|f(z)|2 dmd(z).

Making f explicit now yields

(ρ2(w))2|〈DjT (w1, 0)h, e〉|2 � 1
|D(w, a)|

∫

D(w,a)

|〈(T (z) − T (w))h, e〉|2 dmd(z).

As before, take now the supremum over h ∈ H with ‖h‖ = 1 and use the fact
that μ(z) � ρ2(z)−2 (see relations (15) and (49)), to deduce

1
μ(w)

‖DjT (w)∗e‖2 � 1
|D(w, a)|

∫

D(w,a)

‖(T (z)∗ − T (w)∗)e‖2 dmd(z). (52)

Combining (51) and (52) and taking into account the form of QT (w), we
obtain

‖QT (w)1/2e‖2 =
1

|w|2λ(w)
‖RT (w)∗e‖2 +

1
|w|2μ(w)

∑
i<j

‖
(
Tij(T )(w)

)∗
e‖2

� 1
|D(w, a)|

∫

D(w,a)

‖(T (z)∗ − T (w)∗)e‖2 dmd(z). (53)

We now treat the general case, that is, we let w ∈ C
d be arbitrary. Denote w̃ =

(|w|, 0) ∈ C
d and let U be a the unitary transformation of Cd that maps w̃ to

w. Then by unitary invariance we have QT (w) = QT◦U (U−1w) = QT◦U (w̃).
We may now make use of relation (53) applied to T ◦U , perform the change of
variables ζ = Uz and take into account the fact that U(D(w̃, a)) = D(w, a)
to deduce that (53) holds in general. This last fact together with relations
(45) and (48) leads us to

‖QT (w)1/2e‖ � ‖HT ∗(kwe)‖ = ‖
(
MO2T ∗(w)

)1/2
e‖H, (54)

for w ∈ C
d, e ∈ H, ‖e‖H = 1. Thus

‖QT (w)1/2‖L(H) � ‖MO2T ∗(w)‖1/2
L(H) (55)

and, with this, our proof is complete. �
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Remark 3.1. As already mentioned in the introduction, the inequalities in
(44) will be crucial in the characterizations of compactness and Schatten class
membership of the Hankel operator.

Corollary 3.2. For a holomorphic function T : Cd → L (H), we define

‖T‖Berg(L(H)) := sup
z,w∈Cd

‖T (z) − T (w)‖L(H)

dΨ(z, w)
+ ‖T (0)‖L(H) , (56)

Then ‖·‖Berg(L(H)) is an equivalent norm on B (L (H)).

Proof. Let T ∈ B (L (H)). Proposition 2.2 (b) immediately gives

‖T‖Berg(L(H)) � ‖T‖B(L(H))

On the other hand, as in Sect. 5 in [14], we have

‖HT ∗f(z)‖ ≤ sup
z,w∈Cd

‖T (z) − T (w)‖L(H)

dΨ(z, w)
Af(z),

where the sublinear operator A defined as

Af(z) :=
∫

Cd

dΨ(z, w) |KΨ(z, w)| ‖f(w)‖ dμϕ(w), z ∈ C
d

is bounded on L2 (dμϕ). Therefore

‖HT ∗‖ ≤ sup
z,w∈Cd

‖T (z) − T (w)‖L(H)

dΨ(z, w)
‖A‖ ,

which, together with Theorem 1.1 shows that

‖T‖B(L(H)) � ‖T‖Berg(L(H)) . �

4. Compactness of Hankel Operators

Recall that K(H) stands for the space of compact linear operators on H.

Lemma 4.1. Given S : C
d → K(H) holomorphic and R > 0, the operator

MR
S∗ : F2

ϕ(H) → L2
ϕ(H) defined by

MR
S∗f(z) = χ{ξ: |ξ|≤R}(z)S∗(z)f(z), z ∈ C

d, f ∈ F2
ϕ(H),

is compact.

