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Abstract

Carbon nanotubes are modeled as point configurations and investigated bymin-
imizing configurational energies including two- and three-body interactions. Opti-
mal configurations are identified with local minima and their fine geometry is fully
characterized in terms of lower-dimensional problems. Under moderate tension,
we prove the existence of periodic local minimizers, which indeed validates the
so-called Cauchy–Born rule in this setting.
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1. Introduction

Nanostructured carbon has emerged over the last two decades as one of themost
promising materials available to mankind. The discovery of fullerenes [48,49], fol-
lowed by that of carbon nanotubes [41] and graphene [37,62], sparked an interest in
low-dimensional materials. The fascinating electronic and mechanical properties
of single-atom-thick surfaces and structures are believed to offer unprecedented
opportunities for innovative applications, ranging from next-generation electronics
to pharmacology, to batteries and solar cells [39,58,59]. New findings are emerg-
ing at an always increasing pace, cutting across materials science, physics, and
chemistry, and extending from fundamental science to novel applications [23,61].

Carbon nanotubes are long, hollow structures exhibiting cylindrical symmetry
[18]. Their walls consist of a single (or multiple) one-atom-thick layer of carbon
atoms forming sp2 covalent bonds [12] arranged in a hexagonal pattern. Thismolec-
ular structure is responsible for amazing mechanical properties: carbon nanotubes
are presently among the strongest and stiffest known materials with a nominal
Young’s modulus [47,71] of 1 TPa and ideal strength greater than 100 MPa [3].
In addition, they are electrically and thermally conductive, chemically sensitive,
transparent, and light weight [72]. Nanotubes can be visualized as the result of
rolling up a patch of a regular hexagonal lattice. Depending on the different pos-
sible realizations of this rolling-up, different topologies may arise, giving rise to
zigzag, armchair, and chiral nanotubes. These topologies are believed to have a
specific impact on the mechanical and electronic properties of the nanotube, which
can range from highly conducting to semiconducting [9,10].

In contrast to the ever-growing material knowledge, the rigorous mathematical
description of two-dimensional carbon systems is considerably less developed. Ab
initio atomistic models are believed to accurately describe some features of the car-
bon nanotube geometry andmechanics [54,65,76]. Thesemethods are nevertheless
computational in nature and cannot handle a very large number of atoms due to
the rapid increase in computational complexity. On the other hand, a number of
continuummechanics approaches have been proposed where carbon nanotubes are
modeled as rods [63], shells [3,4,28,66], or solids [73]. These bring the advantage
of possibly dealing with long structures, at the price however of a less accurate
description of the detailed microscopic behavior.

The unique mechanical behavior of nanotubes under stretching is a crucial
feature of these structures. As such, it has attracted attention from the theo-
retical [4,29,66,79], the computational [1,9,40,44], and the experimental side
[17,47,74,77]. Still, a reliable description of nanotubes under stretching requires
one to correctly resolve the atomic scale and, simultaneously, to rigorously deal
with the whole structure. We hence resort to the classical frame of molecular
mechanics [2,53,64] which identifies carbon nanotubes with point configurations
{x1, . . . , xn} ∈ R

3n corresponding to their atomic positions. The atoms are inter-
acting via a configurational energy E = E(x1, . . . , xn) given in terms of classical
potentials and taking into account both attractive-repulsive two-body interactions,
minimized at a certain bond length, and three-body terms favoring specific angles
between bonds [6,69,70]. The sp2-type covalent bonding implies that each atom
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has exactly three first neighbors and that bond angles of 2π/3 are energetically
preferred [12]. The reader is referred to [16,20,32,57,68] for a collection of results
on local and global minimizers in this setting and to [27,51] for additional results
on carbon structures.

The focus of this paper is to show the local minimality of periodic configura-
tions, both in the unstreched case and under the effect of small stretching. More
specifically, we prove that, by applying a small stretching to a zigzag nanotube, the
energy E is locally strictly minimized by a specific periodic configuration where
all atoms see the same local configuration (Theorem 3.3). Local minimality is here
checked with respect to all small perturbations inR3n , namely not restricting a pri-
ori to periodic perturbations. On the contrary, periodicity is proved here to emerge
as effect of the global variational nature of the problem.

The novelty of this result is threefold. At first, given the periodicity of the
mentioned local minimizers, the actual configuration in R3n can be determined by
solving a simple minimization problem in R

2, which consists in identifying the
length of two specific bond lengths between neighboring atoms. This is indeed the
standpoint of a number of contributions, see [1,8,30,31,43,44,46,50] amongmany
others, where nevertheless periodicity is a priori assumed. In this regard, our result
offers a justification for these lower-dimensional approaches.Our assumptions on E
are kept fairly general in order to include themenagerie of different possible choices
for energy terms which have been implemented in computational chemistry codes
[7,11,38,60,75]. A by-product of our results is hence the cross-validation of these
choices in view of their capability of describing carbon nanotube geometries.

Secondly, we rigorously check that, also in the presence of small stretching,
the geometrical model obtained via local minimization corresponds neither to the
classical rolled-up model [18,19,45], where two out of three bond angles at each
atom are 2π/3, nor to the polyhedral model [14,15,52], where all bond angles are
equal. The optimal configuration lies between these two (Proposition 3.4), a fact
which remarkably corresponds to measurements on very thin carbon nanotubes
[80]. Moreover, in accordance with the results in [44], local minimizers are gener-
ically characterized by two different bond lengths.

Finally, our result proves the validity of the so-called Cauchy–Born rule for
carbon nanotubes: by imposing a small tension, the periodicity cell deforms cor-
respondingly and global periodicity is preserved. This fact rests at the basis of a
possible elastic theory for carbon nanotubes. As a matter of fact, such periodic-
ity is invariably assumed in a number of different contributions, see [4,29,40,79]
among others, and then exploited in order to compute tensile strength as well as
stretched geometries. Here again our results provide a theoretical justification of
such approaches.

While the Cauchy–Born rule plays a pivotal role in mechanics [25,26,78],
rigorous results are scarce. Among these we mention [13,36], which assess its
validity within two- and d-dimensional cubic mass-spring systems, respectively.
More general interactions are considered in [21,22], where the Cauchy–Born rule
is investigated under a specific ellipticity condition applying to the triangular and
hexagonal lattice, both in the static and the dynamic case. Our result is, to the best
of our knowledge, the first one dealing with a three-dimensional structure which is
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not a subset of a Bravais lattice nor of a multilattice. Note though the Saint Venant
principle in [24], which corresponds to the validity of an approximate version of
the Cauchy–Born rule, up to a small error. However, the setting of [24] is quite
different from the present one, where long-range purely two-body interactions are
considered.

This work is the culmination of a series on the geometry and mechanics of
nanotubes [55,56]. The theoretical outcomes of this paper have been predicted
computationally in [55], where stability of periodic configurations have been inves-
tigatedwithMonte Carlo techniques, both for zigzag and armchair topologies under
moderate displacements. A first step toward a rigorous analytical result has been
obtained in [56] for both zigzag and armchair topologies under no stretching. In
[56], stability is checked against a number of non-periodic perturbations fulfilling
a specific structural constraint, which is related to the nonplanarity of the hexag-
onal cells induced by the local geometry of the nanotube. Here, we remove such
constraints and consider all small perturbations, even in presence of stretching.

Indeed, removing the structural assumption and extending the result of [56]
to the present fully general setting requires a remarkably deeper analysis. In a
nutshell, one has to reduce to a cell problem and solve it. The actual realization
of this program poses however substantial technical challenges and relies on a
combination of perturbative and convexity techniques.

Whereas the proof in [56] was essentially based on the convexity of the energy
given by the three bond angles at one atom, in the present context we have to reduce
to a cell which includes eight atoms and is slightly nonplanar. The convexity of cell
energies for various Bravais lattices has already been investigated in the literature
[13,34,36,67], particularly for problems related to the validation of the Cauchy–
Born rule. In our setting, however, we need to deal with an almost planar structure
embedded in the three-dimensional space and therefore, to confirm convexity of
the cell energy, a careful analysis in terms of the nonplanarity is necessary, see
Section 7.2 and Theorem 7.6. In this context, an additional difficulty lies in the fact
that the reference configuration of the cell is not a stress-free state.

The convexity is then crucially exploited in order to obtain a quantitative control
of the energy defect in terms of the symmetry defect produced by symmetrizing a
cell (Theorem 4.4). On the other hand, a second quantitative estimate provides a
bound on the defect in the nonplanarity of the cell (called angle defect) with respect
to the symmetry defect of the cell (Lemma 4.1). The detailed combination of these
two estimates and a convexity and monotonicity argument (Proposition 4.3) proves
that ground states necessarily have symmetric cells, from which our stability result
follows (Theorem 3.3).

The validation of the Cauchy Born rule essentially relies on the application of
a slicing technique which has also been used in [34] in a more general setting:
one reduces the problem to a chain of cells along the diameter of the structure
and shows that identical deformation of each cell is energetically favorable. In the
present context, however, additional slicing arguments along the cross sections of
the nanotube are necessary in order to identify correctly the nonplanarity of each
hexagonal cell.
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The paper is organized as follows. In Section 2 we introduce some notation and
themathematical setting. Section 3 collects ourmain results. In Section 4we present
the proof strategy, the essential auxiliary statements (Lemma 4.1, Theorem 4.4),
and the proof of Theorem 3.3. The proofs of the various necessary ingredients are
postponed to Sections 5–7.

2. Carbon-Nanotube Geometry

The aim of this section is to introduce some notation and the nanotube con-
figurational energy. Let us start by introducing the mathematical setting as well as
some preliminary observations.

As mentioned above, carbon nanotubes (nanotubes, in the following) are mod-
eled by configurations of atoms, i.e., collections of points in R

3 representing the
atomic sites. Nanotubes are very long structures, measuring up to 107 times their
diameter. As such, we shall not be concerned with describing the fine nanotube
geometry close to their ends. We thus restrict our attention to periodic configura-
tions, i.e., configurations that are invariant with respect to a translation of a certain
period in the direction of the nanotube axis. Without loss of generality we consider
only nanotubes with axis in the e1 := (1, 0, 0) direction. Therefore, a nanotube is
identified with a configuration

C := Cn + Le1Z,

where L > 0 is the period of C and Cn := {x1, . . . , xn} is a collection of n points
xi ∈ R

3 such that xi · e1 ∈ [0, L). In the following, we will refer to Cn as the
n-cell of C, and since C is characterized by its n-cell Cn and its period L , we will
systematically identify the periodic configuration C with the couple (Cn, L), i.e.,
C = (Cn, L).

2.1. Configurational Energy

We now introduce the configurational energy E of a nanotube C, and we detail
the hypotheses on E that we assume throughout the paper. We aim here at minimal
assumptions in order to include in the analysis most of the many different possible
choices for energy terms that have been successfully implemented in computational
chemistry codes [7,11,38,60,75].

The energy E is given by the sum of two contributions, respectively accounting
for two-body and three-body interactions among particles that are respectively
modelled by the potentials v2 and v3, see (1).

We assume that the two-body potential v2 : (0,∞) → [−1,∞) is smooth and
attains its minimum value only at 1 with v2(1) = −1 and v′′

2 (1) > 0. Moreover,
we ask v2 to be short-ranged, that is to vanish shortly after 1. For the sake of
definiteness, let us define v2(r) = 0 for r � 1.1. These assumptions reflect the
nature of covalent atomic bonding in carbon favoring a specific interatomic distance,
here normalized to 1.
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We say that two particles x, y ∈ C are bonded if |x − y| < 1.1, and we refer
to the graph formed by all the bonds as the bond graph of C. Taking into account
periodicity, this amounts to considering two particles xi and x j of the n-cell Cn of
C to be bonded if |xi − x j |L < 1.1, where | · |L is the distance modulo L defined by

|xi − x j |L := min
t∈{−1,0,+1} |xi − x j + Lte1|

for every xi , x j ∈ Cn . Let us denote by N the set of all couples of indices corre-
sponding to bonded particles, i.e.,

N := {(i, j) : xi , x j ∈ Cn , i �= j , and |xi − x j |L < 1.1}.
The three-body potential v3 : [0, 2π ] → [0,∞) is assumed to be smooth and

symmetric around π , namely v3(α) = v3(2π−α). Moreover, we suppose that the
minimum value 0 is attained only at 2π/3 and 4π/3 with v′′

3 (2π/3) > 0. Let T be
the index set of the triples corresponding to first-neighboring particles, i.e.,

T := {(i, j, k) : i �= k, (i, j) ∈ N and ( j, k) ∈ N }.
For all triples (i, j, k) ∈ T we denote by αi jk ∈ [0, π ] the bond angle formed by
the vectors xi − x j and xk − x j . The assumptions on v3 reflect the basic geometry
of carbon bonding in a nanotube: Each atom presents three sp2-hybridized orbitals,
which tend to form 2π/3 angles.

The configurational energy E of a nanotube C = (Cn, L) is now defined by

E(C) = E(Cn, L) := 1

2

∑

(i, j)∈N
v2(|xi−x j |L) + 1

2

∑

(i, j,k)∈T
v3(αi jk), (1)

where the factors 1/2 are included to avoid double-counting the interactions among
same atoms. Let us mention that the smoothness assumptions on v2 and v3 are
for the sake of maximizing simplicity rather than generality and could be weak-
ened. Observe that our assumptions are generally satisfied by classical interaction
potentials for carbon (see [69,70]). Since the energy E is clearly rotationally and
translationally invariant, in the following we will tacitly assume that all statements
are to be considered up to isometries. We say that a nanotube C = (Cn, L) is stable
if (Cn, L) is a strict local minimizer of the interaction energy E .

2.2. Geometry of Zigzag Nanotubes

We now introduce a specific two-parameter family of nanotubes which will
play a crucial role in the following. This is the family of so-called zigzag nanotubes
having the minimal period μ > 0. The term zigzag refers to a specific topology of
nanotubes, which can be visualized as the result of a rolling-up of a graphene sheet
along a specific lattice direction, see Fig. 1.

The resulting three-dimensional structure is depicted in Fig. 2. Note that our
preference for the zigzag topology is solely motivated by the sake of definite-
ness. The other classical choice, namely the so-called armchair topology, could be
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zigzag

armchair

Fig. 1. Rolling-up a graphene sheet to a zigzag nanotube: the vector illustrates the identifi-
cation of the two dashed vertical lines. The term zigzag refers to the orientation of this vector
with respect to bonds. Different vectors correspond indeed to different nanotube topologies.
The dotted line indicates the identification direction for armchair nanotubes

e1

Fig. 2. Zigzag nanotube

considered as well. The reader is referred to [56] for some results on unstretched
armchair geometries.

We let � ∈ N, � > 3, and define the family F (μ) as the collection of all
configurations that, up to isometries, coincide with

{ (
k(λ1 + σ) + j (2σ + 2λ1) + l(2σ + λ1), ρ cos

(
π(2i + k)

�

)
,

ρ sin

(
π(2i + k)

�

)) ∣∣∣ i = 1, . . . , �, j ∈ Z, k, l ∈ {0, 1}
}

(2)

for some choice of

λ1 ∈ (0, μ/2), λ2 ∈ (0, μ/2), σ ∈ (0, μ/2), and ρ ∈
(
0,

μ

4 sin(π/(2�))

)

such that

2σ + 2λ1 = μ, σ 2 + 4ρ2 sin2
( π

2�

)
= λ22. (3)

Of course, the configurations in F (μ) are periodic with minimal period μ. The
parameter ρ indicates the diameter of the tube and λ1, λ2 are the two possibly
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different lengths of the covalent bonds in each hexagon of the tube, where the
bonds of length λ1 are oriented in the e1 direction (see Fig. 4).

These configurations are objective [42]; they are obtained as orbits of two points
under the action of a prescribed isometry group. The latter group is generated by a
translation and by a translation combined with a rotation about the e1-axis. Notice
that our definition slightly differs from the one adopted in [55,56] in the sense that
for fixed i , k the points identified by the quadruples (i, j, k, l) for j ∈ Z, l ∈ {0, 1}
lie on a line parallel to e1 (see Fig. 3).

For fixed μ > 0, F (μ) is a two-parameter smooth family of configurations
since each configuration in F (μ) is uniquely determined by λ1 and λ2 by taking
relation (3) into account. Later we will consider different values for the minimal
period μ in order to model nanotubes under stretching.

We state the following basic geometric properties of configurations in F (μ);
see Fig. 3 (the analogous properties in the case λ1 = λ2 = 1 have already been
discussed in [55]):

Proposition 2.1. (Geometric structure of zigzag nanotubes). LetF ∈ F (μ). Then:

(a) Atoms in F lie on the surface of a cylinder with radius ρ and axis e1.
(b) Atoms in F are arranged in planar sections, perpendicular to e1, obtained by

fixing j , k, and l in (2). Each of the sections contains exactly � atoms, arranged
at the vertices of a regular �-gon. For each section, the two closest sections are
at distance σ and λ1, respectively.

(c) The configuration F is invariant under a rotation of 2π/� around e1, under
the translation μe1, and under a transformation consisting of a rotation of π/�

around e1 and a translation along the vector (λ1 + σ)e1 (see Fig. 4).
(d) Let i ∈ {1, . . . , �}, j ∈ Z and k, l ∈ {0, 1}: the quadruple (i, j, k, l) identifies

points of F , denoted by x j,l
i,k , where (0, j, k, l) is identified with (�, j, k, l).

Given x j,0
i,0 ∈ F , the two points x j−1,1

i,1 , x j−1,1
i−1,1 have distance λ2 and x j−1,1

i,0 has

distance λ1 from x j,0
i,0 . For x j,1

i,0 , the distance of x j,0
i,1 and x j,0

i−1,1 is λ2 and the

distance from x j+1,0
i,0 is λ1. See Fig. 3 for the analogous notation of x j,0

i,1 and

x j,1
i,1 .

