CEJOR (2018) 26:443-464 @ CrossMark
https://doi.org/10.1007/510100-018-0520-4

ORIGINAL PAPER

Solving routing problems with pairwise synchronization
constraints

Sophie N. Parragh'2® - Karl F. Doerner?

Published online: 7 February 2018
© The Author(s) 2018. This article is an open access publication

Abstract Pairwise route synchronization constraints are commonly encountered in
the field of service technician routing and scheduling and in the area of mobile care.
Pairwise route synchronization refers to constraints that require that two technicians
or home care workers visit the same location at exactly the same time. We consider
constraints of this type in the context of the well-known vehicle routing problem
with time windows and a generic service technician routing and scheduling problem.
Different approaches for dealing with the problem of pairwise route synchronization
are compared and several ways of integrating a synchronization component into a
metaheuristic algorithm tailored to the original problems are analyzed. When applied
to benchmark instances from the literature, our algorithm matches almost all available
optimal values and it produces several new best results for the remaining instances.

Keywords Visit time synchronization - Metaheuristic - Routing and scheduling

1 Introduction

This research is motivated by a problem situation commonly encountered in the area
of field staff routing and scheduling. It concerns the issue of pairwise route synchro-

B Sophie N. Parragh
sophie.parragh @jku.at

Karl F. Doerner
karl.doerner@univie.ac.at
Production and Logistics Management, Johannes Kepler University Linz, Altenberger Strasse 69,

4040 Linz, Austria

Faculty of Business, Economics and Statistics, University of Vienna, Oskar-Morgenstern-Platz 1,
1090 Vienna, Austria

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-018-0520-4&domain=pdf
http://orcid.org/0000-0002-7428-9770

444 S. N. Parragh, K. F. Doerner

nization in both space and time. Many companies plan individual daily tours for each
of their field employees since most tasks require only a single staff member. However,
both in the service technician field and in the area of mobile care, for some of the tasks
to be completed, two staff members are necessary. One example, brought to us by
a company from the service technician industry, concerns tasks that demand ladders
exceeding a certain size. In this case the second staff member is necessary for both
mounting and securing the ladder during the execution of the task. A second example
concerns the area of mobile care. For some of the daily hygiene tasks, overweight
clients have to be lifted. Also in this case a second staff member is required. Pairwise
time and space route synchronization introduces timely interrelationships between all
those routes serving a client requiring a synchronized visit. In this paper we evaluate
several different ways to deal with such a requirement in the context of a metaheuristic
algorithm.

In Sect. 2, we give a brief overview of existing contributions dealing with route
synchronization issues. Thereafter, we define two generic routing problems with syn-
chronization constraints. In Sect. 4, we describe the proposed solution framework
and different approaches for incorporating the synchronization aspect into an existing
metaheuristic algorithm. In Sect. 5, the different strategies for dealing with pairwise
route synchronization are compared to each other and the best strategy is then used to
solve available instances from the literature (Bredstrom and Ronngvist 2008). Con-
cluding remarks and directions for future research are given at the end of the paper.

2 Related work

Route synchronization requirements are not only encountered in the area of mobile
care or service technician routing and scheduling; they also exist in fields such as
air craft fleet assignment, air borne parcel shipment, ready mixed concrete delivery,
snow plowing, ship routing, person transportation, log-truck scheduling and military
operations.

In the area of mobile care, route synchronization has been addressed by Eveborn
et al. (2006, 2009) and Bredstrom and Ronnqvist (2007, 2008). While Eveborn et al.
(2006) narrow the time windows of synchronized tasks to given points in time in
order to guarantee synchronized visits, Eveborn et al. (2009) and Bredstrom and Ron-
nqvist (2007, 2008) use more sophisticated approaches. In Eveborn et al. (2009),
synchronization time windows are handled as soft constraints and penalties are used
to ensure that two staff members visit the respective client at approximately the same
time. In Bredstrom and Ronngvist (2007), synchronization issues are dealt with in
the branching strategy, assuming that time windows, durations and traveling times are
integers; and in Bredstrém and Ronnqvist (2008) an optimization based method is
developed that handles route synchronization in terms of constraints within a mathe-
matical model. The instances of Bredstrom and Ronnqvist (2008) have recently also
been solved by Afifi et al. (2016), outperforming the results of Bredstrom and Ron-
nqvist (2008). Afifi et al. (2016) propose a simulated annealing based algorithm that,
in every iteration, first removes a random number of customers, applies a local search
procedure on the obtained partial solution and then repairs the solution using a best

@ Springer

Solving routing problems with pairwise synchronization... 445

insertion algorithm. The algorithm prioritizes the insertion of those nodes that could
not be feasibly inserted in past iterations. It keeps track of the maximum possible shift
value for each inserted node, taking into account synchronization requirements, updat-
ing these values after each insertion. Due to the synchronization requirement, more
than one route may be affected. In this paper, we propose several different approaches
to deal with the synchronization requirement and we show their value by comparing
our method to the one of Afifi et al. (2016) on the instances proposed by Bredstrom
and Ronnqgvist (2008).

Mankowska et al. (2014) consider a home health care routing and scheduling prob-
lem with temporal dependencies that also involve synchronized visits. The authors
propose a matrix-based solution representation that allows for simple route evaluations
in local search algorithms. The proposed heuristic methods are applied to instances
with up to 300 tasks.

A more generic point of view on routing with temporal dependencies between
different routes is taken by Dohn et al. (2011). They consider minimal and maximal
time lags between customer visits which can also be used to consider synchronized
visits. They introduce requirements of this kind into the vehicle routing problem with
time windows (VRPTW) and propose a branch-and-price method that, like Bredstrom
and Ronnqvist (2007), relies on branching on time windows. Several different master
problem formulations are evaluated on instances derived from the Solomon (1987)
data set with 25 and 50 customers.

In the area of field employee routing and scheduling, Li et al. (2005) propose con-
struction heuristics and a simulated annealing approach for a manpower allocation
problem. For each task to be performed, one to several workers of different qualifi-
cation classes have to meet. The neighborhood operators work on job permutations
which are transformed into feasible worker schedules using construction heuristics.
Dohn et al. (2009) propose a branch-and-price approach for a similar manpower allo-
cation problem, where instead of single workers, teams of workers may have to be
synchronized in order to perform certain tasks. Task synchronization is taken care of
in the branching scheme.

In the context of aircraft fleet assignment, the issue of schedule synchronizations
is considered by Ioachim et al. (1999). The proposed algorithm is based on Dantzig—
Wolfe decomposition, using column generation embedded in a branch-and-bound
scheme.

Synchronization requirements are also considered in Armacost et al. (2002) and
Armacost et al. (2004) in the context of air borne parcel shipments. Here, synchro-
nization between aircraft is necessary at ramp transfers.

In ready mixed concrete delivery, synchronization issues involve the requirement
of a support vehicle to assist in the unloading operations at some of the construction
sites. The support vehicle has to arrive before or at the time the first vehicle delivering
concrete arrives at the site. In addition, usually, the amount of concrete demanded
at each site exceeds the capacities of the vehicles and once the concrete delivery
has started it has to be continued (more or less) without interruption. The latter aspect
introduces another synchronization requirement into the problem. Schmid et al. (2009)
solve the underlying optimization problem by means of a hybrid method, relying on
the notion of feasible delivery patterns. Delivery patterns are produced by a variable

@ Springer

446 S. N. Parragh, K. F. Doerner

neighborhood search algorithm which is used to explore the neighborhood of a given
feasible solution. A multi-commodity flow model is iteratively solved on the pool of
generated patterns to obtain improved solutions. The same problem is also considered
by Schmid et al. (2010); it is solved by means of a hybrid method combining variable
neighborhood search and very large neighborhood search.