Proof. The proof relies on standard arguments. For N ∈ N, let PNS denote
the Taylor polynomial of S

PNS(z) =
∑

|ν|≤N

Kν · zν ,

where ν = (ν1, . . . , νd) ∈ N
d and Kν are compact operators. Since

lim
N→∞

‖MR
S∗ − MR

(PN S)∗‖ ≤ lim
N→∞

sup
|z|≤R

‖S(z) − PNS(z)‖ = 0,

in order to conclude, it is enough to show that MR
S∗ is compact for S(z) =

zνF , where F ∈ K(H) and ν ∈ N
d. Moreover, since F can be approximated in
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the operator norm by finite rank operators, we may assume that F has finite
rank. This last claim is a straightforward consequence of Montel’s theorem
together with relation (3). �

Theorem 4.2. Given an holomorphic function T : Cd → L(H), the following
are equivalent:
(a) T ∈ Tϕ(L(H)) and the Hankel operator HT ∗ is compact;
(b) T − T (0) ∈ B0 (K(H));
(c) T − T (0) : Cd → K(H) and lim

|z|→∞

∥∥MO2T ∗(z)
∥∥

L(H)
= 0.

Proof. Implication (b) ⇒ (a). Given f ∈ F2
ϕ(H) and R > 0, by relation (44),

we have

‖HT ∗f‖2 �
d∑

j=1

∫

Cd

‖Cj(z)∗f(z)‖2dμϕ(z)

=
d∑

j=1

∫

|z|≤R

‖Cj(z)∗f(z)‖2dμϕ(z)

+
∫

|z|>R

‖
( d∑

j=1

Cj(z)Cj(z)∗
)1/2

f(z)‖2dμϕ(z)

�
d∑

k=1

∫

|z|≤R

‖
(
DkT (z)

)∗
f(z)‖2dμϕ(z)

+ ‖f‖2
ϕ sup

|z|≥R

‖QT (z)‖L(H),

where the last step above follows from the definition of Cj (see relation (19))
as well as from (20). Now let ε > 0 be arbitrary and choose R > 0 such that
sup

|z|>R

‖QT (z)‖L(H) < ε. Then

‖HT ∗f‖2 �
d∑

k=1

‖MR
(DkT )∗f‖2

ϕ + ε‖f‖2
ϕ,

where the operators MR
(DkT )∗ : F2

ϕ(H) → L2
ϕ(H) are compact by Lemma 4.1.

The above relation clearly shows that HT ∗ is compact.

Implication (a) ⇒ (c). Assume HT∗ is compact. We begin by showing that
T (z) ∈ K(H). For any fixed z ∈ C

d, define the operator N(z) : H → L2
ϕ(H)

by

N(z)e := HT ∗(kze), e ∈ H. (57)

Since, for any fixed z ∈ C
d and any sequence {en}n≥1 which converges weakly

to 0 in H we obviously have that {kzen}n≥1 converges weakly to 0 in F2
ϕ(H),

the compactness of HT ∗ implies that N(z) is compact. From relation (54) we
have

〈QT (z)e, e〉‖ � ‖HT ∗(kze)‖2, e ∈ H, z ∈ C
d. (58)
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Taking into account the definition of QT (z), this implies

‖RT (z)∗e‖2 � |z|2 λ(z) · ‖HT ∗(kze)‖2

= |z|2 λ(z) · ‖N(z)e‖2,

e ∈ H, z ∈ C
d. (59)

The compactness of N(z) now ensures that RT (z)∗ and hence RT (z) is com-
pact for any z ∈ C

d. Then

T (z) − T (0) =
∫ 1

0

1
t

RT (tz) dt

implies that T (z)−T (0) is compact for any z ∈ C
d. It remains to show that

lim
|z|→∞

‖MO2T ∗(z)‖L(H) = 0. (60)

Since, for any fixed z ∈ C
d, N(z) is a compact operator on H, it attains its

norm, i.e. there exists ez ∈ H with ‖ez‖ = 1 such that

‖HT ∗(kzez)‖F2
ϕ

= ‖N(z)ez‖H = ‖N(z)‖L(H) =
∥∥MO2T ∗(z)

∥∥1/2

L(H)
,

where the last equality above follows from (45) and (57). Hence, (60) will
immediately follow, once we show that {kzez} converges weakly to 0 in F2

ϕ(H)
as |z| → ∞. Indeed, for any holomorphic polynomial f with coefficients in
H, we have

|〈f, kzez〉| =
∣∣∣
∫

Cd

〈f(ξ), ez〉 kz(ξ) dμϕ(ξ)
∣∣∣

=
|〈f(z), ez〉|

‖Kz‖
→ 0 as |z| → ∞,

where the last step follows from the following estimate proved in [14]

‖Kz‖ � eΨ(|z|2)/2Φ′(|z|2)1/2(Ψ′(|z|2))(d−1)/2.