Notice that for fixed λ1 and λ2 the other parameters range between two degener-
ate cases:ρ = 0 (the cylinder is reduced to its axis) andσ = 0 (sections collide).We
shall however impose further restrictions, for each atom should have three bonds.
In particular, the only three bonds per atom should be the ones identified by point
(d) of Proposition 2.1. By recalling that two particles are bonded if their distance
is less than the reference value 1.1, since the distance between two consecutive
sections is either λ1 or σ , we require λ1 > 0.9 and σ > 0.2. Additionally, we
require λ1, λ2 < 1.1, which also implies σ < 1.1 by (3). On the other hand, on
each section, the edge of the regular �-gon should be greater than 1.1. Such length
is given by 2ρ sin γ�, where γ� is the internal angle of a regular 2�-gon, i.e.,

γ� := π

(
1 − 1

�

)
. (4)
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xj,0
i,0 xj,1

i,0xj−1,1
i,0 xj+1,0

i,0

xj−1,1
i,1 xj,0

i,1

xj,0
i+1,0 xj,1

i+1,0xj−1,1
i+1,0 xj+1,0

i+1,0

xj−1,1
i−1,1 xj,0

i−1,1

xj,0
i−1,0 xj,1

i−1,0xj−1,1
i−1,0 xj+1,0

i−1,0

Fig. 3. Configuration points are identified by quadruples (i, j, k, l) for i = 1, . . . , �, j ∈ Z,
and k, l ∈ {0, 1}

Therefore, we need to impose ρ > ρ− := 0.55/ sin γ�. With these restrictions we
have the following:

Proposition 2.2. (Parametrization of the family). Let F ∈ F (μ) with ρ > ρ−,
σ > 0.2 and λ1, λ2 ∈ (0.9, 1.1). Then, all atoms in F have exactly three (first-
nearest) neighbors, two at distance λ2 and one at distance λ1, where the bond
corresponding to the latter neighbor is parallel to e1. Among the corresponding
three bond angles, which are smaller than π , two have amplitude α (the ones
involving atoms in three different sections), and the third has amplitude β (see
Fig. 4), where α ∈ (π/2, π) is obtained from

sin α =
√
1 − (σ/λ2)2 = 2(ρ/λ2) sin

( π

2�

)
(5)

and β ∈ (π/2, π) is given by

β = β(α, γ�) := 2 arcsin
(
sin α sin

γ�

2

)
. (6)

The proof for the case λ1 = λ2 = 1 was detailed in [55]. The extension to
our setting is a straightforward adaption and is therefore omitted. As already men-
tioned, the collectionF (μ) is a two-parameter family where all its configurations
are uniquely determined by the specification of λ1 and λ2. The corresponding ele-
ment will be denoted by Fλ1,λ2,μ. Restricting the minimal period μ to the interval
(2.6, 3.1) we observe by (3) and an elementary computation that the constraints
λ1, λ2 ∈ (0.9, 1.1) and � > 3 automatically imply 0.2 < σ < 0.65 and ρ > ρ−.
Therefore, the assumptions of Proposition 2.2 hold.
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λ2

λ2

λ2

λ2

λ1

λ1

β
β

σ

α α

α α

Fig. 4. The bond lengths and the angles for the hexagon of a configuration in F (μ) are
represented. A segment representing σ is drawn in red

3. Main Results

In this section we collect our main results. The corresponding proofs will then
be presented in Sections 4–7.

For a fixed integer � > 3, let us consider a configurationF in the familyF (μ).
As F is periodic, it can be identified with the couple (Fn, L), where Fn is the
corresponding n-cell (n = 4m� for some m ∈ N), and

L = Lμ
m := mμ (7)

is the period parameter, corresponding to the cell length (notice that for m = 1
we get the minimal period of the configuration). In view of (1) and the properties
stated in Proposition 2.2, the energy can be written as

E(F) = E(Fn, Lμ
m) = n

2

(
v2(λ1) + 2v2(λ2)

) + n
(
2v3(α) + v3(β(α, γ�))

)
. (8)

3.1. Unstrechted Nanotubes

A first natural problem to be considered is the energy minimization restricted
to the familiesF (μ), with the values of μ in the reference interval μ ∈ (2.6, 3.1).
Let us denote by Fλ1,λ2,μ an element of F (μ) with bond lengths λ1, λ2. If we
minimize among nanotubes Fλ1,λ2,μ with respect to μ ∈ (2.6, 3.1) and λ1, λ2 in
a neighborhood of 1, we reduce to the case λ1 = λ2 = 1. Indeed, we can replace
λ1, λ2 by 1, leave α unchanged, and choose μ according to (3) and (5) such that
the energy (8) decreases.

We notice that {F1,1,μ| μ ∈ (2.6, 3.1)} is a one-parameter family. It follows
from Proposition 2.2 and (3) that this family can also be parametrized in terms of
the bond angle α introduced in Proposition 2.2 using the relationμ = 2(1−cosα).
We indicate these configurations by Gα .

As already discussed in [55], there are two specific angles αch
� < αru corre-

sponding to the rolled-up [18,19] and polyhedral [14,15] configuration, respec-
tively, with αru = 2π/3 and αch

� being the unique solution of the equation
β(αch

� , γ�) = αch
� in (arccos(−0.4), arccos(−0.6)). The one variable minimization

problem for the map α �→ E(Gα) has been investigated in [55, Theorem 4.3].
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Proposition 3.1. (Existence and uniqueness of minimizer: Unstretched case).
There exist an open interval A and �0 ∈ N only depending on v3 such that the follow-
ing holds for all � � �0: There is a unique angle αus

� ∈ A such that Gαus
�

minimizes

the energy E in the class {Gα| α ∈ A}. Moreover, one has αus
� ∈ (αch

� , αru) ⊂ A.

Let us report the idea of the proof. Exploiting the monotonicity properties of v3
and β (the latter being decreasing as a function of α), one derives that the minimum
is attained for α in a small left neighborhood I of 2π/3, e.g., I := (2π/3−σ, 2π/3]
for some small σ > 0. Using in addition the convexity of v3 and the concavity of β,
it follows that α �→ E(F) = −3n/2+ n

(
2v3(α)+ v3(β(α, γ�))

)
is strictly convex

in I , which implies the assertion.
The result in particular shows that neither the polyhedral nor the rolled-up

configuration is a local minimizer of the energy E . The corresponding minimal
period of the nanotube is given by

μus
� := 2 − 2 cosαus

� , (9)

cf. (3) and (5), and we notice Gαus
�

= F1,1,μus
�
. Nanotubes with μ = μus

� will be
referred to as unstretched nanotubes.

The aim of [55,56] was to prove that Gαus
�
is a local minimizer. This has been

illustrated numerically in [55] and checked analytically in [56], for a restricted
class of perturbations. Our stability result Theorem 3.3 below delivers an analytical
proof of stability with respect to all small perturbations. As such, it generalizes and
improves known results, even in the unstreched case.

3.2. Nanotubes Under Stretching

Let us now move forward to the case of stretched nanotubes. This corresponds
to choosingμ �= μus

� . Indeed, we impose a tensile or compressive stress on the nan-
otube by simply modifying its minimal period. Given the role of periodicity in the
definition of the energy E , see (1), this has the net effect of stretching/compressing
the structure. Note that this action on the structure is very general. In particular, it
includes, without reducing to, imposed Dirichlet boundary conditions, where only
the first coordinate of the boundary atoms is prescribed. For fixed μ ∈ (2.6, 3.1)
we consider the minimization problem

Emin(μ) = min
{

E(Fλ1,λ2,μ)| Fλ1,λ2,μ ∈ F (μ), λ1, λ2 ∈ (0.9, 1.1)
}
. (10)

We obtain the following existence result:

Theorem 3.2. (Existence and uniqueness of minimizer: General case). There exist
�0 ∈ N and, for each � � �0, an open interval M� only depending on v2, v3, and
�, with μus

� ∈ M�, such that for all μ ∈ M� there is a unique pair of bondlengths
(λ

μ
1 , λ

μ
2 ) such that Fλ

μ
1 ,λ

μ
2 ,μ is a solution of the problem (10).

In the following theminimizer is denoted byF∗
μ. Note that we haveF∗

μus
�

= Gαus
�

by Proposition 3.1.
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Our aim is to investigate the local stability of F∗
μ. To this end, we consider

general small perturbations F̃ of F∗
μ with the same bond graph, i.e., each atom

keeps three and only three bonds, and we can identify the three neighboring atoms
of the perturbed configurations with the ones for the configuration F∗

μ. By Fμ
n =

{xμ
1 , . . . , xμ

n } denote the n-cell of F∗
μ so that F∗

μ = (Fμ
n , Lμ

m) with Lμ
m as defined

in (7) for m ∈ N with n = 4m�. We define small perturbations Pη(μ) of F∗
μ by

Pη(μ) = {F̃ = (Fn, Lμ
m)| Fn := {x1, . . . , xn} with |xi − xμ

i | � η}. (11)

The parameter η > 0will always be chosen sufficiently small such that the topology
of the bond graph remains invariant. η will in general also depend on �. Moreover,
we recall E(F̃) = E(Fn, Lμ

m).We obtain ourmain result, concerning local stability
under small stretching.

Theorem 3.3. (Local stability of minimizers). There exist �0 ∈ N and for each
� � �0 some μcrit

� > μus
� and η� > 0 only depending on v2, v3, and � such that for

all � � �0 and for all μ ∈ [μus
� , μcrit

� ] we have

E(F̃) > E(F∗
μ)

for any nontrivial perturbation F̃ ∈ Pη�
(μ) of the configuration F∗

μ.

The theorem asserts that, under prescribed and small stretchings (i.e., the value
of Lμ

m is prescribed), there exists a periodic strict-localminimizerF∗
μ that belongs to

the familyF (μ). In otherwords, givenμ > μus, theμ-periodic configurationF∗
μ is

a localminimizer among configurations subject to the samemacroscopic stretching,
i.e., the atoms follow the macroscopic deformation. This can be seen as a validation
of the Cauchy–Born rule in this specific setting. Especially, the result justifies the
reduction of the 3n-dimensional minimization problem min{E(F)| F ∈ Pη�

(μ)}
to the two-dimensional problem (10).

In the following statement we collect themain properties of the localminimizer:

Proposition 3.4. (Properties of minimizer). There exist �0 ∈ N and for each � � �0
an open interval M� only depending on v2, v3, and �, with μus

� ∈ M�, such that:

1. The mapping μ �→ E(F∗
μ) = Emin(μ) is smooth, strictly convex on M� and

attains its minimum in μus
� . Particularly, d2

dμ2 Emin(μ
us
� ) � cn for c > 0 only

depending on v2, v3.
2. The lengths λ

μ
1 , λ

μ
2 increase continuously for μ ∈ M�. In particular, we have

λ
μ
1 , λ

μ
2 > 1 for μ > μus

� and λ
μ
1 , λ

μ
2 < 1 for μ < μus

� .
3. The angle αμ corresponding to λ

μ
1 , λ

μ
2 given by the relations (3) and (5) satisfies

αμ ∈ (αch
� , αru) for all μ ∈ M�.

4. Whenever v′′
2 (1) �= 6v′′

3 (2π/3), the radius ρμ corresponding to λ
μ
1 , λ

μ
2 given by

relation (3) is continuously increasing or decreasing for μ ∈ M�, respectively,
depending on whether v′′

2 (1) < 6v′′
3 (2π/3) or v′′

2 (1) > 6v′′
3 (2π/3).
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Properties 1 and 2 imply that that the nanotubes show elastic response for small
extension and compression. Property 3 reconfirms that neither the polyhedral nor the
rolled-up configuration is a localminimizer of the energy, for allμ nearμus

� . Finally,
Property 4 implies that under stretching or compressing the radius of the nanotube
changes whenever v′′

2 (1) �= 6v′′
3 (2π/3). In particular, if v′′

2 (1) > 6v′′
3 (2π/3), the

radius of the nanotube decreases as changing the angles is energetically more con-
venient.

Notice that Theorem3.3 provides a stability result only for the case of expansion
μ � μus

� and for values μ near μus
� . The situation for compression is more subtle

from an analytical point of view and our proof techniques do not apply in this case.
However, we expect stability of nanotubes also for small compression and refer
to [55] for some numerical results in this direction. Let us complete the picture in
the tension regime by discussing briefly the fact that for larger stretching cleavage
along a section is energetically favored. More precisely, we have

Theorem 3.5. (Fracture). Let Hμ be the configuration

x j,l
i,k =

{
x̄ j,l

i,k j ∈ [0, m/2) + mZ,

x̄ j,l
i,k + m(μ − μus

� ) else

for i = 1, . . . , � and k, l ∈ {0, 1}, where x̄ j,l
i,k denote the atomic positions of the

configuration F1,1,μus
�
(see Proposition 2.1(d)). Then there are an open interval M�

containing μus
� and a constant c > 0 only depending on v2 and v3 such that for all

μ ∈ M�, μ � μfrac
�,m := μus

� + c/
√

m, one has E(Hμ) < E(F∗
μ).

Notice that the configurationHμ corresponds to a brittle nanotube cleaved along a
cross-section. The energy is given by E(Hμ) = E(F1,1,μus

�
) + 4� since in the con-

figurationHμ there are 4� less active bonds per n-cell than in F1,1,μus
�
. Moreover,

Hμ is a stable configuration in the sense of Theorem 3.3 for all μ � μus
� , which

can be seen by applying Theorem 3.3 separately on the two parts ofHμ, consisting

of the points x j,l
i,k with j < m/2 and j � m/2, respectively.

Asmentioned, nanotubes are long structures. In particular,m should be expected
to bemany orders ofmagnitude larger than �. The case of largem is hence a sensible
one and for m large enough we have μfrac

�,m < μcrit
� , with μcrit

� from Theorem 3.3.
Hence, by combining Theorem 3.3 with Theorem 3.5, for all μ � μus

� we obtain a
stability result for an elastically stretched or cleaved nanotube, respectively.

The proof of Theorem 3.5 is elementary and relies on the fact that the difference
of the energy associated to F∗

μ and Hμ can be expressed by

E(Hμ) − E(F∗
μ) = 4� + E(F1,1,μus

�
) − E(F∗

μ) = 4� + Emin(μ
us
� ) − Emin(μ)

= 4� − 1

2

d2

d2μ
Emin(μ

us
� )(μ − μus

� )2 + O((μ − μus
� )3)

� 4� − 1

4

d2

d2μ
Emin(μ

us
� )(μ − μus

� )2 � 4� − m�c(μ − μus
� )2

for μ in a small neighborhood around μus
� , where we used Property 1 in Proposi-

tion 3.4 and n = 4m�.
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x1 x2

x3 x4

x6 x5

x7 x8

zduali,j−1,k zduali,j,k

zi,j,k

Fig. 5. Notation for the points and the centers in the basic cell

We close the section by noting that the scaling of μfrac
�,m −μus

� in m is typical for
atomistic systems with pairwise interactions of Lennard-Jones type and has also
been obtained in related models, cf. [5,33,34].

4. Existence and Stability: Proof of Theorem 3.2 and Theorem 3.3

In this section we consider small perturbations F̃ of configurations in F (μ)

with the same bond graph, as defined in (11). The atomic positions of F̃ will be
indicated by x j,l

i,k and are labeled as for a configurationF (μ), cf. Proposition 2.1(d).
We first introduce some further notation needed for the proof of our main result. In
particular, we introduce a cell energy corresponding to the energy contribution of
a specific basic cell.
Centers and dual centers. We introduce the cell centers

zi, j,k = 1

2

(
x j,0

i,k + x j,1
i,k

)
(12)

and the dual cell centers

zduali, j,k = 1

2

(
x j,1

i,k + x j+1,0
i,k

)
.

Note that for a configuration in F(μ) for fixed j the 2� points zi, j,0 and zduali, j−1,1

for i = 1, . . . , � lie in a plane perpendicular to e1. Likewise, zi, j,1 and zduali, j,0 for
i = 1, . . . , � lie in a plane perpendicular to e1.
Cell energy. The main strategy of our proof will be to reduce the investigation of
(10) to a cell problem. In order to correctly capture the contribution of all bond
lengths and angles to the energy, it is not enough to consider a hexagon as a basic
cell, but two additional atoms have to be taken into account.

Let be given a center zi, j,k and number the atoms of the corresponding hexagon

by x1 = x j,0
i,k , x2 = x j,1

i,k and the remaining clockwisely by x3, x4, x5, x6 as indicated
in Fig. 5, such that x3 is consecutive to x1, see also (54) below. Additionally, the
atoms bonded to x1 and x2, respectively, which are not contained in the hexagon, are
denoted by x7 and x8. Note that zduali, j−1,k = (x7+x1)/2 and zduali, j,k = (x2+x8)/2. For
i = 1, . . . , 6 we define the bondlengths bi as indicated in Fig. 6 and b7 = |x1− x7|,
b8 = |x2 − x8|, where

2|zduali, j−1,k − x1| = b7, 2|zduali, j,k − x2| = b8.
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ϕ1 ϕ2

ϕ3 ϕ4

ϕ5 ϕ6

ϕ7 ϕ9

ϕ8 ϕ10

b3 b4

b6 b5

b7 b8

b1

b2

Fig. 6. Notation for the bond lengths and angles in the basic cell

By ϕi we denote the interior angle of the hexagon at xi . By ϕ7, ϕ8 we denote the
remaining two angles at x1 and by ϕ9, ϕ10 we denote the remaining two angles at
x2, see again Fig. 6.

We define the cell energy by

Ecell(zi, j,k) = 1

4

(
v2(b1) + v2(b2)

) + 1

2

6∑

h=3

v2(bh) + 1

4

(
v2(b7) + v2(b8)

)

+ v3(ϕ1) + v3(ϕ2) + 1

2

6∑

h=3

v3(ϕh) + 1

2

10∑

h=7

v3(ϕh). (13)

Notice that the cell energy is a function depending on the bond lengths and angles in
the cell. However, as we identify each cell with its center zi, j,k , for simplicitywe use
the notation Ecell = Ecell(zi, j,k). Furthermore, also for notational convenience we
do not put indices i, j, k on bond lengths and angles. To derive convexity properties
of Ecell it is convenient to take also the contribution of the angles ϕ7, . . . , ϕ10 into
account. Observe that

E(F̃) =
�∑

i=1

m∑

j=1

∑

k=0,1

Ecell(zi, j,k). (14)

Indeed, each bond not (approximately) parallel to e1 is contained exactly in two
cells. Each bond (approximately) parallel to e1 is contained in four cells, twice in
form of a bond in a hexagon, once as a bond left of a hexagon and once as a bond
right of a hexagon. Moreover, angles with index {1, 2} are contained exactly in one
cell and angles with index {3, . . . , 10} are contained in exactly two cells.
Symmetrization of cells. A basic cell is a configuration of eight points of R3. By
x�
kink ∈ R

3×8 we denote the unstretched kink configuration: a basic cell as found
in the unstretched configuration Gαus

�
from Section 3, see (54) below for the exact

definition. Notice that the coordinates given in (54) correspond to a convenient
choice of a new reference orthonormal system in R

3.
Indeed, consider a cell of the nanotube Gαus

�
, where the eight points are ordered

from x1 to x8 according to the convention of the previous subsection (see Fig. 5),
in particular the points x3, x4, x5, x6 are numbered clockwisely with respect to an
observer lying in the interior of the tube. We fix a new reference coordinate system
as follows: we let the center of the cell be the origin, e1 (axis direction) be the
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direction of x2 − x1, e2 the direction of x3 − x6, and e3 = e1 ∧ e2. Sometimes we
will writeR2 ×{0} for the plane generated by e1, e2. If x ∈ R

3×8 denotes a generic
cell, possibly after a rigid motion we may always assume that, with respect to the
new reference system, the second and third components of (x1+x7)/2, (x2+x8)/2
are zero and the points x4, x5 lie in a plane parallel to R

2 × {0}.
A key step in our analysis will be to show that the minimization of the cell

energy (13) can be reduced to a special situation with high symmetry. To this
end, we introduce the symmetrization of a cell. For y = (y1, y2, y3) ∈ R

3 we
let r1(y) := (−y1, y2, y3) and r2(y) := (y1,−y2, y3). For the generic cell x =
(x1, . . . , x8) ∈ R

3×8 we define the reflections

S1(x) = (r2(x1) | r2(x2) | r2(x6) | r2(x5) | r2(x4) | r2(x3) | r2(x7) | r2(x8)),

S2(x) = (r1(x2) | r1(x1) | r1(x4) | r1(x3) | r1(x6) | r1(x5) | r1(x8) | r1(x7)).
(15)

S1 interchanges the pair of points (x3, x6) and (x4, x5), and changes the sign of
the second components of all points. On the other hand, S2 interchanges the pair
of points (x1, x2), (x3, x4), (x5, x6), and (x7, x8), and changes the sign of the first
components of all points.

