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Abstract
Understanding the structure of financial markets deals with suitably determining the
functional relation between financial variables. In this respect, important variables are
the trading activity, defined here as the number of trades N , the traded volume V , the
asset price P , the squared volatility σ 2, the bid-ask spread S and the cost of trading C .
Different reasonings result in simple proportionality relations (“scaling laws”) between
these variables. A basic proportionality is established between the trading activity and
the squared volatility, i.e., N ∼ σ 2. More sophisticated relations are the so called
3/2-law N 3/2 ∼ σ PV /C and the intriguing scaling N ∼ (σ P/S)2. We prove that
these “scaling laws” are the only possible relations for considered sets of variables by
means of a well-known argument from physics: dimensional analysis. Moreover, we
provide empirical evidence based on data from the NASDAQ stock exchange showing
that the sophisticated relations hold with a certain degree of universality. Finally, we
discuss the time scaling of the volatility σ , which turns out to be more subtle than one
might naively expect.

Mathematics Subject Classification 91G80

1 Introduction

Understanding the structure of financial markets is of obvious relevance for traders,
investors and regulators. Among others, the relation between trading activity and
price variability received a lot of attention in the financial literature over the last five
decades. The pioneers of this field, e.g. Clark [9], Epps and Epps [14] and Tauchen and
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Pitts [30], defined trading activity via trading volume and derived a proportionality
relation between the trading volume and the price variability. The rationale behind
this definition and the implied relation is the widely-cited aphorism, “it takes volume
to move prices”. We refer to Karpoff [17] for a survey of these early works on the
price–volume relation.

Due to minor empirical evidence for the hypotheses developed in these early
approaches, the volume-based definition of trading activity has been replaced by the
number of trades. This definition is caused by a substantial link between the observed
price variability and the number of trades (see Jones et al. [16], Ané and Geman [4]
as well as Dufour and Engle [12]). For example, Jones et al. [16] find no predictive
power in the volume for the price variability but that the number of trades scales pro-
portionally to the squared volatility. This scaling relation will be the starting point
of our discussion. Building on the aforementioned ideas numerous other studies fol-
lowed, e.g. [2,20]. In particular, let us point out the contribution by Wyart et al. [31],
who argue that the price volatility per trade, i.e., (price) × (volatility) × (number of
trades)−1/2, is proportional to the bid-ask-spread. This connection can be seen as a
somewhat refined version of the relation proposed by Jones et al. [16].

More recently, general relations between financial quantities have been derived
based on the invariance of markets’ microstructure, see Kyle and Obizhaeva [18]. In
particular, the authors postulate a trading invariance principle which (in contrast to
the above relations) is formulated on the latent level of meta-orders.1 Andersen et al.
[3] and Benzaquen et al. [6] confirm empirically that an analogue of this invariance
principle holds true for intradaily observable quantities. The fundamental relationmay
then be formulated as follows: the nominal value of the exchanged risk during a period
of time, defined as the product (volatility)× (traded volume)× (price), is proportional
to the number of trades to the power 3/2. This so called intraday trading invariance
principle and its connection to the relations proposed by Jones et al. [16] and Wyart
et al. [31] is the focus of the present paper.

Our aim is to critically analyze these three relations as well as variants thereof by
applying a method well known from physics: dimensional analysis. It is a tool which
allows for the falsification of a proposed relation, e.g. of the abovementioned formulas
for the number of trades, but not for its verification. This principle is similar in spirit
to K. Popper’s approach to epistemology which in turn is inspired by the classical
theory of statistics: There one can possibly reject a null hypothesis, but never prove
it. Similarly, dimensional analysis can only isolate those functional relations between
variables involving certain “dimensions” which do not violate the obvious scaling
invariance of these dimensions. Hence, it a priori rules out those functional relations
which are in conflict with these scaling requirements. But this does not imply that the
identified functional relations, which are in accordance with the scaling requirements,
describe the reality in a reasonable way. This has to be confirmed by other methods.
In the present setting the ultimate challenge is, of course, to fit to empirical data.
To complete the picture, we perform an empirical analysis of the relations described

1 A meta-order, also referred to as bet, is a collection of trades originating from the same trading decision
of a single investor.
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above and show that the intraday trading invariance principle provides an appropriate
fit to empirical data, but fails to be a “universal law”.

In dimensional analysis one uses the rather obvious argument that a meaningful
relation between quantities involving some “dimensions” should not be affected by
the units in which these “dimensions” are measured. In the present context the relevant
“dimensions” are time, shares, and money, denoted as T,S and U, respectively. We
shall also use an additional argument, namely “leverage neutrality” as introduced by
Kyle and Obizhaeva [19]. We emphasize that these authors were the first to combine
the concepts of “leverage neutrality” and dimensional analysis. The assumption of
leverage neutrality is based on the Modigliani–Miller theorem (see [24]) and leads to
a scaling invariance principle which, mathematically speaking, is perfectly analogous
to the dimensional scaling requirements mentioned above.

The remainder of the paper is structured as follows. In Sect. 2, we first deduce the
proportionality between the number of trades and the price variability as proposed
by Jones et al. [16] from dimensional arguments. Next, we derive the more involved
scaling relations proposed by Benzaquen et al. [6] as well as Wyart et al. [31], again
using dimensional analysis, and discuss the assumption of leverage neutrality in this
context. Having a theoretical foundation for the discussed relations, we then turn to the
empirical analysis in Sect. 3: Based on data from the NASDAQ stock market, we show
that the relation proposed by Benzaquen et al. [6] fits the data rather well. In Sect. 4,
we take a closer look at volatility and analyze implications of different time scalings
thereof. We conclude with some empirical results in this respect. A reminder on the
Pi-theorem from dimensional analysis as well as proofs for all considered relations
can be found in the Appendix.

2 The trading invariance principle

We are interested in explaining the arrival rate of trades in a given stock measured as

• N = N t+T
t the number of trades within a fixed time interval [t, t + T ] so that N

is measured per units of time. Following the notation from [26], this link between
the variable N and its dimensional unit is therefore given by

[N ] = T
−1.

Let us identify the variables (and their dimensions [·]) which are likely to influence
the number of trades N in a given interval [t, t + T ]. Three obvious candidates are:
• V = V t+T

t the traded volume of the stock during the time interval [t, t + T ],
measured in units of shares per time

[V ] = S/T.

• P = Pt+T
t the average price of the stock in the interval [t, t + T ], measured in

units of money per share

[P] = U/S.
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• σ 2 = (σ 2)t+T
t = Var (log(Pt+T ) − log(Pt )) the variance of the log-price over

the time interval [t, t + T ]. We assume

[σ 2] = T
−1.

If the price process (Pt )t≥0 follows, e.g. the Black–Scholes model, see (24), we clearly
find the above scaling [σ 2] = T

−1 and shall retain this assumption inmost of the paper.
However, the scaling of σ 2 turns out to be more subtle than it seems at first glance. In
Sect. 4 below, we shall investigate the implications of a scaling relation [σ 2] = T

−2H ,

where H ∈ (0, 1) may be different from 1/2. For instance, such a scaling may result
from price processes based on a fractional Brownian motion (B H

t )t≥0 with Hurst
parameter H ∈ (0, 1), see [23].

Based on these identified dimensions, let us turn to the basic idea of dimensional
analysis: the validity of a considered relation should not dependonwhetherwemeasure
time T in seconds or in minutes, shares S in single shares or in packages of hundred
shares, and money U in Euros or in Euro-cents.

Definition 1 (Dimensional invariance).Afunctionh : Rn+ → R+ relating the quantity
of interest U to the explanatory variables W1, . . . , Wn , i.e,

U = h(W1, . . . , Wn),

is called dimensionally invariant if it is invariant under rescaling the involved dimen-
sions (in our case S,T and U).

As a first—and rather naive—approach we analyze the assumption that the three
variables σ 2, P and V fully explain the number of trades N .