Also in snow plowing operations, synchronization between vehicles is necessary
on specific arcs in the street network (Perrier et al. 2008; Salazar-Aguilar et al. 2012).
These arcs usually represent multilane street segments which require one or more
vehicles operating in parallel, an aspect which is referred to as tandem service by
Perrier et al. (2008).

Temporal synchronization requirements in the context of a ship routing and schedul-
ing problem, which is related to the pickup and delivery problem with time windows,
are considered by Andersson et al. (2011) and Stalhane et al. (2015). The former
propose an arc flow based as well as path-flow models where the set of paths are
generated a priori. The latter propose a branch-and-price algorithm. In contrast to
several other problems involving temporal synchronization requirements, temporally
dependent visits may be performed by the same ship.

Rousseau et al. (2013) use constraint programming to deal with synchronization
issues in the context of a vehicle routing problem in a dynamic environment.

In the field of log-truck scheduling, from the forest areas to the mills, synchro-
nization of resources is required. Trucks and log-loaders have to be synchronized at
the forest area. In the paper of El Hachemi et al. (2013) a weekly planning horizon
and also the inventories at the woodmills are taken into consideration. At each mill
and each forest location a single log loader is located. If the loader is busy when a
truck arrives it has to wait and this causes costs. The problem is decomposed into a
tactical and an operational problem. In the tactical problem the destinations of the
trucks are determined. In the operational problem the routing problem is solved with
a constrained based local search procedure. The sequencing part is handled by an
iterated local search method, the synchronized scheduling with a greedy procedure.
The algorithm was tested on two real world case studies. The method developed by
Bredstrom and Ronnqvist (2008) was also applied to a log truck scheduling problem.

Also in military aircraft mission planning synchronization is required (Quttineh
et al. 2013). Due to the nature of the attack, two aircraft need to rendezvous at the
target, they need to be synchronized in both space and time. One aircraft is launching
a guided weapon. The other is illuminating the target. A mathematical programming
model is presented and tested on instances which could be solved to optimality using
the proposed model.

In the field of person transportation, different variants of the dial-a-ride problem
with transfers exist. The general dial-a-ride problem with transfers is considered by
Schonberger (2017) and Masson et al. (2014). A special variant of the dial-a-ride
problem with transfers is introduced in Reinhardt et al. (2013). In this paper the trans-
portation of persons with reduced mobility at airports between terminals is addressed.
It is a multi-mode transportation problem, where different modes of intra-terminal and
inter-terminal transportation are used. In Bogl et al. (2015) the problem of school pupil
routing with transfers is studied. In this problem a situation is considered where some
of the school pupils have to change buses. The fact that transfers between vehicles are

@ Springer

Solving routing problems with pairwise synchronization... 447

considered introduces a synchronization requirement into the considered problems.
In all these works metaheuristics based on local search with specific operators for the
synchronization requirement are designed.

For a survey on further synchronization issues in the context of vehicle routing
problems we refer to Drexl (2012).

3 Problem definitions

In this paper we consider two routing problems with pairwise synchronization con-
straints. The first problem is a generic problem based on the well-known VRPTW.
The second problem is motivated by a real-world problem encountered by an Austrian
infrastructure and maintenance service provider: the service technician routing and
scheduling problem (STRSP). In the following, we denote the first problem as VRPTW
with pairwise synchronization (VRPTWPS) and the second problem as STRSP with
pairwise synchronization (STRSPPS).

Both problems can be formulated on a directed graph G = (V, A) where V is
the set of vertices and A the set of arcs. A given number of locations n has to be
served by a given number of routes m. For ease of exposition later on, two vertices are
used to denote origin and destination depot of each route k, although they all refer to
the same physical location. Thus, the set D, = {rn + 1 ...n 4+ m} contains the origin
depot of each route k € K = {1...m} and the set Dy = {n+m+1...n+ 2m}
each route’s destination depot; the set of all depots is denoted as D = D, U Dy.
Depending on the problem, vehicles traveling along the different routes are either
associated with a capacity C or the technicians serving the routes are associated with
qualification levels for different skills; in the latter case, p]; denotes the qualification
level of technician k for skill £. The set of customer or task vertices is referred to
as V’. Bach vertex i € V’ is associated with a time window [e;, ;] and a service
time s;. Depending on the context, each vertex i € V' is further associated with
either a demand d; or with minimum qualification level requirements ¢; r; the set of
qualifications is denoted as Q. Customer or task locations demanding synchronized
visits are modeled as two distinct vertices. Then, S C V' denotes the set of vertex
pairs to be synchronized. Furthermore, since outsourcing is an option in the service
technician routing and scheduling problem, as defined in Kovacs et al. (2012), not
serving a vertex i € V' incurs a cost o;. These costs are set to very high values if
serving a vertex is not optional, that is, in the case of the VRPTWSP. Traversing arc
(i, j) costs ¢;j and takes 7;; time units. The vertex set thus becomes V = V' U D
and the arc set A = {(i, j)|i € V\Dg, j € V\D,,i # j}. Using binary variables
x!‘j to indicate whether arc (i, j) is used by route k, and continuous variables B;,
giving the beginning of service time at vertex i, we are now able to formulate the
VRPTWPS:

miny Y xkci+ > o [1=->0 Yk (1)

keK (i,j)eA iev’ keK jlGi,j)eA

@ Springer

448 S. N. Parragh, K. F. Doerner

subject to:

Z Zx{‘jglwev/, ©)

keK j|(i,j)eA
Z xh - Z xf;=0 VieV kek, (3)
JlGieA jlG.jreA
Z X =1 Vkek, 4)
jl(n+k,j)eA
Yoo =1 Vkek, ®)
jl(j,n+m+k)eA
ddi Y xj<C VkeKk, (6)
eV’ jli,j)eA
Bj > (B +si +tij))x}; V(.j)€AkeK, (7
e <B;<Il; YieV, (8)
Bi =B; V(,j)eSs, 9
xf;€f0.1) V(. j)eAkeKk. (10)

The objective function (1) minimizes total routing and outsourcing costs. Con-
straints (2) and (3) make sure that each vertex is visited at most once and that, if
it is visited, it is entered and left. Constraints (4) and (5) ensure that each route starts
from the origin depot and returns to the destination depot. Constraints (6) guarantee
that the vehicle capacity is not exceeded. Constraints (7) set the beginning of service
time variables and constraints (8) impose bounds in terms of time windows on these
variables. Finally, Eq. (9) guarantee that tasks requiring synchronized visits are visited
by two routes at exactly the same time. Since all vertices are associated with a service
time s; > 0, no further constraints are necessary to enforce that two routes visit the
synchronized vertex at the same time, i.e. the two vertices used to represent a customer
or task requiring a synchronized visit cannot be scheduled on the same route.
Replacing constraints (6) by

qif Z x{‘jgp'} VieV keK, feQ. (11
JIG, HeA

which make sure that the respective technician disposes of at least the qualification
level demanded by the respective task, results in the STRSPPS. We note that these
constraints boil down to a given vehicle k being compatible with vertex i if the required
qualification level is met. This can be achieved by setting xfj to O whenever i and k
are incompatible.