The assertion for a general f ∈ F2
ϕ(H) is easily deduced from the above by

approximation with polynomials.
In order to conclude, it is enough to prove that (c) ⇒ (b), but this is a

direct consequence of relation (55). �

5. Schatten Classes

The aim of this section is to characterize the Schatten class membership of
HT ∗ . We begin with an identity which we are going to formulate on Fock
spaces, although its analogue holds for a large class of vector-valued spaces
of analytic functions.

Lemma 5.1. Let S be a positive operator on F2
ϕ(H), and, for each fixed z ∈ C

d,
let {ez

k}k≥1 be an orthonormal basis of H (possibly) depending on z.
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Then
∑

k≥1〈S(Kze
z
k), Kze

z
k 〉F2

ϕ(H) is independent of the choice of {ez
k}k≥1

and we have

trace(S) =
∫

Cd

∑
k≥1

〈S(Kze
z
k) , Kze

z
k 〉F2

ϕ(H) dμϕ(z), (61)

where Kz denotes the reproducing kernel of F2
ϕ(C) at the point z ∈ C

d.

Proof. If {En}n≥1 is an orthonormal basis of F2
ϕ(H), then

trace(S) =
∑
n≥1

‖S1/2En‖2 =
∑
n≥1

∫

Cd

‖(S1/2En)(z)‖2 dμϕ(z). (62)

We now have
∑
n≥1

‖(S1/2En)(z)‖2 =
∑
n≥1

∑
k≥1

|〈(S1/2En)(z), ez
k〉|2

=
∑
n≥1

∑
k≥1

∣∣∣∣
∫

Cd

〈(S1/2En)(ζ), ez
k〉Kz(ζ) dμϕ(ζ)

∣∣∣∣
2

=
∑
n≥1

∑
k≥1

|〈S1/2En,Kze
z
k〉F2

ϕ(H)|2

=
∑
k≥1

∑
n≥1

|〈En, S1/2(Kze
z
k)〉F2

ϕ(H)|2

=
∑
k≥1

‖S1/2(Kze
z
k)‖2

F2
ϕ(H)

=
∑
k≥1

〈S(Kze
z
k) , Kze

z
k 〉F2

ϕ(H),

where the second equality above follows by the reproducing formula. The last
relation together with (62) leads us now to (61). �

We now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2.

Implication (a) ⇒ (c). Assume HT ∗ ∈ Sp. If {ek}k≥1 is an arbitrary or-
thonormal basis of H, in view of (45) we obtain

∑
k≥1

‖
(
MO2T ∗(z)

)1/2
ek‖p =

∑
k≥1

‖HT ∗(kzek)‖p < ∞, z ∈ C
d,

since {kzek}k≥1 is an orthonormal set in F2
ϕ(H) and p ≥ 2. This shows that(

MO2T ∗(z)
)1/2 ∈ Sp(H). Now, since Sp(H) is separable (see [10], Chapter 3,

Section 6), by Pettis’ theorem [15], in order to show that z 
→
(
MO2T ∗(z)

)1/2

is measurable, it suffices to prove that it is weakly measurable. With this aim,
let S ∈ Sq(H), where 1/p + 1/q = 1. If {ek}k≥1 is an orthonormal basis of
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H, we have

〈
(
MO2T ∗(z)

)1/2
, S〉 = trace(S∗ (MO2T ∗(z)

)1/2
)

=
∑
k≥1

〈
(
MO2T ∗(z)

)1/2
ek, Sek〉, z ∈ C

d,

and, since the last expression above defines a measurable function, it follows
that

(
MO2T ∗(z)

)1/2 is measurable.
In order to prove (13), let {ez

n}n≥1 be an orthonormal basis of H that di-
agonalizes the compact self-adjoint operator

(
MO2T ∗(z)

)1/2. Apply Lemma
5.1 to S := ((HT ∗)∗HT ∗)p/2 to deduce

‖HT ∗‖Sp = trace[((HT ∗)∗HT ∗)p/2]