Proposition 1 Assume that the number of trades N depends onlyon the three quantities
σ 2, P and V , i.e.,

N = g(σ 2, P, V ), (1)

where the function g : R3+ → R+ is dimensionally invariant. Then, there is a constant
c > 0 such that the number of trades N obeys the relation

N = c · σ 2. (2)

The proof relies on elementary linear algebra and is given in Appendix B below
(compare also the proof of Theorem 1 below which is similar). Recall that relation (2)
goes back to Jones et al. [16].

As mentioned in the introduction, one should read the present “dimensional” argu-
ment in favor of relation (2) as a pure “if. . . then. . . ” assertion: if N really is fully
explained by σ 2, P and V and the obvious scaling invariances of S, T and U are sat-
isfied, then (2) is the only possible relation. As we shall see below, the empirical data
does not reconfirm the validity of (2). In other words, we have to turn the above state-
ment upside down: as (2) is not reconfirmed by empirical data, the variables σ 2, P and
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V cannot fully explain the quantity N . It is therefore natural to introduce more/other
quantities in order to explain the number of trades N .

Regarding the uniqueness of the function g in (1), the mathematical reason for the
unique choice of g given by (2) is that we have three scaling relations (pertaining to the
invariance of the “dimensions” S,U and T) as well as the three explanatory variables
σ 2, P and V . This leads to three linear equations in three unknowns, yielding a unique
solution.

Let us now try to go beyond the scope of relation (1) by considering further explana-
tory variables. Motivated by Wyart et al. [31], we consider the following quantity as
relevant for the number of trades N in a given interval [t, t + T ], additionally to σ 2, P
and V :

• S = St+T
t the average bid-ask spread in the interval [t, t + T ], measured in

units of money per share

[S] = U/S.

Following Benzaquen et al. [6], it is also convenient to alternatively consider the
quantity

• C = Ct+T
t the average cost per trade in the interval [t, t + T ], measured in

units of money

[C] = U.

To visualize things, suppose that for some stock we observe in average during the
time interval [t, t + T ] an ask price of EUR12.30 and a bid price of EUR12.20 so
that the bid-ask spread S equals 10 cents. If the average trade size in the interval
[t, t + T ], denoted by Q = Qt+T

t , is 500 shares, we obtain that the average cost
per trade C = QS is EUR50. A discussion of the difference between using S rather
than C as an explanatory variable can be found at the end of this section. For now, let
us follow Benzaquen et al. [6] for our derivation of the intraday trading invariance
principle and pass to the set σ 2, P, V and C of explanatory variables, i.e.,

N = g(σ 2, P, V , C), (3)

for some function g : R4+ → R+. As we now have four explanatory variables, the
three equations yielded by the scale invariance of the dimensions S,U and T are not
sufficient anymore to imply an (essentially) unique solution for g. In fact, the four
explanatory variables above combined with the three invariance relations pertaining
to S, T and U only yield a general solution of (3) of the form

N = σ 2 f

(
PV

σ 2C

)
, (4)

where f : R+ → R+ is an arbitrary function whose generality cannot be restricted
by only relying on arguments pertaining to dimensional analysis with respect to the
three dimensions S, T and U (see Appendix B).
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Hence, in order to obtain such a crisp result as in (2), an additional “dimensional
invariance” is required. Kyle and Obizhaeva [19] found a remedy: a no-arbitrage type
argument, referred to as “leverage neutrality”.2 This concept is inspired by the findings
of Modigliani and Miller [24] (compare [26]): Consider a stock of a company, and
suppose that the company changes its capital structure by paying dividends or by
raising new capital. The Modigliani–Miller theorem tells us precisely which features
of the company are not affected by a change in the capital structure. This allows us
to establish how certain quantities behave when varying the leverage in terms of the
relation between debt and equity of a company.

From a conceptual point of view, the assumption of leverage neutrality gives a
constraint on the behavior of the quantities N , σ 2, P, V , C (resp. S) in case of chang-
ing the firm’s capital structure. This constraint can be understood as an additional
though synthetic dimension in our analysis, whichwe refer to as theModigliani–Miller
“dimension” M. The Modigliani–Miller “dimension” M of a share of a company is
measured in terms of the leverage L, i.e., the quantity

L = total assets

equity
.

MultiplyingL by a factor A > 1 is equivalent to paying out (1− A−1) of the equity as
cash-dividends. On the other hand, multiplying L by a factor 0 < A < 1 corresponds
to raising new capital in order to increase the firm’s equity by a factor A−1. Following
Kyle and Obizhaeva [19] as well as [26], we are led to the following assumption:

Leverage Neutrality Assumption ([19,26]). Scaling the Modigliani–Miller “dimen-
sion” M by a factor A ∈ R+ implies that

• N, V and C (as well as S) remain constant,
• P changes by a factor A−1,
• σ 2 changes by a factor A2.

To recapitulate: Setting A = 2 corresponds to paying out half of the equity as
dividends so that each share yields a dividend of (1− A−1)P = P/2. The stock price
is, thus, multiplied by A−1 = 1/2 while the volatility σ is multiplied by A = 2. The
remaining quantities are not affected by changing the leverage, in accordance with the
insight ofModigliani andMiller [24] and the recent work by Kyle and Obizhaeva [19].
The economic reason is that the value of the assets of the corresponding company and
hence the associated risk does not change.

Definition 2 (Leverage neutrality). A function h : Rn+ → R+ relating the quantity N
to the explanatory variables σ 2, P, V , C and S, i.e,

N = h(σ 2, P, V , C, S),

is called leverage neutral if it is invariantwhen rescaling theModigliani–Miller dimen-
sion M of the variables N , σ 2, P, V , C, S as defined in the assumption above.

2 Note that Kyle andObizhaeva [19] use the argument of leverage neutrality in the context ofmarket impact.
But, of course, the same idea applies in the present situation.
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We can now derive the following relation, which is the focus of the present paper.
It relies on the basic fact that under the “Leverage Neutrality Assumption” we now
find four linear equations in order to determine four unknowns. Note that Benzaquen
et al. [6] coined this relation the “3/2-law”.

Theorem 1 ((3/2)-law). Suppose the “Leverage Neutrality Assumption” holds and
that the number of trades N depends only on the four quantities σ 2, P, V and C, i.e.,

N = g(σ 2, P, V , C), (5)

where the function g : R4+ → R+ is dimensionally invariant and leverage neutral.
Then, there is a constant c > 0 such that the number of trades N obeys the relation

N 3/2 = c · σ PV

C
. (6)

The proof follows from the general Pi-theorem reviewed in Appendix A. For the
convenience of the reader, we also present a direct proof of Theorem 1. Although
slightly longish and repetitive, we hope that it helps the intuition.

Proof of Theorem 1 First, we make the following ansatz for the function g in (5):

g(σ 2, P, V , C) = c · (σ 2)y1 P y2V y3C y4 , (7)

where c > 0 is a constant and y1, . . . , y4 are unknown real numbers. Looking at the
first row of Table 1 yields the relation

− y2 + y3 = 0. (8)

Indeed, when passing from counting shares in packages of 100 units rather than in
single units, the number P is replaced by 100P while the number V is replaced by
V /100. Since the function g in (7) is assumed to be dimensionally invariant, g should
remain unchanged by this passage, i.e.,

c ·
(
σ 2

)y1
P y2V y3C y4 = c ·

(
σ 2

)y1
(100P)y2

(
V

100

)y3
C y4 (9)

Table 1 A labelled overview of
the dimensions of the quantities
P, V , σ 2 and C

σ 2 P V C N

S 0 −1 1 0 0

U 0 1 0 1 0

T −1 0 −1 0 −1

M 2 −1 0 0 0
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which is only possible if (8) holds true. Looking at the other rows of Table 1 we
therefore get the system of linear equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− y2 + y3 = 0

y2 + y4 = 0

−y1 − y3 = −1

2y1 − y2 = 0

whose unique solution is

y =
(
1

3
,
2

3
,
2

3
,−2

3

)�
, (10)

which gives (6) as one possible solution of (5).
We still have to show the uniqueness of (6). To do so, it is convenient to pass

to logarithmic coordinates: suppose that there is a function G : R4 → R such that
log(N ) = G

(
log(σ 2), log(P), log(V ), log(C)

)
or equivalently,

log(N ) − G(X1, X2, X3, X4) = 0, (11)

where we write
(
log(σ 2), log(P), log(V ), log(C)

)
as (X1, X2, X3, X4). We have to

show that G has the form

log(N ) = y1X1 + y2X2 + y3X3 + y4X4 + const,

where y1, y2, y3, y4 are given by (10) and const is a real number. Denote by r1 :=
−e2 + e3 the first row of Table 1, considered as a vector in R

4, where (ei )
4
i=1 is the

canonical basis of R4. Similarly as in (9), the first row of Table 1 and dimensional
invariance imply that

G
(
log(σ 2), log(P), log(V ), log(C)

)

= G
(
log(σ 2), log(P) + log(100), log(V ) − log(100), log(C)

)
.