@ Springer

Solving routing problems with pairwise synchronization... 449

4 Solution framework

We propose an adaptive large neighborhood search (ALNS) algorithm to solve the
VRPTWPS and the STRSPPS. The algorithm is very similar to the ALNS developed
in Kovacs et al. (2012) for a STRSP without synchronization requirements. In the
following we first briefly describe the ALNS and we then propose several different
approaches for dealing with synchronization requirements.

4.1 Adaptive large neighborhood search

In general, ALNS works as follows. Starting with a first feasible solution, in every
iteration, a destroy and a repair operator are employed to the current incumbent solu-
tion, hopefully yielding a solution of improved quality. In ALNS, as first proposed
by Ropke and Pisinger (2006), a set of destroy and a set of repair operators are used
and an adaptive scheme guides their selection. While in the original version destroy
and repair operators are selected and remunerated separately for good performance,
Kovacs et al. (2012) use operator pairs.

The destroy operators employed in Kovacs et al. (2012) and also in this paper are
random removal, worst removal, related removal, and cluster removal. The random
removal operator removes a certain number of randomly chosen customers or tasks
from their routes. The worst removal operator removes customers or tasks which
require long detours. The related removal operator removes customers or tasks which
are related in terms of location and visit time. The cluster removal operator chooses
routes, partitions each route into two subsets, and removes the customers or tasks of
one of the two subsets.

The employed repair operators are a greedy insertion, a sequential inser-
tion (Solomon 1987), and several regret insertion heuristics. The greedy insertion
heuristic inserts, in every iteration, the customer or task whose insertion increases
the objective function value the least, considering all routes in parallel. The sequential
insertion heuristic fills one route after the other. The regret insertion heuristics calculate
regret values considering the best insertion positions on different routes and they iter-
atively insert the task or customer with the highest regret value at its best position. All
insertion heuristics are used in their deterministic as well as in a randomized fashion.

The initial solution is constructed with the greedy repair heuristic. Since we assume
a large enough number of vehicles in the case of the VRPTWPS, and the outsourc-
ing option in the case of the STRSPPS, a feasible solution can always be generated
from scratch. In addition, the ALNS is embedded into a simulated annealing frame-
work (Kirkpatrick et al. 1983). Thus also deteriorating solutions are accepted with a
certain probability. For further details we refer the interested reader to Kovacs et al.
(2012).

4.2 Approaches to deal with visit synchronization

We propose several different ways to address the visit time synchronization require-
ment. The idea of the first two approaches is to keep the available ALNS rather

@ Springer

450 S. N. Parragh, K. F. Doerner

untouched. This means that within the ALNS, synchronization is guaranteed by assign-
ing a given visit time to those tasks that require synchronized visits; and to add a
component, which could be considered a local search component, that tries to improve
this timing for the different synchronized tasks. The third approach modifies certain
elements of the ALNS, mainly the request insertion scheme, in order to identify good
visit times for synchronized visits.

4.2.1 Approach A: individual synchronized timing optimization

The aim of approach A is to improve the positions of the synchronized tasks within their
routes, one at a time. During the execution of the ALNS, time windows of synchronized
tasks are narrowed to points in time. This approach guarantees that both vehicles arrive
at the same time at the synchronized customer/task and it allows us to use the ALNS
of Kovacs et al. (2012) without further modifications. In order to improve this point
in time, we propose to integrate the following enumerative procedure, which is called
once for each task requiring a synchronized visit as described in Algorithm 1:

Algorithm 1 Enumerative procedure to improve positioning and timing of a synchro-
nized task or customer s (modeled by two distinct vertices s1 and s7)

identify route r1 of 51 and route rp of 53, bestcost = 0o
for each feasible insertion position of s in r| do
compute insertion costs ¢ and earliest (e) and latest (/) possible beginning of service time
for each feasible insertion position of s in r, with respect to [e, /] do
compute insertion costs ¢
if ¢1 + ¢p < bestcost then
bestcost =c1 + ¢
end if
end for
end for
insert s1 and sy at the positions leading to bestcost

The procedure is employed with a certain probability, regardless of the quality
of the newly generated solution. To control how often it is used we use an adaptive
mechanism, similar to the one used to identify the next destroy and repair operator pair.
Let wyyne and wyegyne denote the weights for using the synchronization component
in the current iteration and for not using it, respectively. Based on these weights a
roulette wheel selection mechanism decides if the enumerative procedure is employed
in the current iteration. The weights are initialized as follows:

Wsyne = ﬂ Whosyne = 100 — .100 >
Lfreq Lfreq

where i fr¢q is a user defined parameter that indicates how often the synchronization
component should be called within the first 100 iterations. We chose 100 iterations
since this corresponds to the frequency used to update the weights of the destroy and
repair operator pairs. During the same time segment, also the synchronization com-
ponent accumulates points for good performance. We use score parameters ¥y, and
VYnosyne and a counter parameter nzy,c. All three are initialized with O at the beginning

@ Springer

Solving routing problems with pairwise synchronization... 451

of every new segment of 100 iterations. The counter parameter counts how often the
synchronization component was called during the last segment, and, following Ropke
and Pisinger (2006), ¥gyne and ¥,05ync are increased in the following cases:

e if a new best solution is identified (o = 33)

o if the new solution was not visited before and improves the incumbent solution
(0=9)

o if the new solution was not visited before and is accepted although it is worse than
the incumbent (o = 13)

that is, in the above cases, if the synchronization component was called, Yy, =
Ysyne + 0 and Yuosyne := Vnosyne + o otherwise. The values used to update the
scores are based on Kovacs et al. (2012) and Ropke and Pisinger (2006). Then, at the
end of every time segment, the weights are updated as follows:

Vsyne
o o=0.99 w., 00l —————
Wsyne Wsyne + max (1, ngync)

wnosyl’lc
max(1, 100 — ngync)

Whnosyne = 0.99 Wnosyne + 0.01

Besides the enumerative approach to improve the insertion as well as the timing of
a synchronized task, we also used a dynamic programming algorithm to solve the syn-
chronization subproblem and we modeled it as a set partitioning type problem which
can be solved by a linear programming solver. They are described in Appendix A.1.
They are not competitive in terms of run time. However, even if they are not com-
petitive for the current setting they may be of interest for solving problems with
synchronization requirements which are not limited to pairs of routes.

4.2.2 Approach B: global synchronized timing optimization

Approach A takes a very local view. Therefore, we also developed an approach that
does not only improve the insertion position of one synchronized task at a time but of
all currently inserted synchronized tasks. In order to do so, we set up a mixed integer
program (it extends the CGit approach for pairwise route synchronization given in
Appendix A.1.2). It uses the following notation:

Q set of all feasible routes.

R set of route indices of those routes that are in the current feasible solution.

Qe set of all feasible alternative routes of original route k.

Dy pairs (i, j) of synchronized tasks that are scheduled along route r such that i precedes j and no
other synchronized task is scheduled between i and j.

Q,;) setof all feasible routes containing task i.

cr routing costs of route r.

biy earliest beginning of service time of task i on route r.

Wy waiting time between i and j on route r.

fri forward time slack of task i on route r.

S pairs of synchronized tasks.

vr binary decision variable equal to 1 if route r is selected and 0 otherwise.

F; continuous decision variable giving by how much the beginning of service at i should be shifted.

