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Abstract The paper investigates the Lipschitz/Hölder stability with respect to perturbations
of optimal control problems with linear dynamic and cost functional which is quadratic in
the state and linear in the control variable. The optimal control is assumed to be of bang-
bang type and the problem to enjoy certain convexity properties. Conditions for bi-metric
regularity and (Hölder) metric sub-regularity are established, involving only the order of
the zeros of the associated switching function and smoothness of the data. These results
provide a basis for the investigation of various approximation methods. They are utilized in
this paper for the convergence analysis of a Newton-type method applied to optimal control
problems which are affine with respect to the control.
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1 Introduction

Stability analysis of solutions is a crucial topic in optimization theory due, in par-
ticular, to its applications for obtaining error estimates of numerical approximations.
Although related investigations in optimal control theory accompany its development
from its early stages, the systematic analysis of (Lipschitz) stability in the area started
with the works of Dontchev, Hager and Malanowski (see [6, 7]). In these papers,
the authors prove Lipschitz dependence of the solutions with respect to perturbations,
under a strict coercivity condition which also implies Lipschitz continuity of the optimal
control.

In contrast, in the present paper we investigate a class of problems in which the control
appears linearly, therefore the strict coercivity fails. Moreover, when the control set is the m-
dimensional hypercube [−1, 1]m, each component of the optimal control generally switches
from ±1 to ∓1, possibly concatenating with arcs with values in the interior of [−1, 1]. That
is, the optimal control is typically discontinuous.

Problems which are affine with respect to the control variable arise in many appli-
cations, such as engineering, biology and medicine (see e.g. [17–19, 21]). Nevertheless,
only few papers address the stability analysis in case of non-coercive problems and such
with discontinuous optimal controls; in fact, many relevant questions still remain unan-
swered. Recent progress was made in [11, 12, 14, 20] for control-affine problems and
in [23] for problems with linear dynamics, and we build on these papers. We mention
also the paper [25] and the references therein for problems with group sparsity. Applica-
tions to error estimates for time-discretization schemes are discussed in [1, 2, 15, 22, 25,
28] for linear systems or problems of the type (P) below. We mention also the paper [3],
where stability analysis is discussed for control-affine systems with bang-singular optimal
controls.

In the present paper we focus our attention on the following class of optimal control
problems:

minimize J (x, u)

subject to ẋ(t) = A(t)x(t) + B(t)u(t) + d(t), t ∈ [0, T ],
u(t) ∈ U := [−1, 1]m,

x(0) = x0, (P)

where

J (x, u) := g(x(T )) +
∫ T

0

(
1

2
x(t)�W(t)x(t) + x(t)�S(t)u(t)

)
dt.

Here, u(t) ∈ U and x(t) ∈ R
n denote the control and the state of the system at time t ∈

[0, T ], the function g : Rn → R is given, as well asA(t),W(t) ∈ R
n×n, B(t), S(t) ∈ R

n×m

and d(t) ∈ R
n, t ∈ [0, T ]. The set of admissible controls in Problem (P), further denoted by

U , consists of all measurable functions u satisfying u(t) ∈ U for almost every t ∈ [0, T ],

U = {u ∈ L∞([0, T ],Rm) : u(t) ∈ U a.e. on [0, T ]}.

Linear terms in u or x are not included in the integrand, which is not a restriction of
generality, since such terms can be shifted in a standard way into the differential equation.
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The stability properties of the solution(s) of (P) will be analyzed through the Pontryagin
minimum principle, which states that for any optimal pair (x̂, û), there exists an absolutely
continuous function p̂ : [0, T ] → R

n such that the triple (x̂, p̂, û) solves the following
system a.e. on [0, T ]:

0 = ẋ(t) − A(t)x(t) − B(t)u(t) − d(t),

0 = ṗ(t) + A(t)�p(t) + W(t)x(t) + S(t)u(t),

0 ∈ B(t)�p(t) + S(t)�x(t) + NU(u(t)),

0 = p(T ) − ∇g(x(T )). (PMP)

Here NU(u) is the normal cone to U at u defined in the usual way:

NU(u) :=
{ ∅ if u /∈ U

{l ∈ R
m : 〈l, v − u〉 ≤ 0 ∀v ∈ U} if u ∈ U.

It will be assumed (see the next sections for precise formulations) that the data are
smooth enough, Problem (P) satisfies some convexity-like assumptions, the (reference) opti-
mal control is piece-wise constant with each component taking only the values −1 and 1.
Moreover, it will be assumed that each component of the associated “switching function”,
t → B(t)�p(t) + S(t)�x(t), satisfies at its zeros a certain growth condition, character-
ized by a number κ ≥ 1 (κ can be regarded as the multiplicity of the zeros if the switching
function is smooth).

We recast the system (PMP) as the generalized equation

0 ∈ F(x, p, u), (1.1)

where F is the set-valued mapping

F(x, p, u) :=

⎛
⎜⎜⎝

ẋ − Ax − Bu − d

ṗ + A�p + Wx + Su

B�p + S�x + NU (u)

p(T ) − ∇g(x(T ))

⎞
⎟⎟⎠ (1.2)

acting in a suitable Banach spaceX � (x, p, u)with values in a linear normed spaceY . The
set NU (u) in (1.2) is a functional replacement for the point-wise cones NU(u(t)) in (PMP)
and will be strictly defined in the next section together with the spaces X and Y .

As usual, we investigate the stability of the solution of problem (P) by introducing a
perturbation y ∈ Y in the system of necessary optimality conditions, that is, considering the
perturbed inclusion y ∈ F(x, p, u). Under the assumptions briefly mentioned above, the
unperturbed system 0 ∈ F(x, p, u), that is the system of necessary optimality conditions
(PMP), has a unique solution (x̂, p̂, û).

Two main concepts of stability are investigated in the paper.

The first concept is a stronger version of the Hölder strong metric sub-regularity (see the
recent paper [5]). Roughly speaking, we prove that for all sufficiently small perturbations y,
the inclusion y ∈ F(x, p, u), associated with problem (P), has a solution and all the solu-
tions are at distance (in the spaceX ) at most proportional to ‖y‖1/κ from the unique solution
(x̂, p̂, û) of the inclusion 0 ∈ F(x, p, u). We mention that a similar result was proved in
[2, Theorem 9], but with different functional spaces and on slightly stronger assumptions.
Moreover, the claim in our result is somewhat stronger, which is rather essential for the
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analysis of the strong bi-metric regularity and the convergence of Newton’s method which
will be discussed below.

The second concept extends the standard strong metric regularity introduced in the sem-
inal paper [24] by Robinson (see also [8, Chapter 3.7]). The new feature is that a second
metric space Ỹ ⊂ Y is involved (presumably with a non-equivalent and larger metric
than that in Y) and only disturbances from this space are considered. Roughly, strong bi-
metric regularity relative to Ỹ ⊂ Y of F at ẑ := (x̂, p̂, û) means that the inverse mapping
Y � y → F−1(y) = {z ∈ X : y ∈ F(z)} is locally (around ẑ) single-valued when
restricted to a sufficiently small ball in Ỹ , centered at y = 0. Moreover, this single-valued
mapping is Lipschitz continuous with respect to the metric of Y . In the terminology of [8],
this means that F has a single-valued localization in X × Ỹ and it is Lipschitz continuous,
but the Lipschitz property holds with respect to the metric of Y .

The general notion of strong bi-metric regularity was introduced in somewhat more
restrictive form in [23], where applications to Mayer’s type problems for linear control sys-
tems were in the focus. Similarly as the strong metric regularity, it has the important property
to be invariant with respect to small (in an appropriate sense) functional perturbations of F .
This property is often referred to as Lyusternik-Graves type theorem, see e.g. [8, Chapter
5.5]. In the present paper we prove a general Lyusternik-Graves type theorem for strong bi-
metrically regular inclusions, which is a substantial improvement of the one in [23], since
most of the assumptions are now formulated in terms of the (smaller) metric of Y rather
than in the metric of Ỹ , as in [23].

We prove strong bi-metric regularity of the mapping F associated with Problem (P),
which extends the result in [23] concerning Mayer’s problems. This extension is nontrivial,
since, technically speaking, the integral cost introduces the state variable in the switching
function, making this function nonsmooth. This forces us, among other things, to consider
the present slightly more general notion of bi-metric regularity compared with the one in
[23]. As an application we give a Lipschitz stability result with respect to small non-linear
perturbations in the differential equation.

In the last section of the paper, we investigate the convergence of a Newton-type method
(as interpreted in the context of generalized equations, see e.g. [8, Chapter 6.3]) applied
to a class of control-affine problems for which (P) can be regarded as a linearization.
Notice that the known convergence results (cf. [6]) are inapplicable for non-coercive prob-
lems, where the strong metric regularity in the usual space settings fails. We will give
sufficient conditions under which the considered Newton’s method converges, and does
so quadratically. The proof is based on a strengthened version of the metric sub-regularity
proved in the present paper for Problem (P). We mention that the stability analysis and
the convergence properties of Newton methods still remain not fully understood when
singular arcs occur. Some advances have been done recently in [12] for the first issue,
and in [3, 13] for the latter. However, these issues remain as interesting topics for future
research.