We let

xS1 := x�
kink + S1(x − x�

kink), xS2 := x�
kink + S2(x − x�

kink). (16)

If x is seen as a perturbation of x�
kink, xS1 (resp. xS2 ) is the reflected perturbation

with respect to the plane generated by e1, e3 (resp. e2, e3). The symmetry of the
configurations implies therefore Ecell(xS2) = Ecell(xS1) = Ecell(x).

We define the symmetrized perturbations

x′ := x�
kink + 1

2

(
(x − x�

kink) + S1(x − x�
kink)

)
, (17a)

S(x) := x�
kink + 1

2

(
(x′ − x�

kink) + S2(x′ − x�
kink)

)
. (17b)

We also introduce the symmetry defect

�(zi, j,k) := |x − x′|2 + |x′ − S(x)|2. (18)

Notice that for notational simplicity in (18) we do not put indices i, j, k on x, x′,
and S(x). A property that we remark is that for a basic cell x with center zi, j,k the
quantity |zduali, j,k − zduali, j−1,k | does not change when passing to S(x) since the second

and third component of zduali, j,k, zduali, j−1,k are assumed to be zero. Below we will see
that the difference of the cell energy of S(x) and x can be controlled in terms of
�(zi, j,k) due to strict convexity of the energy.
Angles between planes. In what follows we denote the plane through three points
p1, p2, and p3 by {p1 p2 p3}, i.e.,

{p1 p2 p3} := spanR{p1 − p2, p3 − p2}.
Furthermore, for each y = x j,l

i,k we denote by y1, y2, y3 the three atoms that are
bonded with y, where the three points are numbered such that y3 − y is (approx-
imately) parallel to the axis direction e1. Let θ = θ(x) � π denote the angle
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θ(y)

y

y2

y1

y3

Fig. 7. The angle between the planes {y3yy1} and {y3yy2} is denoted by θ(y)

between the planes defined by {y3yy1} and {y3yy2}. More precisely, let n13, n23
denote unit normal vectors to the planes {y3yy1} and {y3yy2}, respectively. Then
we have

θ(y) = max
{
π − arccos(n13 · n23), arccos(n13 · n23)

}
(19)

as represented in Fig. 7. With these preparations we will now define angles cor-
responding to centers and dual centers. Let zi, j,k = 1

2 (x j,0
i,k + x j,1

i,k ) be a center of
a given hexagon. As before we denote the points of the hexagon by x1, . . . , x6.
By θl(zi, j,k) we denote the angle between the planes {x1x3x4} and {x1x6x5}. By
θr (zi, j,k) we denote the angle between the planes {x3x4x2} and {x2x5x6}. For a
dual center zduali, j,k = (x j,1

i,k + x j+1,0
i,k )/2 we introduce θl(zduali, j,k) = θ(x j,1

i,k ) and

θr (zduali, j,k) = θ(x j+1,0
i,k ).

In Section 5 we prove the following lemma which provides a linear control for
the oscillation of plane angles of a perturbed configuration F̃ with respect to those
of a configuration inF (μ) in terms of the symmetry defect from (18).

Lemma 4.1. (Symmetry defect controls angle defect).There is a universal constant
c > 0 such that for η > 0 small enough for all F̃ ∈ Pη(μ) with �(zi, j,k) � η for
all centers zi, j,k we have

m∑

j=1

�∑

i=1

∑

k=0,1

(
θl(zi, j,k) + θl(z

dual
i, j,k) + θr (zi, j,k) + θr (z

dual
i, j,k)

)

� 4m(2� − 2)π + c
m∑

j=1

�∑

i=1

∑

k=0,1

�(zi, j,k).



482 Manuel Friedrich et al.

α2 α2α1 α1

λ1

λ2λ2

λ3 λ3
λ4

π

Fig. 8. Half of a cell configuration kinked at the plane π and satisfying conditions (20). The
other half of the cell configuration can be determined by symmetry with respect to the plane
π

Note that the sum on the left equals exactly 4m(2� − 2)π if F̃ ∈ F (μ).
Reduced energy. A key step in our analysis will be to show that the minimization
of the cell energy (13) can be reduced to a special situation with high symmetry.
As represented in Fig. 8, this corresponds to the conditions

b1 = b2 = λ1, b3 = b4 = b5 = b6 = λ2, b7 = b8 = λ3,

zduali, j,k − zduali, j−1,k = μ̃e1, x2 − x1 = λ4e1,

ϕ1 = ϕ2 = β, ϕ3 = ϕ4 = ϕ5 = ϕ6 = α1, ϕ7 = ϕ8 = ϕ9 = ϕ10 = α2,

θl(zi, j,k) = θr (zi, j,k) = γ1, θl(z
dual
i, j,k) = θr (z

dual
i, j−1,k) = γ2

(20)

with λ1, λ2, λ3 ∈ (0.9, 1.1), λ4 ∈ (0.9, 3.3), μ̃ ∈ (2.6, 3.1), α1, α2, β ∈
(arccos(−0.4), arccos(−0.6)), γ1, γ2 ∈ [ 34π, π ]. Note that θr (zduali, j−1,k) = θ(x1)

and θl(zduali, j,k) = θ(x2) with the angles introduced in (19). The notation μ̃ is rem-
iniscent of the fact that we have indeed μ̃ = μ for a basic cell of a nanotube in
F (μ). Under (20), arguing along the lines of Proposition 2.2, we obtain

β = β(α1, γ1) = 2 arcsin
(
sin α1 sin

γ1

2

)
= β(α2, γ2) = 2 arcsin

(
sin α2 sin

γ2

2

)
.

(21)

By elementary trigonometry, cf. Fig. 8, we also get

λ4 = λ1 − 2λ2 cosα1. (22)

We now introduce the symmetric energy by

E sym
μ,γ1,γ2(λ, α1, α2) = 2v2(λ) + 1

2
v2

(
μ/2 + λ cosα1

) + 1

2
v2

(
μ/2 + λ cosα2

)

+ 2v3(α1) + 2v3(α2) + v3(β(α1, γ1)) + v3(β(α2, γ2)).

(23)

Notice that Ecell(zi, j,k) = E sym
μ̃,γ1,γ2

(λ, α1, α2) if the conditions (20) hold with
α1 = α2, γ1 = γ2, λ1 = λ3 = μ/2 + λ cosα1, and λ2 = λ. In general, we show
that, up to a small perturbation, the symmetric energy E sym

μ̃,γ1,γ2
delivers a lower

bound for Ecell for cells satysfying (20).
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Lemma 4.2. (Cell energy and symmetric energy). There exist a constant c0 > 0
and �0 ∈ N only depending on v2 and v3 such that for each F̃ ∈ Pη(μ) and
all centers zi, j,k satisfying conditions (20) with |λ1 − 1| + |λ3 − 1| � �−4 and
|γ1 − γ2| � �−2 we have

Ecell(zi, j,k) � E sym
μ̃,γ1,γ2

(λ2, α1, α2) − c0�
−4(γ1 − γ2)

2.

This lemma will be proved in Section 6. The idea in the proof is to express λ3 in
terms of the relations (20) and (22) to find λ3 = μ̃−λ1+2λ cosα1+O((γ1−γ2)

2),
wherewe setλ = λ2.Here the termO((γ1−γ2)

2) appears as the points x7, x1, x2, x8
in general do not lie on a line. Likewise, we obtain λ1 = μ̃ − λ3 + 2λ cosα2 +
O((γ1 − γ2)

2). Finally, we use v2(λ1) + v2(λ3) � 2v2((λ1 + λ3)/2) by convexity
of v2.

We also introduce the reduced energy

Ered(μ, γ1, γ2) = min{E sym
μ,γ1,γ2(λ, α1, α2)| λ

∈ (0.9, 1.1), α1, α2 ∈ (arccos(−0.4), arccos(−0.6))}. (24)

Since E sym
μ,γ1,γ2 is symmetric in (α1, γ1) and (α2, γ2), we observe that Ered is sym-

metric in γ1 and γ2, i.e., Ered(μ, γ1, γ2) = Ered(μ, γ2, γ1). The following result,
which is proved in Section 6, collects the fundamental properties of Ered.

Proposition 4.3. (Properties of Ered). There exists �0 ∈ N and for each � � �0
there are open intervals M�, G� only depending on v2, v3 and � with μus

� ∈ M�,
γ� ∈ G� (where we recall that μus

� and γ� were defined in (9) and (4), respectively)
such that the following holds:

1. (Unique minimizer) For each (μ, γ1, γ2) ∈ M� ×G� ×G� there exists a unique
triple (λμ, α

μ
1 , α

μ
2 ) solving the minimization problem (24). Moreover, αμ

1 = α
μ
2

if γ1 = γ2. (For simplicity, the dependence of the triple on γ1, γ2 is not included
in the notation.)

2. (Strict convexity) Ered is strictly convex on M� × G� × G�, in particular there
is a constant c′

0 > 0 only depending on v2 and v3 such that

Ered(μ, γ1, γ2) � Ered(μ, γ̄ , γ̄ ) + c′
0�

−2(γ1 − γ2)
2

with γ̄ = (γ1 + γ2)/2 for all μ ∈ M� and γ1, γ2 ∈ G�.
3. (Monotonicity in γ ) For each μ ∈ M�, the mapping g(γ ) := Ered(μ, γ, γ )

is decreasing on G� with |g′(γ )| � C�−3 for all γ ∈ G� for some C > 0
depending only on v3.

4. (Monotonicity in μ) The mapping h(μ) := Ered(μ, γ�, γ�) is strictly convex on
M� with h′′(μus

� ) > 0 and strictly increasing on M� ∩ {μ � μus
� }.

5. (Minimization) For each μ ∈ M� and γ1 = γ2 = γ�, letting λ
μ
1 = μ/2 +

λμ cosα
μ
1 and λ

μ
2 = λμ with λμ and α

μ
1 from 1., the configuration Fλ

μ
1 ,λ

μ
2 ,μ is

the unique minimizer of the problem (10) with

E(F∗
μ) = E(Fλ

μ
1 ,λ

μ
2 ,μ) = 2m�Ered(μ, γ�, γ�).
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Proof of Theorem 3.2 and Theorem 3.3.We postpone the proofs of the auxiliary
results Lemma 4.1, Lemma 4.2, and Proposition 4.3 to the next sections and now
proceed with the proof of Theorem 3.2 and Theorem 3.3. For the proof of Propo-
sition 3.4 we refer to Section 6. Moving from the properties of the reduced energy
Ered, we directly obtain Theorem 3.2.

Proof of Theorem 3.2. Theorem 3.2 follows from Property 5 of
Proposition 4.3. 
�

We denote the unique minimzer again by F∗
μ and recall the definition of small

perturbations Pη(μ) in (11). Based on the properties of the reduced energy Ered,
we are able to show that, up to a linear perturbation in terms of the symmetry defect
� defined in (18), Ered bounds the cell energy Ecell from below. More precisely,
we have the following:

Theorem 4.4. (Energy defect controls symmetry defect). There exist C > 0 and
�0 ∈ N only depending on v2 and v3, and for each � � �0 there are η� > 0 and
an open interval M� containing μus

� such that for all μ ∈ M�, F̃ ∈ Pη�
(μ), and

centers zi, j,k we have

Ecell(zi, j,k) � Ered
(|zduali, j,k − zduali, j−1,k |, θ̄ (zi, j,k), θ̄ (zi, j,k)

) + C�−2�(zi, j,k),

where θ̄ (zi, j,k) := (
θl(zi, j,k) + θr (zi, j,k) + θl(zduali, j,k) + θr (zduali, j−1,k)

)
/4.

We postpone the proof of Theorem 4.4 to Section 7 and close this section with
the proof of our main stability result Theorem 3.3.

Proof of Theorem 3.3. Let M� be an open interval containing μus
� such that Propo-

sition 4.3 and Theorem 4.4 hold for all μ ∈ M� and let G� be the interval from
Proposition 4.3. Then chooseμcrit

� > μus
� such that [μus

� , μcrit
� ] ⊂⊂ M�. Let � � �0

and μ ∈ [μus
� , μcrit

� ] be given. Consider a nontrivial perturbation F̃ ∈ Pη�
(μ)with

η� as in Theorem 4.4. We denote the atomic positions by x j,l
i,k and the centers by

zi, j,k , zduali, j,k as introduced at the beginning of the section, see (12) and Fig. 5. Define

θ̄ (zi, j,k) = 1

4

(
θl(zi, j,k) + θr (zi, j,k) + θl(z

dual
i, j,k) + θr (z

dual
i, j−1,k)

)
(25)

and also

μ̄ = 1

2m�

m∑

j=1

�∑

i=1

∑

k=0,1

|zduali, j,k − zduali, j−1,k |, θ̄ = 1

2m�

m∑

j=1

�∑

i=1

∑

k=0,1

θ̄ (zi, j,k).

Possibly passing to a smaller η�, we get |zduali, j,k − zduali, j−1,k | ∈ M� and θ̄ (zi, j,k) ∈ G�

for all i, j, k. By Theorem 4.4 we have for each cell

Ecell(zi, j,k) � Ered

(
|zduali, j,k − zduali, j−1,k |, θ̄ (zi, j,k), θ̄ (zi, j,k)

)
+ C�−2�(zi, j,k)

(26)
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if �0 is chosen sufficiently large. Then, taking the sum over all cells and using
Property 2. of Proposition 4.3, we get by (14)

E(F̃) =
�∑

i=1

m∑

j=1

∑

k=0,1

Ecell(zi, j,k) � 2m�Ered(μ̄, θ̄ , θ̄ )

+ C�−2
�∑

i=1

m∑

j=1

∑

k=0,1

�(zi, j,k).

Possibly passing to a smaller η�, we can assume that �(zi, j,k) � η for all centers
with η from Lemma 4.1. Then using Lemma 4.1 and recalling (25) we find that

θ̄ � 1

8m�

⎛

⎝4m(2� − 2)π + C
m∑

j=1

�∑

i=1

∑

k=0,1

�(zi, j,k)

⎞

⎠

� γ� + c

2m�

m∑

j=1

�∑

i=1

∑

k=0,1

�(zi, j,k),

where in the last step we have used the fact that γ� = π(1 − 1/�), see (4). This
together with Property 3 of Proposition 4.3 yields

E(F̃) � 2m�Ered(μ̄, γ�, γ�) + (
C�−2 − C ′�−3)

m∑

j=1

�∑

i=1

∑

k=0,1

�(zi, j,k)

for some C ′ > 0 only depending on v3. Recalling the constraint in definition (11),
we get for fixed i and k that

mμ = Lμ
m =

∣∣∣∣∣∣

m∑

j=1

zduali, j,k − zduali, j−1,k

∣∣∣∣∣∣
�

m∑

j=1

∣∣∣zduali, j,k − zduali, j−1,k

∣∣∣

and therefore, by taking the sum over all i and k, we get μ̄ � μ � μus
� . Then we

derive by Property 4 and 5 of Proposition 4.3

E(F̃) � 2m�Ered(μ, γ�, γ�) + C ′′�−2
�∑

i=1

m∑

j=1

∑

k=0,1

�(zi, j,k)

= E(F∗
μ) + C ′′�−2

�∑

i=1

m∑

j=1

∑

k=0,1

�(zi, j,k) (27)

for �0 sufficiently large and a possibly smaller constant C ′′ > 0. Note that in this
step of the proof we have fundamentally used that μ � μus

� , i.e., the nanotube is
stretched, so that a monotonicity argument can be applied.

It remains to confirm the strict inequality E(F̃) > E(F∗
μ). If �(zi, j,k) > 0

for some center zi, j,k , this follows directly from the previous estimate. Otherwise,
as F̃ is a nontrivial perturbation, one of the angles in (25) or one of the lengths
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|zduali, j,k − zduali, j−1,k | does not coincide with the corresponding mean value and then
at least one of the inequalities (26)–(27) is strict due to the strict convexity and
monotonicity of the mappings considered in Proposition 4.3. 
�

5. Symmetry Defect Controls Angle Defect: Proof of Lemma 4.1

This short section is devoted to the proof of Lemma 4.1. Recall the definition
of the centers in (12), the angles (19), and the symmetry defect (18).

Proof of Lemma 4.1. Let F̃ be a small perturbation of F ′ ∈ F (μ), with
�(zi, j,k) � η for all centers zi, j,k . Due to the symmetry of the problem it suf-
fices to show

m∑

j=1

�∑

i=1

(
θl(zi, j,0) + θl(z

dual
i, j−1,1)

)
� m(2� − 2)π + c

m∑

j=1

�∑

i=1

∑

k=0,1

�(zi, j,k).

For brevitywewrite θ ′
i = θl(z i+1

2 , j,0) for i = 1, 3, . . . , 2�−1 and θ ′
i = θl(zduali

2 , j−1,1
)

for i = 2, 4, . . . , 2�. (Note that for convenience we do not include the index j in
the notation.)

Let ni , ni+1 be unit normal vectors as introduced before (19) such that ni ·ni+1
is near 1 and the smallest angle between them, which we denote by �(ni , ni+1), is
given by

�(ni , ni+1) = π − θ ′
i

for i = 1, 3, . . . , 2�− 1. For a suitable ordering of ni and ni+1 we then also obtain
�(ni , ni+1) = π − θ ′

i for i = 2, 4, . . . , 2�. Fix a center x0 ∈ R
3 and let P be

the 2�-gon with vertices vi := x0 + ni , i = 1, . . . , 2�. Denote the interior angles
accordingly by ϕi . Note that each edge of P forms a triangle with x0 with angles
π − θ ′

i , ψ1
i , and ψ2

i , where ψ1
i is the angle at the vertex vi and ψ2

i is the angle
at vi+1. The key ingredient in the proof is now the observation that there exists a
universal c > 0 such that

ψ1
i+1 + ψ2

i − ϕi+1 � c�
(

z i+1
2 , j,0

)
+ c�

(
z i+3

2 , j,0

)
, (28a)

ψ1
i + ψ2

i−1 − ϕi � c�
(

z i−1
2 , j,0

)
+ c�

(
z i+1

2 , j,0

)
(28b)

for i = 1, 3 . . . , 2�−1, where it is understood thatψ2
0 = ψ2

2� and z0, j,0 = z�, j,0.We
defer the derivation of this property to the end of the proof. Notice that θ ′

i = ψ1
i +ψ2

i

for i = 1, . . . , 2� and that
∑2�

i=1 ϕi � (2� − 2)π since P is a 2�-gon. We now
obtain by (28)

2�∑

i=1

θ ′
i =

2�∑

i=1

(ψ1
i + ψ2

i ) � (2� − 2)π + c
�∑

i=1

�(zi, j,0).