Clearly we can replace log(100) by any real number. Speaking abstractly, this means
that G : R4 → R must be constant on any straight line parallel to the vector r1. A
similar argument applies to r2 = e2 + e4 and r4 = 2e1 − e2. As regard r3 = −e1 − e3
the situation is slightly different, as the third row of Table 1 also involves a non-zero
entry of N .

The third row of Table 1 and (11) imply that for any λ ∈ R,

G(X1 − λ, X2, X3 − λ, X4) = G(X1, X2, X3, X4) − λ.

Setting const := G(0, 0, 0, 0), we have

G(−λ, 0,−λ, 0) = −λ + const for all λ ∈ R,
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which uniquely determines G on the one-dimensional space spanned by r3 = −e1−e3
in R4. As we have seen that G also must be constant along each line in R3 parallel to
r1, r2 and r4, and as r1, r2, r3, r4 span the entire space R4, we conclude that there is
only one choice for the function G, up to the constant const = G(0, 0, 0, 0). ��

For an alternative derivation of relation (6), we pass from considering σ 2, the vari-
ability of the relative price changes, to considering σ 2

B , the variability of the absolute
price changes. This will allow us to reduce the two explanatory variables σ 2 and P to
one explanatory variable σ 2

B = σ 2P2. We call σB the Bachelier volatility as it corre-
sponds to Bachelier’s original model from 1900, see [5]. Recall that the dynamics of
the price process (Pt )t≥0 of the Black–Scholes versus the Bachelier model are

d Pt = σ Pt dWt , (Black−Schloes model)

d Pt = σBdWt , (Bachelier model) (12)

where Wt is a standard Brownian motion. Defining σB = σ P the twomodels coincide
remarkably well as long as Pt does not move too much (compare e.g. [29]). We
therefore define

• σ 2
B = σ 2P2 the Bachelier volatility in the interval [t, t + T ]. Plugging in the

dimensions [σ 2] = T
−1 and [P] = US

−1, we obtain

[σ 2
B] = U

2
S

−2
T

−1.

A glance at Table 2 reveals that σ 2
B has Modigliani–Miller dimensionM equal to zero

(just as the other variables V , C and N ). This enables us to derive the assertion of
Theorem 1 by using only the three obvious scaling invariances, but without imposing
a priori the requirement of leverage neutrality.

Corollary 2 Suppose the number of trades N depends only on the three quantities
σ 2

B, V and C, i.e.,

N = g(σ 2
B, V , C), (13)

where the function g : R3+ → R+ is dimensionally invariant. Then, there is a constant
c > 0 such that the number of trades N obeys the relation

N 3/2 = c · σB V

C
. (14)

Table 2 A labelled overview of
the dimensions of the quantities
V , σ 2

B = σ 2P2 and C

σ 2
B V C N

S −2 1 0 0

U 2 0 1 0

T −1 −1 0 −1

M 0 0 0 0
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The proof is analogous to (and even easier than) the above proof. Note that Propo-
sition 1 and Corollary 2 both only rely on the very convincing invariance assumption
with respect to S, T and U, but not on the “Leverage Neutrality Assumption”.

Anticipating that relation (14) gives a superior fit to empirical data than relation (2)
we can draw the following conclusion: the choice of σ 2

B, V , C as explanatory variables
for the quantity N is superior to the choice σ 2, P, V made in Proposition 1 above.

Here is a “dimensional argument” why we should expect a better result from Corol-
lary 2 as compared to Proposition 1. It follows from the very approach of dimensional
analysis that everything hinges on the assumption that the chosen explanatory variables
indeed “fully explain” the dependent variable. Of course, in reality such an assump-
tion will—at best—only be approximately satisfied. The art of the game is to find
a combination of explanatory variables which “best” explain the resulting variable.
The choice of the variables σ 2

B, V , C as in Corollary 2 automatically implies that the
“Leverage Neutrality Assumption” is satisfied as shown in Table 2. Indeed, the vari-
ables σ 2

B, V , C as well as N have a zero entry for theModigliani–Miller dimensionM.
Therefore, any function relating these variables is automatically leverage neutral. This
is in contrast to the choice of variables σ 2, P, V in Proposition 1 as Table 1 reveals
that P and σ 2 have a non-trivial dependence on M. It follows that formula (2) does
not satisfy the invariance relation dictated by the “Leverage Neutrality Assumption”.

Finally, we examine the implications of substituting the cost per tradeC by its more
common counterpart, the bid-ask spread S, introduced above. In fact, in the present
context it is equivalent to use either C or S as explanatory variables for the number
of trades N—provided that the traded volume V is already one of the explanatory
variables. Indeed, we have the relation C = SQ = SV /N since the average trade size
Q in the interval [t, t + T ] is given by the traded volume V divided by the number of
trades N . Hence, if we know the functional relation between N and V , we also know
the functional relation between N and Q and can therefore pass from S to C = SQ
and vice versa. Thus, we may restate Theorem 1 (and, equivalently, Corollary 2) in
terms of the bid-ask spread S rather than the cost per tradeC in the following corollary.

Corollary 3 Suppose that the number of trades N depends only on the three quantities
σ 2

B, V and S, i.e.,

N = g(σ 2
B, V , S), (15)

where the function g : R3+ → R+ dimensionally invariant. Then, there is a constant
c > 0 such that the number of trades N obeys the relation

N = c2 ·
(σB

S

)2
. (16)

We observe that the variables σ 2
B, V and S again have noModigliani–Miller dimen-

sionM, i.e., they are invariant under changes of the leverage. Therefore, formula (16)
satisfies the invariance principle given by the “Leverage Neutrality Assumption”. We
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note again that given the relations C = SQ = SV /N as well as σ 2
B = σ 2P2 the two

equations (6) and (16) are indeed equivalent.
Relation (16) is precisely the one proposed by Wyart et al. [31]. By rearranging the

terms, we find that

S2 = c2 · σ 2
B

N
. (17)

The interpretation is that the squared Bachelier volatility per trade is proportional to
the square of the spread. If we elaborate further on (17), we find that

S

P
= c · σ√

N
. (18)

Without loss of generality, we can determine the price P on the left hand side of (18)
as midquote price, i.e., the average of the best ask- and bid price. Then, S/P refers to
the so called proportional bid-ask spread which can be used to approximate a dealer’s
“round trip” transaction costs. Clearly, the approximate round-trip costs increase in
the volatility of a relative price change and decrease in the trading activity.

Summing up this section, we have seen that the relation N ∼ σ 2 proposed by
Jones et al. [16] follows from the restrictive assumption that the number of trades
N only depends on the quantities σ 2, P and V as well as dimensional arguments
(see Proposition 1). Going beyond the latter relation, it seems reasonable to include
information concerning the bid-ask spread in our analysis. Depending on whether we
choose the trading cost C or the bid-ask spread S directly, we are led to either the
3/2-law N 3/2 ∼ σ PV /C proposed by Benzaquen et al. [6] (see Theorem 1) or to the
relation S ∼ σB/

√
N proposed by Wyart et al. [31] (see Corollary 3). When proving

the two latter relations we have seen that the assumption of leverage neutrality comes
into play. Alternatively, we can also consider the product σ 2P2, rather than σ 2 and
P separately. This consideration of the “Bachelier volatility” σB = σ P reduces the
complexity of the problem inasmuch as the assumption of leverage neutrality is not
needed anymore. Again, the actual validity of any of the above scaling laws should
be confirmed by exhaustive empirical analysis.