The paper is organized as follows. In Section 2, we recall some basic facts and introduce
the main assumptions on Problem (P) together with some notations. Section 3 is devoted to
the proof of the Hölder sub-regularity of Problem (P) (actually, of the associated mapping
F ). In Section 4, we introduce the definition of strong bi-metric regularity, and prove an
extension of the Lyusternik-Graves theorem suitable to this new notion. After that, we prove
the strong bi-metric regularity of the mapping F resulting from problem (P) and give a result
about the invariance of this property under a class of non-linear perturbations. In Section 5,
we investigate the convergence of a Newton-type method applied to some control-affine
problems with bang-bang solutions.
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2 Preliminaries

Throughout the paper we use the following common notations. The standard n-dimensional
Euclidean space is denoted by R

n, with the scalar product and norm denoted by 〈·, ·〉
and | · |, respectively. The superscript � denotes transposition. Further, L1([0, T ],Rn) and
L∞([0, T ],Rn) are the spaces of all measurable and absolutely integrable, respectively
essentially bounded, functions with the corresponding norms ‖ · ‖1 and ‖ · ‖∞, which
sometimes will be abbreviated as L1 and L∞, respectively. Moreover, W 1,k([0, T ],Rn) is
the space of all absolutely continuous functions from [0, T ] to R

n whose first derivatives
belonging to Lk , k ∈ {1, ∞}. The corresponding norms are denoted by ‖ · ‖1,1 and ‖ · ‖1,∞,
respectively. We also denote W

1,1
x0 ([0, T ],Rn) := {x ∈ W 1,1([0, T ]),Rn) : x(0) = x0}.

We introduce the following assumptions, some of which will be strengthened in the next
sections.

Assumption (A1) The matrix-functions B and S are continuous, A, W and d are measur-
able and bounded. The matrix W(t) is symmetric for every t ∈ [0, T ]. The function g is
differentiable with globally Lipschitz continuous gradient ∇g.

We stress that the assumption about global Lipschitz continuity of ∇g is made for tech-
nical convenience only and is not a real restriction. Since the reachable set in Problem (P) is
compact, any modification of g outside a neighborhood of the reachable set does not affect
the problem.

For every u ∈ U the differential equation in problem (P) with the given initial condition
has a unique (absolutely continuous) solution x on [0, T ]. Every such pair (x, u) is called
“admissible”, and the set of all admissible pairs is denoted by F .

Thanks to Assumption (A1), a standard compactness argument implies the existence of
an optimal solution of Problem (P). In what follows we consider a fixed optimal solution
(x̂, û).

Assumption (A2) For every admissible pair (x, u) ∈ F it holds that

〈∇g(x(T )) − ∇g(x̂(T )),�x(T )〉 +
∫ T

0
(〈W(t)�x,�x〉 + 2〈S(t)�u,�x〉)dt ≥ 0,

where �x(T ) := x(T ) − x̂(T ), �x := x(t) − x̂(t) and �u := u(t) − û(t).

Let p̂ be a co-state function for (x̂, û), i.e. (x̂, p̂, û) solves (PMP). We recall that

σ̂ := B�p̂ + S�x̂

is the so-called switching function corresponding to the triple (x̂, p̂, û). For every j ∈
{1, . . . , m} denote by σ̂j its j -th component. Notice that σ̂ is continuous due to Assumption
(A1).

In the next assumption we postulate that the optimal control û is strictly bang-bang,
with a finite number of switching times on [0, T ], and that the switching function exhibits a
certain growth in a neighborhood of any zero.

Assumption (A3) There exist real numbers κ ≥ 1 and α, τ > 0 such that for all j ∈
{1, . . . , m} and s ∈ [0, T ] with σ̂j (s) = 0 we have

|σ̂j (t)| ≥ α|t − s|κ ∀t ∈ [s − τ, s + τ ] ∩ [0, T ].
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A similar assumption is introduced in [11] in the case κ = 1 and in [23, 26] for κ ≥ 1. The
set U of admissible controls will be considered as a metric space with the metric induced
by the L1-norm. For this reason we define

X := W 1,1
x0

([0, T ],Rn) × W 1,1([0, T ],Rn) × L1([0, T ],Rm),

with the usual norm: for (x, p, u) ∈ X ,

‖(x, p, u)‖ := ‖x‖1,1 + ‖p‖1,1 + ‖u‖1.
Next, we denote by Y the space

Y := L1([0, T ],Rn) × L1([0, T ],Rn) × L∞([0, T ],Rm) × R
n, (2.1)

with the usual norm: for (ξ, π, ρ, ν) ∈ Y ,

‖(ξ, π, ρ, ν)‖ := ‖ξ‖1 + ‖π‖1 + ‖ρ‖∞ + |ν|.
We denote by dY the distance induced by ‖ · ‖.

As in the introduction, we recast the first order optimality conditions (Pontryagin system)
(PMP) for Problem (P) as the generalized equation

0 ∈ F(x, p, u), (2.2)

where F : X ⇒ Y is defined in (1.2). The normal cone NU (u) appearing there is defined
in the standard way: for u ∈ L1([0, T ],Rm),

NU (u) := {v ∈ L∞([0, T ],Rm) : v(t) ∈ NU(u(t)) for a.e. t ∈ [0, T ]}.
Notice that this definition is consistent with the general definition of a normal cone if U is
considered as a subset of the space L1 (although U is also contained in L∞; but then NU (u)

should be a cone in the dual space to L∞).
In the following sections, given a perturbation y = (ξ, π, ρ, ν) ∈ Y , we will study the

inclusion

y ∈ F(x, p, u), (2.3)

which, written in detail, looks as follows: for a.e. t ∈ [0, T ],
0 = ẋ(t) − A(t)x(t) − B(t)u(t) − d(t) − ξ(t),

0 = ṗ(t) + A(t)�p(t) + W(t)x(t) + S(t)u(t) − π(t),

0 ∈ B(t)�p(t) + S(t)�x(t) − ρ(t) + NU(u(t)),

0 = p(T ) − ∇g(x(T )) − ν. (2.4)

3 Strong Metric Sub-regularity

In this section we prove an important regularity property of the mapping F defined in (1.2),
related to, but stronger than, strong Hölder metric sub-regularity, see [5].

We begin with some important properties of switching functions that fulfill Assumption
(A3). First we fix some notations. Given any continuous function σ : [0, T ] → R

m (σj

will denote its j -th component) satisfying Assumption (A3) with constants κ , α and τ , and
a real number δ > 0, we define

Ij (σ, δ) :=
⋃

s∈[0,T ]: σj (s)=0

(s − δ, s + δ) ∩ [0, T ], I (σ, δ) :=
⋃

1≤j≤m

Ij (σ, δ),
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and
lmin(σ, δ) := min

1≤j≤m
min

t∈[0,T ]\Ij (σ,δ)
|σj (t)| > 0. (3.1)

Note that this minimum always exists and is indeed positive since σ is continuous and
[0, T ] \ Ij (σ, τ ) is compact for any j ∈ {1, . . . , m}.

Now we state an auxiliary result which presents an inverse integral inequality for func-
tions satisfying Assumption (A3) of the type of those developed in Theorem 2.1 and
Corollary 2.1 and 2.2 in [27]. It extends [26, Lemma 1.3], which in its turn originates from
[11, Lemma 3.3].

Lemma 3.1 Let σ : [0, T ] → R
m be any continuous function satisfying Assumption (A3).

Then there exists a constant c0 > 0 such that

‖v‖κ∞
∫ T

0

m∑
j=1

|σj (t)vj (t)| dt ≥ c0‖v‖κ+1
1 for any v ∈ L∞([0, T ],Rm). (3.2)

Remark 3.2 Carefully following the proof below we can establish that the constant c0 in
the lemma only depends on the numbers κ , α, τ and lmin(σ, τ ). Thus Lemma 3.1 can be
reformulated in the following more precise form: for any given positive real numbers κ ≥ 1,
α, τ > 0 and m0 > 0 there exists a constant c0 > 0 such that the claim (3.2) holds for any
continuous function σ : [0, T ] → R

m satisfying Assumption (A3) with constants κ , α, τ ,
and with lmin(σ, τ ) ≥ m0.

Proof If v = 0, then the inequality in Lemma 3.1 is fulfilled. If v �= 0 then due to the
homogeneity of order κ + 1 of the two sides of (3.2) with respect to v, it is enough to prove
the lemma in the case of ‖v‖∞ = 1, which will be assumed in the remaining part of the
proof.