The assertion then follows by taking the sum over all j = 1, . . . , m.
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It remains to confirm (28). Fix i = 1, 3, . . . , 2� − 1 and let Ni+1 be the plane
containing the points vi , vi+1, and vi+2. By di+1 we denote the distance of x0
from Ni+1 and by n′

i+1 the orthogonal projection of the vector ni+1 onto Ni+1.
Note that di+1 � δ for δ small, depending only on the choice of η, and that
|n′

i+1| = |ni+1| + O(d2
i+1). The segments vi+2 − vi+1, n′

i+1 and vi − vi+1, n′
i+1

enclose two angles, denoted by ψ̂1
i+1 and ψ̂2

i , so that ϕi+1 = ψ̂1
i+1 + ψ̂2

i . Observe

that ψ̂1
i+1 and ψ̂2

i are the projections of ψ1
i+1, ψ2

i , respectively, onto Ni+1. For
notational convenience suppose (vi+2 − vi+1) · n′

i+1 > 0 and (vi+2 − vi+1) ·
ni+1 > 0, which holds after possibly changing the signs of the vectors. Using that
(vi+2 − vi+1) · (ni+1 − n′

i+1) = 0 and recalling that di+1 is small, we calculate by
a Taylor expansion

ψ̂1
i+1 = arccos

(
(vi+2 − vi+1) · n′

i+1

|vi+2 − vi+1||n′
i+1|

)

= arccos

(
(vi+2 − vi+1) · ni+1

|vi+2 − vi+1|(|ni+1| + O(d2
i+1))

)

= ψ1
i+1 + O(d2

i+1),

where O(·) is universal. Likewise, we have ψ̂2
i = ψ2

i + O(d2
i+1). Since ϕi+1 =

ψ̂1
i+1 + ψ̂2

i , to conclude (28a), it therefore remains to show

d2
i+1 � c

(
�(z i+1

2 , j,0) + �(z i+3
2 , j,0)

)
(29)

for a universal constant c > 0. To see this, we first note that we have di+1 = 0
whenever �(z i+1

2 , j,0)+�(z i+3
2 , j,0) = 0. Indeed, if �(z i+1

2 , j,0)+�(z i+3
2 , j,0) = 0,

the high symmetry of the atoms in the cells with centers z i+1
2 , j,0 and z i+3

2 , j,0 (cf.
(18)) implies that the three normal vectors ni , ni+1, and ni+2 are coplanar. Thus,
x0 is contained in Ni+1 and therefore di+1 = 0.

Note that d2
i+1, �(z i+1

2 , j,0), and �(z i+3
2 , j,0) are functions of the positions of

the atoms contained in the adjacent cells with center z i+1
2 , j,0, z i+3

2 , j,0, denoted by

ỹ = (ỹ1, . . . , ỹ14) ∈ R
3×14. By (18) we find that �(z i+1

2 , j,0) + �(z i+3
2 , j,0) =

( ỹ − y0)TQ( ỹ − y0) is quadratic with Q ∈ R
42×42, where y0 denotes the atomic

positions of F ′ ∈ F (μ). Moreover, the fact that d2
i+1 is smooth as a function in

ỹ, a Taylor expansion, and di+1 � δ yield d2
i+1 � C | ỹ − y0|2 for a universal

constant C > 0. Now (29) follows from the property that di+1 = 0 whenever
�(z i+1

2 , j,0) + �(z i+3
2 , j,0) = 0.

The second estimate (28b) can be shown along similar lines. This concludes
the proof. 
�

6. Properties of the Reduced Energy: Proof of Lemma 4.2, Proposition 4.3,
and Proposition 3.4

In this section we investigate the properties of the symmetric energy and the
reduced energy as introduced in (23) and (24), respectively.
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6.1. Proof of Lemma 4.2

We start with the relation of the cell energy (13) and the symmetric energy
(23).

Proof of Lemma 4.2. In the proof we let λ = λ2. Given the cell energy, the sym-
metric energy, and the constraints (20)–(21), we observe that it suffices to show

v2(λ1) + v2(λ3) � 2v2
(
μ̃/2 + 2λ cosαi

) − c0�
−4(γ1 − γ2)

2 for i = 1, 2
(30)

for a constant c0 only depending on v2 and v3. First, with the notation of (20),
particularly recalling λ3 = |x8 − x2| = |2(zduali, j,k − x2)|, we see

λ23 = (μ̃ − λ4)
2 + 4|(x2 − zduali, j,k) · e2|2 + 4|(x2 − zduali, j,k) · e3|2.

As in the special case γ1 = γ2 the points x1, x2, zduali, j,k are contained in one line and
thus the latter two terms vanish, we obtain by a Taylor expansion λ3 = μ̃ − λ4 +
O((γ1 − γ2)

2), which together with (22) gives

λ1 + λ3 = μ̃ + 2λ cosα1 + O((γ1 − γ2)
2).

By a similar argument, interchanging the roles of λ1 and λ3, we also get

λ1 + λ3 = μ̃ + 2λ cosα2 + O((γ1 − γ2)
2).

Recall that |λ1 − 1| + |λ3 − 1| � �−4 and |γ1 − γ2| � �−2 by assumption. Then
by the convexity of v2 in a neighborhood of 1 and a Taylor expansion we derive

v2(λ1) + v2(λ3) � 2v2(μ̃/2 + λ cosαi + O((γ1 − γ2)
2))

� 2v2(μ̃/2 + λ cosαi ) − C |v′
2(μ̃/2 + λ cosαi )|(γ1 − γ2)

2

− C(γ1 − γ2)
4

for i = 1, 2. We recall that |v′
2(μ̃/2 + λ cosαi )| = O(�−4) since |λ1 − 1| + |λ3 −

1| + |γ1 − γ2|2 � 2�−4, and v2 is smooth and attains its minimum in 1. Moreover,
observe that by |γ1 −γ2| � �−2 we get |γ1 −γ2|4 � �−4|γ1 −γ2|2. This concludes
the proof of (30). 
�

6.2. Convexity of the Reduced Energy

Let us now concentrate on the symmetric energy E sym
μ,γ1,γ2 introduced in (23).

We recall the definition of the angle β = β(α, γ ) = 2 arcsin
(
sin α sin γ

2

)
in (21)

and for later use we note that the function β is smooth on [ 12π, 3
4π ] × [ 34π, π ] and

satisfies

∂αβ(2π/3, π) = −2, ∂2ααβ(2π/3, π) = 0, ∂γ β(2π/3, π) = 0, (31a)

∂2γ γ β(2π/3, π) = −√
3/2, ∂2αγ β(2π/3, π) = 0. (31b)
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More precisely, a Taylor expansion also shows

lim
�→∞ �∂γ β(2π/3, γ�) =

√
3

2
π, lim

�→∞ �2∂2ααβ(2π/3, γ�) = −2
√
3π2, (32)

where γ� was defined in (4). For the exact expressions of the derivatives of the
function β we refer the reader to [56, Section 4]. Recall the definition of αus

� in
Proposition 3.1.

Lemma 6.1. (Angles of unstretched nanotubes). There exist 0 < c1 < c2 and
�0 ∈ N only depending on v3 such that for all � � �0

αus
� , β(αus

� , γ�) ∈ (2π/3 − c2�
−2, 2π/3 − c1�

−2).

Proof. By Proposition 3.1 and the fact that α �→ β(α, γ�) is decreasing, we obtain
αus

� � αch
� and β(αus

� , γ�) � αus
� � 2π/3. By [55, (11)] we have 2π/3 − αch

� =
O(�−2). Moreover, in view of (4), (6) and a Taylor expansion, we find αus

� −
β(αus

� , γ�) � C�−2. Summarizing, we get

2π/3 − αus
� � C�−2, 2π − 2αus

� − β(αus
� , γ�) � C�−2 (33)

for some universal C > 0. As 2v3(α) + v3(β(α, γ�)) is minimized at α = αus
� (see

Proposition 3.1), we get 2v′
3(α

us
� ) + v′

3(β(αus
� , γ�))∂αβ(αus

� , γ�) = 0. Using (31a)
and a Taylor expansion of v′

3 around 2π/3, we deduce that for �0 large enough and
all � � �0

2π/3 − αus
�

2π/3 − β(αus
� , γ�)

∈ [C ′, 1]

for a constant 0 < C ′ < 1 only depending on v3. This together with (33) concludes
the proof. 
�

Recall the minimization problem (24) for the symmetric energy introduced in
(23). We proceed with the identification of the minimizers of (24).

Proposition 6.2. (Existence and uniqueness of minimizers). There exists δ > 0
depending only on v2, v3 such that, for any fixed μ ∈ [3 − δ, 3 + δ] and
γ = (γ1, γ2) ∈ [π − δ, π ]2, the minimization problem (24) has a unique solu-
tion (λ∗(μ, γ ), α∗

1(μ, γ ), α∗
2(μ, γ )), which satisfies

∇E sym
μ,γ1,γ2(λ

∗(μ, γ ), α∗
1(μ, γ ), α∗

2(μ, γ )) = 0, (34)

where ∇ denotes the derivative with respect to (λ, α1, α2).

Proof. We start the proof with a direct computation of the derivatives. Replace
E sym

μ,γ1,γ2 by Ẽ for notational convenience. We obtain

∂λ Ẽ(λ, α1, α2) = 2v′
2(λ) +

∑

i=1,2

(1
2
cosαi v′

2(μ/2 + λ cosαi )
)
, (35a)

∂αi Ẽ(λ, α1, α2) = −1

2
λ sin αi v′

2(μ/2 + λ cosαi )

+ v′
3(β(αi , γi ))∂αβ(αi , γi ) + 2v′

3(αi ), i = 1, 2. (35b)
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Moreover, for i = 1, 2

∂2λλ Ẽ(λ, α1, α2) = 2v′′
2 (λ) +

∑

j=1,2

(1
2
cos2 α j v′′

2 (μ/2 + λ cosα j )
)
,

∂2αi αi
Ẽ(λ, α1, α2) = 1

2
λ2 sin2 αi v′′

2 (μ/2 + λ cosαi )

− 1

2
λ cosαi v′

2(μ/2 + λ cosαi ) + 2v′′
3 (αi )

+ v′′
3 (β(αi , γi )) (∂αβ(αi , γi ))

2

+ v′
3(β(αi , γi ))∂

2
ααβ(αi , γi ),

∂2λαi
Ẽ(λ, α1, α2) = −1

2
sin αi v′

2(μ/2 + λ cosαi )

− 1

2
λ sin αi cosαi v′′

2 (μ/2 + λ cosαi ),

∂2α1α2 Ẽ(λ, α1, α2) = 0.

For notational convenience we define sref := (1, 2π/3, 2π/3). Recall that
∂αβ(2π/3, π) = −2 by (31a), β(2π/3, π) = 2π/3 by (21), v′

3(2π/3) = 0,
cos(2π/3) = −1/2, sin(2π/3) = √

3/2. At the planar reference configuration
μ = 3, γ1 = γ2 = π , α1 = α2 = 2π/3, λ = 1 the derivative then reads after some
computation

∂2λλE sym
3,π,π (sref) = 9

4
v′′
2 (1), ∂2αi αi

E sym
3,π,π (sref)= 3

8
v′′
2 (1) + 6v′′

3 (2π/3), i =1, 2,

∂2λαi
E sym
3,π,π (sref) =

√
3

8
v′′
2 (1), i = 1, 2, ∂2α1α2 E sym

3,π,π (sref) = 0.

We shall check the positivity of the Hessian matrix in a neighborhood of the refer-
ence configuration. Since

det
(

D2
α1α2

E sym
3,π,π (sref)

)
= (

∂2α1α1 E sym
3,π,π (sref)

)2
,

det
(
D2E sym

3,π,π (sref)
) = (

∂2α1α1 E sym
3,π,π (sref)

)2
∂2λλE sym

3,π,π (sref)

− 2
(
∂2λα1

E sym
3,π,π (sref)

)2
∂2α1α1 E sym

3,π,π (sref)

are positive, the principal minors of the Hessian matrix D2E sym
3,π,π (1, 2π/3, 2π/3)

are positive. Due to the smoothness of the potentials v2, v3 and the mapping
(α, γ ) �→ β(α, γ ), we get that for δ′ > 0 sufficiently small the principal minors
of the Hessian matrix D2E sym

μ,γ1,γ2(λ, α1, α2) are positive for all (λ, α1, α2) ∈ Dδ′
and for all μ ∈ [3 − δ′, 3 + δ′], (γ1, γ2) ∈ [π − δ′, π ]2, where

Dδ′ := [1 − δ′, 1 + δ′] × [2π/3 − δ′, 2π/3 + δ′]2.
Since we have shown that E sym

μ,γ1,γ2 is strictly convex on Dδ′ , it follows that it has a
unique minimizer (λ∗(μ, γ ), α∗

1(μ, γ ), α∗
2(μ, γ )) for all μ ∈ [3 − δ′, 3 + δ′] and
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γ = (γ1, γ2) ∈ [π − δ′, π ]2. Moreover, a continuity argument shows that

(λ∗(μ, γ ), α∗
1(μ, γ ), α∗

2(μ, γ )) → (λ∗(3, π, π), α∗
1(3, π, π), α∗

2(3, π, π))

= (1, 2π/3, 2π/3) (36)

as γ → (π, π) and μ → 3. Recalling (23) and the fact that v2 and v3 attain their
minimumexactly at 1 and2π/3, respectively,wefind inf (λ,α1,α2)/∈Dδ′ E sym

μ,γ1,γ2(λ, α1,

α2) > −3. On the other hand, by (21), (23), and (36) we get E sym
μ,γ1,γ2(λ

∗(μ, γ ),

α∗
1(μ, γ ), α∗

2(μ, γ )) → −3 as γ → (π, π) and μ → 3. This shows that for all
μ ∈ [3 − δ′′, 3 + δ′′] and γ ∈ [π − δ′′, π ]2, for some small δ′′ > 0, the triple
(λ∗(μ, γ ), α∗

1(μ, γ ), α∗
2(μ, γ )) is the unique solution of the minimization prob-

lem (24). Moreover, if δ′′ > 0 is chosen small enough, the triple lies in the interior
of Dδ′ and the first order optimality conditions (34) follow. We conclude the proof
by setting δ = min{δ′, δ′′}. 
�

We now study convexity properties of the reduced energy Ered defined in (24).
Recall the definition of γ� in (4) and the definition of μus

� in (9).

Proposition 6.3. (Convexity of reduced energy). There exists �0 ∈ N and for each
� � �0 there exits ε = ε(�) > 0 such that Ered is strictly convex on D�

ε :=
[μus

� − ε, μus
� + ε] × [γ� − ε, γ� + ε]2. Moreover, there exists c′

0 > 0 depending
only on v2 and v3 such that for all � � �0 and (μ, γ1, γ2) ∈ D�

ε

Ered(μ, γ1, γ2)= Ered(μ, γ2, γ1)� Ered

(
μ,

γ1+γ2

2
,
γ1 + γ2

2

)
+c′

0�
−2(γ1 − γ2)

2.

(37)

Proof. Choosing � sufficiently large and ε > 0 small we can suppose that D�
ε ⊂

[3−δ, 3+δ]×[π−δ, π ]2 with δ fromProposition 6.2 sinceμus
� = 2−2 cosαus

� → 3
as � → ∞. Then (34) holds for (μ, γ1, γ2) ∈ D�

ε .
We drop the brackets (μ, γ1, γ2) and indicate the unique solution at (μ, γ1, γ2)

by (λ∗, α∗
1 , α

∗
2) for notational convenience. Taking the partial derivatives and mak-

ing use of the first order optimality conditions (34), we get

∂μEred(μ, γ1, γ2) = d

dμ
E sym

μ,γ1,γ2(λ
∗, α∗

1 , α
∗
2)

= ∂ E sym
μ,γ1,γ2

∂μ
(λ∗, α∗

1 , α
∗
2)

+ ∇E sym
μ,γ1,γ2(λ

∗, α∗
1 , α

∗
2) · (∂μλ∗, ∂μα∗

1 , ∂μα∗
2)

= ∂ E sym
μ,γ1,γ2

∂μ
(λ∗, α∗

1 , α
∗
2) =

∑

j=1,2

1

4
v′
2

(
μ/2 + λ∗ cosα∗

j

)
,

(38)

where ∇ denotes the derivative with respect to (λ, α1, α2). Likewise, we get for
i = 1, 2

∂γi Ered(μ, γ1, γ2) = ∂ E sym
μ,γ1,γ2

∂γi
(λ∗, α∗

1 , α
∗
2) = v′

3(β(α∗
i , γi )) ∂γ β(α∗

i , γi ).