3 Empirical evidence

3.1 Degrees of universality and relevant literature

Wenow turn to the empirical analysis of relation (2) aswell as of the 3/2-law (6).When
collecting data for the quantities N , σ 2, V , P and C , one has to specify the considered
asset and the considered time period as well as the length T of the time interval over
which the data is aggregated.Wecannot expect that the constant c appearing in relations
(2) resp. (6) is the same for each considered interval and each possible interval length
and each considered asset in either one of the relations. We can only hope that a given
relation holds on average. Based on the nomenclature introduced in Benzaquen et al.
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[6], we therefore distinguish the following three degrees of universality attached to
the validity of relations (2) and (6):

1. No universality The relation holds on average for a fixed asset and a fixed interval
length.However, the constant c varies significantly for different assets and different
interval lengths.

2. Weak universality The relation holds on average for some assets and some interval
lengths with similar values from the constant c.

3. Strong universality The relation holds on average for all assets and all interval
lengths with similar values from the constant c.

Note that this distinction does not allow for the possibility that the validity attached
to a given relation changes over time, simply because we consider only one specific
time period.

Let us shortly discuss the relevant empirical evidence which can be found in the
literature before turning to our own empirical analysis. Andersen et al. [3] conducted
an important empirical study in the present context. They test the relation

I = σ PV

N 3/2 , (19)

where I is independently and identically distributed across assets and time for E-mini
S&P 500 futures contract. Neglecting the price P , they show that relation N 3/2 ∼ V σ

holds when averaging within and across trading days for this particular asset. In fact,
their data fits the latter relation nearly perfectly compared to the relations V ∼ σ 2

resp. N ∼ σ 2 proposed by Tauchen and Pitts [30] resp. Jones et al. [16]. Benzaquen
et al. [6] address the same question by examining eleven additional futures contracts
as well as 300 US stocks. Aiming to confirm that β = 3/2 in the relation Nβ ∼ σ PV ,
they estimateβ for each considered stock individually. Theyfind that β̂ = 1.54± 0.11,
where the uncertainty here is the root mean square cross-sectional dispersion. Thus,
these authors note that this provides evidence that the relation N 3/2 ∼ σ PV holds
also on the stockmarket and not only on the very liquid futures market. Moreover, they
show that the distribution of I in (19) depends significantly on the studied asset and
thus, conclude that relation (19) holds only with weak universality. As an additional
contribution, the authors reveal that the inclusion of the trading cost C is beneficial
in the sense that their proposed invariant I = σ PV C−1N−3/2 is almost constant for
different assets.

Finally, let us mention the evidence in the earlier work by Wyart et al. [31]. These
authors show that relation (17) describes the data very well when the right level of
aggregation is chosen. When examining the France Telecom stock, S and σB/

√
N are

averaged over two trading days, while in case of NYSE stocks these quantities are
averaged over an entire year. The constant c in relation (17) is found to lie between 1.2
and 1.6. Moreover, the authors note that the typical intraday pattern of the considered
quantities is in line with (17): The U-shaped pattern of the volatility σB is explained by
the decline of the bid-ask spread S and an increase of the number of trades N within
the trading day.
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3.2 Description of data

Our empirical analysis is based on limit order book data provided by the LOBSTER
database (https://lobsterdata.com). The considered sampling period begins
on January 2, 2015 and ends on August 31, 2015, leaving 167 trading days. Among all
NASDAQ stocks, d = 128 sufficiently liquid stocks with high market capitalizations
are chosen. Stocks are considered to be “sufficiently liquid” as long as the aggregated
variables (defined below) can be reasonably treated as continuously distributed, i.e., the
empirical distributions of the aggregated variables do not have points with obviously
concentrated mass. Observations made during the thirty minutes after the opening of
the exchange as well as trading halts are removed.

Let us fix an interval length T ∈ {30, 60, 120, 180, 360}min for which a developed
hypothesis is tested. For the sake of illustration, set the length of the considered time
interval T to 60min. This interval length balances the tradeoff between sufficient
aggregation of the data on the one hand and some intraday variability on the other
hand. As a result, we are left with n = 1002 non-overlapping time intervals with equal
length T = 60 min. Let us concentrate on a specific asset i ∈ {1, . . . , d} (omitting
the index i for ease of notation in the remainder of Sect. 3.2) and let j ∈ {1, . . . , n}
refer to an arbitrary interval. Suppose the trades in the considered interval j arrive at
irregularly spaced transaction times t1, t2, . . . , tN j . Then,

N j denotes the number of trades in the interval j ,

Q j = N−1
j

∑N j
k=1 Qtk denotes the average size of the trades in the interval j , where

Qtk denotes the number of shares traded at time tk ,
Vj = N j × Q j is the traded volume in the interval j ,

Pj = N−1
j

∑N j
k=1 Ptk denotes the average midquote price in the interval j , where

Ptk = (Atk + Btk )/2 and Atk (resp. Btk ) denotes the best ask (resp. bid) price after
the transaction at time tk ,
σ̂ 2

j denotes the estimated squared volatility in the interval j ,

S j = N−1
j

∑N j
k=1 Stk denotes the average bid-ask spread in the interval j , where

Stk = Atk − Btk is the bid-ask spread after the transaction at time tk , and
C j = Q j × S j is the cost per trade in the interval j .

Note the following four details: Firstly, even though transaction times are recorded
on a nano-second level, a time-stamp tk is recorded L-times (tk1, . . . , tkL ) in the raw
dataset when a market order is executed against L limit orders at time tk . Such a
multiple entry of the same time-stamp enters the number of trades N j only once (not
L-times). The size Qtk of the trade at time tk is determined by summing the L-records
in the dataset Qtk�

, � = 1, . . . , L , i.e., Qtk = ∑L
�=1 Qtk�

. The midquote price Ptk and
the bid-ask spread Stk related to the merged market order of size Qtk are computed as
volume-weighted averages

Ptk = Q−1
tk

L∑
�=1

Qtk�
Ptk�

and Stk = Q−1
tk

L∑
�=1

Qtk�
Stk�

.
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Secondly, the aggregated variables, i.e., the average market order size Q j , the
average midquote price Pj and the average bid-ask spread S j of interval j , are in fact
not computed by the sample averages as state above. Since simple sample averages are
sensitive with respect to outliers, e.g. huge market orders, Q j , Pj and S j are based on
robust averages. In detail, we compute trimmedmeans of Qt1 , . . . , QtN j

, Pt1 , . . . , PtN j

and St1 , . . . , StN j
to obtain Q j , Pj and S j respectively. These trimmed means discard

the upper 0.5% and the lower 0.5% of the corresponding ordered data and compute
the average based on the remaining 99% of the data.

Thirdly, the estimated squared volatility σ 2
j is computed as realized variance in

interval j

σ̂ 2
j =

N j∑
k=2

(
log(Ptk ) − log(Ptk−1)

)2
. (20)

The properties of the estimator σ̂ 2
j are well understood for a variety of models for

the efficient price process (Pt )t≥0. For example, if the dynamics of the efficient price
process follows the stochastic model d Pt = σ Pt dWt , with σ > 0, the estimator σ̂ 2

j

converges weakly in probability to σ 2T (the quadratic variation of the increments
of (log(Pt ))t≥0) as the number of transactions within interval j becomes dense (as
N j → ∞). The limit of σ̂ 2

j , however, does not coincide with the quadratic variation of
the efficient price process, if the observed midquote price is contaminated by market
microstructure noise. This noise, for instance, arises from market imperfections such
as price discreteness or informational content in price changes, see [7]. To check the
robustness of our analysis with respect to the presence of market microstructure noise,
several results below can likewise be confirmed by replacing the realized variance by
the noise-robust estimator of the quadratic variation proposed in [15]. It should be
noticed that a distortion of the analysis by the bid-ask bounce is already avoided by
considering midquote prices rather than transaction prices. The interested reader will
find a gentle introduction explaining how noisy price observations erode the realized
variance in [1].