=
∫

Cd

∑
k≥1

〈
((HT ∗)∗HT ∗)p/2(Kze

z
k),Kze

z
k

〉
dμϕ(z). (63)

For each z ∈ C
d, in view of Jensen’s inequality, relation (45) and the choice

of ez
k, we obtain

∑
k≥1

〈
((HT ∗)∗HT ∗)p/2(Kze

z
k) , Kze

z
k

〉
≥

∑
k≥1

〈
(HT ∗)∗HT ∗(kze

z
k) , kze

z
k

〉p/2
K(z, z)

=
∑
k≥1

‖HT ∗(kze
z
k)‖pK(z, z)

=
∑
k≥1

〈MO2T ∗(z)ezk, e
z
k〉p/2K(z, z)

= ‖ (
MO2T ∗(z)

)1/2 ‖p
Sp(H) K(z, z),

and, returning to (63), we get (c).

Implication (c) ⇒ (b). This a direct consequence of relation (54). Indeed, for
any orthonormal basis (ek)k of H, we have

∑
k≥1

‖QT (z)1/2ek‖p �
∑
k≥1

〈
MO2T ∗(z)ek, ek

〉p/2
.

Since p ≥ 2, this implies ‖QT (z)1/2‖p
Sp(H) �

∥∥∥(MO2T ∗(z)
)1/2

∥∥∥
p

Sp(H)
, and

thus (b) follows.

Implication (b) ⇒ (a). Recall that, by (44), we have

‖HT ∗f‖ �
∫

Cd

‖QT (z)1/2f(z)‖2 dμϕ(z), f ∈ F2
ϕ(H). (64)

Hence, if the multiplication operator

MQ1/2f(z) := QT (z)1/2f(z), f ∈ F2
ϕ(H), z ∈ C

d,

belongs to some Schatten class ideal, then HT ∗ will have the same property.
We now provide a sufficient condition for Schatten class membership

of multiplication operators using an interpolation argument. For a strongly-
measurable operator-valued function R : Cd → L(H), consider the operator

MRf(z) := R(z)f(z), f ∈ F2
ϕ(H), z ∈ C

d.
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For p ≥ 2, we denote by Lp(Cd,Sp(H), dλϕ) the space of strongly measurable
functions g : Cd → Sp(H) satisfying

∫

Cd

‖g(z)‖p
Sp(H) dλϕ(z) < ∞.

Moreover, L∞(Cd,L(H), dλϕ) will stand for the closure in the supremum
norm of L(H)−valued simple functions (see [6], Ch. 5, page 107).

We claim that, if R ∈ L2(Cd,S2(H), dλϕ), then MR : F2
ϕ(H) → L2

ϕ(H)
is a Hilbert–Schmidt operator. To this end, let {en}n≥1 be an orthonormal
basis of the scalar Fock space F2

ϕ(C) and let {fk}k≥1 be an orthonormal basis
of H. Then it is clear that {En,k(z) := en(z)fk}n,k≥1 is an orthonormal basis
of F2

ϕ(H), and we have

‖MR‖2
S2 =

∑
n,k≥1

‖MR(En,k)‖2

=
∑

n,k≥1

∫

Cd

‖R(z)fk‖2 |en(z)|2 dμϕ(z)

=
∑
n≥1

∫

Cd

‖R(z)‖2
S2(H) |en(z)|2 dμϕ(z)

=
∫

Cd

‖R(z)‖2
S2(H) K(z, z) dμϕ(z)

= ‖R‖2
L2(Cd,S2(H),dλϕ), (65)

and the claim follows.
Moreover, if R ∈ L∞(Cd,L(H), dλϕ), we have

‖MR‖S∞ ≤ ess supz∈Cd‖R(z)‖L(H), (66)

where S∞ denotes the space of bounded linear operators from F2
ϕ(H) to

L2
ϕ(H). Taking into account (65), (66) together with Theorem 5.1.2 (page

107) in [6], it now follows by interpolation that

‖MR‖Sp ≤ ‖R‖Lp(Cd,Sp(H),dλϕ), p ≥ 2.

Particularizing R(z) := QT (z)1/2 above and using (64) now yield

‖HT ∗‖p
Sp � ‖M

Q
1/2
T

‖p
Sp ≤

∫

Cd

‖QT (z)1/2‖p
Sp(H)K(z, z) dμϕ(z),

�
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