Now we choose δ̄ ∈ (0, τ ) such that αδ̄κ < lmin(σ, τ ). Then for all δ ∈ (0, δ̄] and
j ∈ {1, . . . , m} we have

|σj (t)| ≥ αδκ ∀t ∈ [0, T ] \ I (σ, δ). (3.3)

Indeed, if t ∈ Ij (σ, τ ) \ I (σ, δ) then inequality (3.3) follows from (A3) and if t �∈ Ij (σ, τ )

then |σj (t)| ≥ lmin(σ, τ ) > αδ̄κ ≥ αδκ .
Using (3.3) we obtain that

ϕ(v) :=
∫ T

0

m∑
j=1

|σj (t)vj (t)| dt ≥
∫

[0,T ]\I (σ,δ)

m∑
j=1

|σj (t)vj (t)| dt

≥ αδκ
m∑

j=1

∫
[0,T ]\I (σ,δ)

|vj (t)| dt ≥ αδκ

⎛
⎝‖v‖1 −

m∑
j=1

∫
I (σ,δ)

|vj (t)| dt

⎞
⎠ ≥ αδκ(‖v‖1 − 2λδ),

where λ is the sum of the number of zeros of σj for all j ∈ {1, . . . , m}. (Notice that
Assumption (A3) implies λ ≤ mT

2τ + m.) If ‖v‖1 ≥ 4λδ̄, we choose δ := δ̄ to get

ϕ(v) ≥ αδ̄κ

2
‖v‖1

and since ‖v‖1 ≤ T ‖v‖∞ = T we have that ϕ(v) ≥ αδ̄κ

2T k ‖v‖κ+1
1 . If ‖v‖1 ≤ 4λδ̄, we choose

δ := ‖v‖1
4λ ≤ δ̄ to get

ϕ(v) ≥ α

22κ+1λκ
‖v‖κ+1

1 .
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Hence, by defining c0 := min
{

αδ̄κ

2T κ , α

22κ+1λκ

}
we obtain that

ϕ(v) ≥ c0‖v‖κ+1
1 ,

which proves (a).
Since we can choose δ̄ to only depend on κ , α, τ and m0 and there is an upper bound to

λ which only depends on m, T and τ , the constant c0 also only depends on m, T , κ , α, τ

and m0. This proves Remark 3.2.

The following theorem establishes a stability property of the mapping F associated with
system (PMP) which is a somewhat stronger form of the well-known property of metric
sub-regularity, [8, Section 3I]. It extends [2, Theorem 8] in that Assumption (A3) is weaker
than the corresponding assumption there (since we allow 0 and T to be feasible zeros of
some components of the switching function), the norm in the space Y is somewhat weaker,
and the function g is not necessarily quadratic. Most importantly, the size of the disturbance
y for which the claim of the theorem holds is not a priori restricted (as in the definition of
metric sub-regularity, [8, Section 3H] and in [2, Theorem 8]).

Theorem 3.3 Let (x̂, p̂, û) be a solution of (PMP) such that Assumptions (A1)–(A3) are
fulfilled. Then for any b > 0 there exists c > 0 such that for any y ∈ Y with ‖y‖ ≤ b, there
exists a triple (x, p, u) ∈ X solving y ∈ F(x, p, u), and any such triple satisfies

‖x − x̂‖1,1 + ‖p − p̂‖1,1 + ‖u − û‖1 ≤ c‖y‖ 1
κ . (3.4)

Remark 3.4 Due to further needs, in the proof of the above theorem we will care about how
the constant c depends on the data of the problem and the associated switching function σ̂ .
More precisely, the following statement will be proved.

Let the natural numbers n, m and the real number T > 0 be fixed. Given constants
κ ≥ 1, α > 0, τ > 0, m0 > 0, b > 0 and K , there exists a number c > 0 with the following
property.1

Let the (n × n)-matrix functions A(t) and W(t) the (n × m)-matrix functions B(t) and
S(t) be defined on [0, T ], and g : Rn → R be such that Assumption (A1) is fulfilled, and in
addition,

‖A‖∞, ‖B‖∞, ‖W‖∞, ‖S‖∞, ‖d‖∞, ≤ K, ∇g is Lipschitz with constant K. (3.5)

Let (x̂, p̂, û) be a solution of (PMP) (i.e. of (1.1)) such that Assumption (A2) holds, the
corresponding switching function σ̂ fulfills Assumption (A3) with constants κ , α and τ , and
lmin(σ̂ , τ ) ≥ m0. Then for every y ∈ Y with ‖y‖ ≤ b the inclusion y ∈ F(x, p, u) (with F

defined in (1.2)) has a solution and for every solution (x, p, u) the estimation (3.4) holds.

Proof First of all, we note that the inclusion y ∈ F(x, p, u), for any y = (ξ, π, ρ, ν) ∈ Y ,
represents the system of necessary optimality conditions of the following problem:

min
{
g(x(T )) − ν�x(T ) +

∫ T

0

(1
2
x(t)�W(t)x(t) + x(t)�S(t)u(t) − ρ�(t)u(t) − π�(t)x(t)

)
dt

}

(3.6)

1If κ = 1, then the constant c can be chosen independent of b.
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subject to

ẋ(t) = A(t)x(t) + B(t)u(t) + d(t) + ξ(t), t ∈ [0, T ], x(0) = x0,

u(t) ∈ U := [−1, 1]m.

Due to the linearity in u and the convexity and compactness of the constraining set U

this problem has a solution, hence also the inclusion y ∈ F(x, p, u).
Now, let b > 0 be arbitrarily chosen and let (x, p, u) be a solution of y ∈ F(x, p, u),

where y = (ξ, π, ρ, ν) ∈ Y and ‖y‖ ≤ b. The following notations will be used. As before,
σ̂ (t) := B(t)�p̂(t)+S(t)�x̂(t), while σ(t) := B(t)�p(t)+S(t)�x(t)−ρ(t). Furthermore,
we denote �x(t) := x(t)− x̂(t), �p(t) = p(t)− p̂(t), �u(t) := u(t)− û(t) and �σ(t) :=
σ(t) − σ̂ (t) and skip the argument t whenever this does not lead to ambiguity.

Integrating by parts, we have∫ T

0
〈�ṗ,�x〉 dt = 〈�p(T ),�x(T )〉 −

∫ T

0
〈�p,�ẋ〉 dt.

Substituting here the expressions for �x and �p resulting from the inclusions y ∈
F(x, p, u) and 0 ∈ F(x̂, p̂, û) in view of (1.2) we obtain that∫ T

0
〈−A��p − W�x − S�u + π, �x〉 dt

= 〈∇g(x(T )) − ∇g(x̂(T )) + ν,�x(T )〉 −
∫ T

0
〈�p,A�x + B�u + ξ〉 dt.

Rearranging the terms in this equality and using Assumption (A2) we get∫ T

0
(〈�p,B�u〉 + 〈S�u,�x〉) dt +

∫ T

0
(〈π, �x〉 + 〈ξ, �p〉) dt − 〈ν, �x(T )〉

= 〈∇g(x(T )) − ∇g(x̂(T )),�x(T )〉 +
∫ T

0
(〈W�x,�x〉 + 2〈S�u,�x〉) dt ≥ 0.

Using this inequality and the definitions of the functions σ and σ̂ we obtain∫ T

0
〈�σ,�u〉 dt =

∫ T

0
〈B��p + S��x − ρ, �u〉 dt ≥

≥
∫ T

0
(−〈π, �x〉 − 〈ξ, �p〉 − 〈ρ,�u〉) dt + 〈ν,�x(T )〉. (3.7)

The third component of the inclusion y ∈ F(x, p, u) reads as −σ(t) ∈ NU(u(t)), which
implies 〈−σ(t), û(t) − u(t)〉 ≤ 0. Then

−
∫ T

0
〈�σ,�u〉 dt =

∫ T

0
[−〈σ, �u〉 + 〈σ̂ , �u〉] dt ≥

∫ T

0
〈σ̂ , �u〉 dt.

From here, using that −σ̂j (t) ∈ N[−1,1](ûj (t)), hence σ̂j (t) �uj (t) ≥ 0 for each j , Lemma
3.1 implies that

−
∫ T

0
〈�σ, �u〉 dt ≥

∫ T

0

m∑
j=1

|σ̂j �uj | dt ≥ c0‖�u‖κ+1
1 ,

where the constant c0 only depends on κ , α, τ and m0 (see Remark 3.4). Then using (3.7)
and the Hölder inequality we obtain

‖π‖1 ‖�x‖∞ + ‖ξ‖1 ‖�p‖∞ + |ν| |�x(T )| + ‖ρ‖∞ ‖�u‖1 ≥ c0‖�u‖κ+1
1 . (3.8)



J. Preininger et al.

Using Assumption (A1) and the solution formula of the Cauchy problem for �x and �p

we get

‖�x‖∞ ≤ c1(‖ξ‖1 + ‖�u‖1), ‖�p‖∞ ≤ c2(‖ξ‖1 + ‖π‖1 + ‖�u‖1 + |ν|) (3.9)

for some constants c1 and c2 that only depend on K (see (3.5) in Remark 3.4). (We mention
that for the estimation of ‖�p‖∞ we use the estimation for |�x(T )| and the Lipschitz
continuity of the gradient ∇g appearing in the end-point conditions for p and p̂ in (1.1).)
Therefore, by (3.8)–(3.9) we obtain that

(‖y‖2 + ‖y‖‖�u‖1) ≥ c3‖�u‖κ+1
1 (3.10)

for some constant c3, only depending on c0, c1 and c2. Now, we distinguish two cases. First,
if ‖y‖ ≤ ‖�u‖1 then

2‖y‖‖�u‖1 ≥ c3‖�u‖κ+1
1 ,

which implies

‖�u‖1 ≤
(
2

c3
‖y‖

)1/κ

. (3.11)

Otherwise, if ‖�u‖1 ≤ ‖y‖ ≤ b then

‖�u‖1 ≤ ‖y‖1/κ‖y‖(κ−1)/κ ≤ b(κ−1)/κ‖y‖1/κ . (3.12)

Inequalities (3.11) and (3.12) imply that for any b > 0 there exists c4 > 0, depending on c3
and b such that

‖�u‖1 ≤ c4‖y‖1/κ .

Then the claim of the theorem follows with a suitable constant c (depending only on c1, c2
and c4) from the above estimation together with (3.9).