Last but not least, note that Benzaquen et al. [6] in fact define the cost per trade by

C̃ j = N−1
j

∑N j
k=1 Qtk Stk . This slight difference in the definitions becomes obviously

negligible, if the bid-ask spread Stk is constant over the entire interval j . The results
presented below are robust with respect to the employed version of the cost per trade
as we shall see.

3.3 N ∼ �2 versus N3/2 ∼ �PV/C

To check which of the relations N ∼ σ 2 and N 3/2 ∼ σ PV /C is superiorly supported
by data, we consider for each stock (i = 1, . . . , d) a multiplicative model of the form

Ni j = exp(αi )(σ̂
2
i j )

βi

(
Pi j Vi j

Ci j

)γi

exp(εi j ) with j = 1, . . . , n, (21)
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Fig. 1 The logarithmic dependent variable log(N ) is plotted versus the logarithmic explanatory variable
log(σ̂ PV /C) for the fixed interval length T = 60 min and the two stocks AAL and AAPL. The lines
indicate the estimated linear relations between the considered quantities

where εi j , j = 1, . . . , n, is an error term that satisfies standard regularity conditions
and αi , βi and γi are unknown real valued parameters. A logarithmic transformation
of (21) yields the linear model

log(Ni j ) = αi + βi log
(
σ̂ 2

i j

)
+ γi log

(
Pi j Vi j

Ci j

)
+ εi j . (22)

Since dimensional analysis imposes the restriction βi + γi = 1 on the parameters
βi and γi , the value γi = 0 would imply the relation N ∼ σ 2, whereas γi = 2/3
would imply the relation N 3/2 ∼ σ PV /C from Theorem 1. The estimation of the
coefficients βi and γi subject to the restriction βi + γi = 1 therefore allows us to infer
which of the two discussed relations is backed by stronger empirical evidence.

Before turning to the constrained estimation of the parameters βi and γi , it deserves
to be emphasized that the functional relation between the logarithmic dependent vari-
able log(N j ) and the logarithmic explanatory variable log(σ̂i j Pi j Vi j/Ci j ) can be
reasonably assumed to be linear for all stocks i = 1, . . . , d. To conclude this, we
have visually inspected the bivariate point-clouds of dependent and explanatory vari-
able. Figure 1 illustrates this relation for the stocks of the American Airline Group,
Inc. (AAL) and Apple Inc. (AAPL). The remaining 126 stocks show similar patterns.

For each stock (i = 1, . . . , d) and all interval lengths T ∈ {30, 60, 120, 180, 360}
min, we estimate the parameters βi and γi in (22) by ordinary least squares subject to
the constraint βi + γi = 1. The corresponding estimate of interest is denoted by γ̂i .
To present the results of these regressions in an informative and compact way, Fig. 2
shows kernel density estimates of γ̂i across i and for fixed T .

First, let us come to the main result of this section and concentrate on the solid
graphs in Fig. 2 referring to the standard setting based on the realized variance σ̂ 2

i j
defined in (20) and the cost per trade Ci j = Qi j × Si j . If the parameter γi of the linear
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Fig. 2 The panels show kernel density estimates across the estimated parameters γ̂i for different interval
lengths T ∈ {30, 60, 120, 180, 360} min

model (22) is equal to zero, then the underlying variables satisfy the simple relation
N ∼ σ 2. Similarly, if the parameter γi is equal to 2/3, then we can conclude that
the 3/2-law from Theorem 1 holds. As seen in Fig. 2, the averages of the estimates γ̂i

(across i for different T ) are clearly much closer to 2/3 than to zero for all considered
interval lengths T . This result supports the claim made in Sect. 2 that there is stronger
empirical support for the 3/2-law (or equivalently for the relation N ∼ (σ P/S)2) than
for the relation N ∼ σ 2.

Regarding the robustness of this insight, we have re-conducted the above regression
analysis for two slightly different scenarios. One alternative setting considers replacing
the realized variance in the linearmodel (22) by themarket microstructure noise robust
estimator of the quadratic variation of [15]. The dashed graphs in Fig. 2 are related to
density estimates relying on corresponding parameter estimates γ̂i , i = 1, . . . , d. The
second modification of the initial setting replaces the cost per trade C j in the linear
model (22) by the variant C̃ j of [6]. The dotted graphs in Fig. 2 refer to corresponding
density estimates. Despite some deviation in the estimates γ̂i for these two alternative
settings from the initial one, the solid, dashed and dotted graphs document a rather
similar pattern among the estimates of the parameters γi for all interval lengths T ∈
{30, 60, 120, 180, 360} min. These similarities lead to the conclusion that neither
market microstructure noise nor the exact definition of the cost per trade erode the
overall relation between the dependent and explanatory variables. In the remaining
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part of the manuscript, we take a closer look on the 3/2-law and try to find reasonable
explanations for the systematic deviations of the estimates γ̂i from 2/3.

3.4 On the universality of the 3/2-law

In order to check the validity and universality of the 3/2-law, N 3/2 = c · σ PV /C
(or equivalently of the relation N = c2 · (σ P/S)2), we examine the variation of the
constant c across assets and interval lengths. Hence, we do not rely on the estimators
γ̂i computed in Sect. 3.3. Instead, we compute for a fixed interval length T the quantity

ĉi = n−1
n∑

j=1

Ci j N 3/2
i j

σ̂i j Pi j Vi j
= n−1

n∑
j=1

N 1/2
i j

σ̂i j

Si j

Pi j
, for i = 1, . . . , d,

where n is the number of non-overlapping time intervals with equal length T . The left
panel of Fig. 3 shows the estimates ĉi for different values of T . Note that the rainbow-
color-code refers to the ordered values of ĉi for T = 120 min. As we recover the same
rainbow-pattern also for the other interval lengths T ∈ {30, 60, 180, 360} min, we
can conclude that there is little variation of the estimates ĉi for a fixed stock i across
different interval lengths T . This small variation of ĉi for fixed i and varying T ∈
{30, 60, 120, 180, 360} min endows the 3/2-law with a certain degree of universality.
However, the present cross-sectional dispersion in ĉi across different assets i , i.e., the
fact that depending on the considered stock the estimates ĉi range from two to five,
does not allow awarding the 3/2-law with strong universality. Thus, we draw the same
conclusion as Benzaquen et al. [6] that the 3/2-law holds with weak universality. For
completeness, the kernel density estimate in the right panel of Fig. 3 illustrates the
distribution of the estimates ĉi , i = 1, . . . , d for T = 120 min.
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Fig. 3 The left panel shows the computed values for ĉi in dependence of T ∈ {30, 60, 120, 180, 360} min.
The right panel shows a kernel density estimate across the estimates ĉi for fixed T = 120min
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4 A closer look on volatility

We have seen that the volatility σ plays a dominant role in explaining the trading
activity N . The squared volatility σ 2 of a given stock during a fixed interval [t, t + T ]
was defined as the variance of the change of the log-price

σ 2 := Var (log(Pt+T ) − log(Pt )) . (23)

When specifying the definition of σ 2 in this way we had in mind the Black–Scholes
model,

d Pt = Pt (σdWt + μdt) , (24)

where, fixing the normalization T = 1, formula (23) indeed recovers the constant σ

in (24). Going beyond Black–Scholes, consider a price process of the form

Pt = P0 exp

(∫ t

0
σudWu

)
(25)

where (σt )t≥0 is an arbitrary stochastic process (satisfying suitable regularity condi-
tions). In this case, formula (23) should, of course, be interpreted conditionally on the
sigma-algebra Ft and we obtain the “Wald identity”

Var (log(Pt+T ) − log(Pt )|Ft ) = E

(∫ t+T

t
σ 2

u du|Ft

)
. (26)

This implies in particular that, as long as we are in the framework of processes of the
form (25), the above chosen scaling