(39)
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Next we compute the second derivatives and obtain

∂2μμEred(μ, γ1, γ2) =
∑

j=1,2

1

4
v′′
2

(
μ/2 + λ∗ cosα∗

j

)
w j,μ(μ, γ1, γ2), (40)

∂2γi γi
Ered(μ, γ1, γ2) = v′

3(β(α∗
i , γi ))

(
∂2γ γ β(α∗

i , γi ) + ∂2γαβ(α∗
i , γi ) ∂γi α

∗
i

)

+ v′′
3 (β(α∗

i , γi )) ∂γ β(α∗
i , γi ) · (

∂γ β(α∗
i , γi )

+ ∂αβ(α∗
i , γi ) ∂γi α

∗
i

)
, i = 1, 2, (41)

∂2μγi
Ered(μ, γ1, γ2) =

∑

j=1,2

1

4
v′′
2

(
μ/2 + λ∗ cosα∗

j

)
w j,γi (μ, γ1, γ2), i = 1, 2,

(42)

∂2γ1γ2 Ered(μ, γ1, γ2) = v′
3(β(α∗

1 , γ1)) ∂2γαβ(α∗
1 , γ1) ∂γ2α

∗
1

+ v′′
3 (β(α∗

1 , γ1)) ∂γ β(α∗
1 , γ1) ∂αβ(α∗

1 , γ1) ∂γ2α
∗
1 , (43)

where for brevity we have introduced

w j,μ(μ, γ1, γ2) = 1/2 + ∂μλ∗ cosα∗
j − λ∗ sin α∗

j ∂μα∗
j , j = 1, 2, (44a)

w j,γi (μ, γ1, γ2) = ∂γi λ
∗ cosα∗

j − λ∗ sin α∗
j ∂γi α

∗
j , i, j = 1, 2. (44b)

We now exploit the identity ∇E sym
μ,γ1,γ2(λ

∗, α∗
1 , α

∗
2) = 0: differentiating (35) with

respect to μ, γ1 or γ2, respectively, we obtain

0 = 2v′′
2 (λ

∗) ∂Xλ∗ +
∑

j=1,2

(
− 1

2
sin α∗

j ∂Xα∗
j v′

2(μ/2 + λ∗ cosα∗
j )

)

+
∑

j=1,2

(1
2
cosα∗

j v′′
2 (μ/2 + λ∗ cosα∗

j ) w j,X (μ, γ1, γ2)
)
, (45)

0 = −1

2
v′
2(μ/2 + λ∗ cosα∗

j )
(
∂Xλ∗ sin α∗

j + λ∗ cosα∗
j ∂Xα∗

j

)

− 1

2
λ∗ sin α∗

j v′′
2 (μ/2 + λ∗ cosα∗

j ) w j,X (μ, γ1, γ2)

+ v′
3(β(α∗

j , γ j ))∂
2
ααβ(α∗

j , γ j )∂X α∗
j

+ v′′
3 (β(α∗

j , γ j ))
(
∂αβ(α∗

j , γ j )
)2

∂Xα∗
j

+ 2v′′
3 (α

∗
j ) ∂Xα∗

j + z j,X (μ, γ1, γ2), j = 1, 2, (46)

where X ∈ {μ, γ1, γ2} and where we have defined for brevity

z j,γ j (μ, γ1, γ2) = v′
3(β(α∗

j , γ j ))∂αγ β(α∗
j , γ j )

+ v′′
3 (β(α∗

j , γ j ))∂αβ(α∗
j , γ j )∂γ β(α∗

j , γ j ),

z j,γi (μ, γ1, γ2) = z j,μ(μ, γ1, γ2) = 0, i �= j.

For brevity let t�ref := (μus
� , γ�, γ�) and tref := (3, π, π). Observe that t�ref → tref

as � → ∞ by (4), (9), and Lemma 6.1. Moreover, by (36) we get that the unique
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solution of the problem (24) corresponding to t�ref converges to (1, 2π/3, 2π/3), in
particular α∗

j (t
�
ref) → 2π/3 for j = 1, 2. We also recall β(α∗

j (t
�
ref), γ�) → 2π/3

for j = 1, 2 (see (21)). Using v′
2(1) = v′

3(2π/3) = 0, cos(2π/3) = −1/2,
sin(2π/3) = √

3/2 and (31) we then deduce from (45)–(46)

0 = 2v′′
2 (1) ∂Xλ∗(tref) − 1

4
v′′
2 (1)

∑

j=1,2

w j,X (tref), (47a)

0 = −v′′
2 (1) w j,X (tref) + 8

√
3v′′

3 (2π/3) ∂Xα∗
j (tref), j = 1, 2, (47b)

as � → ∞ , where X ∈ {μ, γ1, γ2}. Inserting the identities into (44), we obtain,
after some elementary but tedious calculations,

w1,μ(tref) = w2,μ(tref) = 4/K , w1,γi (tref) = w2,γi (tref) = 0, i = 1, 2, (48a)

∂μλ∗(tref) = 1/K , ∂μα∗
1(tref) = ∂μα∗

2(tref) = v′′
2 (1)/(2

√
3Kv′′

3 (2π/3)),
(48b)

where K := 9 + v′′
2 (1)/(2v

′′
3 (2π/3)). In particular, the last two equalities of the

first line together with (47) yield that ∂γi λ
∗, ∂γi α

∗
1 , and ∂γi α

∗
2 vanish at tref . Thus,

by a Taylor expansion in terms of 1/� the limits w∞
j,γi

:= lim�→∞ �w j,γi (t
�
ref),

∂γi λ
∞ := lim�→∞ �∂γi λ

∗(t�ref), and ∂γi α
∞
j := lim�→∞ �∂γi α

∗
j (t

�
ref) for i, j = 1, 2

exist and are finite.
By Lemma 6.1 and the fact that v3 is smooth with minimum at 2π/3 we note

that one has |v′
3(β(αus

� , γ�))| � C�−2 for a constant only depending on v3. Con-
sequently, multiplying the estimates in (45)–(46) by � and letting � → ∞ we get
using (31) and (32)

0 = 2v′′
2 (1)∂γi λ∞ − 1

4
v′′
2 (1)

∑

j=1,2

w∞
j,γi

, i = 1, 2,

0 = −1

4
v′′
2 (1)w

∞
j,γi

+ 2
√
3v′′

3 (2π/3) ∂γi α
∞
j − v′′

3 (2π/3)π δi j , i, j = 1, 2,

where δi j denotes the Kronecker delta. As before, inserting the identities into (44b),
we obtain after some tedious calculations

∑

j=1,2

w∞
j,γi

= −2π

K
,

∑

j=1,2

∂γi α
∞
j = π

2
√
3

− πv′′
2 (1)

4
√
3Kv′′

3 (2π/3)
, (49a)

∂γi α
∞
i = π

2
√
3

− πv′′
2 (1)

4
√
3Kv′′

3 (2π/3)
− π

K K ∞ , ∂γi α
∞
j = π

K K ∞ , i �= j,

(49b)

for i = 1, 2 with K as defined after (48) and K ∞ := 64
√
3v′′

3 (2π/3)/v′′
2 (1)+4

√
3.

Moreover, we notice by (31b) and Lemma 6.1 that

v′
3(β(αus

� , γ�))∂
2
γ γ β(αus

� , γ�) � 0
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for � sufficiently large. With this at hand, we go back to (40)–(43) and derive as
� → ∞ by (31), (32), (48), and (49)

∂2μμEred(t
�
ref) = 2v′′

2 (1)

K
+ O(�−1), (50)

∂2γi γi
Ered(t

�
ref) � �−2

(
v′′
3 (2π/3)

3

4
π2 − v′′

3 (2π/3)
√
3π∂γi α

∞
i

)
+ O(�−3)

= �−2v′′
3 (2π/3)π2

(1
4

+ v′′
2 (1)

4Kv′′
3 (2π/3)

+
√
3

K K ∞
)

+ O(�−3), i = 1, 2,

∂2μγi
Ered(t

�
ref) = −�−1πv′′

2 (1)

2K
+ O(�−2), i = 1, 2,

∂2γ1γ2 Ered(t
�
ref) = −�−2v′′

3 (2π/3)
√
3π∂γ1α

∞
2 + O(�−3)

= −�−2v′′
3 (2π/3)

√
3π2

K K ∞ + O(�−3).

We now check the positivity of the Hessian D2Ered by considering the minors
H1 = ∂2γ2γ2 Ered, H2 = det(D2

γ1γ2
Ered) and H3 = det(D2Ered). First, we get for

� ∈ N sufficiently large

H1(t
�
ref) � �−2v′′

3 (2π/3)
π2

4
> 0, H2(t

�
ref) � �−4(v3(2π/3)′′)2π4(1/4)2 > 0

and finally for � large enough

H3(t
�
ref) =

(
∂2γ2γ2 Ered − ∂2γ1γ2 Ered

)
·
(
∂2μμEred

(
∂2γ2γ2 Ered

+ ∂2γ1γ2 Ered
) − 2

(
∂2μγ1

Ered
)2)

� �−4v′′
3 (2π/3)

π2

4

(π2v′′
2 (1)v

′′
3 (2π/3)

2K

+ π2(v′′
2 (1))

2

2K 2 − 2
π2(v′′

2 (1))
2

4K 2

)
> 0.

Due to the smoothness of the potentials v2, v3, the mapping (α, γ ) �→ β(α, γ ),
and the solutions (λ∗, α∗

1 , α
∗
2) as functions of (μ, γ1, γ2), we get that for �0 ∈ N

sufficiently large and ε > 0 small (depending on �) Hi (μ, γ1, γ2) > 0 for i =
1, 2, 3 for all (μ, γ1, γ2) ∈ [μus

� − ε, μus
� + ε] × [γ� − ε, γ� + ε]2.

It remains to confirm (37). The first identity is a consequence of the fact that
E sym

μ,γ1,γ2 is symmetric in (α1, γ1) and (α2, γ2). Recalling (50) and the fact that
D2Ered is positive definite, we can control the eigenvalues of �2D2Ered from below
and find �2D2Ered � 8c′

0I+O(�−1) for some constant c′
0 depending only on v′′

2 (1)
and v′′

3 (2π/3), where I denotes the identitymatrix. This implies the second estimate
of (37). 
�
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6.3. Proof of Proposition 4.3 and Proposition 3.4

We are now in the position to show the main properties of Ered.

Proof of Proposition 4.3. Property 2 follows directly from Proposition 6.3 if the
intervals M�, G� are chosen appropriately depending on ε, with ε from Proposi-
tion 6.3.

In Proposition 6.2 we have seen that for given (μ, γ1, γ2) ∈ M�×G�×G� there
is a unique solution (λ∗, α∗

1 , α
∗
2) of the minimization problem (24). In particular, if

γ1 = γ2 we obtain α∗ := α∗
1 = α∗

2 as then (24) is completely symmetric in α1 and
α2. This proves Property 1.

We now specifically consider the case γ1 = γ2 = γ� and denote the minimizer
in (24) by (λμ, αμ, αμ). We observe that λ

μ
1 := μ/2 + λμ cosαμ, λμ

2 := λμ, and
σμ := −λμ cosαμ satisfy the relations (3) and (5). Then by (8), (23), and the fact
that n = 4m� we derive

Ered(μ, γ�, γ�) = 2v2(λ
μ) + v2

(
μ/2 + λμ cosαμ

) + 4v3(α
μ) + 2v3(β(αμ, γ�))

= 2v2(λ
μ
2 ) + v2(λ

μ
1 ) + 4v3(α

μ) + 2v3(β(αμ, γ�))

= 1

2m�
E(Fλ

μ
1 ,λ

μ
2 ,μ),

which concludes the proof of Property 5.
To see Property 3, we introduce g(γ ) = Ered(μ, γ, γ ) for μ ∈ M�. By (39) we

have

g′(γ ) =
∑

i=1,2

∂γi Ered(μ, γ, γ ) = 2v′
3(β(α∗, γ ))∂γ β(α∗, γ ),

where α∗ = α∗(μ, γ, γ ). Using (32) and the fact that v′
3(β(α∗, γ )) < 0 since

β(α∗, γ ) < 2π/3, we get g′(γ ) < 0. Moreover, taking again (32) and Lemma 6.1
into account, a Taylor expansion shows |g′(γ )| � C�−3 for some C > 0 only
depending on v3. This shows Property 3.

Finally, we show Property 4. The strict convexity of μ �→ Ered(μ, γ�, γ�) fol-
lows from (50) and a continuity argument, exactly as in the proof of Proposition 6.3.
To show that the mapping is strictly increasing for μ > μus

� , we have to show that
for μ > μus

�

μ/2 + λμ cosαμ > 1, (51)

as then the property follows from (38). Using the monotonicity properties of v2 we
see that the first-order optimality conditions (34) and (35a) imply

μ/2 + λμ cosαμ > 1 ⇔ λμ > 1. (52)

We prove (51) by contradiction. Suppose λμ � 1. This together with the fact
μ > μus

� = 2 − 2 cosαus
� (see (9)) and cosαμ < 0 would imply by (52)

2 cosαμ − 2 cosαus
� + 1 = μus

� − 1 + 2 cosαμ < μ − 1 + 2λμ cosαμ � 1
(53)
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and thus αμ > αus
� . By the optimality condition in the unstretched case (see (35b)

and recall that bond lengths are all equal to 1) we get

v′
3(β(αus

� , γ�)) ∂αβ(αus
� , γ�) + 2v′

3(α
us
� ) = 0.

Consider the mapping α �→ v′
3(β(α, γ�)) ∂αβ(α, γ�) + 2v′

3(α) and observe that its
derivative is

v′
3(β(α, γ�)) ∂2ααβ(α, γ�) + v′′

3 (β(α, γ�)) (∂αβ(α, γ�))
2 + 2v′′

3 (α).

Thus, the mapping is strictly increasing in a left neighborhood of 2π/3 by (32) and
the fact that β(α, γ�) < 2π/3. Since αμ > αus

� , this gives

v′
3(β(αμ, γ�)) ∂αβ(αμ, γ�) + 2v′

3(α
μ) > 0.

In view of (35b) and the first order optimality conditions (34), we get μ/2 +
λμ cosαμ > 1, which contradicts the last inequality in (53). Consequently, (51)
holds, which concludes the proof. 
�

We close this section with the proof of Proposition 3.4.

Proof of Proposition 3.4. Let M� be the interval given byProposition 4.3. The strict
convexity of themappingμ �→ Emin(μ)on M� aswell as d2

dμ2 Emin(μ
us
� ) � c2m� �

cn follow from Properties 4 and 5 of Proposition 4.3. The fact that the energy
minimum is attained at μus

� follows from the definition of μus
� , see Proposition 3.1

and (9). This shows Property 1.
Now consider Property 2. We define λ

μ
1 = μ/2 + λμ cosαμ, λ

μ
2 = λμ with

λμ, αμ being the solution of (24) for μ and γ1 = γ2 = γ� (cf. Proposition 4.3(v))
and use (48b) to obtain ∂μλ

μ
2 (tref) = ∂μλ∗(tref) = 1/K and ∂μλ

μ
1 (tref) = 1/2 −

∂μλ∗(tref)/2−√
3∂μα∗

1(tref)/2 = 4/K with K = 9+v′′
2 (1)/(2v

′′
3 (2π/3)). (Recall

the definition tref = (3, π, π).) Consequently, by a standard continuity argument
we see that λ

μ
1 and λ

μ
2 increase continuously for μ ∈ M�, possibly passing to a

smaller (not relabeled) open interval M� containing μus
� . The proof of the fact that

μ > μus
� implies λ

μ
1 , λ

μ
2 > 1 is already contained in the proof of Proposition 4.3,

see particularly (51) and (52). The fact that μ < μus
� implies λ

μ
1 , λ

μ
2 < 1 can be

proved along similar lines.
To see Property 3, recall that by Proposition 3.1 we have αus

� = αμus
� ∈

(αch
� , αru) in the unstretched case. By a continuity argument we particularly obtain

the convergence of minimizers, i.e., αμ → αμus
� as μ → μus

� . Consequently, again
possibly passing to a smaller interval M�, Property 3 follows. We finally concern
ourselves with Property 4. Recall by (5) that the radius of the nanotube is given by

ρμ = λ
μ
2 sin αμ/(2 sin(π/(2�))).

We compute the derivative and obtain

∂μρμ = (
λ

μ
2 cosαμ ∂μαμ + ∂μλ

μ
2 sin αμ

)
/(2 sin(π/(2�))).
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By (48b) the derivative at the unstrechted planar reference configuration is

lim
�→∞ ∂μρμus

� · (2 sin(π/(2�))) = −1

2
∂μα∗

1(tref) + 1

2

√
3∂μλ∗(tref)

=
√
3

2K

(
1 − v′′

2 (1)

6v′′
3 (2π/3)

)
.

Consequently, whenever v′′
2 (1) �= 6v′′

3 (2π/3)), by a continuity argument the sign
of ∂μρμ for � ∈ N large in a small neighborhood of μus

� only depends on the sign
of v′′

2 (1) − 6v′′
3 (2π/3). 
�

7. Energy Defect Controls Symmetry Defect: Proof of Theorem 4.4

This section is devoted to the proof of Theorem 4.4. The fact that the minimum
of the cell energy is attained for a special configuration with high symmetry (see
(20)) essentially relies on convexity properties of the cell energy Ecell defined in
(13). Throughout the section we consider a cell consisting of eight points x =
(x1, . . . , x8) ∈ R

3×8 as defined before (13), see Fig. 5. Likewise, the bond lengths
are again denoted by b1, . . . , b8 and the angles by ϕ1, . . . , ϕ10, see Fig. 6. With a
slight abuse of notation we denote the cell energy for a given configuration x by
Ecell(x).

7.1. Relation Between Atomic Positions, Bonds, and Angles

We will investigate the convexity properties of Ecell near the planar reference
configuration x0 = (x01 , . . . , x08 ) ∈ R

3×8 defined by

x01 = (−1, 0, 0), x02 = (1, 0, 0), x03 = (−1/2,
√
3/2, 0),

x04 = (1/2,
√
3/2, 0), x05 = (1/2,−√

3/2, 0), x06 = (−1/2,−√
3/2, 0),

x07 = (−2, 0, 0), x08 = (2, 0, 0).

Moreover, we introduce the unstretched kink configuration x�
kink = (xkink1 , . . . ,

xkink8 ) ∈ R
3×8 by

xkink1 = (−1/2 − σ us, 0, 0),

xkink2 = (1/2 + σ us, 0, 0),

xkink3 = (−1/2, sin αus
� sin(γ�/2), sin αus

� cos(γ�/2)),

xkink4 = (1/2, sin αus
� sin(γ�/2), sin αus

� cos(γ�/2)),

xkink5 = (1/2,− sin αus
� sin(γ�/2), sin αus

� cos(γ�/2)),

xkink6 = (−1/2,− sin αus
� sin(γ�/2), sin αus

� cos(γ�/2)),

xkink7 = (−3/2 − σ us, 0, 0),

xkink8 = (3/2 + σ us, 0, 0),

(54)
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where γ� = π(1 − 1/�) and σ us = − cosαus
� with αus

� as given by Proposition 3.1
(cf. also (5)). Note that x�

kink represents the mutual position of atoms in a cell for
the unstretched nanotube Gαus

�
found in Proposition 3.1. For later use we note that

by Lemma 6.1 and a Taylor expansion we find

|x0 − x�
kink| � C�−1 (55)

for some universal C > 0 large enough. In order to discuss the convexity properties
of Ecell we need to introduce a specific basis of R3×8, i.e., the space of cell config-
urations. This will consist of three collections of vectors, denoted by Vdegen, Vgood,
and Vbad, where the sets are defined as follows: We introduce the translations and
infinitesimal rotations

Vtrans =
{
(e1, . . . , e1), (e2, . . . , e2), (e3, . . . , e3)

}
⊂ R

3×8

Vrot =
⎧
⎨

⎩v1 :=
⎛

⎝
0 1 0

−1 0 0
0 0 0

⎞

⎠ x0, v2 :=
⎛

⎝
0 0 1
0 0 0

−1 0 0

⎞

⎠ x0, v3 :=
⎛

⎝
0 0 0
0 0 1
0 −1 0

⎞

⎠ x0

⎫
⎬

⎭

⊂ R
3×8

and set Vdegen = Vtrans ∪ Vrot. The family Vgood contains the 13 vectors

u1 = (−1, 0, 0|1, 0, 0| − 1/2,
√
3/2, 0|1/2,√3/2, 0|1/2,−√

3/2, 0| − 1/2,

− √
3/2, 0|0, 0, 0|0, 0, 0),

u2 = (0, 0, 0 | 0, 0, 0 | 1/2,√3/2, 0 | − 1/2,
√
3/2, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),

u3 = (0, 0, 0 | 1, 0, 0 | 0, 0, 0 | 1, 0, 0 | 1, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),
u4 = (0, 0, 0 | 1/2,−√

3/2, 0 | 1/2,√3/2, 0 | − 1/2,
√
3/2, 0 | 1, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),

u5 = (0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | − 1, 0, 0 | 0, 0, 0),
u6 = (0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | − 1, 0, 0 | 1, 0, 0),
u7 = (

√
3, 0, 0 | 0, 0, 0 | 0, 1, 0 | 0, 0, 0 | 0, 0, 0 | 0,−1, 0 | 0, 0, 0 | 0, 0, 0),

u8 = (0, 0, 0 | 0, 0, 0 | √3/2,−1/2, 0 | √3/2, 1/2, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),
u9 = (

√
3/2, 1/2, 0 | − √

3/2, 1/2, 0 | 0, 1, 0 | 0, 1, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),
u10 = (0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 1, 0 | 0, 0, 0),
u11 = (0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 1, 0 | 0, 1, 0),
u12 = (1, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),
u13 = (0, 1, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0).