@ Springer

452 S. N. Parragh, K. F. Doerner

With this notation, we are now able to formulate the global synchronized timing
optimization problem.

minZC,yr (12)
reQ
subject to:
>y =1 VkeR, (13)
rEQk
Y wbri+Fi= Y b+ F Vii.j}eSs (14)
€ (i) re8(j)
O<F=fi+t(d—-y)M VreQ,ier, (15)
max (0, F; —wyij) — (1 =y)M < F; Vr € Q,(, j) € Dy, (16)
v €{0,1} VreQ. a7

Objective function (12) minimizes the total routing costs. Constraints (13) make
sure that exactly one route is chosen from the set of all feasible routes that could replace
a given route in the current solution. Equation (14) make sure that synchronized tasks
are visited at exactly the same time on both routes serving them. Constraints (15)
make sure that the beginning of service of a task i is not shifted by more than the
available slack and constraints (16) make sure that shifted beginning of service times
are correctly propagated along each route.

In order to fill the pool of all possible routes €2, we take each route part of the current
solution that serves at least one synchronized task and enumerate all possible routes
such that the order of non-synchronized tasks remains fixed but one route is generated
for each possible insertion position of each synchronized task. Then, the above model
is solved on this set of routes and in the case where the new solution is better than the
current solution, the new solution replaces the current solution.

In order to avoid the generation of too many routes and thus too long computation
times, we set artificial time windows around synchronized tasks. The width of these
time windows depends on the length of the routes. The longer the routes, the shorter
the width of the time windows. We apply approach B only to new best solutions during
the execution of the ALNS.

4.2.3 Approach C: adaptive time windows

Approaches A and B only improve the position and timing of synchronized tasks within
their routes and once a complete solution has been generated. Our third approach,
approach C, tries to improve the timing of tasks requiring synchronization during the
construction of anew solution, at the time the task is inserted: every time a synchronized
customer or task s, modeled as two vertices s1 and s7, is not visited by any route, i.e.
both 51 and s have been removed from their routes, its time window is reset to its
original values. Only when either s or s; is re-inserted, it is narrowed again to a point

@ Springer

Solving routing problems with pairwise synchronization... 453

in time. Let us assume that s; has been inserted and s; is still in the pool of removed
customers or tasks. Then, this point in time can be chosen from the range of feasible
visit time values for s1. In order to do so, the earliest beginning of service time for
s1 has to be computed as well as by how much it can be shifted such that no other
customer’s or task’s time window is violated, i.e. we compute the forward time slack
of 51 as described in Savelsbergh (1992). We choose the beginning of service of s
randomly in this time interval and narrow the time window of the synchronized task s,
i.e. 51 and s, to this point in time. The drawback of this approach is that the removal as
well as the insertion routine in the original ALNS have to be adapted (time windows
have to be re-opened and the ALNS has to check if the synchronized customer or task
was removed from both of its routes, i.e. s; and s> have been removed). Furthermore,
it also requires additional updates in the repair heuristics since previously feasible
insertion positions of s, may no longer be feasible.

5 Computational experiments

All algorithmic components are implemented in C++. MIPs are solved using CPLEX
12.51. All experiments are carried out on Xeon CPUs at 2.5 GHz; we only use one
CPU per run and, in order to allow for fair comparisons, CPLEX is restricted to one
thread. All average values on a per instances level are average values over five random
runs.

5.1 Test instances

In order to test the above defined hybridization strategies, we use two types of data
sets. The first one is the well known VRPTW data set of Solomon (1987). The second
one is based on the VRPTW data set and has been modified in Kovacs et al. (2012)
for a STRSP: the capacity constraints of the vehicles were removed and skill-level
requirements for each task as well as a set of technicians with different qualification
levels were introduced. Following Kovacs et al. (2012), we do not use the outsourcing
costs given in the instance file but we resort to the following term: 200 + ﬂl.l's with
Bi = > reodif- In both types of data sets synchronized customers or tasks are
incorporated as suggested in Rousseau et al. (2013), that is, every tenth customer
or task is assumed to demand a synchronized visit, these are {10, 20, ..., 100}, if O
denotes the depot. In the case of the VRPTW instances, we assume that two vehicles
are needed for loading purposes but the entire load is only loaded into one of the
two vehicles. Thus, if again s denotes the synchronized customer, modeled as two
customers s and s>, the demand of s is equal to the one of s while the demand of s,
is 0. In a similar way, we associate s; with the original skill level requirements and we
do not associate s, with any skill level requirements in the case of the STRSP based
instances.

In addition to the above, we also solve the instances of Bredstrom and Ronnqvist
(2008). New best results on these instances have recently been published by Afifi et al.
(2016). The data set consists of 10 base instances and 5 different time window settings
for each of these base instances. They are labeled as follows: F (fixed point in time),

@ Springer

454 S. N. Parragh, K. F. Doerner

S (small time window), M (medium sized time window), L (large time window), A
(no time window). In each instance, 10% of the tasks require a synchronized visit.
Furthermore, in each instance a 9-h planning horizon is assumed. This means that in
order to obtain the correct values the time values given in the instance files have to be
multiplied by nine divided by the provided time horizon.

5.2 Evaluation of the different synchronization approaches

In order to identify the best setting and to understand the value of the different
approaches to deal with the synchronization requirement, we only use the VRPTW
based instances and we perform the following experiments. We first solve the instances
without any improvement with respect to the timing of the tasks requiring synchronized
visits. In a second step, we apply approach A as described above and in combination
with approach B, whereas approach B is only used to improve the timing of tasks requir-
ing synchronization whenever a new best solution is found. In the case of approach A,
different settings for i 7., are tested, namely {10, 25, 100}. Furthermore, we also use
approach C (opening and closing the time windows at removal and insertion) without
any of the other approaches and together with the best approach identified in the pre-
vious set of experiments. A summary of these results is reported in Table 1. The first
column gives the name of the instance class (we report average solution values per
Solomon instance class). In all subsequent columns we report the respective average
values for the different approaches. Column one reports results without any improve-
ments in terms of the timing of tasks requiring a synchronized visit, i.e. the point of
time of these tasks is set in the very beginning of the algorithm and it is not changed or
improved later on. Then we provide results for approach B (global optimization every
time a new best solution is found). Approach A does pairwise improvements and it
is applied to new solutions with a certain frequency i fr.4. As mentioned above, we
report results for i .., € {10, 25, 100}. Setting i 7., = 10 in which the component is
used most often gives the best results. Therefore, this setting is also used in all subse-
quent experiments with approach A. First we combine approaches A and B. Then, we

Table 1 Comparison of approaches on VRPTW based instances: average solution values

ifreq Fixed Appr. B Appr. A Appr. A,B ApprC Appr. A,B,C

— - 10 25 100 10 - 10

Cl 1251.81 1219.02 1201.93 1207.70 1213.39 1201.22 114594 1145.08
C2 940.01 907.46 891.42 893.01 894.90 888.55 876.47 876.30
R1 1388.09 1367.28 1357.87 1359.32 1361.14 1358.12 1345.51 1345.99
R2 1076.01 1055.10 1029.60 1030.84 1030.55 1029.24 1032.58 1029.27
RCl1 1621.71 1565.86 1556.84 1562.10 1563.05 1543.27 152491 1524.16
RC2 1280.88 1258.89 1220.50 1221.11 1223.07 1220.82 1224.15 1220.99

Avg. 1259.75 122894 1209.70 1212.35 1214.35 1206.87 1191.59 1190.30

Five runs per instance, average values per instance class, best values bold faced