[σ 2] = T
−1,

is the only reasonable choice.
But let us have a closer look at what we are actually doing here. The above reasoning

tacitly assumes that we are starting from a stochastic model of a price process. The
present situation, however, dictates a different point of view: we start from empirical
tick data observed during the interval [t, t + T ]. Even when we make the heroic
assumption that this data is accurately modeled, e.g. by the Black Scholes model
(24), the number σ 2 which we plug into the formula N = g(σ 2, . . . ) can only be an
estimator of⊃2 obtained from the data at hand. This implies that, strictly speaking, we
should write our formulas as N = g(σ̂ 2, . . . ) in dependence of the estimated squared
volatility σ̂ 2. The gist of the argument is that for the purpose of dimensional analysis
the scaling which is relevant is that of the estimator of the volatility rather than that of
the true volatility (whatever this is). To be concrete, suppose that we are given price
data (Ptk )k=1,...,N for a grid t ≤ t1 < · · · < tN ≤ t + T in the interval [t, t + T ]. An
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obvious choice for the estimator of the squared volatility, which is also used in Sect.
3 above, is

σ̂ 2 :=
N∑

k=2

(
log(Ptk ) − log(Ptk−1)

)2
. (27)

Clearly, this estimator has the dimension [σ̂ 2] = T
−1 if we suppose that the typical

distance 	tk = tk+1 − tk (in absolute terms) does not depend on whether we measure
time in seconds or in minutes. Hence, for the estimator σ̂ 2, the hypothesis [σ̂ 2] = T

−1

underlying the dimensional analysis in Sect. 2 is satisfied.
However, we can also think of other estimators. Fix H ∈ (0, 1) and define the

estimator σ̂ 2(H) by

σ̂ 2(H) :=
(

N∑
k=2

| log(Ptk ) − log(Ptk−1)|1/H

)2H

. (28)

To motivate this estimator, consider the model

Pt = P0 exp(σ W H
t ), t ≥ 0, (29)

where σ > 0 is a fixed number and (W H
t )t≥0 is a fractional Brownian motion with

Hurst parameter H , starting at W H
0 = 0. In this case, the estimator σ̂ 2(H) in (28) is a

consistent estimator for the parameter σ 2 in (29). But the estimator σ̂ 2(H) now scales
differently in time than the quadratic estimator σ̂ 2 (see [10,27]), namely

[σ̂ 2(H)] = T
−2H . (30)

Models for the price process (Pt )t≥0 involving fractional Brownian motion as in (29)
have been proposed, notably byB.Mandelbrot, alreadymore than 50 years ago [22,23]
and there may be good reasons not to rule them out a priori.

Here is another example where a sub-diffusive behavior of the price process (Pt )t≥0
occurs, due to a micro-structural effect: the discrete nature of the prices in the real
world (compare Benzaquen et al. [6]; we thank Jean-Philippe Bouchaud for bringing
this phenomenon to our attention). To present the idea in its simplest possible form,
suppose that the price process (P̌t )t≥0 is given by

log(P̌t ) = int(Wt ),

where (Wt )t≥0 is a standard Brownian motion and int(x) denotes the integer closest
to the real number x , i.e., int(x) = sup{n ∈ Z : n ≤ x + 0.5}. Fix again an interval
[t, t + T ] and consider the quantity

σ̌ 2 = (σ̌ 2)t+T
t = Var

(
log(P̌t+T ) − log(P̌t )

)
.
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For small T > 0, we show in Appendix C that

(σ̌ 2)t+T
t ≈ c

√
T ,

for some constant c > 0. Hence, if the interval length T is sufficiently small, we
recover that [σ̌ 2] = T

−1/2, rather than the usual scaling in the dimension time, i.e.,
T

−1.
This observation indicates, that if the interval length T is small compared to the

width of the price grid, i.e., the tick value, we observe a sub-diffusive behavior of
the price process even if the “efficient”, unobserved price process is assumed to be a
diffusion. We refer to Robert and Rosenbaum [28] for a detailed discussion of how
to account for the discrete nature of prices. For now, this rough argument should only
serve as motivation that there might be plenty of reasons why the scaling [σ 2] = T

−1

is, in practical situations, not as clearly granted as it might seem at first glance.
For all these reasons we drop in this section the convenient dimensional assumption

[σ 2] = T
−1 and replace it by the subsequent more general assumption.

H -Assumption. There is H ∈ (0, 1) such that the squared volatility estimator σ̂ 2(H)

has dimension

[σ̂ 2(H)] = T
−2H .

Proposition 2 ((1+ H)-law). Suppose that the “Leverage Neutrality Assumption” as
well as the “H-Assumption” hold true and that the number of trades N depends only
on the four quantities σ̂ 2(H), P, V and C, i.e.,

N = g(σ̂ 2(H), P, V , C),

where the function g : R4+ → R+ is dimensionally invariant and leverage neutral.
Then, there is a constant c > 0 such that the number of trades N obeys the relation

N 1+H = c · σ̂ (H)PV

C
. (31)

The proof is analogous to the proof of Theorem 1 and is given in Appendix B.
The hypothesis of the above proposition assumes that H ∈ (0, 1) is known a priori.

As H is typically unknown in practical applications, we can therefore ask the following
question: For which H does relation (31) fit the empirical data best? We address this
question in the following subsection.

4.1 Empirical evidence under the H-Assumption

According to arguments from dimensional analysis, the constant c and the parameter
H from Eq. (31) should at best be identical for all stocks and all interval lengths T .
The empirical results above, however, have revealed cross-sectional dispersion which
might be related to the restrictive assumption [σ̂ 2] = T

−1. This restriction motivates
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the empirical exercise of this section: Can we determine an H ∈ (0, 1) in (31) that
minimizes the cross-sectional dispersion across the estimates of c?

Following Proposition 2, we therefore compute the estimates ĉi (H) for different
H as

ĉi (H) = n−1
n∑

j=1

N 1+H
i j Ci j

σ̂i j (H)Pi j Vi j
= n−1

n∑
j=1

N H
i j

σ̂i j (H)

Si j

Pi j
, for i = 1, . . . , d,

where σ̂ 2
i j (H) is defined in (28), H ∈ (0, 1). Both variables N H

i j and σ̂i j (H) increase
as H increases, so that it is not obvious how ĉi (H) behaves when H increases.We find
empirically that overall the constant ĉi (H) typically increases in H . Addressing the
above question therefore requires a scale invariant measure for the variation in ĉi (H)

such as the Gini-coefficient which is given by

G(x1, . . . , xn) = 2
∑n

i=1 i x[i]
(n − 1)

∑n
i=1 x[i]

− n + 1

n − 1
,

for the ordered data x[1] < x[2] < . . . < x[n]. Note that the Gini-coefficient
G(x1, . . . , xn) ∈ [0, 1] is interpreted as a measure for inequality. If all values
x1, . . . , xn are equal, G equals zero. In case of strong heterogeneity in x1, . . . , xn

the Gini-coefficient approaches one.3

Now,weminimize theGini-coefficient of
(
ĉi (H)

)
i=1,...,d with respect to H in order

to find

Ĥ = arg min
H∈(0,1)

G(ĉ1(H), . . . , ĉn(H)).

The left panel of Fig. 4 plots the Gini-coefficient in dependence of H for different
interval length T . We roughly find that Ĥ = 0.22 for T = 30 min, Ĥ = 0.23
for T = 60 min, Ĥ = 0.25 for T = 120 min, Ĥ = 0.27 for T = 180 min and
Ĥ = 0.31 for T = 360 min. The rainbow-color-code of Fig. 3 has been transferred
to the right panel of Fig. 4. In contrast to Fig. 3 yet, we present the quantities ĉi (Ĥ)

in dependence of the optimal Ĥ for the given interval length T . In case T = 120 min
for instance, the estimates ĉi (H = 0.25) range from 1.2 to 2.6 for different assets i .
On an absolute scale, the variation seems to be smaller compared to Fig. 3, where the
estimates ĉi (H = 0.5) lie between 2 and 4.5 for the same interval length T = 120min.
In relative terms though, the difference between the variation in ĉi (H = 0.25) and
ĉi (H = 0.5) is not so significant, as G (

ĉ1(H = 0.25), . . . , ĉn(H = 0.25)
) = 0.11

compared to G (
ĉ1(H = 0.5), . . . , ĉn(H = 0.5)

) = 0.14 for T = 120 min.
For now, we can only speculate on reasons why the optimal Ĥ is strikingly smaller

than 1/2 for all interval lengths T . The quantity ĉi (H) relies on tick-by-tick data,
so that an obvious explanation for these unexpected optimal values of H are market

3 The coefficient of variation defined as the ratio of the standard deviation to the sample average could be
employed as an alternative to the Gini-coefficient. The presented results are widely robust with respect to
the chosen measure of standardized dispersion.
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Fig. 4 The left panel illustrates the Gini-coefficient in dependence of H for T = 30 min (solid), T = 60
min (long-dashed), T = 120 min (dashed), T = 180 min (dashed-dotted) and T = 360 min (dotted).
The right panel shows the computed values for ĉi (Ĥ) such that Ĥ minimizes the Gini-coefficient for fixed
T ∈ {30, 60, 120, 180, 360} min

microstructure effects. To be more concrete, Benzaquen et al. [6] observe similar to
our results a sub-diffusive behavior for so called large tick future contracts. Large tick
assets are defined such that their bid-ask spread is almost always equal to one tick,
see e.g. [13]. Most of the stocks in our sample can be categorized as large tick stocks
based on this definition.