Notice that c4, hence also c, depend on b only due to the term b(κ−1)/κ in estimation
(3.12), which equals 1 in the case κ = 1. This justifies Footnote 1.

Remark 3.5 Clearly, the property established in Theorem 3.3 implies that (x̂, p̂, û) is the
unique solution of (PMP), thus (x̂, û) is the unique solution of problem (P). Therefore,
(PMP), together with Assumptions (A1)–(A3), is a sufficient optimality condition.

4 Bi-metric Regularity

The notion of strong bi-metric regularity was introduced in [23] in order to grasp in a rele-
vant way the dependence on perturbations of the solutions of Mayer’s type optimal control
problems for linear systems. Its extension to the Bolza problem considered in this paper is
more complicated due to the missing smoothness of the switching function associated with
the optimal control. In this section we present such an extension, starting from the abstract
definition of strong bi-metric regularity and a new, substantially strengthened version of the
Lyusternik-Graves type theorem proved in [23].

4.1 The Abstract Setting

First, we give the definition of strong bi-metric regularity, which is a more convenient
extension of the one introduced in [23].

Let (X, dX), (Y, dY ) and (Ỹ , d̃Y ) be metric spaces, with Ỹ ⊂ Y and dY ≤ d̃Y on Ỹ .
Denote by BX(x̄; a) and BỸ (ȳ; b) the closed balls in the metric spaces (X, dX) and (Ỹ , d̃Y )
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with radius a > 0 and b > 0 centered at x̄ and ȳ, respectively. We will suppose that the
metric dY and d̃Y are shift-invariant, which means, in terms of the metric dY , that

dY (y + z, y′ + z) = dY (y, y′), ∀y, y′, z ∈ Y.

Definition 4.1 The map � : X ⇒ Y is strongly bi-metrically regular relative to Ỹ ⊂ Y at
x̄ ∈ X for ȳ ∈ Ỹ with constants ς ≥ 0, a > 0 and b > 0 if (x̄, ȳ) ∈ graph(�) and the
following properties are fulfilled:

1. the mapping BỸ (ȳ; b) � y → �−1(y) ∩ BX(x̄; a) is single-valued, and
2. for all y, y′ ∈ BỸ (ȳ; b),

dX(�−1(y) ∩ BX(x̄; a), �−1(y′) ∩ BX(x̄; a)) ≤ ςdY (y, y′). (4.1)

It is important to notice that in this definition the “disturbances” y, y′ are taken from the
smaller space Ỹ (and are sufficiently small in the metric of this space), but the Lipschitz
property (4.1) holds with the (smaller) metric dY . This is the crucial difference with the
standard definition of strong metric regularity (see e.g. [8, Section 3G] and [16]), where the
spaces Y and Ỹ coincide.

The next result resembles the main features of the Lyusternik-Graves-type theorem
proved in [23, Theorem 2.1], but under substantially weakened requirements, as explained
in the comments after the proof.

Theorem 4.2 Let X be a complete metric space, Y be a linear space, Ỹ be a subspace of
Y , and let both metrics, dY in Y and d̃Y in Ỹ , be shift-invariant and dY ≤ d̃Y on Ỹ . Let the
set-valued map � : X ⇒ Y be strongly bi-metrically regular at x̄ for ȳ with constants ς , a,
b. Let μ > 0 and ς ′ be such that ςμ < 1 and ς ′ ≥ ς/(1 − ςμ). Then for every positive
constants a′, b′, and γ satisfying

a′ ≤ a, b′ + γ ≤ b, ςb′ ≤ (1 − ςμ)a′, (4.2)

and for every function ϕ : X → Ỹ such that

d̃Y (ϕ(x̄), ϕ(x)) ≤ γ ∀x ∈ BX(x̄; a′), (4.3)

and

dY (ϕ(x), ϕ(x′)) ≤ μdX(x, x′) ∀x, x′ ∈ BX(x̄; a′), (4.4)

the mapping BỸ (ȳ + ϕ(x̄); b′) � y → (ϕ + �)−1(y) ∩ BX(x̄; a′) is single-valued and
Lipschitz continuous with constant ς ′ with respect to the metric dY .

Proof Let us fix μ, ς ′, a′, b′ and γ as in the theorem. Take an arbitrary function ϕ : X → Ỹ

such that (4.3) and (4.4) are fulfilled.
By assumption, the mapping BỸ (ȳ; b) � y → s(y) := �−1(y)∩BX(x̄; a) is a Lipschitz

continuous function (with respect to the metric dY in Ỹ ) with Lipschitz constant ς . For any
x ∈ BX(x̄; a′) and y ∈ BỸ (ȳ + ϕ(x̄); b′) we have

d̃Y (y − ϕ(x), ȳ) ≤ d̃Y (y, ȳ + ϕ(x̄)) + d̃Y (ϕ(x̄), ϕ(x)) ≤ b′ + γ ≤ b. (4.5)

Thus s(y − ϕ(x)) is defined for all such pairs (x, y).
For an arbitrarily fixed y ∈ BỸ (ȳ + ϕ(x̄); b′) we consider the mapping BX(x̄; a′) �

x → Zy(x) := s(y − ϕ(x)). We shall prove that the mapping Zy has a unique fixed point
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by using the contraction mapping theorem in the form of [8, Theorem 1A.2]. For this we
denote λ = ςμ < 1 and estimate

dX(x̄, Zy(x̄)) = dX(s(ȳ), s(y − ϕ(x̄))) ≤ ςdY (ȳ + ϕ(x̄), y)

≤ ςb′ ≤ (1 − ςμ)a′ = (1 − λ)a′.
Moreover, for x, x′ ∈ BdX

(x̄; a′) we have
dX(Zy(x), Zy(x

′)) = dX(s(y − ϕ(x)), s(y − ϕ(x′))) ≤ ςdY (y − ϕ(x), y − ϕ(x′))
= ςdY (ϕ(x), ϕ(x′)) ≤ ςμdX(x, x′) = λdX(x, x′).

Then, according to [8, Theorem 1A.2], there exists a unique x = x(y) ∈ BX(x̄; a′) such
that x = s(y − ϕ(x)). The latter implies that y − ϕ(x) ∈ �(x), hence x ∈ (ϕ + �)−1(y) ∩
BX(x̄; a′). Moreover, x(y) is the unique element of (ϕ + �)−1(y) ∩ BX(x̄; a′). Indeed, if
x ∈ (ϕ + �)−1(y) ∩ BX(x̄; a′), then y ∈ ϕ(x) + �(x), hence y − ϕ(x) ∈ �(x), and
since as in (4.5) we have y − ϕ(x) ∈ BỸ (ȳ; b) and x ∈ BX(x̄; a′) ⊂ BX(x̄; a), it also
holds that x = s(y − ϕ(x)). Thus x = x(y). Thus the mapping BỸ (ȳ + ϕ(x̄); b′) � y →
(ϕ + �)−1(y) ∩ BX(x̄, a′) is single-valued.

Now, take two arbitrary elements y, y′ ∈ BỸ (ȳ + ϕ(x̄); b′) and let x = s(y − ϕ(x)) and
x′ = s(y′ − ϕ(x′)) be the unique solutions of y ∈ ϕ(x) + �(x) in BX(x̄; a′) corresponding
to y and y′, respectively. Then

dX(x, x′) = dX(s(y − ϕ(x)), s(y′ − ϕ(x′))) ≤ ςdY (y − ϕ(x), y′ − ϕ(x′))
≤ ςdY (y, y′) + ςdY (ϕ(x), ϕ(x′)) ≤ ςdY (y, y′) + ςμdX(x, x′).

Hence,

dX(x, x′) ≤ ς

1 − ςμ
dY (y, y′) ≤ ς ′dY (y, y′),

which completes the proof.

The main improvement in the above theorem, compared with [23, Theorem 2.1], is
that the Lipschitz property (4.4) is required in [23, Theorem 2.1] to be fulfilled in the
stronger metric d̃Y , which makes the theorem unusable in several applications, including
that presented in Section 4.3.

4.2 Strong Bi-metric Regularity of the Linear-Quadratic Problem

Now consider again Problem (P). First we will present a result about stability under pertur-
bations of Assumption (A3) in the case κ = 1, where the following strengthened form of
Assumption (A1) will be used.

Assumption (A1’) The functions A,W and d are continuous, B and S have continuous
first derivatives. The matrices W(t) and S�(t)B(t) are symmetric for every t ∈ [0, T ]. The
function g is differentiable with (globally) Lipschitz continuous gradient.

Furthermore we introduce the subspace

Ỹ := L∞([0, T ],Rn) × L∞([0, T ],Rn) × W 1,∞([0, T ],Rm) × R
n

of Y endowed with the usual norm of y = (ξ, π, ρ, ν) ∈ Ỹ :

‖(ξ, π, ρ, ν)‖∼ := max{1, T } (‖ξ‖∞ + ‖π‖∞ + ‖ρ‖1,∞ + |ν|) . (4.6)

We denote by d̃Y the distance induced by ‖ · ‖∼. Observe that dY ≤ d̃Y on Ỹ .
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Proposition 4.3 (Stability of Assumption (A3).) Let Assumption (A1’) be fulfilled. Let
(x̂, p̂, û) be a solution of (PMP), and let Assumption (A2) and Assumption (A3) with κ = 1
be fulfilled. Then Assumption (A3) is stable under perturbations in the following sense:
there exist constants b̃ > 0, α̃ > 0, τ̃ > 0 and m̃0 > 0 such that if (ξ, π, ρ, ν) = y ∈ Ỹ
with ‖y‖∼ ≤ b̃, then for any triple (x, p, u) ∈ X solving y ∈ F(x, p, u) the function
σ := B�p+S�x−ρ satisfies Assumption (A3) with κ = 1 and constants α̃ and τ̃ replacing
α and τ , respectively, and lmin(σ, τ̃ ) ≥ m̃0 (see (3.1)).