Thefirst 6 vectors keep the angles fixed andmodify only the bond lengths, see Fig. 9.
The vectors u8, . . . , u11 keep the bond lengths fixed to first order and change the
angles, see Fig. 10. Eventually, the remaining vectors u12 and u13 modify both
angles and bonds as in Fig. 11.

By Vbad we denote the collection of the vectors

(0, 0, 1 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),
(0, 0, 1 | 0, 0, 0 | 0, 0, 1 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),
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Fig. 9. Vectors u1, . . . , u6 in Vgood keep the angles fixed (ordered from left to right both in
the first and in the second line)

Fig. 10. Vectors u7, . . . , u11 in Vgood keep the bond lengths fixed (ordered from left to right
both in the first and in the second line)

Fig. 11. Vectors u12 and u13 in Vgood keep neither angles nor bond lengths fixed (ordered
from left to right)
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(0, 0, 1 | 0, 0, 0 | 0, 0, 0 | 0, 0, 1 | 0, 0, 1 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),
(0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 1 | 0, 0, 0),
(0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 1 | 0, 0, 1).

It is elementary to check that the vectors Vdegen ∪Vgood ∪Vbad are linearly indepen-
dent and thus form a basis ofR3×8. Note that the vectors in Vgood are perpendicular
to the vectors in Vbad.

Clearly, the cell energy is strictly convex as a function of the bond lengths and
angles by the assumptions on the potentials v2 and v3. Our goal is to show that the
same property holds if the cell energy is given as a function of the atomic positions.
To this end, we introduce the mapping T = (T a, T b) : R3×8 → R

18 defined by

T a
i (x) = ϕi for i = 1, . . . , 10, T b

i (x) = bi for i = 1, . . . , 8.

Then the cell energy reads as

Ecell(x) =
8∑

i=1

κb
i v2(T

b
i (x)) +

10∑

i=1

κa
i v3(T

a
i (x)) (56)

with the factors κb
1 = κb

2 = κb
7 = κb

8 = 1/4, κb
3 = κb

4 = κb
5 = κb

6 = 1/2,
κa
1 = κa

2 = 1, κa
3 = . . . = κa

10 = 1/2.
Before analyzing the mapping T , we need to introduce some more notation for

the sum of angles ϕi . From here on, we denote by e1, . . . , e10 the canonical basis
of R10, and we let

a1 := e1 + . . . + e6, a2 := e1 + e7 + e8, a3 := e2 + e9 + e10

be vectors inR10. Elementary geometry yields T a(x0) ·a1 = 4π and T a(x0) ·a j =
2π for j = 2, 3 as well as T a(x) · a1 � 4π and T a(x) · a j � 2π for j = 2, 3
for each x ∈ R

3×8. Indeed, the sum of the interior angles in a hexagon is always
smaller or equal to 4π and exactly 4π if the hexagon is planar. Likewise one argues
for a triple junction.

Lemma 7.1. (Properties of T ). The mapping T is smooth in a neighborhood of x0.
There is a constant ckink > 0 such that:

1. Ker(DT (x0)) = span(Vdegen ∪ Vbad), dim(Ker(DT (x0))) = 11,

2. dim(Ker(DT a(x0))) = 17,

3. (vT D2T a(x0)v) · a j � 0 for j = 1, 2, 3, for all v ∈ R
3×8,

4.
∑3

j=1
(vT D2T a(x0)v) · a j � −ckink|v − vdegen|2 for all

v ∈ span(Vdegen ∪ Vbad),

where vdegen is the orthogonal projection of v onto span(Vdegen).
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Proof. First, to see Property 1, we note that span(Vdegen ∪ Vbad) is a subset of
Ker(DT (x0)) since each vector in Vdegen ∪Vbad does not change bond lengths and
angles to first order. On the other hand, each vector inVgood changes bond lengths or
angles to first order and is therefore not contained in the kernel of DT (x0). Indeed,
the first six vectors ofVgood are directions of perturbations that do not change angles
to first order, but bond lengths. Vectors u7, . . . , u11 are perturbations that do not
change bond lengths in first order, but angles. Vectors u12 and u13 are in-plane
displacements of a single atom and change both bond lengths and angles to first
order. More precisely, for the changes of bond lengths we get

DT b(x0)u1 ‖ (1, 1, 1, 1, 1, 1, −1, −1), DT b(x0)u2 ‖ (0, −1, 1, 1, 0, 0, 0, 0),

DT b(x0)u3 ‖ (1, 1, 0, 0, 0, 0, 0, −1), DT b(x0)u4 ‖ (2,−2, 2, 4, −2, 0, 0, −1),

DT b(x0)u5 ‖ (0, 0, 0, 0, 0, 0, 1, 0), DT b(x0)u6 ‖ (0, 0, 0, 0, 0, 0, 1, 1),

DT b(x0)u12 ‖ (0, 0, −1, 0, 0, −1, 2, 0), DT b(x0)u13 ‖ (0, 0, −1, 0, 0, 1, 0, 0),

where w1 ‖w2 indicates that w1 and w2 are linearly dependent. Likewise, for the
changes of angles we have

DT a(x0)u7 ‖ (4, 0,−3, 1, 1,−3,−2,−2, 0, 0), DT a(x0)u8 ‖ (−1, 1, 2,−2, 0, 0, 1, 0,−1, 0),

DT a(x0)u9 ‖ (−2,−2, 1, 1, 1, 1, 1, 1, 1, 1), DT a(x0)u10 ‖ (0, 0, 0, 0, 0, 0, 0, 0,−1, 1),

DT a(x0)u11 ‖ (0, 0, 0, 0, 0, 0,−1, 1,−1, 1), DT a(x0)u12 ‖ (2, 0,−1, 0, 0,−1,−1,−1, 0, 0),

DT a(x0)u13 ‖ (0, 0, 0, 0, 0, 0, 1,−1, 0, 0).

(We prefer not to give details of the computation, but rather refer the reader to
Figs. 9, 10 and 11 where the situation of the different directions is indicated.).
It is elementary to check that the vectors DT (x0)ui , i = 1, . . . , 13, are linearly
independent which concludes the proof of Property 1 by dimension counting.

Since dim(Ker(DT (x0))) = 11 and in Vgood only the first six vectors do not
change angles to first order, Property 2 holds.

Property 3 follows from the fact that the mapping t �→ T a(x0 + tv) · a j has a
local maximum at t = 0 for j = 1, 2, 3 and for all v ∈ R

3×8 as noticed before the
statement of the lemma.

To see Property 4,wefirst consider the special case v ∈ Vbad. In this situation the
property follows from an elementary computation, which we detail only in the case
v = (e3|0| . . . |0). In this case, after some calculations, we obtain (T a(x0+ tv))i =
arccos(−1/2 + 3t2/2) + O(t3) � 2π/3 − ct2 for some c > 0 for i = 1, 7, 8, i.e.,
for the angles at the triple junction at point x1. Using also Property 1, this indeed
implies (vT D2T a(x0)v) · a2 � −c, i.e., by a perturbation out of the plane the
sum of the angles is reduced to second order. For the other triple junction and
the interior angles of the hexagon we argue analogously. This shows the property
for perturbations in the directions Vbad. Likewise, we proceed for directions in
span(Vbad).

Now consider the general case v = vtrans + vrot + vbad ∈ span(Vdegen ∪ Vbad)

for vtrans ∈ span(Vtrans), vrot ∈ span(Vrot), and vbad ∈ span(Vbad).
First, since T (x + w) = T (x) for all x ∈ R

3×8 and all w ∈ Vtrans, we get
DT (x)w = 0 andwT D2T (x)w′ = 0 for allw ∈ span(Vtrans),w′ ∈ R

3×8, and x ∈
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R
3×8. Consequently, we deduce vT D2T a(x0)v = (vrot +vbad)

T D2T a(x0)(vrot +
vbad).

Moreover, let A ∈ R
3×3
skew be such that vrot = Ax0 and observe that there is

a rotation Rt ∈ SO(3) such that x0t := Rt (x0 + tvrot) is contained in the plane
R
2 × {0} and one has |Rt − (I− t A)| = O(|t A|2), cf. [35, (3.20)]. (Here I ∈ R

3×3

denotes the identity matrix.) Consequently, we get |x0 − x0t | = O(|t A|2). This
implies

T a(x0 + t (vrot + vbad)) = T a(
Rt (x0 + t (vrot + vbad))

) = T a(x0t + t Rtvbad)

= T a(x0 + tvbad + t2w + O(t3))

for some w ∈ R
3×8 with |w| � c|A|2 and the property that the third component

of each vector in w is zero. A Taylor expansion and Property 1 of the lemma then
yield

T a(x0 + t (vrot + vbad)) = T a(x0) + t2DT a(x0)w

+ t2

2
vT
badD2T a(x0)vbad + O(t3).

As the sum of the angles in the hexagon and at the triple junctions remains invariant
under perturbation w, we then deduce

3∑

j=1

T a(x0 + t (vrot + vbad)) · a j = 8π +
3∑

j=1

t2

2
vT
badD2T a(x0)vbad · a j + O(t3).

The desired result now follows from the fact that
∑3

j=1 v
T
badD2T a(x0)vbad · a j �

−c|vbad|2 has already been established in the first part of the proof, where we also
note that |vbad| � c|v − vdegen| with vdegen being the orthogonal projection of v
onto span(Vdegen). 
�

For a later purposewe also introduce themapping Ẽ : [0, 2π ]10 × [0,+∞)8 →
R defined by

Ẽ( y) =
10∑

i=1

κa
i v3(yi ) +

8∑

i=1

κb
i v2(yi+10)

for y ∈ [0, 2π ]10 × [0,+∞)8. Note that Ecell(x) = Ẽ(T (x)) for all x ∈ R
3×8.

Lemma 7.2. (Properties of Ẽ). The mapping Ẽ is smooth and there are constants
0 < cE,1 < cE,2 and �0 ∈ N depending only on v2 and v3 such that for � � �0

1. (DẼ(T (x�
kink)))i = 0 for i = 11, . . . , 18,

2. − cE,2�
−2 � (DẼ(T (x�

kink)))i � −cE,1�
−2 for i = 1, . . . , 10,

3. cE,1 � (D2 Ẽ(T (x�
kink)))i i � cE,2 for i = 1, . . . , 18, (D2 Ẽ(T (x�

kink)))i j

= 0 for i �= j.
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Proof. Property 1 follows from the fact that T b(x�
kink) = (1, . . . , 1) ∈ R

8 and
v′
2(1) = 0. To see Property 2, we apply Lemma 6.1 to find (T a(x�

kink))i ∈ (2π/3−
c2�−2, 2π/3−c1�−2) for i = 1, . . . , 10 and the fact that v3 ∈ C2 with v′

3(2π/3) =
0, v′′

3 (2π/3) > 0. Likewise, Property 3 follows from v′′
2 (1) > 0 and v′′

3 (2π/3) > 0,
respectively. 
�

7.2. Convexity of the Cell Energy

The following theorem gives a first property of the Hessian of Ecell at the kink
configuration x�

kink.

Theorem 7.3. (Convexity of Ecell in good directions). Let 0 < r < 1. Then there
exist �0 ∈ N and a constant c > 0 depending only on v2, v3, and r such that for
� � �0 and each v ∈ R

3×8 with

|v · w| � r |w||v| for all w ∈ span(Vdegen ∪ Vbad)

one has

vT D2Ecell(x�
kink)v � c|v|2.

Proof. First, by the regularity of the mapping T , Property 1 in Lemma 7.1, and the
fact that x�

kink → x0 for � → ∞, we find �0 ∈ N sufficiently large such that for
� � �0 the kernel of DT (x�

kink) has dimension at most 11. Then we find universal
constants 0 < c1 < c2 such that for all � � �0, possibly for a larger �0, we have

c1|v| � |DT (x�
kink)v| � c2|v| for all v ∈ span(Vdegen ∪ Vbad)

⊥,

|DT (x�
kink)v| � c2|v|�−1 for all v ∈ span(Vdegen ∪ Vbad).

(57)

For the second property we used (55). Let be given v ∈ R
3×8 with |v · w| �

r |w||v| for all w ∈ span(Vdegen ∪Vbad). The vector can be written as v = vgood +
v⊥
good with two orthogonal vectors vgood, v⊥

good satisfying v⊥
good ∈ span(Vdegen ∪

Vbad) and |vgood| �
√
1 − r2|v|. Consider the mapping fv : R → R defined by

fv(t) = Ẽ(T (x�
kink + tv)). We compute

f ′
v(t) = DẼ(T (x�

kink + tv))
(
DT (x�

kink + tv)v
)
,

f ′′
v (t) = (

DT (x�
kink + tv)v

)T
D2 Ẽ(T (x�

kink + tv))
(
DT (x�

kink + tv)v
)

+ DẼ(T ((x�
kink + tv))

(
vT D2T (x�

kink + tv)v
)
. (58)

We further observe that by Lemma 7.2, Property 1 and 2, there is a constant c3 only
depending on cE,2 such that

|DẼ(T (x�
kink))

(
vT D2T (x�

kink)v
)| � c3|v|2�−2. (59)

Then collecting (57)–(59) and using Property 3 of Lemma 7.2 we derive

vT D2Ecell(x�
kink)v = f ′′

v (0)

� cE,1c21|vgood|2 − 2cE,2c22|vgood||v⊥
good|�−1 − c3|v|2�−2

� |v|2(cE,1c21(1 − r2) − 2cE,2c22�
−1 − c3�

−2).
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For �0 large enough (depending also on r ) this implies the assertion of the lemma
for � � �0. 
�

To investigate the convexity properties in the directions Vbad, we need some
further preparations. Recall the reflections introduced in (15). The following lemma
is a consequence of Theorem 7.3 and shows that variations in the directions Vgood
decrease the energy only to higher order.

Lemma 7.4. (Energy decrease in good directions). There exist �0 ∈ N and a
constant C > 0 depending only on v2 and v3 such that for � � �0 and each
v ∈ span(Vgood)

DẼ(T (x�
kink))

(
DT (x�

kink)v
)

� −C |v|�−3.

Proof. Let v ∈ span(Vgood) be given and define a perturbation of v by

v′ = v + s�−1|v|(0, 0, e3, e3, e3, e3, 0, 0) ∈ R
3×8 (60)

for some universal s > 0 to be specified below. (Note that the direction v′ − v

increases the third components of the points x3, . . . , x6 of the basic cell). By
Property 1 and 2 of Lemma 7.2 and the fact that |v − v′| � 4s|v|�−1 it clearly
suffices to show

DẼ(T (x�
kink))

(
DT (x�

kink)v
′) � 0. (61)

To this end, we will show that

Ẽ(T (x�
kink + tv′)) � Ẽ(T (x�

kink)) (62)

for all t > 0 small. Then (61) follows by taking the limit t → 0.
Consider x = x�

kink + tv′ for t > 0 small. Possibly after applying a rigid
motion we can assume that the second and third components of (x1 + x7)/2 and
(x2 + x8)/2 are zero, the points x1, x2, x7, x8 lie in the plane R

2 × {0} and that
the points x3, x4, x5, x6 lie in a plane parallel to R

2 × {0}. (Recall that v induces
an in-plane perturbation, i.e., the third component of each vector in v is zero.) We
replace x by a symmetrized version as follows.

Define xS1 by (16) and note that Ecell(xS1) = Ecell(x). Moreover, it is ele-
mentary to see that the third component of each vector in w1 := xS1 − x is
zero. Consequently, w1 is perpendicular to Vbad, Vtrans, and the rotations v2, v3.
Clearly, as the reflection S1 leaves the points (x1 + x7)/2 and (x2 + x8)/2
unchanged, we also have that w1 is not parallel to the rotation v1. Consequently,
by Theorem 7.3 and a continuity argument with t small enough, the mapping
t ′ �→ Ecell(x + t ′w1) is convex on [0, 1]. This implies for x′ = 1

2 (x + xS1) (see
(17a)) that Ecell(x′) � 1

2 (Ecell(x) + Ecell(xS1)) = Ecell(x).
Likewise, we consider x′

S2
:= x�

kink+S2(x′−x�
kink) and note that Ecell(x′

S2
) =

Ecell(x′). Similarly as before, the vector w2 := x′
S2

− x′ is perpendicular to the
vectors Vbad and not parallel to Vdegen. Using Theorem 7.3 we get Ecell(S(x)) �
Ecell(x′) � Ecell(x) for S(x) = 1

2 (x
′ + x′

S2
) (see (17b)).
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By this symmetrization procedure we get that the eight points S(x) are con-
tained in two kinked planes (similarly as x�

kink). We denote the incidence angle of
the two planes by γ � π and note that γ � γ� if the constant s > 0 in (60) is
chosen sufficiently large. The bond lengths satisfy b1 = b2, b3 = b4 = b5 = b6
and b7 = b8. For the angles ϕ1 = ϕ2 and ϕ3 = . . . = ϕ10 holds.

Recalling (6) and (56) we find α in a small neighborhood of αus
� such that

Ecell(S(x)) � −3 + 4v3(α) + 2v3
(
2 arcsin(sin α sin(γ /2))

)
.