When referring to market microstructure effects, however, it deserves to be stressed
that the value H = 1/2 is implied by numerous models for the efficient price pro-
cess (Pt )t≥0, which are backed by empirical evidence and take market microstructure
effects into account. Hence, the scaling of the squared volatility through time implied
by H = 1/2 seems suitable inmany applications.We also note that theGini-coefficient
G in Fig. 4 does not vary drastically when H ranges between the optimal Ĥ ≈ 0.25
and the traditional H = 1/2, namely roughly between G = 0.12 and G = 0.15.
Hence, the value of H does not seem to play a very significant role in explaining
the heterogeneity of the value of ĉi j (H). Nevertheless, a better understanding of the
behavior of Ĥ seems to us a challenging topic for future research.

5 Conclusion

Finding laws relating the trading activity (defined here as the number of trades N
within a given time interval) to other relevant market quantities has been the subject of
numerous investigations. The earliest contribution dating as far back as the beginning
of the 1970s. Two decades later, Jones et al. [16] suggested the relation N ∼ σ 2 based
on an extensive empirical study. Other landmark contributions include the relation
N ∼ (σ P/S)2 of Madhavan et al. [21] resp. Wyart et al. [31] and the so called 3/2-
law N 3/2 ∼ σ PV /C of Benzaquen et al. [6], which were obtained using market
microstructure arguments and supported by empirical evidence. In the first part of the
paper we show that all these scaling laws can be derived using arguments relying on
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dimensional analysis. The relation N ∼ σ 2 follows from the assumption that N is fully
explained by the squared volatility σ 2, the asset price P and the traded volume V , and
the assumption that the relation between these quantities is invariant under changes
of the dimensions shares S, time T and money U. The somewhat refined relation
N 3/2 ∼ σ PV /C is obtained when assuming that N depends only on σ 2, P, V and
the cost of trading C , and assuming in addition, that an invariance principle known as
“Leverage Neutrality” holds true. This “Leverage Neutrality Assumption” can be seen
as a no-arbitrage condition enabling us to obtain a unique functional relation from the
assumption N = g(σ 2, P, V , C). Substituting the quantity C by the bid-ask spread S
in the latter assumption, we derive the relation N ∼ (σ P/S)2, which is shown to be
equivalent to the 3/2-law. Alternatively, we can consider the volatility of the relative
price change instead of the absolute price change, i.e., assume N = g(σ 2P2, V , C)

resp. N = g(σ 2P2, V , S). This assumption simplifies the analysis in that a unique
solution for g(·, ·, ·) can be obtained without recourse to the “Leverage Neutrality
Assumption”. Since our theoretical analysis relies on a set of well-defined, but not
necessarily realistic assumptions, the validity of any of the aforementioned scaling
laws needs to be confirmed through an empirical analysis.

Based on data from the NASDAQ stock exchange, we provide empirical evidence
that the 3/2-law N 3/2 = c · σ PV /C (or equivalently N = c2 · (σ P/S)2) fits the data
clearly better than N ∼ σ 2. In fact, the 3/2-law holds for a fixed asset and a fixed
interval length. However, the estimated value of the constant c strongly depends on the
considered asset. In the language of Benzaquen et al. [6], this means that the 3/2-law
holds with weak universality.

Finally, we note that both our theoretical and empirical analysis relied on the
assumption that the scaling of σ 2 is inversely proportional to time T. This hypoth-
esis is clearly debatable as it tacitly assumes diffusive price behaviors, and ignores
e.g. the discrete nature of prices. A closer look at the scaling of σ 2 suggests the scaling
[σ 2] = T

−2H for some H ∈ (0, 1) that can be seen e.g. as the Hurst parameter of a
fractional Brownian motion. Repeating our dimensional arguments, the latter scaling
of σ 2 yields the relation N 1+H ∼ σ 2PV /C . An essential drawback of this more
general situation is that the parameter H is unknown. We formulate an optimality
criterion for the choice of H . It should yield the most homogeneous estimates for the
proportionality coefficients ĉi (H). A preliminary analysis implies that, on average,
the optimal Ĥ is of the order 0.25, i.e., quite different from the assumption H = 0.5.
Although the overall effect of this passage from H = 0.5 to Ĥ ≈ 0.25 turns out
to have only mild effects on the issue of universality of the corresponding laws, we
believe that this phenomenon merits further investigation.
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A Dimensional analysis and the Pi-Theorem

In order to formally prove the results of Sects. 2 and 4, which in done in Appendix B,
we need the Pi-Theorem from dimensional analysis. For completeness, we therefore
provide the following reminder of this important theorem from dimensional analysis,
which can also be found in [26]. Additionally, the interested reader is referred to Chap-
ter 1 of the book by Bluman and Kumei [8] as well as to Pobedrya and Georgievskii
[25] for a historical perspective and to [11] for a purely mathematical treatment of
dimensional analysis. We formalize the assumptions behind dimensional analysis in
proper generality. However, for the purpose of the present paper we shall only need
the degree of generality covered by Corollaries 5 and 6 below.

Assumption 1 (Dimensional analysis).

(i) Let the quantity of interest U ∈ R+ depend on n quantities W1, . . . , Wn ∈ R+,
i.e.,

U = h(W1, W2, . . . , Wn), (32)

for some function h : Rn+ → R+.
(ii) The quantities U , W1, . . . , Wn are measured in terms of m fundamental dimen-

sions labelled L1, . . . , Lm, where m ≤ n. For any positive quantity X, its
dimension [X ] satisfies [X ] = Lx1

1 · · · Lxm
m for some x1, . . . , xm ∈ R. If [X ] = 1,

the quantity X is called dimensionless.
The dimensions of the quantities U , W1, W2, . . . , Wn are known and given in the
form of vectors a and b(i) ∈ R

m, i = 1, . . . , n, satisfying [U ] = La1
1 · · · Lam

m

and [Wi ] = Lb1i
1 · · · Lbmi

m , i = 1, . . . , n. Denote by B = (b(1), b(2), . . . , b(n))

the m × n matrix with column vectors b(i) = (b1i , . . . , bmi )
�, i = 1, . . . , n.

(iii) For the given set of fundamental dimensions L1, . . . , Lm, a system of units is
chosen in order to measure the value of a quantity. A change from one system
of units to another amounts to rescaling all considered quantities. In particular,
dimensionless quantities remain unchanged and formula (32) is invariant under
arbitrary scaling of the fundamental dimensions.

We can now state the main result from dimensional analysis (see [8]).

Theorem 4 (Pi-Theorem). Under Assumption 1, let x (i) := (x1i , . . . , xni )
�, i =

1, . . . , k := n − rank(B) be a basis of the solutions to the homogeneous system
Bx = 0 and y := (y1, . . . , yn)� a solution to the inhomogeneous system By = a
respectively. Then, there is a function f : Rk+ → R+ such that

U · W −y1
1 · · · W −yn

n = f (π1, . . . , πk),

where πi := W x1i
1 · · · W xni

n are dimensionless quantities, for i = 1, . . . , k.