@ Springer

Solving routing problems with pairwise synchronization... 455

Table 2 Comparison of approaches on STRSP based instances: average solution values

Fixed Appr. A Appr. C Appr. A, B, C
Cl 1410.17 1352.62 1314.44 1319.19
Cc2 1212.59 1181.48 1165.84 1164.79
R1 1680.88 1646.43 1650.74 1647.00
R2 1399.72 1360.17 1347.90 1348.30
RC1 1804.89 1764.01 1726.32 1728.11
RC2 1614.39 1535.88 1524.31 1524.60
Avg. 1520.44 1473.43 1454.92 1455.33

Five runs per instance, average values per instance class, best values bold faced

test approach C alone (opening and closing time windows at removal and insertion).
Finally, we combine all three approaches (column “Appr. A, B, C”). Overall this set-
ting obtains the best results. It is, however, only slightly better than applying Appr. C
alone. For instance classes C1, C2 and RC1, the combination of all approaches is the
best one. For R1 approach C obtains the best average solution value. For R2, the best
setting is the combination of approaches A and B, and for RC2 approach A performs
best. In terms of solution times, all approaches require less than 1 min on average.
Only in the case of instance class R2, average values of about 1.5 min are reached in
combination with approach B.

Given these results, we apply the following three approaches also to the STRSP
based instances: approach A with i .., = 10, approach C, and approaches A, B, C
together. Table 2 gives the respective results in comparison to the fixed point in time
setting, providing the same information as Table 1, i.e. average solution values per
instance class.

In the case of the STRSPPS, it can be observed that the best method is approach C.
It obtains the lowest average solution value across all instances, closely followed by
the combination of all three approaches. When looking at individual instance classes,
the combination of all three approaches is better in the case of instance classes C2
and R1. However, approach A performs even better in the case of instance class R1.
In terms of run times, all approaches require less than 35 s on average.

We also compare the best average value per instance class to the average solution
values obtained for the fixed point in time setting (i.e., no improvements on the initial
timing of synchronized tasks). Improvements in terms of solution quality of between
2 and 6.8% can be obtained in case of the STRSPPS and of between 3 and 8.5% in
case of the VRPTWPS.

Summarizing these results, we observe that, as expected, there is value in investing
in improving the timing of tasks requiring synchronization. We also observe that
approach C (opening and closing time windows at removal and insertion) has the
largest impact on the solution quality. Adding approaches A and B on top of C does
not always lead to additional improvements. In the case of the VRPTWPS, it leads to
improvements for instance classes C1, C2, RC1 and RC2. In the case of the STRSPPS,
the picture is different. Here it only leads to additional improvements for instance

@ Springer

456 S. N. Parragh, K. F. Doerner

classes C2 and R1. In the case of instance classes C1 and RC1, it even leads to a slight
deterioration in solution quality.

Although it is not entirely clear if only approach C or C in combination with A and
B should be used, we used the combination of all three approaches in a comparison to
optimal solutions. For this purpose, we implemented the previously described models
in C++ using concert technology, CPLEX as solver engine and a run time limit of one
hour. Since only few of the 100 customer/task instances could be solved to optimality,
we also solved instances of reduced size, considering the first 25 and 50 customers of
the VRPTWPS instances and the first 50 tasks of the STRSPPS instances. All instances
that we were able to solve to optimality are reported in Table 3. We refrain from
reporting lower bounds for unsolved instances since the obtained bounds are in most
cases too weak to derive any conclusions regarding the quality of the obtained upper
bounds. Table 3 provides the following information: the name of the original instance,
the considered size (“n”), the average (“Avg.”) and best solution values (“Best”) of
our method, their respective percentage deviations from the optimal values (“%"), and
the average run time in seconds (column “Time(s)”).

Table 3 shows that we match the optimal solution values for all VRPTWPS instances
that can be solved to optimality. The picture is quite different for the STRSPPS
instances. Here, we are able to solve more instances to optimality. Apparently, they
are more tightly constrained due to the available incompatibilities between tasks
and technicians. We are still able to match the optimal values for a majority of
the instances. However, for instances C101_5x4_noTeam, C101_6x6_noTeam, and
R101_7x4_noTeam with 100 tasks, the gap remains above 1%, even for the best solu-
tions out of five random runs. Overall this comparison shows that we are able to obtain
solutions that either match the optimal values or are very close to the optimal values,
except for the three instances indicated above. We assume that the reason is that they
are more tightly constrained than the remaining instances.

5.3 Results for benchmark instances

Finally, we have also applied our algorithm using the combination of all three
approaches (A, B, and C) to available benchmark instances from the literature (Bred-
strom and Ronnqvist 2008) with 20-80 tasks. Bredstrom and Ronnqvist (2008) report
results for all time window settings for instances 1-5 and for some of the time window
settings for instances 6-10. Afifi et al. (2016) report results for all instances and time
window settings S, M, and L. For some of the instances optimal solution values are
available. In addition, we were able to solve all previously unsolved F instances to
optimality. F indicates that all time windows are narrowed to a given point in time.
We compare the results of our heuristic method to the best existing heuristic results
or, where known, to the optimal solution values, minimizing the total travel time.
These results are reported in Table 4. It contains the following information for each
instance: the instance size (n), in terms of the number of tasks, the optimal values
where known (Opt.), the best results published by Bredstrom and Ronnqvist (2008)
and by Afifi et al. (2016) (if no result was published for the respective instance this is
indicated by a “~”), the best known values (column “BKS”), and the average and best

@ Springer

Solving routing problems with pairwise synchronization... 457
Table 3 Comparison of our method (Appr. A, B, C) to optimal values

Instance n Opt. Avg (%) Time (s) Best (%)
Cl101 25 235.34 235.34 0.00 1.97 235.34 0.00
C101 50 475.43 475.43 0.00 8.52 475.43 0.00
C101 100 1160.81 1160.80 0.00 23.27 1160.80 0.00
C105 25 235.34 235.34 0.00 2.52 235.34 0.00
C105 50 475.41 475.42 0.00 9.20 475.41 0.00
C106 25 235.34 235.34 0.00 1.93 235.34 0.00
C107 25 235.34 235.34 0.00 2.40 235.34 0.00
C201 25 245.77 245.77 0.00 3.13 245.77 0.00
C201 50 473.96 473.96 0.00 10.68 473.96 0.00
C201 100 877.59 878.34 0.09 3242 877.59 0.00
R101 25 713.62 713.62 0.00 2.16 713.62 0.00
R101 50 1194.84 1197.79 0.25 6.72 1194.84 0.00
RC101 25 501.95 501.95 0.00 2.51 501.95 0.00
VRPTWPS avg. 0.03 0.00
C101_5x4_noTeam 50 475.43 475.65 0.05 10.09 475.43 0.00
C101_5x4_noTeam 100 1254.44 1284.34 2.38 31.19 1279.19 1.97
C101_6x6_noTeam 50 475.43 475.52 0.02 9.33 475.43 0.00
C101_6x6_noTeam 100 1202.14 1230.01 2.32 29.55 1217.15 1.25
C101_7x4_noTeam 50 594.14 600.00 0.99 8.77 594.14 0.00
C101_7x4_noTeam 100 1494.38 1503.03 0.58 25.40 1494.38 0.00
C201_5x4_noTeam 50 603.18 603.18 0.00 8.33 603.18 0.00
C201_5x4_noTeam 100 1225.12 1242.99 1.46 30.90 1229.99 0.40
C201_6x6_noTeam 50 473.96 473.96 0.00 8.90 473.96 0.00
C201_6x6_noTeam 100 991.66 1003.45 1.19 32.66 994.35 0.27
C201_7x4_noTeam 50 638.67 641.82 0.49 7.57 638.67 0.00
C201_7x4_noTeam 100 1333.78 1364.05 2.27 30.51 1333.78 0.00
R101_5x4_noTeam 50 1194.84 1197.63 0.23 10.13 1194.84 0.00
R101_5x4_noTeam 100 1790.98 1813.90 1.28 26.87 1808.11 0.96
R101_6x6_noTeam 50 1194.84 1194.84 0.00 10.57 1194.84 0.00
R101_6x6_noTeam 100 1790.79 1811.18 1.14 28.59 1806.02 0.85
R101_7x4_noTeam 50 1237.84 1241.13 0.27 9.79 1237.84 0.00
R101_7x4_noTeam 100 1880.77 1932.82 2.77 27.53 1908.84 1.49
R201_5x4_noTeam 50 947.10 951.82 0.50 7.90 950.41 0.35
R201_6x6_noTeam 50 916.53 927.19 1.16 8.40 922.93 0.70
R201_7x4_noTeam 50 1001.40 1007.76 0.64 8.96 1007.76 0.64
STRSPPS avg. 0.94 0.42