Now taking γ � γ� into account and recalling that αus
� is optimal angle from

Proposition 3.1, we find

Ecell(x) � Ecell(S(x)) � −3 + 4v3(α) + 2v3
(
2 arcsin(sin α sin(γ�/2))

)

� −3 + 4v3(α
us
� ) + 2v3

(
2 arcsin(sin αus

� sin(γ�/2))
) = Ecell(x�

kink),

where the last step follows from (54). This shows (62) and concludes the proof. 
�
The next lemma shows that a perturbation of the angles, which does not change

the sum of the angles, essentially does not decrease the energy to first order.

Lemma 7.5. There exist �0 ∈ N and a constant C > 0 depending only on v2 and
v3 such that for � � �0 and each w = (w1, . . . , w10) ∈ R

10 with w · a j = 0 for
j = 1, 2, 3 we have

10∑

i=1

(
DẼ(T (x�

kink))
)

iwi � −C |w|�−3.

Proof. FromProperty 2 of Lemma 7.1we have that the image of the affinemapping
DT a(x0) has dimension 7.Moreover, we have (DT a(x0)v)·a j = 0 for j = 1, 2, 3
and all v ∈ R

3×8. Indeed, write v = vgood + vbad with vgood ∈ span(Vgood) and
vbad ∈ span(Vdegen ∪ Vbad). Note that DT a(x0)v = DT a(x0)vgood by Property 1
of Lemma 7.1. For each t ∈ R the eight points x0 + tvgood are contained in the
plane R2 × {0}. This implies T a(x0 + tvgood) · a j ∈ {2π, 4π} for all t ∈ R and
j = 1, 2, 3, which gives (DT a(x0)vgood) · a j = 0 for j = 1, 2, 3, as desired.

The dimension of the image of DT a(x0) togetherwith the fact thatw·a j = 0 for
j = 1, 2, 3 show that there exists a vector v′ ∈ span(Vgood) such that DT a(x0)v′ =
w. By applying Lemma 7.4 we get

DẼ(T (x�
kink))

(
DT (x�

kink)v
′) � −C ′|v′|�−3,

where C ′ is the constant from Lemma 7.4. By a continuity argument and (55) we
get |DT (x�

kink) − DT (x0)| � c�−1. This together with Property 2 of Lemma 7.2
shows

DẼ(T (x�
kink))

(
DT (x0)v′) � −C |v′|�−3

for C = C(C ′, cE,2, c). The fact that DT a(x0)v′ = w, |v′| � c|w| for a con-
stant c > 0 (depending on DT a(x0)) and Property 1 of Lemma 7.2 conclude the
proof. 
�
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We now improve Theorem 7.3 and prove convexity of Ecell at the kink config-
uration x�

kink.

Theorem 7.6. (Convexity of Ecell). Let 0 < r < 1. Then there exist �0 ∈ N and
a constant c > 0 depending only on v2, v3, and r such that for � � �0 and each
v ∈ R

3×8 with

|v · w| � r |w||v| for all w ∈ span(Vdegen)

one has

vT D2Ecell(x�
kink)v � c|v|2�−2.

Proof. As in the proof of Theorem 7.3 we consider the mapping fv as defined
before (58). The goal is to show f ′′

v (0) � c|v|2�−2. We write v = vdegen + vbad +
vgood with three orthogonal vectors, where vdegen + vbad ∈ span(Vdegen ∪ Vbad),
vdegen ∈ span(Vdegen), vbad ∈ span(Vdegen)

⊥, and vgood ∈ span(Vdegen ∪ Vbad)
⊥.

By assumption we obtain after a short calculation

|vgood|2 + |vbad|2 � (1 − r2)|v|2. (63)

Set c∗ := max{2c2/c1, (8c3/(cE,1c21))
1/2} with c1, c2 from (57), c3 from (59), and

cE,1 from Lemma 7.2. First, we suppose |vgood| � c∗|v|�−1. We use (57) and
vgood ∈ span(Vdegen ∪ Vbad)

⊥ to find

|DT (x�
kink)v| � c1|vgood| − c2|v|�−1 � c1

2
|vgood|.

Then by Property 3 of Lemma 7.2, (58), and (59) we get

f ′′
v (0) = vT D2Ecell(xkink)v �

(
DT (x�

kink)v
)T

D2 Ẽ(T (x�
kink))

(
DT (x�

kink)v
)

− c3|v|2�−2

� cE,1|DT (x�
kink)v|2 − c3|v|2�−2 � cE,1c21

4
|vgood|2 − c3|v|2�−2

� cE,1c21c2∗
8�2

|v|2.

Now suppose |vgood| < c∗|v|�−1. Since the first term of f ′′
v (0) given in (58) is

nonnegative, it suffices to consider the second term of f ′′
v (0). First, using Property

1 of Lemma 7.2 we have

18∑

i=11

(
DẼ(T (x�

kink)
)

i

(
vT D2T (x�

kink)v
)

i = 0. (64)

Define for brevity w = (vdegen + vbad)
T D2T a(x�

kink)(vdegen + vbad) ∈ R
10 and

note that |vgood| < c∗�−1|v| implies
∣∣∣(vT D2T a(x�

kink)v)i − wi

∣∣∣ � c4|v|2�−1, i = 1, . . . , 10 (65)
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for c4 depending on c∗. By Properties 3 and 4 in Lemma 7.1, (55), and a continuity
argument we obtain constants 0 < c5 < c6 (depending on ckink) such that for �

sufficiently large

w · a j � c6|v|2�−1, j = 1, 2, 3,
3∑

j=1

w · a j � −c5|vbad|2 + c6|v|2�−1.

Consequently, we can find a decomposition w = w′ + w′′ with the property

w′ · a j = 0, j = 1, 2, 3, |w′| � c7|v|2,
10∑

i=1

w′′
i � −c5|vbad|2 + c6|v|2�−1, w′′

i � c6|v|2�−1, i = 1, . . . , 10

for a universal constant c7 > 0. (Choose, e.g.,w′
3 = w3−w ·a1,w′

7 = w7−w ·a2,
w′
9 = w9 − w · a3, and w′

i = wi else.) Let I = {i = 1, . . . , 10| w′′
i � 0} and note∑

i∈I w
′′
i �

∑10
i=1w

′′
i . Then using Property 2 of Lemma 7.2 and Lemma 7.5 we

derive

10∑

i=1

(
DẼ(T (x�

kink)
)

iwi

=
10∑

i=1

(
DẼ(T (x�

kink)
)

iw
′
i +

∑

i∈I

(
DẼ(T (x�

kink)
)

iw
′′
i +

∑

i /∈I

(
DẼ(T (x�

kink)
)

iw
′′
i

� −C |w′|�−3 + cE,1�
−2

∑

i∈I

−w′′
i − 10cE,2c6|v|2�−3

� −Cc7|v|2�−3 + cE,1�
−2(c5|vbad|2 − c6|v|2�−1) − 10cE,2c6|v|2�−3,

where C is the constant from Lemma 7.5. Moreover, again using Lemma 7.2 and
(65) we get

10∑

i=1

∣∣∣
(
DẼ(T (x�

kink)
)

i

(
wi − (

vT D2T (x�
kink)v

)
i

)∣∣∣ � 10cE,2c4|v|2�−3.

We then use (58), (64), and the previous two estimates to find

f ′′
v (0) = vT D2Ecell(xkink)v � DẼ(T (x�

kink))
(
vT D2T (x�

kink)v
)

� cE,1c5|vbad|2�−2 − c′|v|2�−3

for c′ = c′(C, cE,1, cE,2, c4, c5, c6, c7) large enough. Since |vgood| < c∗|v|�−1, we
get |vbad|2 � 1

2 (1 − r2)|v|2 for �0 large enough by (63). Then f ′′
v (0) � c�−2|v|2

follows when we choose �0 ∈ N sufficiently large (depending also on r ). 
�
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7.3. Proof of Theorem 4.4

As a last preparation for the proof of Theorem 4.4, we need to investigate how
the angles between planes behave under reflection of a configuration (see (15)–
(17)). Let a center zi, j,k be given and, as before, denote by x ∈ R

3×8 the atoms of
the corresponding cell. We introduce the angles between the planes as in Section 4.
By θl(x) we denote the angle between the planes {x1x3x4} and {x1x6x5}. By θr (x)

we denote the angle between the planes {x3x4x2} and {x2x5x6}. Moreover, we let
θduall (x) = θ(x1) and θdualr (x) = θ(x2) with θ(xi ), i = 1, 2, as defined in (19).
Recall also the definition of �(zi, j,k) in (18).

Lemma 7.7. (Symmetry defect controls angle defect). There exist a universal con-
stant C > 0 and �0 ∈ N, and for each � � �0 there exists η� > 0 such that for all
F̃ ∈ Pη�

(μ), μ ∈ (2.6, 3.1), and all centers zi, j,k we have

θl(S(x)) + θr (S(x)) � θl(x) + θr (x) + C�(zi, j,k),

θduall (S(x)) + θdualr (S(x)) � θduall (x) + θdualr (x) + C�(zi, j,k),

where x ∈ R
3×8 denotes the position of the atoms in the cell with center zi, j,k and

S(x) as in (17b).

We postpone the proof of this lemma to the end of the section and now continue
with the proof of Theorem 4.4.

Proof of Theorem 4.4. Let F̃ ∈ Pη�
(μ) be a given configuration, where η� is

specified below, and let x ∈ R
3×8 be the points of one cell as introduced inSection 4.

As usual, possibly after a rigid motion we can assume that the second and third
components of (x1 + x7)/2, (x2 + x8)/2 are zero and the points x4, x5 lie in a plane
parallel to R

2 × {0}. We now perform a symmetrization argument as in the proof
of Lemma 7.4.

We define xS1 by (16). Clearly the vector w1 := xS1 − x is perpendicular to
Vtrans. Moreover, we have |w1 · vi | � r |w1||vi | for i = 1, 2, 3 for a universal
constant r ∈ (0, 1). In particular, r is independent of the perturbation x. Indeed,
for v1 and v2 this follows from the fact that the points (x1 + x7)/2 and (x2 + x8)/2
are left unchanged. For v3 it follows from the assumption that the points x4, x5 lie
in a plane parallel to R2 × {0}.

Consequently, by Theorem 7.6, a continuity argument, and the definition of the
the perturbations Pη�

(μ), the mapping t �→ Ecell(x + tw1) is strictly convex on
[0, 1] if η� is chosen small enough (independent of x). This implies for x′ = 1

2 (x+
xS1) (see (17a)) that Ecell(x′)+ c�−2|w1|2 � 1

2 (Ecell(x)+ Ecell(xS1)) = Ecell(x),
where c only depends on the constant from Theorem 7.6.

Likewise,we consider x′
S2

:= x�
kink+S2(x′−x�

kink) and, similarly as before, the
vector w2 := x′

S2
−x′ is perpendicular toVtrans and satisfies |w2·vi | � r |w2||vi | for

i = 1, 2, 3 for a universal constant r ∈ (0, 1). Indeed, for v1 and v2 this follows as
before and for v3 it suffices to note that also for the configuration x′ = (x ′

1, . . . , x ′
8)

the points x ′
4, x ′

5 lie in a plane parallel to R
2 × {0}. Using again Theorem 7.6 we

get Ecell(S(x)) + c�−2|w2|2 � Ecell(x′) with S(x) from (17b). Possibly passing
to a smaller constant c > 0 (not relabeled) and using (18), we observe
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Ecell(S(x)) + c�−2�(zi, j,k) � Ecell(x).

By this symmetrization procedure we get that the eight points S(x) satisfy the
symmetry conditions stated in (20). In particular, μ̃ from (20) is here equal to
|zduali, j,k − zduali, j−1,k |, the latter quantity being unchanged after symmetrization since

the second and third component of zduali, j,k, zduali, j−1,k are assumed to be zero. Choose

M� and η� small enough such that |λ1 − 1| + |λ3 − 1| � �−4, and |γ1 − γ2| � �−2

with λ1, λ3, γ1, γ2 from (20). This choice of M� is possible thanks to Property 2 in
Proposition 3.4. Consequently, by Lemma 4.2 we obtain

Ecell(x) = Ecell(zi, j,k) � E sym
μ̃,γ1,γ2

(λ2, α1, α2) + c�−2�(zi, j,k) − c0�
−4(γ1 − γ2)

2.

Using Property 2 of Proposition 4.3 and (24) we get for �0 sufficiently large

Ecell(zi, j,k) � Ered(μ̃, γ̄ , γ̄ ) + c�−2�(zi, j,k), (66)

where γ̄ = (γ1 + γ2)/2. By Lemma 7.7 we obtain γ̄ � θ̄ (zi, j,k) + C�(zi, j,k),
where θ̄ (zi, j,k) = (

θl(zi, j,k) + θr (zi, j,k) + θl(zduali, j,k) + θr (zduali, j−1,k)
)
/4. Thus, by

the monotonicity of the reduced energy (see Property 3 of Proposition 4.3) and a
Taylor expansion for the mapping γ �→ Ered(μ̃, γ, γ ) we get

Ered(μ̃, γ̄ , γ̄ ) � Ered

(
μ̃, θ̄ (zi, j,k), θ̄ (zi, j,k)

)
− C�−3�(zi, j,k) + O

(
(�(zi, j,k))

2)

� Ered

(
μ̃, θ̄ (zi, j,k), θ̄ (zi, j,k)

)
− 2C�−3�(zi, j,k) (67)

for C > 0 large enough depending on v3, where the last step follows for η� suf-
ficiently small. The assertion of the theorem now follows for �0 sufficiently large
and � � �0 from (66), (67), and the fact that μ̃ = |zduali, j,k − zduali, j−1,k |. 
�

Finally, we give the proof of Lemma 7.7.

Proof of Lemma 7.7. The proof is mainly based on a careful Taylor expansion for
the angles under the symmetrization of the atomic positions in the cell, which
is induced by the reflections (15). In particular, the argumentation for the angles
θl , θr and the dual angles θduall , θdualr , respectively, is very similar. Therefore, we
concentrate on the first inequality in the following.

Let the configuration x be given for a center zi, j,k . Let nl
1(x) and nl

2(x) be unit
normal vectors of the planes {x1x3x4} and {x1x6x5}. Likewise, let nr

1(x) and nr
2(x)

be normal vectors of the planes {x2x4x3} and {x2x5x6}. Let nl(x) and nr (x) be unit
vectors perpendicular to nl

1(x), nl
2(x) and nr

1(x), nr
2(x), respectively.

Let sl
1(x) be a unit vector perpendicular to nl(x), nl

1(x) and let sl
2(x) be a unit

vector perpendicular to nl(x), nl
2(x) such that sl

1(x) · sl
2(x) is near −1. We define

sr
1(x), sr

2(x) in a similar fashion. Note that these objects can be chosen to depend
smoothly with respect to x and that the angle in (19) can be expressed as

θk(x) = arccos
(
sk
1 (x) · sk

2 (x)
)

for k = l, r.

We also introduce the mapping

g(x) = arccos
(
sl
1(x) · sl

2(x)
) + arccos

(
sr
1(x) · sr

2(x)
)
. (68)
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Step I. Recall from the definition in (17), (18) that there are two vectors w1,w2 ∈
R
3×8 such that the symmetrized configurations can be expressed as x′ = x + w1

and S(x) = x′ + w2 with

|w1|2 + |w2|2 = �(zi, j,k) (69)

for a universal constant C > 0. The goal will be to investigate the Hessian of g and
to show

wT
1 D2g(x′)w1 + wT

2 D2g(S(x))w2 � −C(|w1|2 + |w2|2) (70)

for C > 0 universal. We defer the proof of (70) and first show that the assertion
follows from it. We consider the mappings

f1(t) = g(x′ + tw1), f2(t) = g(S(x) + tw2) for t ∈ [−1, 1] (71)

and observe that f1(−1) = g(x), f2(−1) = g(x′), f1(1) = g(xS1), f2(1) =
g(x′

S2
), where xS1 = x�

kink + S1(x − x�
kink) and x′

S2
= x�

kink + S2(x′ − x�
kink),

see (15)–(16). Moreover, due to the fact that the symmetrized configurations are
obtained by applying the reflections S1, S2, see (15), we get that f1, f2 are smooth,
even functions, in particular, f ′

1(0) = f ′
2(0) = 0. Thus, by a Taylor expansion we

find ξ ∈ (−1, 0) such that

g(x) = f1(−1) = f1(0) − f ′
1(0) + 1

2
f ′′
1 (0) − 1

6
f ′′′
1 (ξ) � g(x′)

+1

2
wT
1 D2g(x′)w1 − C |w1|3,

where C > 0 is a universal constant. Indeed, the constant is independent of x as all
admissible x lie in a compact neighborhood of x�

kink where g is smooth. Applying
Taylor once more, we get

g(x) � g(S(x)) + 1

2
wT

1 D2g(x′)w1 + 1

2
wT
2 D2g(S(x))w2 − C |w1|3 − C |w2|3.

Then we conclude for η� sufficiently small (and thus |w1|, |w2| small) by (69)–(70)

g(x) � g(S(x)) − C(|w1|2 + |w2|2) = g(S(x)) − C�(zi, j,k).

Recalling (68) we obtain the assertion of the lemma.
Step II. It remains to confirm (70). We first concern ourselves with the Hessian

of the mapping f1 as defined in (71). For t ∈ [−1, 1] we let uk
j (t) = sk

j (x
′ + tw1)

for j = 1, 2 and k = l, r . By a Taylor expansion we obtain

uk
j (t) = sk

j (x
′) + (

v
1,k
j + w

1,k
j

)
t + (

v
2,k
j + w

2,k
j

)
t2 + O(|w1|3t3)

with |uk
j (t)| = 1, (72)

where v
1,k
j , v

2,k
j are perpendicular to nk(x′) and w

1,k
j , w

2,k
j are parallel to nk(x′)

such that
∑

j=1,2
∑

k=l,r (|v1,kj | + |w1,k
j |) � C |w1| and ∑

j=1,2
∑

k=l,r (|v2,kj | +
|w2,k

j |) � C |w1|2. (The constant C is again universal as all admissible x lie in a
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compact set and the mappings sk
j are smooth.) For j = 1, 2 and k = l, r , the two

vectors w
1,k
j and w

2,k
j are orthogonal to sk

j (x
′), and taking the first and the second

derivative of the constraint |sk
j (x

′ + tw1)|2 = |uk
j (t)|2 = 1 with respect to t yields

by an elementary computation

(a) v
1,k
j · sk

j (x
′) = 0, (b) |v1,kj |2 + |w1,k

j |2 + 2sk
j (x

′) · v
2,k
j = 0. (73)

Then we compute by (71) that

f1(t) =
∑

k=l,r

arccos
(

sk
1 (x

′) · sk
2 (x

′) + (
v
1,k
1 · sk

2 (x
′) + v

1,k
2 · sk

1 (x
′)
)
t

+ (
v
2,k
1 · sk

2 (x
′) + v

2,k
2 · sk

1 (x
′) + v

1,k
1 · v

1,k
2 + w

1,k
1 · w

1,k
2

)
t2

+ O(|w1|3t3)
)
.