We shall only need the special cases k = 0 and k = 1, which are spelled out in the
two subsequent corollaries.
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Corollary 5 Under Assumption 1, suppose that rank(B) = n and let y :=
(y1, . . . , yn)� be the unique solution to the linear system By = a. Then there is
a constant const > 0 such that

U = const · W y1
1 · · · W yn

n .

Corollary 6 Under Assumption 1, suppose that rank(B) = n − 1 and let x :=
(x1, . . . , xn)� and y := (y1, . . . , yn)� be non-trivial solutions to the homogeneous
and inhomogeneous systems Bx = 0 and By = a respectively. Then there is a function
f : R+ → R+ such that

U = f (W x1
1 · · · W xn

n )W y1
1 · · · W yn

n .

B Proofs of Sects. 2 and 4

In this section, we provide formal arguments for the results presented in Sects. 2 and
4. The proofs are based on Corollaries 5 and 6 above.

Proof of Proposition 1 Combining relation (1) and the dimensions of the quantities
σ 2, P, V and N , we obtain that the matrix B as well as the vector a are given by

B =
⎛
⎝ 0 −1 1

0 1 0
−1 0 −1

⎞
⎠ and a =

⎛
⎝ 0

0
−1

⎞
⎠ .

Table 1 illustrates how B and a relate to the considered quantities and their dimensions.
As the matrix B has full rank, i.e., rank(B) = 3, applying Corollary 5 yields

N = c · σ 2y1 P y2V y3 ,

for some constant c > 0, where y = (y1, y2, y3)� is the unique solution of the linear
system By = a which is given by y = (1, 0, 0)�. ��

Proof of Relation (4) Combining relation (3) and the dimensions of the quantities
σ 2, P, V and C as well as N , the matrix B as well as the vector a become

B =
⎛
⎝ 0 −1 1 0

0 1 0 1
−1 0 −1 0

⎞
⎠ and a =

⎛
⎝ 0

0
−1

⎞
⎠ .

The vector x = (−1, 1, 1,−1)� is a solution of the homogeneous system Bx = 0,
and the vector y = (1, 0, 0, 0)� is a solution of the inhomogeneous system By = a.
Thus, relation (4) follows from Corollary 6. ��
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Proof of Theorem 1 Combining the dimensions of the quantities considered in relation
(5) and the “Leverage Neutrality Assumption”, we obtain that the matrix B as well as
the vector a are given by

B =

⎛
⎜⎜⎝

0 −1 1 0
0 1 0 1

−1 0 −1 0
2 −1 0 0

⎞
⎟⎟⎠ and a =

⎛
⎜⎜⎝

0
0

−1
0

⎞
⎟⎟⎠ .

As the matrix B has full rank, i.e., rank(B) = 4, applying Corollary 5 yields

Nt = c · σ
2y1
t P y2

t V y3
t C y4

t ,

for some constant c > 0, where y = (y1, y2, y3, y4)� is the unique solution of the
linear system By = a which is given by y = (1/3, 2/3, 2/3,−2/3)�. ��
Proof of Corollary 2 Considering the dimensions of the quantities σB, V , C , we obtain
that the matrix B as well as the vector a are given by

B =
⎛
⎝−2 1 0

2 0 1
−1 −1 0

⎞
⎠ and a =

⎛
⎝ 0

0
−1

⎞
⎠ .

As the matrix B has full rank, i.e., rank(B) = 3, applying Corollary 5 yields

N = c · V y1σ
y2
B C2y3 ,

for some constant c > 0, where y = (y1, y2, y3)� is the unique solution of the linear
system By = a which is given by y = (1/3, 2/3,−2/3)�. This shows (14). ��
Proof of Corollary 3 As explained before the statement of Corollary 3, the conditions
(5) and (15) are equivalent. Thus, it holds

N 3/2 = c · σB V

C
.

Since C = SV /N , the corollary follows. ��
Proof of Proposition 2 The proof is the same as that of Theorem 1 except that in the
present case the matrices B and a are given by

B =

⎛
⎜⎜⎝

0 −1 1 0
0 1 0 1

−2H 0 −1 0
2 −1 0 0

⎞
⎟⎟⎠ and a =

⎛
⎜⎜⎝

0
0

−1
0

⎞
⎟⎟⎠ .

The unique solution y of the linear system By = a is y = 1/(1+H)·(1/2, 1, 1,−1)�.
Applying Corollary (5) gives the desired result. ��
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C Integer part of Brownianmotion

With the notation from Sect. 4, we want to show that as T ↘ 0

Var
(
log(P̌t+T ) − log(P̌t )

)
≈ c

√
T ,

for some constant c > 0. Recall that
(
log(P̌t )

)
t≥0

is given by

log(P̌t ) = int(Wt ),

where (Wt )t≥0 is a standard Brownian motion and int(x) denotes the integer closest
to the real number x , i.e., int(x) = sup{n ∈ Z : n ≤ x + 0.5}.

To present the idea in its simplest possible form, note that for fixed t > 0, say t = 1
and T small, it is straightforward to verify that

(
log(P̌t+T ) − log(P̌t )

)2 = (int(Wt+T ) − int(Wt ))
2

=

⎧⎪⎨
⎪⎩
0 with probability of order 1,

1 with probability of order T 1/2,

> 1 with probability smaller than T .

So that Var
(
log(P̌t+T ) − log(P̌t )

)
is of order T 1/2, as T ↘ 0, rather than of the

usual order T . In the above sketchy argument we used the fact that, for every t > 0,

lim
h→0

1

h
P

(
min
n∈Z |Wt − n| ≤ h

)
≥ c,

for some constant c > 0.
To furnish a more precise result, we make—contrary to our usual assumption W0 =

0—the assumption that the Brownian motion starts from a random variable W0 which
is uniformly distributed on [−1/2, 1/2]. Then, we can formulate the following more
quantitative result for fixed t = 0.

Proposition 3 Assume that W0 is uniformly distributed on [−1/2,+1/2]. Then,

lim inf
T →0

√
π

2T
Var

(
log(P̌T ) − log(P̌0)

)
= 0.

Proof Note that

Var
(
log(P̌T ) − log(P̌0)

)
= E

[(
log(P̌T ) − log(P̌0)

)2]
,
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where log(P̌0) is in fact zero as we assumed that W0 ∼Uni(1/2, 1/2). In the following
(Bt )t≥0 denotes a standard Brownian motion starting at B0 = 0 such that WT =
BT + W0. Then,

E

((
log(P̌T ) − log(P̌0)

)2) =
∫ 0.5

−0.5
E

(
(int(BT + x))2

)
dx

=
∫ 0.5

−0.5

∞∑
i=1

i2
(
P

(
2i − 1

2
− x ≤ BT ≤ 2i + 1

2
− x

)

+P

(
−2i + 1

2
− x ≤ BT ≤ −2i − 1

2
− x

))
dx

=
∫ 0.5

−0.5

∞∑
i=1

i2
(

�

(
i + 0.5 − x√

T

)
− �

(
i − 0.5 − x√

T

)

+�

(
i + 0.5 + x√

T

)
− �

(
i − 0.5 + x√

T

))
dx

=
∞∑

i=1

i2
(√

2T

π

(
exp

(
− (i + 1)2

2T

)
+ exp

(
− (i − 1)2

2T

)
− 2 exp

(
− i2

2T

))

+ (2i + 2)�

(
i + 1√

T

)
+ (2i − 2)�

(
i − 1√

T

)
− 4i�

(
i√
T

))

=
√
2T

π

(
1 + 2

∞∑
i=1

exp

(
− i2

2T

))
− 4

∞∑
i=1

i�

(
− i√

T

)

We now use that fact for x → ∞, �(−x) ≈ φ(x)/x , where φ(x) =
exp(−x2/2)/

√
2π is the probability density function of the standard normal distribu-

tion (we thank Friedrich Hubalek for pointing this out to us). It follows that for small
T

i�

(
− i√

T

)
≈

√
T

2π
exp

(
− i2

2T

)
,

which concludes the proof. ��
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