results of our method (columns “Avg.” and “Best”) as well as the percentage devia-
tions from the best known values (“%”), and the average run time in seconds (column

“Time (s)").

@ Springer

458

S. N. Parragh, K. F. Doerner

Table 4 Comparison of our method (Appr. A, B, C) to the optimal values (Opt.), the matheuristic of
Bredstrom and Ronnqvist (2008) [BROS] and the simulated annealing algorithm of Afifi et al. (2016)
[ADM16] on instances of Bredstrom and Ronnqvist (2008)

Instance n Opt. BR0O8 ADMI6 BKS® Avg. (%) Time (s) Best (%)

IF 20 5.13* 513 - 5.13 5.13 0.00 0.98 5.13 0.00
1S 20 3.55% 355 355 3.55 3.55 0.00 1.08 3.55 0.00
IM 20 3.55b 355 355 3.55 3.55 0.00 1.08 3.55 0.00
IL 20 3.39b 339 339 3.39 3.39 0.00 1.18 3.39 0.00
1A 20 - 3.16 - 3.16 295 —6.65 1.20 295 —6.65
2F 20 4982 498 - 4.98 4.98 0.00 1.13 4.98 0.00
2S 20 4272 427 427 4.27 4.27 0.00 1.06 4.27 0.00
2M 20 3.58° 3.58 358 3.58 3.58 0.00 1.14 3.58 0.00
2L 20 3.42° 342 342 3.42 3.42 0.00 1.10 3.42 0.00
2A 20 - 334 - 3.34 2.88 —13.77 1.21 2.88 —13.77
3F 20 5.192 519 - 5.19 5.19 0.00 0.93 5.19 0.00
3S 20 3.63% 3.63 3.63 3.63 3.63 0.00 1.02 3.63 0.00
3M 20 3.33b 333 333 3.33 3.33 0.00 1.17 3.33 0.00
3L 20 3.29° 329 329 3.29 3.29 0.00 1.09 3.29 0.00
3A 20 - 310 - 3.10 2.74 —11.61 1.04 2.74 —11.61
4F 20 7.212 721 - 7.21 7.21 0.00 1.01 7.21 0.00
4S 20 6.14% 6.14 6.14 6.14 6.14 0.00 0.91 6.14 0.00
4M 20 5.67° 575 5.67 5.67 5.67 0.00 0.97 5.67 0.00
4L 20 5.13b 530 5.13 5.13 5.15 0.39 1.36 5.13 0.00
4A 20 - 491 - 491 429 —12.63 1.23 429 —12.63
SF 20 5.37% 537 - 5.37 5.37 0.00 1.15 5.37 0.00
5S 20 3.93* 393 393 3.93 3.93 0.00 1.30 3.93 0.00
M 20 3.53% 353 353 3.53 3.53 0.00 1.13 3.53 0.00
5L 20 3.34b 334 334 3.34 3.34 0.00 1.12 3.34 0.00
5A 20 - 326 - 3.26 2.81 —13.80 1.20 2.81 —13.80
6F 50 1445 - - 14.45 14.49 0.28 11.96 14.46 0.07
6S 50 8.14° 13.69 8.14 8.14 8.14 0.00 13.62 8.14 0.00
6M 50 - 12.80 7.70 7.70 7.72 0.26 9.03 7.71 0.13
6L 50 7.14° 1187 7.14 7.14 7.14 0.00 16.40 7.14 0.00
6A 50 - 11.88 - 11.88 5.99 —49.58 16.60 595 —49.92
7F 50 13.02 - - 13.02 13.02 0.00 7.56 13.02 0.00
7S 50 839 1506 839 8.39 8.39 0.00 13.69 8.39 0.00
™ 50 - 1345 748 7.48 7.48 0.00 11.78 7.48 0.00
7L 50 - 11.52 6.88 6.88 6.90 0.29 18.69 6.88 0.00
TA 50 - 1241 - 12.41 572 —-5391 13.29 571 —53.99
8F 50 3494 - - 3494 3494 0.00 9.72 34.94 0.00
8S 50 9540 — 9.54 9.54 9.71 1.78 16.48 9.54 0.00

@ Springer

Solving routing problems with pairwise synchronization... 459

Table 4 continued

Instance n Opt. BR0O8 ADMI6 BKS® Avg. (%) Time (s) Best (%)

8M 50 854> — 8.54 8.54 8.57 0.35 15.16 8.54 0.00
8L 50 - 15.16 8.00 8.00 8.07 0.88 15.19 8.03 0.37
8A 50 - 13.01 - 13.01 6.60 —49.27 20.58 6.52 —49.88
9F 80 4348 - - 43.48 43.60 0.28 20.21 43.55 0.16
9S 80 - - 11.93 11.93 12.14 1.76 ~ 51.69 12.07 1.17
M 80 - - 10.92 10.92 11.02 0.92 37.12 10.96 0.37
9L 80 - 20.68 10.49 10.49 10.59 0.95 40.01 10.55 0.57
9A 80 - 22.89 - 22.89 8.59 —62.47 44.08 8.51 —62.82
10F 80 12.08 - - 12.08 12.19 091 38.77 12.14 0.50
10S 80 - 16.24 8.60 8.60 8.61 0.12 48.69 855 —0.58
10M 80 - 1533 7.62 7.62 7.70 1.05 72.30 7.67 0.66
10L 80 - 17.61 7.75 7.75 742 —426 77.02 738 =477
10A 80 - 17.59 - 17.59 6.39 —63.67 5993 6.31 —64.13

4As reported in Bredstrom and Ronngvist (2008)
b As reported in Afifi et al. (2016)
“Min of Opt., BRO8 and ADM16

We observe that our method obtains several new best results and that it matches
almost all available optimal values. We note, however, that the method of Afifi et al.
(2016) is faster than ours, taking at most 18.32 s of computation time.