Proof Let α and τ be the constants appearing in Assumption (A3), and let j ∈ {1, . . . , m}
be arbitrary. Further, we consider only disturbances y ∈ Ỹ satisfying ‖y‖∼ ≤ 1.

First, observe that for all t ∈ [0, T ] it holds that

|σj (t) − σ̂j (t)| ≤
∣∣∣∣
(
B(t)�(p(t) − p̂(t)) + S(t)�(x(t) − x̂(t))

)
j

∣∣∣∣ + |ρj (t)|.

Using this inequality and Theorem 3.3 (applied with b = 1), we obtain that there is a
constant c1 such that

|σj (t) − σ̂j (t)| ≤ c1‖y‖
for all j = 1, . . . , m, t ∈ [0, T ], and y ∈ Ỹ with ‖y‖∼ ≤ 1. Hence,

|σj (t)| ≥ |σ̂j (t)| − c1‖y‖, t ∈ [0, T ], j ∈ {1, . . . , m}. (4.7)

Consider (skipping the argument t) the derivative

˙̂σj =
[
Ḃ�p̂ + B� ˙̂p + Ṡ�x̂ + S� ˙̂x

]
j

=
[
Ḃ�p̂ + B�(−A�p̂ − Wx̂ − Sû) + Ṡ�x̂ + S�(Ax̂ + Bû + d)

]
j

=
[
Ḃ�p̂ + B�(−A�p̂ − Wx̂) + Ṡ�x̂ + S�(Ax̂ + d)

]
j
, (4.8)

where in the last inequality we use the symmetricity of B�S. This implies, in particular, that˙̂σj is continuous. Then there exists τ1 ∈ (0, τ ] such that | ˙̂σj (θ1) − ˙̂σj (θ2)| ≤ α/4 whenever
θ1, θ2 ∈ [0, T ] and |θ1 − θ2| < τ1. Hence, using (4.8) and Assumption (A3) we obtain that
for any j ∈ {1, . . . , m}, for any zero ŝ of σ̂j and arbitrary t ∈ (ŝ − τ1, ŝ + τ1) ∩ [0, T ]

α|t − ŝ| ≤ |σ̂j (t) − σ̂j (ŝ)| = ∣∣
∫ t

ŝ

˙̂σj (θ) dθ
∣∣ ≤ ∣∣

∫ t

ŝ

˙̂σj (ŝ) dθ
∣∣ + ∣∣

∫ t

ŝ

α

4
dθ

∣∣,
hence | ˙̂σj (ŝ)| ≥ 3α/4 for any zero ŝ of σ̂j , j = 1, . . . , m.

The equality (4.8) holds also for σj (where (x̂, p̂) is replaced with (x, p)), with the

additional term
[
B�π + S�ξ − ˙̂ρ

]
j
in the right-hand side. Then using Assumption (A1’),

and the estimation in Theorem 3.3, we obtain that

‖σ̇j − ˙̂σj‖∞ ≤ c2(‖y‖ + ‖ξ‖∞ + ‖π‖∞ + ‖ρ̇‖∞) ≤ c3‖y‖∼, (4.9)

where c2 and c3 are independent of j and y ∈ Ỹ , ‖y‖∼ ≤ 1.
Define τ̃ := τ1/2 and choose the number b̃ > 0 in such a way that

c1b̃ ≤ min

{
lmin(σ̂ , τ̃ /2)

2
,
ατ̃

4

}
and 4c3b̃ ≤ α, b̃ ≤ 1, (4.10)
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and let ‖y‖∼ ≤ b̃. Since from (4.7) and the first inequality in (4.10) we have that for
t ∈ [0, T ] \ Ij (σ̂ , τ̃ /2)

|σj (t)| ≥ |σ̂j (t)| − c1‖y‖ ≥ lmin(σ̂ , τ̃ /2) − c1b̃ ≥ lmin(σ̂ , τ̃ /2)

2
> 0,

we obtain that any zero s of σj is contained in Ij (σ̂ , τ̃ /2). Thus s ∈ (ŝ−τ̃ /2, ŝ+τ̃ /2)∩[0, T ]
for some zero ŝ of σ̂j .

Now take an arbitrary t ∈ (s − τ̃ , s + τ̃ ) ∩ [0, T ]. Then t, s ∈ (ŝ − τ1, ŝ + τ1) ∩ [0, T ]
and using (4.9) and the second inequality in (4.10) we obtain that

|σj (t)| =
∣∣∣∣
∫ t

s

σ̇j (θ) dθ

∣∣∣∣ =
∣∣∣∣
∫ t

s

[ ˙̂σj (ŝ) + ( ˙̂σj (θ) − ˙̂σj (ŝ)) + (σ̇j (θ) − ˙̂σj (θ))
]

dθ

∣∣∣∣
≥ | ˙̂σj (ŝ)||t − s| − α

4
|t − s| − c3‖y‖∼ |t − s|

≥ 3α

4
|t − s| − α

4
|t − s| − α

4
|t − s| ≥ α

4
|t − s|.

Thus (A3) holds for σ with κ = 1 and constants α̃ = α/4 and τ̃ .
Further for t ∈ I (σ̂ , τ̃ ) \ I (σ, τ̃ ) we have

|σj (t)| ≥ α|t − ŝ| − c1‖y‖ ≥ α|t − s| − α|s − ŝ| − c1‖y‖ ≥ ατ̃

4

for some zeros ŝ and s of σ̂ and σ respectively. So if we set m0 := min{ατ̃
4 , lmin(σ̂ , τ̃ )} then

lmin(σ, τ̃ ) ≥ m0.

Proposition 4.3 allows to extend the result for strong bi-metric regularity of F , obtained
in [23] for Mayer’s problems for linear systems, to the present Bolza problem. For that we
need the following stronger version of Assumption (A2).

Assumption (A2’) For every couple of admissible pairs (x, u), (x′, u′) ∈ F it holds that

〈∇g(x(T )) −∇g(x′(T )), x(T ) − x′(T )〉
+

∫ T

0

(〈W(t)
(
x(t) − x′(t)

)
, x(t) − x′(t)〉 + 2〈S(t)

(
u(t) − u′(t)

)
, x(t) − x′(t)〉) dt ≥ 0.

Remark 4.4 Standard convex analysis shows that Assumption (A2’) is equivalent to the fact
that the functional J is convex on the set F , or equivalently, the mapping L1([0, T ],Rm) �
u → J (x(u), u) is convex on the set of admissible controls U , where x(u) denotes the
solution of the Cauchy problem ẋ = Ax + Bu, x(0) = 0.

To prove strong bi-metric regularity of (PMP) we first have to introduce the following
additional spaces. First we consider the set U = L∞([0, T ], U) as a metric space with the
metric

d#(u1, u2) = meas {t ∈ [0, T ] : u1(t) �= u2(t)},
where “meas” stands for the Lebesgue measure in [0, T ]. This metric is shift-invariant and
we shall shorten d#(u1, u2) = d#(u1 − u2, 0) =: d#(u1 − u2). Moreover, U is a complete
metric space with respect to d# (see [10, Lemma 7.2]). Then the triple (x, p, u) is considered
as an element of the space

X̃ = W 1,1
x0

([0, T ],Rn) × W 1,1([0, T ],Rn) × U , (4.11)
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endowed with the (shift-invariant) metric

d̃X (x, p, u) = ‖x‖1,1 + ‖p‖1,1 + d#(u). (4.12)

Clearly X̃ is a complete metric space.

Theorem 4.5 (Bi-metric regularity) Let Assumptions (A1’) and (A2’) be fulfilled. Let
(x̂, p̂, û) be a solution of (PMP) such that Assumption (A3) is fulfilled with κ = 1. Then
the mapping F : X̃ ⇒ Y introduced in (1.2) is strongly bi-metrically regular relative to
Ỹ ⊂ Y at ẑ := (x̂, p̂, û) ∈ X̃ for 0 ∈ Ỹ .