A Taylor expansion and the fact that f1 is even yield f1(t)− f1(0) = f ′′
1 (0)t2/2+

O(|w1|3t3). More precisely, we get recalling sk
1 (x

′) · sk
2 (x

′) = cos(θk(x′)) for
k = l, r

f1(t) − f1(0) =
∑

k=l,r

arccos′(cos(θk(x′)))
(
v
2,k
1 · sk

2 (x
′) + v

2,k
2 · sk

1 (x
′)

+ v
1,k
1 · v

1,k
2 + w

1,k
1 · w

1,k
2

)
t2

+
∑

k=l,r

1

2
arccos′′(cos(θk(x′)))

(
v
1,k
1 · sk

2 (x
′)

+ v
1,k
2 · sk

1 (x
′)
)2

t2 + O(|w1|3t3). (74)

We get |v1,k1 · sk
2 (x

′)| = |v1,k1 | sin(θk(x′)) by (73)(a). This together with (73)(b) and
|v2,k1 | � C |w1|2 yields, for k = l, r ,

v
2,k
1 · sk

2 (x
′) =

(
(v

2,k
1 · sk

1 (x
′))sk

1 (x
′) + |v1,k1 |−2(v

2,k
1 · v

1,k
1 )v

1,k
1

)
· sk

2 (x
′)

= −1

2
(|v1,k1 |2 + |w1,k

1 |2) cos(θk(x′))

+ |v1,k1 |−2(v
2,k
1 · v

1,k
1 )(v

1,k
1 · sk

2 (x
′))

� −1

2
(|v1,k1 |2 + |w1,k

1 |2) cos(θk(x′)) + C sin(θk(x′))|w1|2,

and repeating the same calculation for v
2,k
2 , we derive, for k = l, r ,

(
v
2,k
1 · sk

2 (x
′) + v

2,k
2 · sk

1 (x
′)
)

�
∑

j=1,2

−1

2
(|v1,kj |2 + |w1,k

j |2) cos(θk(x′))

+ C sin(θk(x′))|w1|2. (75)

Note that v
1,k
1 · v

1,k
2 = |v1,k1 ||v1,k2 |q cos(θk(x′)) for q ∈ {−1, 1} by (73)(a). An

elementary computation then yields
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(
v
1,k
1 · sk

2 (x
′) + v

1,k
2 · sk

1 (x
′)
)2 = sin2(θk(x′))(|v1,k1 | − q|v1,k2 |)2. (76)

Combining (74)–(76) and using that arccos′(x) = −(1 − x2)−1/2 and that
arccos′′(x) = −x(1 − x2)−3/2, we find

f1(t) − f1(0)

�
∑

k=l,r

− sin(θk(x′))−1

⎛

⎝
∑

j=1,2

−1

2
(|v1,kj |2 + |w1,k

j |2) cos(θk(x′))

+C sin(θk(x′))|w1|2

+w
1,k
1 · w

1,k
2 + |v1,k1 ||v1,k2 |q cos(θk(x′))

⎞

⎠ t2

− 1

2
cos(θk(x′))(1 − cos2(θk(x′)))−3/2 sin2(θk(x′))(|v1,k1 | − q|v1,k2 |)2t2

+ O(|w1|3t3)

=
∑

k=l,r

− sin(θk(x′))−1

⎛

⎝
∑

j=1,2

−1

2
|w1,k

j |2 cos(θk(x′)) + w
1,k
1 · w

1,k
2

⎞

⎠ t2

− C |w1|2t2 + O(|w1|3t3)

�
∑

k=l,r

− sin(θk(x′))−1

⎛

⎝
∑

j=1,2

1

2
|w1,k

j |2 + w
1,k
1 · w

1,k
2

⎞

⎠ t2

− C |w1|2t2 + O(|w1|3t3). (77)

In the last step we used that cos θ � −1. Before we proceed let us note that the
same computation can be repeated for the second mapping f2 defined in (71):
considering an expansion as in (72) with sk

j (S(x)) in place of sk
j (x

′) and indicating
the vectors by v̂

i,k
j and ŵ

i,k
j (perpendicular and parallel to nk(S(x)), respectively)

we also obtain

f2(t) − f2(0)

�
∑

k=l,r

− 1

sin(θk(S(x)))

⎛

⎝
∑

j=1,2

1

2
|ŵ1,k

j |2 + ŵ
1,k
1 · ŵ

1,k
2

⎞

⎠ t2

− C |w2|2t2 + O(|w2|3t3). (78)

Step III. We now investigate (77)–(78) in more detail. Consider first f1. Due
to the symmetry of the setting induced by the reflection S1 (recall (15)) we find
uk
1(t) · nk(x′) = uk

2(−t) · nk(x′) for k = l, r . In particular, taking the derivative in

t and using (73)(a), this implies w
1,k
1 = −w

1,k
2 . Then by (77) we obtain

f1(t) − f1(0) � −C |w1|2t2 + O(|w1|3t3),



Characterization of Optimal Carbon Nanotubes 513

and therefore taking t → 0 we get wT
1 D2g(x′)w1 � −C |w1|2, which establishes

the first part of (70). Now consider f2. Notice that one can show ŵ
1,k
1 = ŵ

1,k
2 for

k = l, r by symmetry, i.e., we cannot repeat the same argument as for f1. However,
in this case we can show

|ŵ1,l
1 | + |ŵ1,r

1 | + |ŵ1,l
2 | + |ŵ1,r

2 | � C |w2|�−1. (79)

Once this is proved, the assertion follows. Indeed, due to symmetry of S(x) we
observe that θl(S(x)) = θr (S(x)), denoted by ϕ in the following. Recalling (54)
and the fact that S(x) is near x�

kink, we get ϕ � π − c�−1 and sin(ϕ) � c�−1 for
some c > 0. Then by (78) we have

f2(t) − f2(0) � −C |w2|2t2 − C� · |w2|2�−2t2 + O(|w2|3t3),

which shows the second part of (70).
Let us finally show (79). Recall the definition of the unit normal vectors

nk
1(x), nk

2(x), and nk(x) introduced before (68) for k = l, r . Observe that by
symmetry reasons we have nk(S(x)) = ±e1 and |nk

j (S(x)) · e2| = sin(π−ϕ
2 )

for j = 1, 2, k = l, r . Then a continuity argument gives |nk(x′) · e3| � C |w2|
and |nk

j (x
′) · e2| � sin(π−ϕ

2 ) + C |w2| for k = l, r and j = 1, 2. Moreover, as
x′ is invariant under the reflection S1 (recall (15)), we get nk(x′) · e2 = 0. By the
definition of sk

j (x
′) this implies

|sk
j (x

′) · e1| = ∣∣(nk(x′) × nk
j (x

′)
) · e1

∣∣= |nk(x′) · e3||nk
j (x

′) · e2|
� C sin(

π − ϕ

2
)|w2| + C |w2|2.

For a small enough perturbation parameter η� we get |w2| � �−1 and thus |sk
j (x

′) ·
e1| � C |w2|�−1 since sin(π−ϕ

2 ) � c�−1 by (54). As sk
j (x

′) · e1 = sk
j (S(x)) · e1 −

ŵ
1,k
j +O(|w2|2) = −ŵ

1,k
j +O(|w2|2) (see (72) and use the fact that sk

j (S(x))·e1 =
0), this shows (79) and concludes the proof. 
�
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27. Farmer, B., Esedoḡlu, S., Smereka, P.: Crystallization for a Brenner-like potential.
Commun. Math. Phys. 349, 1029–1061, 2017

28. Favata, A., Podio-Guidugli, P.: A new CNT-oriented shell theory. Eur. J. Mech.
A/Solids, 35, 75–96, 2012

29. Favata, A., Micheletti, A., Podio-Guidugli, P.: A nonlinear theory of prestressed
elastic stick-and-spring structures. J. Eng. Sci. 80, 4–20, 2014

30. Favata, A., Podio-Guidugli, P.: A shell theory for carbon nanotube of arbitrary chiral-
ity. In: Shell and Membrane Theories in Mechanics and Biology. Advanced Structured
Materials, vol. 45, pp. 155–167. Springer, Cham, 2015

31. Favata, A., Micheletti, A., Podio-Guidugli, P., Pugno, N.M.: Geometry and self-
stress of single-wall carbon nanotubes and graphene via a discrete model based on a
2nd-generation REBO potential. J. Elast., 125, 1–37, 2016

32. Friedrich,M.,Piovano, P.,Stefanelli, U.: The geometry ofC60: a rigorous approach
via molecular mechanics. SIAM J. Appl. Math. 76, 2009–2029, 2016

33. Friedrich, M., Schmidt, B.: An atomistic-to-continuum analysis of crystal cleavage
in a two-dimensional model problem. J. Nonlinear Sci. 24, 145–183, 2014

34. Friedrich, M., Schmidt, B.: An analysis of crystal cleavage in the passage from atom-
istic models to continuum theory. Arch. Ration. Mech. Anal. 217, 263–308, 2015

35. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the
derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure
Appl. Math. 55, 1461–1506, 2002

36. Friesecke, G., Theil, F.: Validity and failure of the Cauchy–Born hypothesis in a
two-dimensional mass-spring lattice. J. Nonlinear Sci. 12, 445–478, 2002

37. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183-191, 2007
38. van Gunsteren, W.F., Berendsen, H.J.C.: Groningen Molecular Simulation (GRO-

MOS) Library Manual, BIOMOS b.v., Groningen, 1987
39. Gupta, A., Sakthivela, T., Seal, S.: Recent development in 2D materials beyond

graphene. Progr. Mat. Sci., 73, 44–126, 2015
40. Han, F., Azdoud, Y., Lubineau, G.: Computational modeling of elastic properties of

carbon nanotube/polymer composites with interphase regions. Part I: micro-structural
characterization and geometric modeling. Comput. Mater. Sci. 81, 641–651, 2014

41. Iijima, S.: Helical microtubules of graphitic carbon. Nature, 354, 56–58, 1991
42. James, R.D.: Objective structures. J. Mech. Phys. Solids, 54, 2354–2390, 2006
43. Jiang, H., Zhang, P., Liu, B., Huans, Y., Geubelle, P.H., Gao, H., Hwang, K.C.:

The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput.
Mater. Sci. 28, 429–442, 2003

44. Jindal, V.K., Imtani, A.N.: Bond lengths of armchair single-walled carbon nanotubes
and their pressure dependence. Comput. Mater. Sci. 44, 156–162, 2008

45. Jishi, R.A., Dresselhaus, M.S., Dresselhaus, G.: Symmetry properties and chiral
carbon nanotubes. Phys. Rev. B, 47, 166671–166674, 1993

46. Kanamitsu, K., Saito, S.: Geometries, electronic properties, and energetics of isolated
single-walled carbon nanotubes. J. Phys. Soc. Jpn., 71, 2:483–486, 2002

47. Krishnan,A.,Dujardin, E.,Ebbesen, T.W.,Yianilos, P.N.,Treacy,M.M.J.:Young’s
modulus of single-walled nanotubes. Phys. Rev. B, 58, 14013–14019, 1998

48. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C 60: buck-
minsterfullerene. Nature, 318, 162–163, 1985

49. Kroto, H.W.: The stability of the fullerenes Cn , with n = 24, 28, 32, 36, 50, 60 and
70. Nature, 329, 529–531, 1987



516 Manuel Friedrich et al.

50. Kurti, J., Zolyomi, V., Kertesz, M., Sun, G.: The geometry and the radial breathing
model of carbon nanotubes: Beyond the ideal behaviour. New J. Phys. 5, 1–21, 2003

51. Lazzaroni,G.,Stefanelli,U.:Chain-like ground states in three dimensions. In prepa-
ration, 2017

52. Lee, R.K.F.,Cox, B.J.,Hill, J.M.: General rolled-up and polyhedral models for carbon
nanotubes. Fuller. Nanotub. Carbon Nanostruct., 19, 726–748, 2011

53. Lewars, E.G.: Computational Chemistry, 2nd edn. Springer, New York, 2011
54. Li, X.,Yang, W., Liu, B.: Bending induced rippling and twisting of multiwalled carbon

nanotubes. Phys. Rev. Lett. 98, 205502–205505, 2007
55. Mainini, E.,Murakawa, H., Piovano, P., Stefanelli, U.: Carbon-nanotube geome-

tries: analytical and numerical results. Discrete Contin. Dyn. Syst. Ser. S, 10, 141–160,
2017

56. Mainini, E.,Murakawa, H., Piovano, P., Stefanelli, U.: Carbon-nanotube geome-
tries as optimal configurations. Multiscale Model. Simul., 15, (4), 1448–1471, 2017

57. Mainini, E., Stefanelli, U.: Crystallization in carbon nanostructures.Commun. Math.
Phys. 328(2), 545–571, 2014

58. Mannix, A.J., Kiraly, B., Hersma, M.C., Guisiger, N.P.: Synthesis and chemistry of
elemental 2D materials. Nat. Rev. Chem. 1, 14, 2017

59. Mas-Ballesté, R.,Gómez-Navarro, C.,Gómez-Herrero, J., Zamora, F.: 2D mate-
rials: to graphene and beyond. Nanoscale, 3, 20, 2011

60. Mayo, S.L., Olafson, B.D., Goddard, W.A.: DREIDING: a generic force field for
molecular simulations. J. Phys. Chem. 94, 8897–8909, 1990

61. Morris, J.E., Iniewski, K.: Graphene, carbon nanotubes, and nanostructures: tech-
niques and applications, CRC Press, Boca Raton, 2013

62. Novoselov, K.S. et al.: Two-dimensional gas of massless Dirac fermions in graphene.
Nature, 438, 197–200, 2005

63. Poncharal, P.,Wang, Z.L.,Ugarte, D., de Heer, W.A.: Electrostatic deflections and
electro-mechanical resonances of carbon nanotubes. Science, 283, 1513–1516, 1999

64. Rappé, A.K., Casewit, C.L.: Molecular Mechanics Across Chemistry, University Sci-
ence Books, Sausalito, CA, 1997

65. Rochefort, A. et al.: Electrical and mechanical properties of distorted carbon nan-
otubes. Phys. Rev. B, 60, 13824–13830, 1999

66. Ru, C.Q.: Axially compressed buckling of a doublewalled carbon nanotube embedded
in an elastic medium. J. Mech. Phys. Solids, 49, 1265–1279, 2001

67. Schmidt, B.:On the derivation of linear elasticity fromatomisticmodels.Netw. Heterog.
Media, 4, 789–812, 2009

68. Stefanelli, U.: Stable carbon configurations. Boll. Unione Mat. Ital (9), 10, 335–354,
2017

69. Stillinger, F.H.,Weber, T.A.:Computer simulation of local order in condensed phases
of silicon. Phys. Rev. B, 8, 5262–5271, 1985

70. Tersoff, J.: New empirical approach for the structure and energy of covalent systems.
Phys. Rev. B, 37, 6991–7000, 1988

71. Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus
observed for individual carbon nanotubes. Nature, 381, 678–680, 1996

72. Tuukkanen, S. et al.: Stretching of solution processed carbon nanotube and graphene
nanocomposite films on rubber substrates. Synth. Met., 191, 28–35, 2014

73. Wang, X.,Wang, X.,Xiao, J.: A non-linear analysis of the bending modulus of carbon
nanotubes with rippling deformations. Compos. Struct. 69, 315–321, 2005

74. Warner, J.H., Young, N.P., Kirkland, A.I., Briggs, G.A.D.: Resolving strain in
carbon nanotubes at the atomic level. Nat. Mater., 10, 958–962, 2011

75. Weiner, P.K., Kollman, P.A.: AMBER: Assisted model building with energy refine-
ment. A general program for modeling molecules and their interactions. J. Comput.
Chem. 2, 287–303, 1981

76. Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: insta-
bilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514, 1996



Characterization of Optimal Carbon Nanotubes 517

77. Yu, M.-F., Files, B.S., Arepalli, S., Ruoff, R.S.: Tensile loading of ropes of single
wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555,
2000

78. Zanzotto, G.: On the material symmetry group of elastic crystals and the Born rule.
Arch. Ration. Mech. Anal. 121, 1–36, 1992

79. Zhang, D.-B., Dumitric̆a, T.: Elasticity of ideal single-walled carbon nanotubes via
symmetry-adapted tight-binding objectivemodeling.Appl. Phys. Lett. 93, 031919, 2008

80. Zhao, X., Liu, Y., Inoue, S., Jones, R.O., Ando, Y.: Smallest carbon nanotube is 3Å
in diameter. Phys. Rev. Lett. 92(12), 125502, 2004

Manuel Friedrich
Applied Mathematics Münster,

University of Münster
Einsteinstrasse 62,
48149 Münster,

Germany.
e-mail: manuel.friedrich@uni-muenster.de

URL: https://www.uni-muenster.de/AMM/Friedrich/index.shtml

and

Edoardo Mainini
Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti (DIME),

Università degli Studi di Genova,
Via all’Opera Pia 15,

16145 Genova,
Italy.

e-mail: mainini@dime.unige.it

and

Paolo Piovano & Ulisse Stefanelli
Faculty of Mathematics,
University of Vienna,

Oskar-Morgenstern-Platz 1,
1090 Vienna,

Austria.
e-mail: paolo.piovano@univie.ac.at

URL: https://www.mat.univie.ac.at/~piovano/Paolo_Piovano.html

and

Ulisse Stefanelli
Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” - CNR,

v. Ferrata 1, 27100 Pavia,
Italy.

e-mail: ulisse.stefanelli@univie.ac.at
URL: http://www.mat.univie.ac.at/~stefanelli

(Received June 5, 2017 / Accepted July 11, 2018)
Published online July 18, 2018

© The Author(s) (2018)

https://www.mat.univie.ac.at/~piovano/Paolo_Piovano.html
http://www.mat.univie.ac.at/~stefanelli

	Characterization of Optimal Carbon Nanotubes Under Stretching and Validation of the Cauchy–Born Rule
	Abstract
	1 Introduction
	2 Carbon-Nanotube Geometry
	2.1 Configurational Energy
	2.2 Geometry of Zigzag Nanotubes

	3 Main Results
	3.1 Unstrechted Nanotubes
	3.2 Nanotubes Under Stretching

	4 Existence and Stability: Proof of Theorem 3.2 and Theorem 3.3
	5 Symmetry Defect Controls Angle Defect: Proof of Lemma 4.1
	6 Properties of the Reduced Energy: Proof of Lemma 4.2, Proposition 4.3, and Proposition 3.4
	6.1 Proof of Lemma 4.2
	6.2 Convexity of the Reduced Energy
	6.3 Proof of Proposition 4.3 and Proposition 3.4

	7 Energy Defect Controls Symmetry Defect: Proof of Theorem 4.4
	7.1 Relation Between Atomic Positions, Bonds, and Angles
	7.2 Convexity of the Cell Energy
	7.3 Proof of Theorem 4.4

	Acknowledgements.
	References