6 Conclusions

In this paper, we have combined a large neighborhood search algorithm with three dif-
ferent approaches to deal with tasks which require visit time synchronization. The first
approach is applied with a certain frequency to new solutions encountered during the
execution of the ALNS. It tries to iteratively improve the timing of one task requiring
a synchronized visit at a time. The second approach takes a more global view. It tries
to simultaneously improve the timing of all synchronized tasks. Since this is more
time consuming, it is only applied whenever a new best solution is found. The third
approach integrates the timing of synchronized tasks into the removal and insertion
routine of the LNS. We have evaluated different combinations of these approaches
and we have found that the largest impact on solution quality is achieved by the third
approach. For the VRPTW with pairwise route synchronization constraints, the best
method combines all three approaches. For the STRSP with pairwise route synchro-
nization constraints, the third approach is the best one, very closely followed by the
combination of all three approaches. When applied to benchmark instances from the
literature, our method obtains several new best solutions and it matches almost all
known optimal values. Finally, we have also shown that considerable improvements
in terms of solution quality are possible when the timing of tasks requiring synchro-
nized visits is improved during the course of the algorithm. In this paper, we have only

@ Springer

460 S. N. Parragh, K. F. Doerner

investigated problem settings where tasks require up to two persons to be completed
and where travel and service times are considered to be deterministic. Future research
will involve the consideration of stochastic travel times in combination with synchro-
nization requirements and it should address settings in which more than two persons
are necessary to perform a task.

Acknowledgements First of all, we would like to thank Walter J. Gutjahr for his support over all these
years. We would probably not be where we are today if he had not introduced us to the field of combinatorial
optimization and operations research. We also wish to thank Michael Ronnqvist for having provided us
with their data set and two anonymous reviewers for their comments. This research was partially supported
by the Austrian Science Fund (FWF): T514-N13. This support is gratefully acknowledged. Open access
funding provided by Austrian Science Fund (FWF).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Appendix
A.1 Alternative approaches for individual synchronized timing optimization
A.1.1 DPit approach

The first alternative approach relies on dynamic programming (DP). DP has been suc-
cessfully employed in the vehicle routing domain within the giant tour concept (Prins
2011) and for identifying the best insertion positions of intermediate facilities (Hem-
melmayr et al. 2013). In our context, the fundamental concept is the way the graph
Gpp is defined, for finding the shortest path while taking care of synchronization
issues. Let 71 and r, denote the routes of synchronized task s and let s1 and s> denote
the synchronized task inserted into r; and r;, respectively. We propose to construct a
graph of |rq| x |r2] + 1 nodes. Each of the nodes in G pp corresponds to one vertex
of r; and one vertex of r,. If the nodes were given in a grid like layout, horizontal
arcs would correspond to moving to the successor vertex in r, while staying at the
same vertex in ry; vertical arcs would correspond to moving to the successor vertex
in r| while staying at the same vertex in r;. Diagonal arcs would finally correspond
to moving to the successor vertex in both routes. Diagonal nodes may also be con-
nected via a detour through the synchronized node. Thus, each node of the graph
is connected to at most four nodes: the next horizontal, the next diagonal, the next
vertical and the synchronized node. However, not all four arcs are necessary at all
nodes. The source node has to be connected to all four nodes. All nodes containing an
origin vertex of either of the two routes have to be connected to the next node where
only the vertex on the opposite route is increased, the synchronized node and the next
diagonal node. There are two exceptions. The two nodes representing a combination
of an origin vertex of one route and a destination vertex on the other route are not
connected to any other node; they cannot be part of a feasible solution. Then, the two
nodes containing one of the origin depots and the vertex just before the destination

@ Springer

http://creativecommons.org/licenses/by/4.0/

Solving routing problems with pairwise synchronization... 461

Fig. 1 Example graph

depot on the opposite route are only connected to the next diagonal node via the syn-
chronized node. The inverse has to hold for all nodes containing the destination depot
of either of the two routes. Finally, all other nodes are only connected to the next
diagonal node directly and via a detour through the synchronized node and no other
node.

Assume the two routes a—b—c and d—e—f—g and let again denote s; the sync task
to be inserted into route a—b—c and s the sync task to be inserted into route d—e—
f—g. Then, the source node of the graph is node ad (we visit a on the first route
and d on the second route). From the source node we have four options: either we
go to node bd (we visit the next node on the first tour and we stay at the source
node on route two); or we go to node be (we visit the next node on both routes); or
we go to node ae (we visit the next node only on route two); finally, we may also
insert the sync tasks, i.e. we go to node s = {sy1s2}. The sync node s can only be
visited between two nodes where both original vertices are increased by one position:
on the way from ad to be, from bd to ce and so on. This is enforced in the label
setting algorithm. The sink node of the graph is cg and the according graph is given
in Fig. 1. The sync node is duplicated so as to illustrate all possible insertion places
more clearly.

Atall regular nodes in G p p, cost and time consumptions are updated for each route
individually; at the synchronized node, the beginning of service times are synchro-
nized. We solve the shortest path problem on this graph by means of a label setting
algorithm.

In our label setting algorithm, the following information is stored in each label: the
node v of the label, the time consumption of route 1 #,,, the time consumption of route
2 t,,, the costs of route 1 until the current node ¢, the cost of route 2 until the current
node c,,, whether the sync node sync has already been visited, and a pointer to the
parent label.

A new label at node j is generated as follows; we assume that we extend label n
on arc (i, j) to label " and that r| (i) gives the vertex on route 1 of node i and (i)
gives the vertex on route 2 of node i:

v(n') = j, (18)

@ Springer

462 S. N. Parragh, K. F. Doerner

max (e}, ;s try (1) + Try(i),r1 () B2 (1) + Trai)r2 ()
() = if j is the sync node, (19)

max(e}, ;y» tr; (M) + Tryi),r (j))» Otherwise.

tr,(n"), if j is the sync node,

!/
= max (e, ;s i () + Tr(i).n(j)), otherwise. e
cn () = e () + erirn () @D
(1) = () + Cryiy,ma() (22)
syne(n’) = {1, if jisthe sy.nc node, (23)
sync(n), otherwise.
parent(n) = pointer to 7 (24)

The time consumption T, (), (j) on each arc (i, j) is computed as follows:

Srei) F treiy,re (s k(@) # (),

Vk € {1, 2}. 25
0, otherwise. (.2} @5)

Tre(@),re () = !

At the source node 0, 1, = e,). tr, = €,), Cr = ¢, = 0,sync = 0. Then,
extension of label n on arc (i, j) is only possible if the following holds:

H1(m) + Ty) () < l'l’l () (26)
tr2 (M) + Try(i),ra(j) = 1;2(1‘)' @7)

In addition, in the case where r1(i) € Dy or r2(i) € Dy, the sync node must have
been visited already:

sync(n) = 1. (28)
Finally, in the case where v(n) = s (the sync node), i has to be the next diagonal node:
i = successor[v(parent (n))]. 29)

This information is stored in a successor vector. In order to further improve the label
setting algorithm, we also use dominance rules; that is, a label is only extended if it is
not dominated by any other label. Label n dominates label n’ if the following holds:

v(n) =v(1n), (30)
sync(n) = sync(n'), (31
() <t (), 10, () < 1, (1)), (32)
cr () < cr (), () < (). (33)