Proof We shall prove that F−1 is single-valued in BỸ (0; b̃) and

d̃X (F−1(y′), F−1(y)) ≤ cdY (y′, y), (4.13)

for all y, y′ ∈ BỸ (0; b̃), where b̃ and c are as in Proposition 4.3. Thus the conditions in
Definition 4.1 will be fulfilled even with a = +∞. Let us start by giving a reformulation
of the perturbed version of (P), which will turn out to be useful in the sequel. Let us take
an arbitrary y = (ξ, π, ρ, ν) ∈ Y . Then the perturbed system y ∈ F(x, p, u) is the set of
necessary conditions for the problem (3.6) introduced in the proof of Theorem 3.3. Notice
that (3.6) is exactly of the same form as (P) with the state and co-state variables augmented
by one dimension, and the data A, B, d, W , S and g replaced with

Ã =
(

A 0
π� 0

)
, B̃ =

(
B

ρ�
)

, d̃ =
(

d + ξ

0

)
, W̃ =

(
W 0
0 0

)
, S̃ =

(
S

0

)
,

and g̃(x(T ), xn+1(T )) = g(x(T )) − ν�x(T ) − xn+1(T ), respectively. Thus, (x, p, u) is a
solution of y ∈ F(x, p, u) if and only if the triple

(̃x(·), p̃(·), ũ(·)) =
((

x(·)∫ ·
0

(
π�x + ρ�u

)
dt

)
,

(
p(·)
−1

)
, u(·)

)
(4.14)

is a solution of the system

0 = ˙̃x(t) − Ã(t )̃x(t) − B̃(t )̃u(t) − d̃(t)

0 = ˙̃p(t) + Ã(t)�p̃(t) + W̃ (t )̃x(t) + S̃(t )̃u(t)

0 ∈ B̃(t)�p̃(t) + S̃(t)�x̃(t) + NU (̃u(t))

0 = p̃(T ) − ∇g̃(̃x(T )). (4.15)

The above system can be recast as a generalized inclusion

0 ∈ F̃y (̃x, p̃, ũ) (4.16)

where F̃y is defined as in (1.2) replacing A by Ã, and similarly for the other data. F̃y maps
the space

X̂ := W
1,1
x̃0

([0, T ],Rn+1) × W 1,1([0, T ],Rn+1) × L1([0, T ],Rm)

to

Ŷ := L1([0, T ],Rn+1) × L1([0, T ],Rn+1) × L∞([0, T ],Rm) × R
n+1,

where x̃0 := (x�
0 , 0)�. In few words, the dimension of the state and co-state variable is

augmented to n + 1 and the additional initial condition xn+1(0) = 0 is added. Note that by
construction for any y ∈ Ỹ Assumption (A1) and Assumption (A2’) are fulfilled for (4.16).
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Choose b̃, α̃, τ̃ and m0 as in Proposition 4.3. Then there exists a constant K such that for
any y with ‖y‖∼ ≤ b̃ we have

‖Ã‖∞, ‖B̃‖∞‖, ‖d̃‖∞, ‖W̃‖∞, ‖S̃‖∞ ≤ K, ∇g̃ is Lipschitz with constant K.

Then by Proposition 4.3 for any y = (ξ, π, ρ, ν) ∈ BỸ (0; b̃) and any solution (x, p, u) of
the perturbed problem y ∈ F(x, p, u) Assumption (A3) is satisfied by σ := B�p +Sx −ρ

with constants α̃, τ̃ and lmin(σ, τ̃ ) ≥ m0. An easy calculation shows that the switching
function of the solution (̃x, p̃, ũ) (given by (4.14)) of (4.16) is given by B̃�p̃ + S̃�x̃ =
B�p + S�x − ρ = σ . Then Theorem 3.3 in the detailed form in Remark 3.4 is applicable
to (4.16) with the constant c independent of the particular y ∈ BỸ (0; b̃). In particular, this
implies that (̃x, p̃, ũ) is the unique solution for (4.16). Therefore, ũ = u is bang-bang and
F−1 is single valued on BỸ (0; b̃). For any y′ = (ξ ′, π ′, ρ′, ν′) ∈ BỸ (0; b̃) and its solution
(x′, p′, u′) of y′ ∈ F(x′, p′, u′) we define

(̃x′, p̃′, ũ′) := ((x′,
∫ ·

0
(π�x′ + ρ�u′)), (p′, −1), u′),

ỹ′ := ((ξ ′ − ξ, 0), (π ′ − π, 0), ρ′ − ρ, (ν′ − ν, 0)).

An easy calculation shows the inclusion ỹ′ ∈ F̃y (̃x
′, p̃′, ũ′). Then Theorem 3.3 (in the form

in Remark 3.4) implies

‖x̃′ − x̃‖1,1 + ‖p̃′ − p̃‖1,1 + ‖ũ′ − ũ‖1 ≤ c‖ỹ′‖Ŷ , (4.17)

where ‖ · ‖Ŷ denotes the norm of Ŷ . Hence by (4.17) we have

‖x − x′‖1,1 + ‖p − p′‖1,1 + ‖u − u′‖1 ≤ ‖x̃′ − x̃‖1,1 + ‖p̃′ − p̃‖1,1 + ‖ũ′ − ũ‖1
≤ c‖ỹ′‖Ŷ = c‖y − y′‖.

Since u, u′ are bang-bang, similar to [23, p. 4130] we have ‖u − u′‖1 ≥ 2d#(u − u′) which
proves (4.13).

We mention that the strong bi-metric regularity for Mayer’s problems is proved in [23]
for a general polyhedral set U and also in the case κ > 1. Extension of Theorem 4.5 to
a general compact polyhedral U set is a matter of modification of Assumption (A3) and
technicalities that we avoid in this paper, while the case κ > 1 is still open and challenging
for the Bolza problem.

4.3 Stability of Bi-metric Regularity Under Perturbations

In this subsection, we will apply Theorem 4.2 to prove that the strong bi-metric regularity
property is stable under some class of nonlinear perturbations.

Along with problem (P) we consider the following perturbed problem:

minimize J̃ (x, u)

subject to ẋ(t) = A(t)x(t) + ã(x(t), t) + B(t)u(t) + B̃(x(t), t)u(t), t ∈ [0, T ],
u(t) ∈ U := [−1, 1]m,

x(0) = x0, (4.18)
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where

J̃ (x, u) := g(x(T )) + g̃(x(T )) +∫ T

0

(
1

2
x(t)�W(t)x(t) + w̃(x(t), t) + x(t)�S(t)u(t) + 〈̃s(x(t), t), u(t)〉

)
dt.

Here ã : Rn ×[0, T ] → R
n, B̃ : Rn ×[0, T ] → R

n×m, g̃ : Rn → R, w̃ : Rn ×[0, T ] →
R, s̃ : Rn ×[0, T ] → R

m are continuously differentiable functions. All these functions will
be assumed “small” in a sense clarified in the theorem below.

The system of necessary optimality conditions for problem (4.18) is given by

0 = ẋ(t) − A(t)x(t) − ã(x(t), t) − B(t)u(t) − B̃(x(t), t)u(t),

0 = ṗ(t)+(
A(t)+ãx (x(t), t)+(B̃(x(t), t)u(t))x

)�
p(t)+W(t)x(t)+w̃x(x(t), t)�+S(t)u(t),

+̃sx(x(t), t)�u(t)

0 ∈ (B(t) + B̃(x(t), t))�p(t) + S(t)�x(t) + s̃(x(t), t) + NU(u(t)),

0 = p(T ) − ∇g(x(T )) − ∇g̃(x(T )), (4.19)

where the subscript x (as in ãx) means differentiation with respect to x.
The system (4.19) can be recast as

0 ∈ f (x, p, u) + F(x, p, u), (4.20)

where F (corresponding to the non–perturbed system) is given by (1.2) and f is defined by

f (x, p, u)(t) =

⎛
⎜⎜⎝

−ã(x, t) − B̃(x, t)u(̃
ax(x, t) + (B̃(x, t)u)x

)�
p + w̃x(x, t)� + s̃x(x, t)�u

B̃(x, t)�p + s̃(x, t)

−∇g̃(x(T ))

⎞
⎟⎟⎠ .

As before we consider F as a set-valued mapping X̃ ⇒ Y , where the spaces X̃ and Y
are defined in (4.11) and (2.1), respectively. We fix a solution ẑ := (x̂, p̂, û) of the inclusion
0 ∈ F(x, p, u).

Assumption (B) The mapping F : X̃ ⇒ Y is strongly bi-metrically regular relative to
Ỹ ⊂ Y at ẑ ∈ X̃ for 0 ∈ Ỹ .

We recall that sufficient conditions for strong bi-metric regularity of F are given in
Theorem 4.5.

Our purpose will be to prove that the strong bi-metric regularity of F is not destroyed by
the disturbance f , provided that the disturbances in (4.18) are sufficiently “small”. Notice
that the space X̃ contains elements (x, p, u) for which some of the norms ‖x‖∞, ‖p‖∞,
‖ẋ‖∞, ‖ṗ‖∞, may be arbitrarily large or even infinite (the latter applies to the derivatives),
that is, elements which are irrelevant to the linear-quadratic problem to which F is associ-
ated. Moreover, the image f (X̃ ) is not necessarily contained in Ỹ , which is important from
a technical point of view. Therefore, for a given compact set D ⊂ R

n we introduce the
complete metric space (with the metric d̃X)

X̃D := {(x, p, u) ∈ X̃ : x(t), p(t), ẋ(t), ṗ(t) ∈ D for any t ∈ [0, T ]}.
Also, denote by FD := F |X̃D

: X̃D ⇒ Y and fD := f |X̃D
: X̃D → Y the restrictions of

F and f to XD .
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Lemma 4.6 Let Assumption (A1) be fulfilled, let ẑ = (x̂, p̂, û) be a solution of the non-
perturbed system (PMP), and let Assumption (B) be fulfilled. Then there exists a compact
set D0 ⊂ R

n such that for every compact set D ⊂ R
n containing D0 the restriction fD

maps X̃D into Ỹ and the mapping FD : X̃D ⇒ Y is strongly bi-metrically regular relative
to Ỹ ⊂ Y at ẑ ∈ X̃ for 0 ∈ Ỹ .

Proof First note that because of continuity of ã, B̃, s̃, ãx , B̃x , w̃x and s̃x we have that for
every compact set D0 the first three components of fD0 are in L∞. Moreover the third
component is differentiable in t and since (B̃(x, t)�p)x is continuous as a function in x, p
and t , and s̃x is continuous this derivative lies in L∞. Hence fD0 maps into Ỹ .

Further let ς ≥ 0, a > 0 and b > 0 be the constants corresponding the strong bi-
metric regularity of F . Let y = (ξ, π, ρ, ν) ∈ BỸ (0; b) and (x, p, u) ∈ X̃ be a solution
the generalized equation y ∈ F(x, p, u) (i.e. of (2.4)). Moreover we denote �x(t) :=
x(t) − x̂(t), �p(t) := p(t) − p̂(t) and �u(t) := u(t) − û(t). Then by the solution formula
of the Cauchy problems for �x and �p we get

‖�x‖1,∞ ≤ c1(‖ξ‖∞ + ‖�u‖∞), ‖�p‖1,∞ ≤ c2(‖ξ‖∞ + ‖π‖∞ + ‖�u‖∞ + |ν|),
(4.21)

which shows that there is a compact set D0 such that (x, p, u) ∈ X̃D0 . Therefore
F−1(BỸ (0; b)) ⊆ X̃D0 ⊆ X̃D for everyD containing D0 which implies that FD : X̃D ⇒ Y
is strongly bi-metrically regular relative to Ỹ ⊂ Y at ẑ ∈ X̃ for 0 ∈ Ỹ .

Below we prove a stability result in the same spirit as [23, Theorem 4.1], which concerns
Mayer’s problems. We mention that there is a gap in the proof of [23, Theorem 4.1], but it
can be easily corrected by using Theorem 4.2 instead of [23, Theorem 2.1]. This is done in
the next theorem which, in addition, extends [23, Theorem 4.1] to Bolza problems.

Theorem 4.7 Let assumption (A1’) be fulfilled, let ẑ = (x̂, p̂, û) be a solution of the non-
perturbed system (PMP), and let Assumption (B) be fulfilled. Let D ⊂ R

n be a compact
set such that f (X̃D) ⊂ Ỹ and the mapping FD is strongly bi-metrically regular relative to
Ỹ ⊂ Y at ẑ ∈ X̃D for 0 ∈ Ỹ (see Lemma 4.6). Then there exist positive real numbers ε0, δ
and c with the following property.

For any positive number ε ≤ ε0 let ã, B̃, g̃, w̃, s̃ be any functions satisfying the
assumptions given above in this section and such that

• the functions ã, B̃, s̃, ãx , B̃x , w̃x , s̃x , B̃t , s̃t are all bounded by ε on D × [0, T ];
• the functions ã, B̃, s̃, ãx , B̃x , w̃x , s̃x are Lipschitz continuous in x with Lipschitz

constant ε;
• the function ∇g̃ is bounded by ε and Lipschitz continuous on D with Lipschitz constant

ε.

Then

(i) the perturbed system (4.19) has a unique solution z∗ = (x∗, p∗, u∗) in the δ-
neighborhood of ẑ in X̃D and

d̃X (z∗ − ẑ) ≤ cε.

(ii) the mapping f + F : X̃D ⇒ Y is strongly bi-metrically regular at z∗ for 0 relative to
Ỹ ⊂ Y .
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Proof We want to apply Theorem 4.2 for the mappings � = F and ϕ = f at the point
(ẑ, ŷ), where ŷ := f (x̂, p̂, û). Let ς, a, b be the numbers in the definition of strong bi-
metric regularity of F at ẑ for 0, and let μ, ς ′, a′, b′, γ be arbitrary numbers such that the
conditions (4.2) are fulfilled.

Since ã, B̃, s̃, ãx , B̃x , w̃x , s̃x , B̃t , s̃t , ∇g̃ are all bounded by ε and ˙̂x, p̂, ˙̂p are bounded
by |D| := supx∈D |x| and |û| ≤ √

m we have that

d̃Y (ŷ, 0) =max{1, T }(‖ − ã(x̂, t) − B̃(x̂, t)û‖∞ + ‖(̃ax(x̂, t) + (B̃(x̂, t)û)x
)�

p̂ + w̃x(x̂, t)�+ s̃x (x̂, t)�û‖∞ +
+‖B̃(x̂, t)�p̂ + s̃(x̂, t)‖∞ + ‖

(
B̃(x̂, t)�p̂

)
x

˙̂x + B̃t (x̂, t)�p̂ + B̃(x̂, t)� ˙̂p‖∞ + |∇g̃(x̂(T ))|)

≤ max{1, T }
(
(1 + √

m)ε + (2 + |D| + √
m)ε + (|D| + 1)ε + (|D|2 + 2|D|)ε + ε

)

≤ C1ε,

for some constant C1 only depending on |D|, m and T . Similarly for z ∈ BX̃D
(ẑ; a′) we have

d̃Y (0, f (z)) ≤ C1ε,

which gives
d̃Y (ŷ, f (z)) ≤ d̃Y (ŷ, 0) + d̃Y (0, f (z)) ≤ 2C1ε. (4.22)

Next since B̃, ãx , B̃x , s̃x are bounded by ε and ã, B̃, s̃, ãx , B̃x , w̃x , s̃x , ∇g̃ are Lipschitz
continuous with Lipschitz constant ε, p is bounded by |D| and |u| ≤ √

m we have that for
any z, z′ ∈ BX̃D

(ẑ; a′)

dY (f (z), f (z′)) = ‖ − ã(x, t) − B̃(x, t)u + ã(x′, t) + B̃(x′, t)u′‖1
+ ‖(̃ax(x, t) + (B̃(x, t)u)x

)�
p + +w̃x(x, t)� + s̃x (x, t)�u

− (̃
ax(x′, t) + (B̃(x′, t)u′)x

)�
p′ − w̃x(x′, t)� − s̃x (x′, t)�u′‖1

+ ‖B̃(x, t)�p + s̃(x, t)−B̃(x′, t)�p′−s̃(x′, t)‖∞+|∇g̃(x(T ))−∇g̃(x′(T ))|
≤ ε

[
(‖x − x′‖1 + √

m|D| ‖x − x′‖1 + ‖u − u′‖1)‖)
+ (|D| ‖x − x′‖1 + ‖p − p′‖1 + √

m|D| ‖x − x′‖1 + |D| ‖u − u′‖1
+ √

m‖p − p′‖1 + ‖x − x′‖1 + √
m‖x − x′‖1 + ‖u − u′‖1)

+ (‖x − x′‖∞ + |D| ‖x − x′‖∞ + ‖p − p′‖∞) + |x(T ) − x′(T )|]
≤ C2ε‖z − z′‖X̃D

(4.23)

for some constant C2 only depending on |D|.
Hence, if we choose ε0, δ and c such that

2C1ε0 ≤ γ, C2ε0 ≤ μ, C1ε0 < b′, δ = a′, c = ς ′C1, cε0 < a′,
then we can apply Theorem 4.2 to see that f + F is strongly bi-metrically regular at ẑ for ŷ

with constants ς ′, a′ and b′. Therefore, there is a unique z∗ ∈ BX̃D
(ẑ; a′) such that

0 ∈ f (z∗) + F(z∗).
and we have

d̃X (z∗ − ẑ) ≤ ς ′dY (0, ŷ) ≤ ς ′C1ε = cε,

which proves (i). Moreover since (z∗, 0) ∈ int (BX̃D
(ẑ; a′) × BỸ (ŷ; b′)), the map f + F is

also strongly bi-metrically regular at z∗ for 0. This proves (ii).

We mention that the issue of stability with respect to linearization of the strong bi-metric
regularity property (in the spirit of Robinson’s theorem [24]) is more complicated and will
be a subject of a separate investigation, together with further applications of this property.
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5 A Newton-Type Method for Bang-Bang Optimal Control Problems

In this section we investigate the convergence of a Newton-type method for solving affine
optimal control problems under conditions which guarantee that the (strengthened) sub-
regularity property in Theorem 3.3 holds for the linearized problem along the optimal
solution. For this, we first present an abstract result which is similar to, but stronger than
[5, Theorem 6.1], since it is based on the stronger version of sub-regularity in Theorem 3.3.

Theorem 5.1 Let (X, ‖ ·‖X) and (Y, ‖ ·‖Y ) be Banach spaces. Let the mapping ϕ : X → Y

be Fréchet differentiable (Dϕ denotes the derivative) and let � : X ⇒ Y be a set-valued
mapping. Let x̂ be a solution of the inclusion

ϕ(x) + �(x) � 0.

Assume that there are positive constants R, L and c such that

‖Dϕ(x) − Dϕ(x̂)‖ ≤ L‖x − x̂‖X ∀x ∈ BX(x̂, R) (5.1)

and
‖x − x̂‖X ≤ c‖y‖Y (5.2)

for every x ∈ X and y ∈ ϕ(x̂) + Dϕ(x̂)(x − x̂) + �(x).
Then for x ∈ BX(x̂, r), where r = min{R, 2

5cL }, and for every solution z ∈ X of the
Newton inclusion

ϕ(x) + Dϕ(x)(z − x) + �(z) � 0, (5.3)

it holds that z ∈ BX(x̂, r) and

‖z − x̂‖X ≤ 1

r
‖x − x̂‖2X. (5.4)

Before proving the theorem we mention that condition (5.2) is a strengthened form of
the metric sub-regularity of the partial linearization x → ϕ(x̂) + Dϕ(x̂)(x − x̂) + �(x) of
the mapping ϕ + �. The inclusion z ∈ BX(x̂, r) implies that any finite or infinite sequence
generated by the Newton inclusion (5.3) and starting from BX(x̂, r) (if such exists) stays in
BX(x̂, r). Inequality (5.4) claims quadratic convergence of any such sequence which starts
in the interior of BX(x̂, r).