@ Springer

Solving routing problems with pairwise synchronization... 463

A.1.2 CGit approach

The second alternative approach is inspired by column generation (CG). In a first step,
for each of the two routes considered, all feasible insertion positions of s are determined
and the according routes are put into two route pools €2,, and €2,,, referring to the
route pools of route r; and route rp, respectively; 2 = €, U €,,. For each insertion
position, we also calculate the beginning of service time b, of the synchronized task
and its forward time slack f, (Savelsbergh 1992). We then solve a set partitioning
problem where exactly one route has to be chosen from each of the two sets, while
the beginning of service of s; and s, have to be synchronized; that is, their current
beginning of service times can at most be increased by f;.. Let ¢, denote the routing
costs of route r and b, the earliest time the synchronized task can be visited on route r.
We use binary variables y,, equal to one if route r is selected and zero otherwise, and
continuous variables F}, giving the amount of time by which the beginning of service b,
has to be increased to yield synchronized service. Then, the pairwise synchronization
problem can be formulated in terms of the following set partitioning type model:

min Z Cryr (34)
reQ

Y yr=1 Vielrn.n, (35)
rEQ,-

> Orbr+F)= Y (yoby + Fo), (36)
refdy, ' €Qy,

O0<F <y fr VreQ, (37)
v €{0,1} VreQ. (38)

The objective function (34) minimizes total routing costs. Constraints (35) make
sure that exactly one route is chosen from each set 2,1 and 2,,. Constraint (36)
guarantees pairwise route synchronization and constraints (37) limit the amount of
time by which the beginning of service time at the sync node on route r can be
increased.

References

Afifi S, Dang D-C, Moukrim A (2016) Heuristic solutions for the vehicle routing problem with time windows
and synchronized visits. Optim Lett 10(3):511-525

Andersson H, Duesund JM, Fagerholt K (2011) Ship routing and scheduling with cargo coupling and
synchronization constraints. Comput Ind Eng 61(4):1107-1116

Armacost A, Barnhart C, Ware KA (2002) Composite variable formulations for express shipment service
network design. Transp Sci 36:1-20

Armacost A, Barnhart C, Ware KA, Wilson AM (2004) UPS optimizes its air network. Interfaces 43:15-25

Bogl M, Doerner KF, Parragh SN (2015) The school bus routing and scheduling problem with transfers.
Networks 65(2):180-203

Bredstrom D, Ronnqvist M (2007) A branch and price algorithm for the combined vehicle routing and
scheduling problem with synchronization constraints. Technical report, Department of Finance and
Management Science, Norwegian School of Economics and Business Administration

@ Springer

464 S. N. Parragh, K. F. Doerner

Bredstrom D, Ronnqvist M (2008) Combined vehicle routing and scheduling with temporal precedence
and synchronization constraints. Eur J Oper Res 191:19-29

Dohn A, Koling E, Clausen J (2009) The manpower allocation problem with time windows and job-teaming
constraints: a branch-and-price approach. Comput Oper Res 36:1145-1157

Dohn A, Rasmussen MS, Larsen J (2011) The vehicle routing problem with time windows and temporal
dependencies. Networks 58(4):273-289

Drexl M (2012) Synchronization in vehicle routing-a survey of VRPs with multiple synchronization con-
straints. Transp Sci 46(3):297-316

El Hachemi N, Gendreau M, Rousseau L-M (2013) A heuristic to solve the synchronized log-truck schedul-
ing problem. Comput Oper Res 40(3):666-673

Eveborn P, Flisberg P, Ronnqvist M (2006) Laps Care—an operational system for staff planning of home
care. Eur J Oper Res 171:962-976

Eveborn P, Ronnqvist M, Einarsdottir H, Eklund M, Liden K, Almroth M (2009) Operations research
improves quality and efficiency in home care. Interfaces 39:18-34

Hemmelmayr V, Doerner KF, Hartl RF, Rath S (2013) A heuristic solution method for node routing based
solid waste collection problems. J Heuristics 19:1-28

Toachim I, Desrosiers J, Soumis F, Bélanger N (1999) Fleet assignment and crew scheduling with synchro-
nization constraints. Eur J Oper Res 119:75-90

Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671-680

Kovacs AA, Parragh SN, Doerner KF, Hartl R (2012) Adaptive large neighborhood search for service
technician routing and scheduling problems. J Sched 15:579-600

Li Y, Lim A, Rodrigues B (2005) Manpower allocation with time windows and job-teaming constraints.
Nav Res Logist 52:302-311

Mankowska DS, Meisel F, Bierwirth C (2014) The home health care routing and scheduling problem with
interdependent services. Health Care Manag Sci 17(1):15-30

Masson R, Lehuede F, Peton O (2014) The dial-a-ride problem with transfers. Comput Oper Res 41:12-23

Perrier N, Langevin A, Amaya C-A (2008) Vehicle routing for urban snow plowing operations. Transp Sci
42:44-56

Prins C (2011) A simple and effective evolutionary algorithm for the vehicle routing problem. Comput Oper
Res 31:1985-2002

Quttineh N-H, Larsson T, Lundberg K, Holmberg K (2013) Military aircraft mission planning: a generalized
vehicle routing model with synchronization and precedence. EURO J Transp Logist 2(1-2):109-127

Reinhardt LB, Clausen T, Pisinger D (2013) Synchronized dial-a-ride transportation of disabled passengers
at airports. Eur J Oper Res 225(1):106-117

Ropke S, Pisinger D (2006) An adaptive large neighborhood search heuristic for the pickup and delivery
problem with time windows. Transp Sci 40:455—472

Rousseau L-M, Gendreau M, Pesant G (2013) The synchronized dynamic vehicle dispatching problem.
INFOR Inf Syst Oper Res 51(2):76-83

Salazar-Aguilar A, Langevin A, Laporte G (2012) Synchronized arc routing for snow plowing operations.
Comput Oper Res 39:1432-1440

Savelsbergh MWP (1992) The vehicle routing problem with time windows: minimizing route duration.
ORSA J Comput 4:146-154

Schmid V, Doerner KF, Hartl Savelsbergh MWP, Stocher W (2009) A hybrid solution approach for ready
mixed concrete delivery. Transp Sci 43:70-85

Schmid V, Doerner KF, Hartl RF, Salazar-Gonzalez JJ (2010) Hybridization of very large neighborhood
search for ready-mixed concrete delivery problems. Comput Oper Res 37:559-574

SchonbergerJ (2017) Scheduling constraints in dial-a-ride problems with transfers: a metaheuristic approach
incorporating a cross-route scheduling procedure with postponement opportunities. Public Transp
9:243-272

Solomon MM (1987) Algorithms for the vehicle routing and scheduling problems with time window
constraints. Oper Res 35:254-265

Stalhane M, Andersson H, Christiansen M (2015) A branch-and-price method for a ship routing and schedul-
ing problem with cargo coupling and synchronization constraints. EURO J Transp Logist 4:421-443

@ Springer

	Solving routing problems with pairwise synchronization constraints
	Abstract
	1 Introduction
	2 Related work

	3 Problem definitions
	4 Solution framework
	4.1 Adaptive large neighborhood search
	4.2 Approaches to deal with visit synchronization
	4.2.1 Approach A: individual synchronized timing optimization
	4.2.2 Approach B: global synchronized timing optimization
	4.2.3 Approach C: adaptive time windows

	5 Computational experiments
	5.1 Test instances
	5.2 Evaluation of the different synchronization approaches
	5.3 Results for benchmark instances

	6 Conclusions
	Acknowledgements
	A Appendix
	A.1 Alternative approaches for individual synchronized timing optimization
	A.1.1 DPit approach
	A.1.2 CGit approach

	References