Proof For any x ∈ BX(x̂, r), let z ∈ X be an arbitrary solution of (5.3) (if any). Then,

ϕ(x̂) + Dϕ(x̂)(z − x̂) + �(z) � ϕ(x̂) − ϕ(x) + Dϕ(x̂)(z − x̂) − Dϕ(x)(z − x).

This means that z solves (5.3) with perturbation y given by the right-hand side of the
inclusion above. Therefore, (5.2) yields that

‖z − x̂‖X ≤ c‖ϕ(x̂) − ϕ(x) + Dϕ(x̂)(z − x̂) − Dϕ(x)(z − x)‖Y .

Now using (5.1) we get

‖z − x̂‖X ≤ c(‖ϕ(x̂) − ϕ(x) + Dϕ(x̂)(x − x̂)‖Y + ‖(Dϕ(x̂) − Dϕ(x))(z − x)‖Y )

≤ cL

2
‖x − x̂‖2X + cL‖x − x̂‖X ‖z − x‖X

≤ cL

2
‖x − x̂‖2X + cL‖x − x̂‖X

(‖z − x̂‖X + ‖x − x̂‖X

)
.

Hence,

(1 − cL‖x − x̂‖X)‖z − x̂‖X ≤ 3cL

2
‖x − x̂‖2X.
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Since 1− cL‖x − x̂‖X ≥ (1− cLr) ≥ 3
5 we obtain (5.4), which implies that z ∈ BX(x̂, r).

Remark 5.2 A similar convergence result of the Newton’s method can be found in [4] for
variational inequalities and nonlinear programming. In that paper, the author introduces the
conditions of hemi-stability and hemi-regularity in order to ensure the convergence of the
Newton’s method. The assumptions in Theorem 5.1 are weaker, but existence of a New-
ton sequence is not claimed, similarly as to [5, Theorem 6.1]. Existence will follow in the
analysis of optimal control problems that follow.

Now, we shall use Theorem 5.1 to investigate the convergence of the Newton method for
the following affine optimal control problem:

minimize C(x, u)

subject to ẋ(t) = a(x(t), t) + B(x(t), t)u(t), t ∈ [0, T ],
u(t) ∈ U := [−1, 1]m,

x(0) = x0, (5.5)

where

C(x, u) := g(x(T )) +
∫ T

0
[w(x(t), t) + 〈s(x(t), t), u(t)〉] dt.

Here the functions a : R
n × R → R

n, B : R
n × R → R

n×m, w : R
n × R → R,

s : Rn × R → R
m and g : Rn → R are given. Further, we use the following assumptions.

Assumption (A1”) The functions a, B, w, s are twice differentiable in x, and all these
functions and derivatives of first and second order are continuous in t and locally Lipschitz
in x, uniformly in t . g is twice continuously differentiable with Lipschitz derivate. The
problem (5.5) has a solution, (x̂, û).

Remark 5.3 The optimality can be understood as local, since it is only important that the
Pontryagin maximum principle is fulfilled for (x̂, û). Due to the linearity of the problem
with respect to the control and the compactness and convexity of the control constraints,
existence of an optimal solution is granted if the differential equation in (5.5) has a solution
on [0, T ] for every u ∈ U .

By the Pontryagin minimum principle, there exists an absolutely continuous function p̂

such that the triple (x̂, p̂, û) solves for a.e. t ∈ [0, T ] the system
0 = ẋ(t) − a(x(t), t) − B(x(t), t)u(t),

0 = ṗ(t) + (
ax(x(t), t) + (B(x(t), t)u(t))x

)�
p(t) + wx(x(t), t)� + sx(x(t), t)�u(t),

0 ∈ B(x(t), t)�p(t) + s(x(t), t) + NU(u(t)),

0 = p(T ) − ∇g(x(T )), (5.6)

where the subscript x (as in ax) means differentiation with respect to x.
We rewrite system (5.6) as the following generalized equation

0 ∈ f (x, p, u) + G(x, p, u), (5.7)
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where f : X → Y is given by

f (x, p, u)(t) :=

⎛
⎜⎜⎝

ẋ − a(x, t) − B(x, t)u

ṗ + (
ax(x, t) + (B(x, t)u)x

)�
p + wx(x, t)� + sx(x, t)�u

B(x, t)�p + s(x, t)

p(T ) − ∇g(x(T ))

⎞
⎟⎟⎠ , (5.8)

G : X ⇒ Y is given by

G(x, p, u) =

⎛
⎜⎜⎝

0
0

NU (u)

0

⎞
⎟⎟⎠ , (5.9)

and X and Y are the spaces defined in Section 2, namely X = W
1,1
x0 × W 1,1 × L1, Y =

L1 × L1 × L∞ × R
n.

Following [8, Chapter 6.3], we define the Newton-type method for solving problem (5.7)
as follows, where zk := (xk, pk, uk) denotes the obtained iterate at step k = 0, 1, . . ..

Newton’s method:

1. Choose z0 ∈ X .
2. Given zk , obtain zk+1 as a solution of the generalized equation

f (zk) + Df (zk)(zk+1 − zk) + G(zk+1) � 0. (5.10)

Here, Df (z) is the Jacobian of f at z.
We mention that if zk satisfies (5.10) then uk is an admissible control, because NU (u) =

∅ whenever u �∈ U .
For any z̄ ∈ X the inclusion f (z̄) + Df (z̄)(z − z̄) + G(z) � 0 represents the Pontrya-

gin system of necessary optimality conditions for a linear-quadratic problem which can be
recast as (P) by introducing an additional state variable, similarly in the proof of Theorem
4.5. We denote this problem by LP(z̄) (we skip its explicit formulation, which can be found
for instance in [9, Section 5]). For the next theorem it is important to ensure that the claim
in Theorem 3.3 holds for the particular problem LP(ẑ) corresponding to z̄ = ẑ, which obvi-
ously has the solution ẑ – the solution of the non-linearized problem (5.5). Therefore, we
make the following assumptions, related to Assumption (A2) and (A3) in Section 2.

Assumption (A2”) The objective functional in problem LP(ẑ) is convex on the set of all
admissible pairs F (see Remark 4.4).

Assumption (A3”) The switching function σ̂ (t) in problem LP(ẑ), which is

σ̂ (t) = B(x̂(t), t)�p̂(t) + s(x̂(t), t),

satisfies Assumption (A3) with κ = 1.
The next theorem claims that on the assumptions made, Newton’s method generates a

sequence quadratically converging to the optimal solution of (5.5).

Theorem 5.4 Let Assumption (A1”) be fulfilled and let ẑ := (x̂, p̂, û) be a solution of
problem (5.6). Let, in addition, Assumptions (A2”) at (A3”) be fulfilled for ẑ. Then there
exists a neighborhood O ⊂ X of ẑ such that for any starting point z0 ∈ O there is a
sequence {zk}∞k=1 = {(xk, pk, uk)}∞k=1 (not necessarily unique) generated by the Newton
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method (5.10) and any such sequence is quadratically convergent to ẑ, i.e. there is a constant
c > 0 such that

‖xk+1−x̂‖1,1+‖pk+1−p̂‖1,1+‖uk+1−û‖1≤c
(
‖xk−x̂‖1,1+‖pk−p̂‖1,1+‖uk−û‖1

)2
.

Proof Since problem LP(zk) has a solution and the generalized equation (5.10) represents
the Pontryagin necessary optimality conditions for this problem, the iterate zk exists for
every k.

We will apply Theorem 5.1 with spaces X and Y (for X and Y ) and mappings f and G

(for ϕ and �).
An easy but cumbersome calculation (which we skip) shows that Assumption (A1”)

implies that the mapping f : X → Y is Fréchet differentiable with locally Lipschitz deriva-
tive. Thus condition (5.1) in Theorem 5.1 is satisfied with ϕ = f and some constants R and
L. Moreover, thanks to Assumptions (A1”)–(A3”), Problem LP(ẑ) fulfills Assumptions
(A1)-(A3) in Theorem 3.3. This implies (see Remark 3.4 and Footnote 1) that condition
(5.2) in Theorem 5.1 is also fulfilled with some constant c. Then the convergence claimed
in the present theorem follows from Theorem 5.1 with the neighborhood O defined as the
open ball in X centered at ẑ and with radius r , where r is defined in Theorem 5.1.

6 Conclusion

This paper contributes to the regularity theory for Bolza-type optimal control problems with
linear dynamics, quadratic in the state and linear in the control objective integrand, and
a non-linear terminal term. Conditions for Lipschitz/Hölder sub-regularity and bi-metric
regularity are obtained and the results are utilized for obtaining a convergence result for the
Newton method applied to non-linear problems that are affine with respect to the control.
One of this conditions, which is particularly restrictive, requires that the optimal control
is of pure bang-bang type. Extensions of the regularity results and the Newton method to
control-affine optimal control problems with singular arcs is an important open area.
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